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Abstract
The integrable focusing Davey–Stewartson (DS) equations, multidimensional
generalizations of the focusing cubic nonlinear Schrödinger equation, provide
ideal mathematical models for describing analytically the dynamics of 2+ 1
dimensional anomalous (rogue) waves (AWs). In this paper (i) we construct
the N-breather AW solution of Akhmediev type of the DS1 and DS2 equations,
describing the nonlinear interaction of N unstable modes over the constant
background solution. (ii) For the simplest multidimensional solution of DS2
we construct its limiting subcases, and we identify the constraint on its arbitrary
parameters giving rise to blow up at finite time. (iii) We use matched asymp-
totic expansions to describe the relevance of the constructed AW solutions in
the spatially doubly periodic Cauchy problem of DS2 for small initial perturb-
ations of the background, in the case of one and two unstable modes. We also
show, in the case of two unstable modes, that (i) no blow up takes place gen-
erically, although the AW amplitude can be arbitrarily large; (ii) the excellent
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agreement of our formulas, expressed in terms of elementary functions of the
initial data, with numerical experiments.

Keywords: breathers, Davey–Stewartson, periodic Cauchy problem,
exact solution, modulation instability, blow-up

1. Introduction

Davey–Stewartson (DS) type equations [21] describe the amplitude modulation of weakly
nonlinear quasi monochromatic waves in 2+ 1 dimensions, and are relevant in water waves,
nonlinear optics, plasma physics and Bose condensates [1, 9, 21, 37, 55]. Only a sub class
of these equations are integrable, for special choices of their constant parameters, and can be
written in the form:

iut+ uxx− νuyy+ 2ηqu= 0, η =±1, ν =±1,

qxx+ νqyy = (|u|2)xx− ν(|u|2)yy,
x,y, t ∈ R3, u= u(x,y, t) ∈ C, q= q(x,y, t) ∈ R, (1)

where u is the complex amplitude of the monochromatic wave, and the real field q(x,y, t) is
related to the mean flow. If ν =−1 we have the DS1 equation (surface tension prevails on
gravity in the water wave derivation); in this case the sign of η is irrelevant, since one can
go from the equation with η =−1 to the equation with η= 1 via the changes q→−q and
x↔ y; therefore there exists only one DS1 equation [33]. If ν= 1, gravity prevails on surface
tension and we have the DS2 equations; in this case the sign of η cannot be rescaled away
and we distinguish between focusing and defocusing DS2 equations for respectively η= 1
and η =−1. It turns out that the shallow water limit of the Benney–Roskes equations [9]
leads to the DS1 and to the defocusing DS2 equations [4], and DS1 plays a relevant role in
the description of the initial-boundary value problem for dromions [25, 26], exponentially
localized solutions first discovered via Bäcklund transformations [14]. We also remark that
DS2 plays a relevant role in the theory of immersion of surfaces inR4 [46, 47, 61, 64–66]. The
DS equations (1) are integrable 2+ 1 dimensional generalizations of the celebrated nonlinear
Schrödinger (NLS) equations

i vt+ vxx+ 2η|v|2v= 0, η =±1, x, t ∈ R, v= v(x, t) ∈ C, (2)

reducing to them when there is no y dependence. The focusing (η= 1) NLS equation is the
simplest nonlinear integrable model describing modulation instability (MI), and MI is con-
sidered the main physical mechanism for the creation of anomalous waves (AWs) in nature
[24, 34, 42, 43, 56, 57].

Concerning the NLS Cauchy problem for initial perturbations of the unstable background,
what we call the Cauchy problem for AWs, if such a perturbation is localized, then slowly
modulated periodic oscillations described by the elliptic solution of (2) play a relevant role in
the longtime regime [12, 13]. Using the finite-gap method, the NLS periodic Cauchy problem
of AWs was recently solved to leading order [27, 31] in the case of a finite number of unstable

2



J. Phys. A: Math. Theor. 57 (2024) 015208 F Coppini et al

modes, leading to a quantitative description of the recurrence properties of the dynamics in
terms of the multi-breather generalization [39] of the Akhmediev breather (AB) solution [5]

