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We propose a physics-driven stretching function for direct numerical simulation (DNS) 
of compressible turbulent wall-bounded flows, which blends uniform near-wall spacing 
with uniform resolution in terms of semi-local Kolmogorov units in the outer wall layer. 
Given target Mach number, Reynolds number and wall temperature, our procedure yields 
a well-defined prescription for the number of grid points and their distribution which 
guarantee at the same time numerical accuracy and judicious exploitation of computational 
resources. DNS of high-speed turbulent boundary layers are used to evaluate the quality 
of the proposed stretching function, which show that one can achieve identical results 
as with general-purpose stretching functions, however with substantially higher efficiency. 
A Python script is provided to facilitate implementation of the proposed grid stretching.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Direct numerical simulation (DNS) of wall-bounded flows is by now an established practice, started from the pioneering 
work of Kim et al. [1] for channel flow. Although meshing may not be challenging for the simple topology of canonical 
flows to which DNS is currently limited, the mesh parameters significantly affect computational accuracy and efficiency. It 
is generally acknowledged (e.g. Lee and Moser [2]) that mesh spacings in the order of ten wall units in the streamwise 
direction and five in the spanwise direction are sufficient in pseudo-spectral calculations to achieve good resolution of the 
buffer-layer energy-containing eddies, namely streaks and associated quasi-streamwise vortices. The buffer layer is especially 
important as the topology of eddies changes from sheet-like near the wall to rod-like away from it, corresponding to the 
inflectional point of the wall-normal velocity variance profile [3]. Finite-difference schemes require similar or slightly higher 
number of grid points [4], to achieve the same quality of results. More disputable is the selection of the mesh properties 
in the wall-normal direction, which is strongly anisotropic for the flow, and for which no rule is consolidated yet. In fact, 
different authors of state-of-art DNS have used vastly different mapping functions, and the selection of the total number 
of grid points remains a matter of personal experience and feeling. In a recent work, Pirozzoli and Orlandi [5] proposed a 
natural wall-normal grid mapping for incompressible flows, providing a definite prescription for the number of grid points 
and near-wall grid clustering needed to achieve accurate results with judicious exploitation of computational resources.

In compressible flows, for which DNS is now also well established [6–13], difficulties in proper meshing are exacerbated 
by the change of the mean thermodynamic and transport properties across the wall layer, which make extrapolation of 
tools borrowed from incompressible turbulence far from straightforward. The purpose of this paper is to derive stretching 
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functions for DNS of compressible boundary layers which are targeted to an arbitrary set of Mach and Reynolds number and 
wall temperature. Although the forthcoming discussion is mainly focused on the case of turbulent boundary layers, other 
canonical cases can also be handled with no or minimum modifications, as pipe and plane channel flows.

2. Wall-normal stretching functions

Considerations about the multi-scale nature of wall-bounded turbulence lead to conclude that several constraints shall be 
satisfied for effective design of the wall-normal mapping function: i) the first off-wall grid node (say �y+

w ) shall be placed 
close enough that the severe velocity gradients occurring in that region are resolved, which requires �y+

w � 1; ii) grid 
points should be conveniently clustered within the buffer layer (say, y+ ≤ 50) which is the most anisotropic region of the 
flow, and in which most intense phenomena occur; iii) the spacing in the outer part of the wall layer, in which turbulence 
is close to isotropic, should be of the order of the local Kolmogorov length scale (η). Close to the wall η+ ≈ 1.5 [14], hence 
requirement i) is more restrictive than iii). In the outer region, near balance between turbulence kinetic energy production 
and dissipation rates is observed, hence the key requirement for DNS is resolving eddies down to the dissipative scale. We 
believe that, given the near universality of wall-bounded flows, a universal treatment of the stretching function is possible 
and appropriate. We then reason as follows. First, following Hoyas and Jiménez [15], we believe that the grid spacing in 
the outer layer should be selected to be proportional to the local Kolmogorov length scale, say η+ = ε+−1/4, with ε the 
local dissipation rate, and + denoting wall units. Hence, the first requirement which we set is that the local grid spacing 
in the outer layer should be �y+ = αη+ , with α controlling adequate resolution of the dissipative eddies. The choice 
α = 2.0 yields a resolution in spectral space kmaxη ≈ 1.5 (where kmax = π/�y is the maximum resolved wavenumber) 
which, although a bit less than used in previous DNS of isotropic turbulence [16], and of channel flow [15], yields very 
good prediction of all key statistics, as shown below. We will also assess the influence of the parameter α, by increasing 
its value up to 3.25. In their study, Pirozzoli and Orlandi [5] assumed α ≈ 1.25, whereas other studies considered values 
in the range α ≈ 1.25 − 1.5, which is regarded to be sufficient for numerical simulations of isotropic turbulence and wall-
bounded flows [16,15,1,2,17–20]. According to Pope [21], the dissipation spectrum is very small beyond kη = 1.5, hence 
kmaxη ≈ 1.5 guarantees good resolution of the dissipative scales. In physical space, the resulting wall-normal spacing is 
�y/η = π/1.5 ≈ 2.1. The aforementioned restrictions apply identically to incompressible flow and to the solenoidal part of 
the velocity field in compressible flow. In the latter case dilatational structures also have dynamical relevance [22], whose 
resolution could be more challenging than for the solenoidal part of the flow, but this is disregarded in the present work. 
In incompressible flow, the equilibrium conditions in the log layer yield ε+ ∼ 1/y+ , hence it follows [14] that