Akh(x, t,ϕ) := e2itA(x, t,ϕ),

A(x, t,ϕ) :=
cosh[2sin(2ϕ)t+ 2iϕ]− sin(ϕ)cos[2cos(ϕ)x]

cosh[2sin(2ϕ)t] + sin(ϕ)cos[2cos(ϕ)x]
, (3)

where ϕ is an arbitrary real parameter. In the simplest case of one unstable mode only,
this theory describes quantitatively a Fermi–Pasta–Ulam–Tsingou (FPUT) recurrence of AWs
described by the AB (3) [27, 28]. In addition, a finite-gap perturbation theory for 1+ 1 dimen-
sional AWs has been also developed [15], see also [16, 17], to describe analytically the order
one effects of physical perturbations of the NLS model on the AW dynamics. See also [28]
for an alternative approach to the study of the AW recurrence, based on matched asymptotic
expansions. See [32] for the study of the instability properties of the AB solution within the
NLS dynamics, and [30] for a finite-gap model describing the numerical instabilities of the
AB. See [29] for the analytic study of the phase resonances in the AW recurrence. See [18–
20, 63] for the analytic study of the AW recurrence in other NLS type models: respectively
the nonlocal PT-symmetric NLS equation [3], the discrete Ablowitz–Ladik model [2], and the
relativistic massive Thirring model [72], showing analytically the universal features of the AW
recurrence in the periodic setting. MI and AWs of integrable multicomponent NLS equations
have also been investigated [6, 7, 22, 23]. We also remark that the NLS recurrence of AWs in
the periodic setting has been investigated in several numerical and real experiments, see, f.i.
[41, 54, 62, 74, 75], and qualitatively studied via a three-wave approximation of NLS [38, 73].

As it was discussed in [33], the integrable focusing DS2 equation (1) (ν = η = 1) is the best
mathematical model on which to construct an analytic theory of 2+ 1 dimensional AWs, and
a finite gap formalism allowing one to solve in principle, to leading order, the spatially doubly
periodic Cauchy problem for AWs of the focusing DS2 equation has been recently constructed
[33]. It was shown in particular that the associated Riemann surfaces are more general than
the hyperelliptic curves of NLS. But they have in common with NLS the important property
that the O(ϵ) initial perturbations cause a splitting of the resonant points associated with the
background, generatingO(ϵ) handles. Therefore the solutions constructed in our paper in terms
of elementary functions correspond to closing completely such handles (the case of genus 0),
and describe the leading order term of the ε-expansion of the solution of the Cauchy problem.
The fact that degenerate Riemann surfaces may generate spatially doubly periodic and regular
solutions of some particular multidimensional soliton equations like DS was discussed in the
literature [67].

Although the physical relevance of DS2 is not clear at the moment, a 2+ 1 dimensional
generalization of the AW perturbation theory developed in [15–17] could be used in principle
to treat non integrable physically relevant multidimensional NLS models with mean flow as
perturbations of the integrable DS equations. This will be the subject of future investigation.

We remark that the homogeneous background solution u0 = ae2iη|a|
2t, q0 = |a|2 of

equation (1), where a is an arbitrary complex parameter, can be simplified to

u0(x,y, t) = 1, q0(x,y, t) = 0, (4)

using the scaling symmetry and the gauge symmetry

u(x,y, t)→ u(x,y, t)exp

(
−iη

2

ˆ t

f(τ)dτ

)
, q(x,y, t)→ q(x,y, t)+ f(t) (5)
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of (1) [33], where f(t) ∈ R is an arbitrary function of time, and in the rest of the paper we use
such a background.

Some exact AW solutions of the DS equations are already known in the literature (see for
example [10, 11, 50, 51, 58, 59, 71]) and, in contrast with the focusing NLS equation, DS2
solutions corresponding to smooth Cauchy data may blow up at finite time [44, 45, 59, 60,
68–70].

The paper is organized as follows. Section 2 is devoted to the construction and study of AW
solutions of the DS equations. After investigating in section 2.1 the instability properties of
the constant background solution under monochromatic wave perturbations, in section 2.2 we
construct the N-breather solution of Akhmediev type using the Hirota method; this solution
describes the nonlinear stage of such instability and the nonlinear interaction of N unstable
modes over the background in terms of elementary functions. This solution is generically
quasi-periodic, and the sub-class of solutions describing spatially doubly periodic AWs is also
constructed. In section 2.3 we study the simplest solutions of DS2 for N= 1,2. In particular,
in the case of the simplest multidimensional AW solution, we identify the constraint on its
arbitrary parameters giving rise to blow up at finite time. Section 2.4 is devoted to the study of
some interesting limiting cases, including solutions rational in one space variable and circular
in the other. In section 3, using matched asymptotic expansion techniques, we establish the
basic role played by the solutions of section 2 in the spatially doubly periodic Cauchy prob-
lem of DS2 for initial perturbations of the background, in the case of one and two unstable
modes. In particular we show how the first appearance and recurrence of AWs are described
by elementary functions of the initial data, and we also show that blow up is not generic. In the
last section 4 we list the research directions, opened by the above results, we plan to investigate
in the near future.

2. MI and the N-breather solution of Akhmediev type

Here we study the MI properties of the DS equation (1) and we construct and study the exact
solutions describing the nonlinear stage of such an MI.

2.1. MI

To study the linear instability properties of the background solution (4) of the DS equations,
we slightly perturb it as follows

u= 1+ ϵ( f+ ig), q= ϵw, ϵ≪ 1, f,g,w ∈ R. (6)

Then f,g,w satisfy the linear partial differential equations

ft+ gxx− νgyy = 0, gt− fxx+ νfyy− 2ηw= 0,wxx+ νwyy = 2( fxx− νfyy). (7)

Looking for a monochromatic perturbation

f = Uei(kx+ly)+σt+ cc, g= Vei(kx+ly)+σt+ cc,

w=Wei(kx+ly)+σt+ cc, k, l ∈ R, (8)

one obtains the following system of homogeneous equations σ −(k2 − νl2) 0
k2 − νl2 σ −2η

−2(k2 − νl2) 0 k2 + νl2

UV
W

= 0 (9)
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and the condition for the existence of nontrivial solutions gives

σ2(k, l) =
(k2 − νl2)2[4η− (k2 + νl2)]

k2 + νl2
. (10)

Therefore we have the following stability properties of the background (4).

For DS1 (ν =−1,η = 1): σ2(k, l) = (k2+l2)2[4−(k2−l2)]
k2−l2 . If k2 − l2 > 4, then σ2 < 0, σ ∈ iR,

and the background is neutrally stable. If 0< k2 − l2 < 4, then σ2 > 0 and the background is
unstable with growth rate

σ(k, l) =
(k2 + l2)

√
4− (k2 − l2)√
k2 − l2

. (11)

For DS2 (ν= 1): σ2(k, l) = (k2−l2)2[4η−(k2+l2)]
k2+l2 . If η =−1, then σ2 < 0, σ ∈ iR and the back-

ground is neutrally stable. If η= 1 we have two cases. If k2 + l2 > 4, then σ2 < 0 and the
bachground is stable. If

|⃗k|2 = k2 + l2 < 4, and k2 ̸= l2, k⃗= (k, l), (12)

then σ2 > 0 and the background is unstable with exponential growth rate

σ(k, l) = |Ω(k, l)|, Ω(k, l) =
(k2 − l2)

√
4− (k2 + l2)√
k2 + l2

. (13)

Therefore no AWs are associated with the defocusing DS2, while AWs are present in the
focusing DS2 equation for sufficiently small wave vectors k⃗, in perfect analogy with the NLS
case (see figure 1).

We observe that a convenient parametrization of the unstable modes of DS1 and DS2 reads
as follows

DS1 : k= 2cos(ϕ)cosh(θ), l= 2cos(ϕ)sinh(θ), ⇒ σ = 2sin(2ϕ)cosh(2θ),

DS2 : k= 2cos(ϕ)cos(θ), l= 2cos(ϕ)sin(θ), ⇒ Ω= 2sin(2ϕ)cos(2θ) (14)

with

DS1 : ϕ = arccos

(√
k2 − l2

2

)
, θ = tanh−1

(
l
k

)
,

DS2 : ϕ = arccos

(√
k2 + l2

2

)
, θ = arctan

(
l
k

)
. (15)

2.2. The N-breather solution of Akhmediev type

After studying the linear instability properties of the background in section 2.1, now we con-
struct the N-breather solution of Akhmediev type of the DS equation (1), describing in terms
of elementary functions the nonlinear stage of MI. This solution, the 2+ 1 dimensional gen-
eralizations of the N-breather solution of Akhmediev type of the focusing NLS equation [39],

5
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Figure 1. For the focusing DS2 equation, the growth rate σ(k, l) in the instability region
k2 + l2 < 4.

oscillates in the space variables and decays exponentially over the unstable background in the
remote past and in the far future.

Exact explicit solutions of integrable soliton equations can be constructed through differ-
ent methods: a suitable genus zero degeneration of the finite gap method [8, 39, 48, 49], the
Darboux transformations [53], dressing techniques [76–78], and the Hirota method [35, 36].
Here we use the Hirota method.