η+ ≈ cη y+1/4
, (1)

with cη = κ1/4 ≈ 0.8 (κ is the von Kármán constant), which is consistent with all available DNS of channel and pipe flow. 
Thus, let j be the wall-normal grid index (momentarily assumed to be continuous for convenience), we require that

�y+ = dy+

d j
= αcη y+1/4

, (2)

which upon integration yields

y+( j) =
(

3

4
αcη j

)4/3

, (3)

which defines the mesh stretching in the outer wall layer. Next to the wall, in the viscous sublayer the mean velocity 
gradient is nearly constant up to y+ ≈ 5, and use of uniform spacing is appropriate, hence

y+( j) = �y+
w · j. (4)

A smooth blending between the near-wall mapping (4) and the outer-layer mapping (3) is further assumed, to yield

y+( j) = 1

1 + ( j/ jb)
2

[
�y+

w j +
(

3

4
αcη j

)4/3

( j/ jb)
2

]
, (5)

where the parameter jb defines the grid index at which transition between the near-wall and the outer mesh stretching 
occurs. The above reasoning needs to be significantly modified for adaptation to compressible flow, as we discuss below.

Direct numerical simulations of compressible flow are typically carried out with standard stretching functions, and se-
lecting the number of grid points based on personal experience and grid-sensitivity studies. This is well reflected in Table 1, 
which shows available information about previous representative DNS of compressible boundary layers. As one can notice, 
different studies rely on different mapping functions (see Orlandi [25] for an overview of classical ones), different near-wall 
resolutions, and even very different total number of points for similar flow conditions. We believe that setting standard 
2
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Table 1
List of mesh parameters for reference DNS studies of compressible turbulent boundary layers. Here Reτ = uτ δ/ν (with uτ the friction velocity, δ the 
boundary layer thickness, and ν the fluid kinematic viscosity) is the friction Reynolds number, N y is the number of collocation points in the wall-normal 
direction, M0 is the free-stream Mach number, T w/Tr is the wall to recovery temperature ratio and �yw is the distance of the first off-wall node. INSF 
refers to the natural stretching function for incompressible flow given in Eq. (5) (Pirozzoli and Orlandi [5]).

Reference Stretching function M0 T w/Tr Reτ N y �y+
w

Duan et al. [6] geometrical 5

0.18 798

110

0.33
0.35 625 0.32
0.53 522 0.33
0.68 434 0.33
adiabatic 386 0.30

Duan et al. [7] geometrical

0.3

adiabatic

570

110

0.10
3 487 0.30
5 416 0.25
7 392 0.27
12 377 120 0.27

Lagha et al. [8] hyperbolic

2.5

adiabatic

340

128-180 0.3

5 300
7.5 310
10 300
15 302
20 345

Pirozzoli and Bernardini [9]
Pirozzoli and Bernardini [23]

hyperbolic 2 adiabatic

205-273 171 0.60
448-591 221 0.70

843-1123 331 0.70
3413-3955 900 0.90

Wenzel et al. [10] NA

0.3

adiabatic

237-943

240

0.66-0.81
0.5 237-943 0.64-0.79
0.7 233-922 0.60-0.73
0.85 215-827 0.57-0.69
1.5 182-620 0.41-0.50
2 158-482 0.31-0.37
2.5 140-369 0.23-0.27

Zhang et al. [11] hyperbolic

2.5 adiabatic 510 400 0.6
5.84 0.25 450 560 0.46
5.86 0.76 453 500 0.51
7.87 0.48 480 600 0.55
13.64 0.18 646 540-786 0.47

Huang et al. [12] NA
2.5 adiabatic 395-1199 680 0.51
4.9 0.91 726-1244 550 0.53
10.9 0.2 672–1193 500-690 0.43

Cogo et al. [13] INSF
2

0.76

340–620 320 0.5
1240–2300 832 0.7

5.86
290–520 320 0.5

1080–1953 832 0.7

Ceci et al. [24]

hyperbolic 2 adiabatic
374-473

512 0.6559-707
772-992

INSF 5.84 0.25
527-654

352 0.4687-844
905-1115

guidelines for the choice of the wall-normal stretching function is appropriate, also in the interest of minimizing the com-
putational effort.

For that purpose, the main assumption which we will exploit is universality of the distribution of η in terms of semi-
local wall units [26–29], namely units based on the local friction velocity, u∗

τ = (τw/ρ)1/2, and the local viscous length 
scale, δ∗

v = ν/u∗
τ . Normalization with semi-local wall units is hereafter denoted with the asterisk symbol. The relationship 

with the standard wall units is as follows, u∗
τ = uτ R−1/2, δ∗

v = M R−1/2δv , where M = μ/μw , R = ρ/ρw , are the local to 
wall viscosity and density ratios, respectively. Our ansatz then translates into

η∗ = η+(y∗), (6)

where

y∗ = y+R1/2/M, η∗ = η+R1/2/M, (7)
3
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Table 2
List of computational parameters for the present DNS campaign. NSF refers to the proposed natural stretching function, and HSF refers to hyperbolic sine 
stretching function. Here δ0 is the inflow boundary layer thickness, Lx, L y , Lz are the streamwise, wall-normal and spanwise extensions of the computational 
domain, with Nx, N y, Nz being the respective number of collocation points. �x, �z are the uniform streamwise and spanwise spacings, and N y,δ is the 
number of grid points in the wall-normal direction up to the boundary layer edge.

Flow case M0 T w/Tr Reτ Lx/δ0 L y/δ0 Lz/δ0 �x+ �y+
w �z+ Nx × N y × Nz N y,δ

M2-NSF 2.00 adiabatic 610 150 8 9 7.9 0.50 3.4 4016 × 272 × 560 178
M2-HSF 2.00 adiabatic 610 150 8 9 7.9 0.50 3.4 4016 × 368 × 560 293
M6-NSF 5.84 0.25 730 150 10 9 7.4 0.50 3.9 5024 × 288 × 560 171
M6-HSF 5.84 0.25 730 150 10 9 7.4 0.50 3.9 5024 × 496 × 560 384

which will be empirically tested based on DNS data. A solid plausibility argument for this ansatz involves analysis of 
the behavior in the log layer in compressible flow. Assuming balance between turbulence kinetic energy production and 
dissipation it is straightforward to arrive at the following prediction for the Kolmogorov length scale

η+ = M3/4

R3/4
ε+−1/4 = M3/4

R3/8
(κ y+)1/4. (8)

When cast in semi-local units, the previous expression becomes

η∗ = (κ y∗)1/4, (9)

which is identical to the incompressible relation (1).
Hence, following up on Eq. (5), we assume the following distribution of the grid points in semi-local units,

y∗( j) = 1

1 + ( j/ jb)
2

[
j �y∗

w +
(

3

4
α∗cη j

)4/3

( j/ jb)
2

]
, (10)

with α∗ a parameter controlling the resolution away from walls, and with associated distribution of grid spacings,

�y∗( j) = dy∗

d j
= 1(

1 + ( j/ jb)
2
)2

[(
1 − ( j/ jb)

2
)

�y∗
w + 2

3

(
3

4
α∗cη

)4/3 j7/3

j2
b

(
5 + 2( j/ jb)

2
)]

. (11)

The main difficulty with applying the above mappings is that the resolution requirement should be enforced in terms of the 
physical grid spacing, namely �y+( j) ≤ αη+ , for given constant α, for all j. Since �y+( j) = �y∗( j) dy+/dy∗ , this implies 
that

�y∗( j) ≤ αη∗ M

R1/2

dy∗

dy+ , ∀ j, (12)