The Hirota bilinear form of the DS equation (1), corresponding to solutions over the back-
ground (4), reads [71, 79]:(

iDt+D2
x − νD2

y

)
G ·F= 0,(

D2
x + νD2

y

)
F ·F= 2η

(
|G|2 −F 2

)
, (16)

where Dx is the Hirota derivative with respect to the generic independent variable x [36], so
that

DxG ·F= Gx(x)F(x)−G(x)Fx(x),

D2
xG ·F= Gxx(x)F(x)− 2Gx(x)Fx(x)+G(x)Fxx(x), (17)

and functions G and F are related to the solution of equation (1) as follows:

u(x,y, t) =
G(x,y, t)
F(x,y, t)

, F(x,y, t) ∈ R, G(x,y, t) ∈ C,

q(x,y, t) = (∂2
x − ν∂2

y ) log(F(x,y, t)); (18)

in addition:

|u(x,y, t)|2 = 1+(∂2
x + ν∂2

y ) log(F(x,y, t)). (19)
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Then the N-breather AW solutions of the DS1 and DS2 equations are described by the
following formulas in terms of elementary functions:

F(x,y, t) =
∑

nj = 0,1
1⩽ j⩽ 2N

exp

 2N∑
j=1

njζj(x,y, t)+
∑

1⩽j<k⩽2N

bjknjnk

 ,

G(x,y, t) =
∑

nj = 0,1
1⩽ j⩽ 2N

(−1)

2N∑
j=1

nj
exp

 2N∑
j=1

nj(ζj(x,y, t)+ 2iϕ̂j)+
∑

1⩽j<k⩽2N

bjknjnk

 . (20)

For DS1:

ζj(x,y, t) =

{
i[kjx+ ljy+ ζj] +Ωj(t−τj), 1⩽ j⩽ N,
−i[kj−Nx+ lj−Ny+ ζj−N] +Ωj−N(t−τj−N), N+ 1⩽ j⩽ 2N,

.

kj = 2cos(ϕj)cosh(θj),

lj = 2cos(ϕj)sinh(θj),

Ωj =Ω(kj, lj) =
k2j + l2j√
k2j − l2j

√
4−

(
k2j − l2j

)
= 2sin(2ϕj)cosh(2θj), (21)

bjk =


log
(

cosh(θ̂j−θ̂k)−cos(ϕ̂j−ϕ̂k)
cosh(θ̂j−θ̂k)+cos(ϕ̂j+ϕ̂k)

)
, 1⩽ j< k⩽ N, N+1⩽ j<k⩽2N,

log
(

cosh(θ̂j−θ̂k)+cos(ϕ̂j−ϕ̂k)
cosh(θ̂j−θ̂k)−cos(ϕ̂j+ϕ̂k)

)
, 1⩽ j⩽ N and N+ 1⩽ k⩽ 2N,

.

ϕ̂j =

{
ϕj, 1⩽ j⩽ N,
ϕj−N, N+ 1⩽ j⩽ 2N.

. (22)

For DS2:

ζj(x,y, t) =

{
i[kjx+ ljy+ ζj] +Ωj(t−τj), 1⩽ j⩽ N,
−i[kj−Nx+ lj−Ny+ ζj−N] +Ωj−N(t−τj−N), N+ 1⩽ j⩽ 2N,

.

kj = 2cos(ϕj)cos(θj),

lj = 2cos(ϕj)sin(θj),

Ωj =Ω(kj, lj) =
k2j − l2j√
k2j + l2j

√
4− (k2j + l2j ) = 2sin(2ϕj)cos(2θj), σj = |Ωj|, (23)

bjk =


log
(

cos(θ̂j−θ̂k)−cos(ϕ̂j−ϕ̂k)
cos(θ̂j−θ̂k)+cos(ϕ̂j+ϕ̂k)

)
, 1⩽ j< k⩽ N, N+1⩽ j<k⩽2N,

log
(

cos(θ̂j−θ̂k)+cos(ϕ̂j−ϕ̂k)
cos(θ̂j−θ̂k)−cos(ϕ̂j+ϕ̂k)

)
, 1⩽ j⩽ N and N+ 1⩽ k⩽ 2N,

.

ϕ̂j =

{
ϕj, 1⩽ j⩽ N,
ϕj−N, N+ 1⩽ j⩽ 2N,

. θ̂j =

{
θj, 1⩽ j⩽ N,
θj−N, N+ 1⩽ j⩽ 2N.