Eq. (12) is satisfied. Once the optimal value α∗
opt is determined, the distribution of the grid points in Eq. (10) can be finally 

mapped back to physical space through Eq. (7).
Key ingredients in the previous developments are the distributions of the mean density and viscosity, as expressed 

by functions M and R , which in compressible flow depend on the exterior flow conditions and wall state. Although no 
exact solution is available, accurate estimates of the mean velocity, temperature and viscosity profiles, for given Mach and 
Reynolds number and wall thermal condition have been derived by Kumar and Larsson [30], based on numerical integration 
of the turbulent boundary layer equations with Prandtl mixing length closure [31], and use of Coles wake function [32], 
upon application of an inverse compressibility transformation [33], which was found to be accurate for high-speed boundary 
layers across a range of Mach and Reynolds numbers and wall temperatures [30]. Alternative transformations could possibly 
be considered for internal flows, namely channels and pipes. This will the basis for the development of our natural stretching 
function (NSF). The first off-wall node is specified in terms of the �y+

w parameter, and the corresponding �y∗
w , is evaluated 

using the near-wall derivative of R and M . In DNS of compressible boundary layers the most restrictive time step limitation 
is the CFL conditions for acoustic waves at the wall, which implies that one should decide �y+

w by compromising between 
accuracy and feasibility of the simulations [34]. Values of �y+

w ≈ 0.5, turn out to be an effective choice according to our 
numerical experiments.

Regarding the selection of the grid spacing in the wall-parallel directions, in a standard structured mesh those are 
partitioned uniformly, with spacings selected such that restrictions based on experience with incompressible wall turbulence 
are satisfied, say �x+ ≈ 8, �z+ ≈ 4. Despite change of the mean flow properties across the boundary layer in compressible 
flow, we have found that this choice is still effective, hence the same resolution in wall units in the wall-parallel directions 
is retained for the DNS hereafter reported.
4
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Fig. 1. Flow case M2: natural stretching function (a) and hyperbolic sine stretching function (b). The natural stretching function is designed according to 
Eqs. (10), (7), assuming �y+

w = 0.5, α∗
opt = 2.213. The hyperbolic stretching is designed according to Eq. (13) with Reτ = 610 and β = 3.326. The colored 

solid lines refer to coordinates expressed in wall units (y+), and the dash-dotted to coordinates expressed in semi-local units (y∗). The black lines in (a) 
denote the asymptotic near-wall and outer-layer stretching, and in (b) the near-wall stretching only, in wall units.

Fig. 2. Flow case M2: distribution of Kolmogorov length scale (a), and grid spacing distribution in local Kolmogorov units (b). In panel (a) the colored lines 
denote the distribution obtained from the DNS, and the black dotted line the prediction of Eq. (8). In both panels the red solid line indicates the NSF, 
the blue dash-dotted line the HSF, and the vertical dashed lines mark the boundary layer edge. In panel (b) the black horizontal line denotes the nominal 
resolution threshold (�y+/η+ = 2).

3. Numerical tests

Numerical tests are here presented for two representative cases of supersonic flow with near-adiabatic conditions, and 
of hypersonic flow with severely cooled wall. The DNS results are carried out with an in-house solver [35], which exploits 
the recycling-rescaling procedure to feed the inflow turbulence. Results obtained with the proposed NSF are compared with 
those obtained using a standard hyperbolic-sine stretching function (HSF), up to the boundary layer edge. The HSF function 
is defined as

y+( j) = Reτ
sinh

(
β j/N y,δ

)
sinh β

, (13)

with Reτ the target friction Reynolds number and β a parameter controlling the intensity of wall clustering. Outside the 
boundary layer, a geometrical progression is used in both cases, with progression factor of about 1.02. Computational details 
as flow initialization and procedure for collecting the flow statistics are described by Ceci et al. [24]. In any case, time con-
vergence of the statistical ensembles has been thoroughly checked, and the estimated error for the most sensitive property, 
namely the peak streamwise velocity variance, is about 0.3%. The relevant parameters for the two flow cases are listed in 
Table 2.

3.1. Supersonic boundary layer (flow case M2)

The NSF herein designed for the supersonic case is shown in Fig. 1(a), where we assume �y+
w = 0.5 (�y∗

w = 0.5), jb =
80, and with α∗

opt = 2.213, as found from numerical optimization, given the restriction �y+/η+ ≤ 2. The number of points 
needed to achieve the target friction Reynolds number is in this case N y,δ = 178. In the figure we also report the asymptotic 
near-wall and outer-layer stretching functions resulting from Eq. (10). For reference, DNS at the same flow conditions has 
also been carried out using a standard hyperbolic sine stretching function with β = 3.326, and using N y,δ = 293 grid points, 
to meet the same resolution requirement as for NSF. The hyperbolic sine mapping is shown in Fig. 1(b). Comparison of the 
5
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Fig. 3. Flow case M2: van Driest-transformed mean velocity profile (a), mean density and viscosity (b), density-scaled Reynolds stresses (c) and rms of 
vorticity components (d), using the natural stretching function (red solid lines) and the hyperbolic sine stretching function (blue dash-dotted lines). The 
dashed black lines in (a) denote the standard laws of the wall u+ = y+ and u+ = 1/κ log(y+) + C , with κ = 0.41 and C = 5.2. The black solid line and the 
black dash-dotted line in (b) show, respectively, the predicted distribution of R and M by Kumar and Larsson [30].

two panels shows earlier deviation of the NSF from the near-wall asymptote, which makes up for a higher number of grid 
points in the HSF.

As a preliminary assessment of the hypotheses made so far, in Fig. 2(a) we show the local Kolmogorov length scale 
as a function of the wall-normal distance, as determined from the DNS (solid and dash-dotted lines), and as estimated 
from Eq. (8) (dotted line). It appears that, despite the assumptions made to arrive at the predictive equation, including 
approximate distributions of R and M , the correct trend is very well predicted, starting at y+ ≈ 20, and all the way through 
the (near) logarithmic layer. With no surprise, differences arise in the near-wall region and towards the edge of the boundary 
layer, where the assumption of equilibrium between production and dissipation of turbulence kinetic energy is not satisfied. 
Verification of this assumption clearly corroborates the whole analysis. In Fig. 2 we show the effective local grid resolution 
for the NSF and the HSF. One should note here that the resolution requirement for the two stretching is obviously enforced 
based on the predicted distribution of η. Here the resolution is reported in terms of the actual η determined in the DNS, 
hence the normalize grid spacing does locally exceed this threshold, however by a very small amount (the maximum is 
2.045 for the NSF). The figure well illustrates large differences in the inner part of the wall layer, in which the hyperbolic 
sine mapping retains unnecessarily small grid spacing also far from the wall, with associated inefficient allocation of grid 
points.

The basic flow statistics obtained with the two stretching functions are compared in Fig. 3, which includes the van 
Driest-transformed mean velocity profiles, the mean thermodynamic properties (R and M), the density-scaled Reynolds 
stresses (Rij = ρ ˜u′′

i u′′
j ), and the inner-scaled root-mean-square (rms) vorticity components, the latter being representative 

of the small-scale flow organization. As shown by Pirozzoli and Bernardini [9], the van Driest transformation here yields 
good collapse to the incompressible log law, with differences between the two grids of the order of 0.02%. Panel (b) also 
shows that the model of Kumar and Larsson [30] can predict the mean density and viscosity distributions quite well, with 
a maximum error of 2.3% and 1.2% on R and M , respectively. As a general comment we can conclude that there is no 
significant dependence of the statistics herein presented on the type of stretching function, despite the vastly different 
distribution of the grid points (see again Fig. 1). In fact quantitative scrutiny of the flow statistics shows differences of at 
most 1% in the Reynolds stresses, whereas differences in the rms vorticities are no more than 0.5%.

3.2. Hypersonic boundary layer (flow case M6)

The NSF function designed for the hypersonic case is shown in Fig. 4(a), where we assume �y+
w = 0.50 (�y∗

w = 0.47), 
jb = 80 and the optimal outer resolution parameter α∗

opt = 3.049, determined by enforcing the restriction �y+/η+ ≤ 2. The 
6
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Fig. 4. Flow case M6: natural stretching function (a) and hyperbolic sine stretching function (b). The natural stretching function is designed according to 
Eqs. (10), (7), assuming �y+

w = 0.50, α∗
opt = 3.049. The hyperbolic stretching is designed according to Eq. (13) with Reτ = 730 and β = 3.194. The colored 

solid lines refer to coordinates expressed in wall units (y+), and the dash-dotted to coordinates expressed in semi-local units (y∗). The black lines in (a) 
denote the asymptotic near-wall and outer-layer stretching, and in (b) the near-wall stretching only, in wall units.