. (24)

(kj, lj), j = 1, . . . ,N are arbitrary real wave vectors inside the instability regions of section 2.1,
and ζj, τj, j = 1, . . . ,N are arbitrary real parameters.

The proof of this result is by induction, and since it is long and tedious, but completely
standard in the Hirota method philosophy, we omit it.
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To the best of our knowledge, the solutions (18)–(24) is new for N⩾ 2. If N= 1 it was con-
structed in [71, 79] and describes a straight line (one dimensional) AW that can be constructed
from the AB solution (3) of NLS using elementary symmetry considerations. Other solutions
obtained using the Hirota method describe the interaction of an AWwith a dark-bright soliton,
together with their rational limits [50, 51, 71]. Also rational AWs were constructed [58, 59].

The solutions (18)–(24) are quasi-periodic in space for generic values of the wave vec-
tors (kj, lj), j = 1, . . . ,N inside the instability regions, since the x wave numbers {kj}Nj=1 are
generically incommensurable, as well as the y wave numbers {lj}Nj=1.

In view of the study, in section 3, of the relevance of these solutions in mathematically
and physically sound Cauchy problems, we remark that the Cauchy problem for spatially
quasi-periodic initial data presents several difficulties (in particular, a finite gap theory for
it is not available). In addition, the linear operator expressing q in terms of |u|2 in the second
of equations (1) is unbounded, in the periodic setting, for the DS1 equation, implying very
non-trivial analytic effects, and it is bounded for the focusing DS2 equation [33]. Therefore
in the rest of the paper we shall limit our considerations to spatially doubly periodic exact
solutions, and, in section 3, to the well-posed doubly periodic Cauchy problem for AWs of the
DS2 equation.

As it was shown in [33], in the well-posed periodic Cauchy problem for AWs of the DS2
equation, with periods Lx and Ly respectively in the x and y directions, the wave vectors of the
above N-breather solution are quantized as follows

k⃗m,n = (km, ln), km = 2π
Lx
m, ln = 2π

Ly
n, m,n ∈ Z, (25)

and lie on the rectangular lattice of figure 2, constrained by the instability condition

k2m+ l2n < 4 ⇔
(
m
Lx

)2

+

(
n
Ly

)2

<
1
π2

, Lx ̸= Ly. (26)

The simplest possible instability configurations are, in order of complication, the following.
(1) The case in which there is only one unstable mode, the mode ±k⃗1,0 =±(k1,0) on the k
axis, with:

1< k1 < 2, l1 > 2 ⇔ π < Lx < 2π, Ly < π, (27)

or the mode ±k⃗0,1 =±(0, l1) on the l axis, with:

1< l1 < 2, k1 > 2 ⇔ π < Ly < 2π, Lx < π; (28)

see respectively the top left and top right pictures of figure 2.
(2) The case in which there are only the two unstable modes ±k⃗1,0,±k⃗0,1, with

1< k1, l1 < 2, k21 + l21 > 4 ⇔ π < Lx,Ly < 2π,
1
L2x

+
1
L2y

>
1
π2

; (29)

see the bottom left picture of figure 2.
(3) The case in which there are only the four unstable modes±k⃗1,0,±k⃗0,1,±k⃗1,1,±k⃗1,−1, with

1< k1, l1 < 2, k21 + l21 < 4 ⇔ π < Lx,Ly < 2π,
1
L2x

+
1
L2y

<
1
π2

; (30)

8
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Figure 2. For the DS2 equation, the instability region in the k⃗= (k, l) plane is the disk
k2 + l2 < 4, with k2 − l2 ̸= 0. The Fourier modes of the linearized theory are k⃗m,n =
2π( mLx ,

n
Ly
), where m,n ∈ Z, and Lx and Ly are respectively the periods in the x and y

directions. In the top left picture Lx = 3.5, Ly = 2.8, and there is only the unstable mode
±k⃗1,0. In the top right picture Lx = 2.8, Ly = 3.5, and there is only the unstable mode
±k⃗0,1. In the bottom left picture Lx = 3.5, Ly = 4.8, and there are only the two unstable
modes ±k⃗1,0,±k⃗0,1. In the bottom right picture Lx = 4.6, Ly = 5.2, and there are only
the four unstable modes ±k⃗1,0,±k⃗0,1,±k⃗1,1,±k⃗1,−1.

see the bottom right picture of figure 2. Increasing the periods Lx and Ly, higher order modes
enter the instability region and the picture becomes more and more complicated. In this paper
we limit our considerations to the first two cases (1) and (2), postponing to a subsequent paper
the study of a higher number of unstable modes.