Fig. 5. Flow case M6: distribution of Kolmogorov length scale (a), and grid spacing distribution in local Kolmogorov units (b). In panel (a) the colored lines 
denote the distribution obtained from the DNS, and the black dotted line the prediction of Eq. (8). In both panels the red solid line indicates the NSF, 
the blue dash-dotted line the HSF, and the vertical dashed lines mark the boundary layer edge. In panel (b) the black horizontal line denotes the nominal 
resolution threshold (�y+/η+ = 2).

number of points needed to achieve the target friction Reynolds number is in this case N y,δ = 171. DNS at the same flow 
conditions has also been carried out using a standard hyperbolic sine stretching function with β = 3.194, using N y,δ = 384
grid points to meet the same resolution requirement as for NSF. The hyperbolic sine mapping is shown in Fig. 4(b). As 
in the supersonic case, the figure confirms that the HSF stays close to the linear near-wall stretching over a much wider 
range, with subsequent inefficient allocation of grid points. The figure also shows larger differences between y+ and y∗ , 
resulting from variation of the mean thermodynamic properties across the boundary layer. In Fig. 5(a) we show the local 
Kolmogorov length scale as a function of the wall-normal distance, as computed from the DNS (solid and dash-dotted lines), 
and as estimated from Eq. (8) (dotted line). Just like in the supersonic flow case we note that, despite expected deviations 
towards the wall and the edge of the boundary layer, the distribution of η is correctly predicted starting at y+ ≈ 30 and up 
to y/δ ≈ 0.7. This is quite remarkable, given the strongly cooled wall condition, and it the basis for success of all following 
steps. The effective local grid resolution for the NSF and the HSF is shown in Fig. 5(b). Also in this case the actual grid 
spacing locally exceeds the predetermined threshold, however by a very small amount (the maximum is 2.057 in the NSF). 
The figure well illustrates large differences in the inner part of the wall layer, in which the hyperbolic sine mapping retains 
unnecessarily small grid spacing also far from the wall, with even more inefficient allocation of grid points than in the 
supersonic case.

The basic flow statistics obtained with DNS using the two stretching functions are compared in Fig. 6. First, we note that 
predictions of the mean flow properties by Kumar and Larsson [30] are still quite accurate, with maximum difference of 
about 3.3% in the peak viscosity, a bit more than in the supersonic case. The density profiles instead exhibit a maximum 
difference of 1.8% in the log layer, and depart significantly from the actual distributions towards the boundary layer edge. 
Again, despite the vastly different distribution of the grid points (see Fig. 4), the two DNS yield a prediction of the mean 
and fluctuating statistics to within less than 1% (the error is maximum for the Reynolds stresses), which is of the same 
order as the uncertainty in the statistical averaging.
7
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Fig. 6. Flow case M6: van Driest-transformed mean velocity profile (a), mean density and viscosity (b), density-scaled Reynolds stresses (c) and rms of 
vorticity components (d), using the natural stretching function (red solid lines) and the hyperbolic sine stretching function (blue dash-dotted lines). The 
dashed black lines in (a) denote the standard laws of the wall u+ = y+ and u+ = 1/κ log(y+) + C , with κ = 0.41 and C = 5.2. The black solid line and the 
black dash-dotted line in (b) show, respectively, the predicted distribution of R and M by Kumar and Larsson [30].

Table 3
List of computational parameters for the wall-normal grid refinement study. NSF refers to the proposed natural stretching function, and HSF refers to 
hyperbolic sine stretching function. Here Nx, N y, Nz are the number of collocation points in the streamwise, wall-normal and spanwise directions. N y,δ

is the number of grid points in the wall-normal direction up to the boundary layer edge. The NSF simulations are characterized by the grid transition 
parameter jb , the optimal value of the resolution parameter (α∗

opt) and its maximum value (αmax). The HSF grids are characterized in terms of the stretching 
parameter (β) and αmax.