9
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2.3. The simplest cases

2.3.1. N = 1. The solutions (18)–(22) of the DS2 equation reads, after some manipulation

u1(x,y, t) =
cosh [σ1(t− t1)+ 2iϕ1]− sin(ϕ1)cos [k1x+ l1y+ ζ1]

cosh [σ(t− t1)]+ sin(ϕ1)cos [k1x+ l1y+ ζ1]
, (31)

q1(x,y, t) = cos(2θ1)(|u1(x,y, t)|2 − 1), (32)

where

σ1 = 2sin(2ϕ1)cos(2θ1), k1 = 2cosϕ1 cosθ1, l1 = 2cosϕ1sinθ1, (33)

and t1, suitably related to τ1 , is the arbitrary real parameter corresponding to the time transla-
tion symmetry of the DS equations.

This solution describes a straight line breather parallel to the line xcos(θ1)+ ysin(θ1) = 0
of arbitrary slope cot(θ1) (due to the arbitrariness of the parameter θ1), repeated periodically
in the x and y directions with periods Lx = 2π/k1 and Ly = 2π/l1, and decaying to the back-
ground (4) at t→±∞.

Since its appearance changes the phase of the background by the factor 4ϕ1, it can be viewed
as a quasi homoclinic solution as the AB solution (3) of NLS, and actually can be written in
terms of the AB itself as follows:

u1(x,y, t) =A(cos(θ1)x+ sin(θ1)y− x1,cos(2θ1)(t− t1),ϕ1), (34)

where x1 =−ζ1/(2cosϕ1).
In the doubly periodic Cauchy problem of the AWs, only its two limiting cases in which

the solution depends on just one space variable play a role (see figure 2). The y dependence
disappears if l1 = 0 (θ1 = 0), and the DS2 solutions (31) and (32) reads:

u1,0(x, t) =A(x− x1, t− t1,ϕ1), q1,0(x, t) = |u1,0(x, t)|2 − 1, (35)

describing a straight line breather parallel to the y axis (top left picture in figure 2). The x
dependence disappears if k1 = 0 (θ1 = π/2), and the solutions (31) and (32) of DS2 reduces to

u0,1(y, t) = e2itA(y− x1,−(t− t1),ϕ1), q0,1(y, t) = 1− |u0,1(y, t)|2 (36)

describing a straight line breather parallel to the x axis (top right picture in figure 2).
As in the NLS case, it is always possible to construct the rational limit of (31) and (32)

when k1, l1 tend to zero (for ϕ1 →±π/2). If ϕ1 → π/2, then u1 →−exp2it. If ϕ1 → π/2, up
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to an irrelevant minus sign, the breather tends to the following generalization of the Peregrine
solution

u1P(x,y, t) = 1− 4+ 16cos(2θ1)(t− t1)

1+ 16(t− t1)2 cos2(2θ1)+ 4(cos(θ1)x+ sin(θ1)y− x1)2
,

q1P(x,y, t) = 1+
8cos(2θ1)[1+ 16cos2(2θ1)(t− t1)2 − 4(cos(θ1)(x− x1)+ sin(θ1)(y− y1))2]

[1+ 16(t− t1)2 cos2(2θ1)+ 4(cos(θ1)x+ sin(θ1)y− x1)2]2
,

(37)

constant on the line xcosθ1 + ysinθ1 = 0 with arbitrary slope, and rationally localized over
the background in any other direction.

2.3.2. N = 2. The straight line breather solutions (31) and (32) and its rational limit (37)
could have been constructed from the AB plus symmetry considerations. The simplest truly
two dimensional AW describes the interaction of the horizontal ±k⃗1,0 = (k1,0) and vertical
±k⃗0,1 = (0, l1) unstable modes (see the bottom left picture of figure 2), where

k1 =
2π
Lx

= 2cosϕ1,0, l1 =
2π
Ly

= 2cosϕ0,1, θ1,0 = 0, θ0,1 = π/2, (38)

corresponding to the conditions

π < Lx,Ly < 2π ⇔ 1< k1, l1 < 2 ⇔ 0< ϕ1,0,ϕ0,1 < π/3. (39)

Then the solutions (18)–(22) reads, after some manipulation:

u2(x,y, t;ϕ1,0,ϕ0,1,x0,y0, t1,0, t0,1,ρ) =
N(x,y, t)
D(x,y, t)

eiρ, (40)