Flow case M0 Reτ Nx × N y × Nz N y,δ jb αmax α∗
opt β

M2-NSF 2.00 610 4016 × 272 × 560 178 80 2.045 2.213 −
M2-NSF-A1 2.00 610 4016 × 212 × 560 147 80 2.564 2.854 −
M2-NSF-A2 2.00 610 4016 × 160 × 560 104 80 3.310 3.904 −
M2-HSF 2.00 610 4016 × 368 × 560 293 − 2.110 − 3.326
M2-HSF-B1 2.00 610 4016 × 212 × 560 147 − 5.297 − 4.263
M2-HSF-B2 2.00 610 4016 × 160 × 560 104 − 7.651 − 4.479
M6-NSF 5.84 730 5024 × 288 × 560 171 80 2.057 3.049 −
M6-NSF-A1 5.84 730 5024 × 220 × 560 135 80 2.586 4.145 −
M6-NSF-A2 5.84 730 5024 × 180 × 560 103 80 3.360 6.118 −
M6-HSF 5.84 730 5024 × 496 × 560 384 − 2.024 − 3.194
M6-HSF-B1 5.84 730 5024 × 220 × 560 135 − 7.431 − 4.601
M6-HSF-B2 5.84 730 5024 × 180 × 560 103 − 10.01 − 4.947

4. Wall-normal grid refinement study

The effect of wall-normal resolution is herein considered by changing the threshold of the α parameter. Four additional 
supersonic and four hypersonic DNS have been carried out, according to the following reasoning: first, we selected different 
threshold values of α to generate two coarser NSF wall-normal meshes, with associated N y,δ and N y ; the same grid points 
are then used to generate the HSF meshes. This way we can separately establish the effect of resolution on NSF wall-
normal points distribution, and compare grid generation strategies. Obviously, by setting the same resolution constraint, a 
higher number of grid points is needed for HSF, whereas setting the same number of points yields higher values of α. The 
flow parameters for the additional DNS are listed in Table 3. The size of the computational box, flow initialization, inflow 
turbulence forcing and flow statistics collection are the same as in the baseline DNS.
8
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Fig. 7. Flow case M2: grid spacing distribution in local Kolmogorov units for NSF meshes (a) and HSF meshes (b). The colored dashed lines refer to the 
distributions with N y = 212 (M2-NSF-A1 and M2-HSF-B1), and the colored dotted lines to N y = 160 (M2-NSF-A2 and M2-HSF-B2). The solid black lines 
denote the baseline meshes (M2-NSF and M2-HSF).

Fig. 8. Flow case M2: density-scaled Reynolds stresses for the NSF meshes (a) and HSF meshes (b). The colored dashed lines refer to the distributions with 
N y = 212 (M2-NSF-A1 and M2-HSF-B1), and the colored dotted lines to N y = 160 (M2-NSF-A2 and M2-HSF-B2). The solid black lines denote the baseline 
meshes (M2-NSF and M2-HSF).

4.1. Grid refinement

The effect of grid refinement is considered first, starting from the supersonic flow case. Two grids have been generated, 
by setting the threshold of α to 2.5 and 3.25, which yields respectively α∗

opt = 2.854, 3.904, N y,δ = 147, 104, N y = 212, 160, 
which are then considered to generate the HSF grids. Enforcement of N y,δ , N y however gives no control of the β parameter, 
which therefore has to be adjusted to β = 4.263, 4.479. In Fig. 7 we show the grid spacing distribution for the baseline and 
coarsened NSF meshes (panel a) and HSF meshes (panel b). Spacings as high as �y+/η+ ≈ 5 − 8 result for the HSF meshes.

The resulting density-scaled Reynolds stress profiles are shown in Fig. 8. The most sensitive resolution indicator is the 
peak of the streamwise stress, for which differences with respect to the baseline case are of about 0.15% for the NSF meshes, 
which is within the statistical sampling error. On the other hand, the peak is overestimated by 0.35% for the M2-HSF-B1 
mesh and by 1.6% for the M2-HSF-B2 mesh.

The same analysis was repeated for the hypersonic flow conditions. Two new meshes were again generated by setting 
the threshold of α to 2.5 and 3.25, which respectively yields α∗

opt = 4.145, 6.118, N y,δ = 135, 103 and N y = 220, 180. The 
latter values of N y,δ and N y have been used to generate equivalent HSF distributions, with hyperbolic stretching parameters 
β = 4.601, 4.947. In Fig. 9 we show the grid spacing distribution in local Kolmogorov units for the baseline and for the 
coarsened NSF meshes (panel a) and HSF meshes (panel b). In this case, the HSF mesh has wall-normal spacing up to 
�y+/η+ ≈ 7.5 − 10 within the boundary layer.

The resulting density-scaled Reynolds stress profiles are shown in Fig. 10. Differences of the peak longitudinal stress 
with respect to the baseline case are 0.21% for the M6-NSF-A1 mesh, and 0.55% for the M6-NSF-A2 mesh. The peak is 
overestimated by 0.25% for the M6-HSF-B1 mesh and by 1.2% for the M6-HSF-B2 mesh.