N(x,y, t) = cosh[σ1,0(t− t1,0)+σ0,1(t− t0,1)+ 2i(ϕ1,0 −ϕ0,1))]

+ b212 cosh[σ1,0(t− t1,0)−σ0,1(t− t0,1)+ 2i(ϕ1,0 +ϕ0,1))]

− 2b12
(
sinϕ1,0 cos(X1,0)cosh[σ0,1(t− t0,1)− 2iϕ0,1]

+ sinϕ0,1 cos(Y0,1)cosh[σ1,0(t− t1,0)+ 2iϕ1,0]

+ sinϕ1,0 sinϕ0,1 cos(X1,0)cos(Y0,1)
)
, (41)

D(x,y, t) = cosh[σ1,0(t− t1,0)+σ0,1(t− t0,1)]+ b212 cosh[σ1,0(t− t1,0)−σ0,1(t− t0,1))]

+ 2b12
(
sinϕ1,0 cos(X1,0)cosh[σ0,1(t− t0,1)]+sinϕ0,1 cos(Y0,1)cosh[σ1,0(t− t1,0)]

− sinϕ1,0 sinϕ0,1 cos(X1,0)cos(Y0,1)
)
, (42)

11
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where

X1,0 = k1(x− x0) = 2cos(ϕ1,0)(x− x0), Y0,1 = l1(y− y0) = 2cos(ϕ0,1)(y− y0),

σ1,0 = k1
√

4− k21 = 2sin(2ϕ1,0), σ0,1 = l1
√
4− l21 = 2sin(2ϕ0,1),

b12 =
cos(ϕ1,0 −ϕ0,1)

cos(ϕ1,0 +ϕ0,1)
, (43)

ρ is the arbitrary real parameter connected to the elementary gauge symmetry, t1,0, t0,1 are
arbitrary real parameters suitably connected to τ1, τ2, and x0 =−ζ1/k1,y0 =−ζ2/l1.

If, in addition,

1
L2x

+
1
L2y

>
1
π2

⇔ k21 + l21 > 4 ⇔ cos2ϕ1,0 + cos2ϕ0,1 > 1, (44)

then the modes ±k⃗1,1 = (k1, l1) and ±k⃗1,−1 = (k1,−l1) are stable and b12 > 0 (see the bottom
left plot of figure 2); instead, if

1
L2x

+
1
L2y

<
1
π2

⇔ k21 + l21 < 4 ⇔ cos2ϕ1,0 + cos2ϕ0,1 < 1, (45)

then also the modes ±k⃗1,1 = (k1, l1) and ±k⃗1,−1 = (k1,−l1) are unstable and b12 < 0 (see the
bottom right plot of figure 2). It is quite clear that the solutions (40)–(43) will be relevant in
the periodic Cauchy problem for AWs only under the constraint (44).

While the parameters ρ,x0,y0 and one of the parameters t1,0, t0,1 (say, t0,1) are associated
with space-time translation and elementary gauge symmetries of DS2, the additional parameter
t1,0 is associated with the integrability of the model.

For generic parameters, the solutions (40)–(43) decays to the backgrounds exp[i(ρ±
(ϕ1,0 −ϕ0,1))] as t→±∞, and describes the nonlinear interaction between the horizontal and
vertical unstable modes. Since the associated growth rates σ1,0,σ0,1 are generically different, it
describes two consecutive appearances in time of 2+ 1 dimensional doubly-periodic smooth
bumps, both located at (x0 +Lx/2,y0 +Ly/2) (see figure 3).

There are however two non generic choices of the parameter t10 − t01:

t10 − t01 =±∆c,

∆c :=
1

σ0,1
log(|B|+

√
B2 − 1)− 1

σ1,0
log(|A|+

√
A2 − 1), (46)

where

A= cosϕ1,0 tan(ϕ1,0 +ϕ0,1)−
sinϕ0,1

cos(ϕ1,0 −ϕ0,1)
,

B= cosϕ0,1 tan(ϕ1,0 +ϕ0,1)−
sinϕ1,0

cos(ϕ1,0 −ϕ0,1)
, (47)

for which the solution (40) blows up at the critical times

t±c = t01 ±
1

σ0,1
log
(
|B|+

√
B2 − 1

)
. (48)
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Figure 3. Five snapshots of the evolution of the absolute value of the two-breather AW
solution (40) in a basic period (Lx = 3.5, Ly = 4.8), describing the nonlinear interaction
of two unstable modes, one parallel to the x axis and the other parallel to the y axis
with parameters t1,0 = 0 and t0,1 =−0.1. Top left: the growth of the AW from the back-
ground (t=−1.2); top right: the first emergence (t=−0.83); medium left: between two
emergences (t=−0.17); medium right: second emergence (t= 0.78); bottom: the dis-
appearance of theAW into the background (t= 1.1). For generic parameters, the solution
is smooth and the two emergences, occurring both at (x,y) = (x0 + Lx/2,y0 + Ly/2), are
different. In this case x0 = y0 = 0.