5. Conclusions

We have formulated an extension of the natural grid stretching approach introduced by Pirozzoli and Orlandi [5] for 
incompressible flow, to compressible boundary layers, which allows to automatically generate wall-normal grid mapping 
functions and associated number of grid points, for arbitrarily prescribed flow conditions, in terms of Reynolds and Mach 
number, and wall cooling ratio. Just like in the incompressible case, we argue that a physics-driven stretching functions for 
9
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Fig. 9. Flow case M6: grid spacing distribution in local Kolmogorov units for NSF meshes (a) and HSF meshes (b). The colored dashed lines refer to the 
distributions with N y = 220 (M6-NSF-A1 and M6-HSF-B1), and the colored dotted lines to N y = 180 (M6-NSF-A2 and M6-HSF-B2). The solid black lines 
denote the baseline meshes (M6-NSF and M6-HSF).

Fig. 10. Flow case M6: density-scaled Reynolds stresses for the NSF meshes (a) and HSF meshes (b). The colored dashed lines refer to the distribution with 
N y = 220 (M6-NSF-A1 and M6-HSF-B1), and the colored dotted lines to N y = 180 (M6-NSF-A2 and M6-HSF-B2). The solid black lines denote the baseline 
meshes (M6-NSF and M6-HSF).

wall-bounded flows should patch an inner-layer stretching with an outer-layer stretching, in which the grid spacing should 
be proportional to the local Kolmogorov length scale. The basic assumptions which allow extension to the compressible case 
are universality of the mapping in terms of semi-local coordinates, and local equilibrium in the outer layer, which allows 
to predict the dissipative length scale according to Eq. (8). An important building block is also the availability of reliable 
profiles of the mean flow properties, for which we rely on the work of Kumar and Larsson [30]. The formulated setup is not 
restricted to any particular flow or wall condition but can range from supersonic to hypersonic flows, also in the presence 
of substantial wall heat flux. By construction, the mapping has the natural property of yielding precisely constant resolution 
in terms of the semi-local Kolmogorov length scale. For that purpose, the resolution parameter α∗

opt is designed in such a 
way that the resolution does not exceed the desired threshold in local Kolmogorov units in the outer part of the wall layer, 
where turbulence is nearly isotropic. The outer-layer stretching is combined with a near-wall uniformly-spaced distribution 
by means of a blending function controlled by the parameter jb , which sets the number of grid points within the buffer 
layer. Although DNS are shown here only for the case of boundary layers, the same mapping can also be adapted with 
minimal modifications to study channel and pipe flows.

A grid refinement study in the wall-normal direction was conducted in order to assess the sensitivity of the proposed 
NSF to the choice of the threshold for the resolution parameter (α), and to compare NSF and HSF meshes with the same 
number of points. Despite significant differences in the wall-normal stretching, all distributions yield results close to the 
baseline case, with exception of the coarsest HSF meshes. This result is very interesting, but it raises questions regarding 
the influence of the resolution peak value and its position within the boundary layer on the computed flow statistics. In 
fact, HSF meshes still yield satisfactory results although high values of α are attained towards the edge of the boundary 
layer.

We believe that our grid stretching strategy can be useful in future DNS of compressible flows at high Reynolds number 
as in our tests, it allows fewer grid points along the wall-normal direction for given resolution compared to other stretch-
ing functions, with subsequent judicious exploitation of the computational resources. We also believe that the procedure 
presented in this paper can be profitably applied to numerical simulations based on the LES paradigm, both in the wall-
resolved and in the wall-modeled mode [36]. In the first case, the very same composite natural transformation described 
here can be used, by suitably increasing the threshold value of the resolution parameter. In the second case, one could rely 
on the outer wall stretching alone, since the near-wall region is modeled.
10
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Some limitations of this study should be at the same time clearly stated. In fact, whereas available evidence shows 
that the same resolution requirements apply to incompressible flow and to the solenoidal part of the velocity field in 
compressible flow in the presence of strong compressibility effects, dilatational modes become dynamically important, and 
should be adequately resolved [22]. These effects are disregarded in the present work, but could be an interesting subject 
for future research.

A modular Python implementation of the proposed stretching is available on the github repository HYPERGRID [37]. The 
original modules used to compute the boundary layer profiles can be found at the web page https://larsson .umd .edu /code/
(compressibleBLprofiles).
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