More precisely, if t10 − t01 =−∆c, the solution blows up at its first appearance in
(x0,y0, t= t−c ); if t10 − t01 =∆c, the solution blows up at its second appearance in (x0,y0, t=
t+c ). It turns out that, at these two points in space time, not only the denominator is zero, but
also the partial derivatives of the denominator with respect to the variables ξ1,0 = σ1,0(t− t1,0)
and ξ0,1 = σ0,1(t− t0,1) are zero.

We observe that the second of equation (46) implies that, if A2 < 1 and/or B2 < 1, then∆c

is not real, the two real parameters t10 and t01 cannot satisfy the first of equation (46), and blow
up does not occur. The condition on the angles ϕ1,0,ϕ0,1 such that A2,B2 > 1 is

13
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Figure 4. The regions of the plane (ϕ1,0,ϕ0,1) in which blow-up can occur. In the white
region blow-up can never occur because (49) is not fulfilled. In the light and dark gray
regions, instead, (49) is satisfied,∆c ∈ R, and blow-up can occur if t1,0 − t0,1 is chosen
to satisfy the first of equation (46). Light and dark gray regions, separated by the curve
ϕ1,0 +ϕ0,1 =

π
2 , are respectively the regions where only two and more than two modes

are unstable.

sinϕ1,0 + sinϕ0,1 > 1, (49)

and corresponds to the gray regions of figure 4. Once (49) is satisfied, blow up takes place if
the free parameters t10, t01 satisfy the first of equation (46).

The AW solution (40) behaves as follows near the blow up:

u2(x,y, t;ϕ1,0,ϕ0,1,x0,y0, t0,1 ±∆c, t0,1,ρ)

=
N(x0 +Lx/2,y0 +Ly/2, t±c )e

iρ

a(t− t±c )2 + b(x− x0 −Lx/2)2 + c(y− y0 −Ly/2)2
(1+O(t− t±c )),

|x− x0 −Lx/2|, |y− y0 −Ly/2|= O(t− t±c ), |t− t±c | ≪ 1, (50)

where

a= b12
[
sinϕ1,0(|B|+ sinϕ0,1)σ

2
1,0 + sinϕ0,1 (|A|+ sinϕ1,0)σ

2
0,1

]
+

[
|AB|+

√
(A2 − 1)(B2 − 1)+ b212

(
AB−

√
(A2 − 1)(B2 − 1)

)]
σ1,0σ0,1,

b= b12 sinϕ1,0(|B|+sinϕ0,1)k
2
1, c= b12 sinϕ0,1 (|A|+sinϕ1,0) l

2
1. (51)

From these considerations one infers that, unlike the NLS case for which the amplitude
of the N breather solution has a fixed maximum achieved when the interference among its N
unstable modes is fully constructive, the amplitude of the AW u2 can be arbitrarily large if the
free parameters t1,0, t0,1 are such that t1,0 − t0,1 is sufficiently close to±∆c. We expect similar
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and even richer features for the exact solutions (18)–(24) coming from the interaction of more
than two unstable modes, and a subsequent paper will be devoted to a systematic study of these
behaviors.

2.4. Interesting limiting cases of the solutions (40)–(43)

2.4.1. The modes ±k⃗1,1,±k⃗1,−1 tend to the instability circle. If ±k⃗1,1,±k⃗1,−1 tend to the
instability circle: k21 + l21 → 4, then ϕ1,0 +ϕ0,1 → π

2 and b12 →∞. In addition the two growth
rates become the same:

σ1,0 = σ0,1 = 2sin(2ϕ) =: σ, ϕ := ϕ1,0. (52)

To perform this limit we choose eσ1,0t1,0 ,eσ0,1t0,1 = O(b12), and we define the convenient O(1)
parameters

t0 =
1
σ
log

(
eσ1,0t1,0 + eσ0,1t0,1

√
e2σ1,0t1,0 + e2σ0,1t0,1

)
, ξ = arccos

(
eσ0,1t0,1

√
e2σ1,0t1,0 + e2σ0,1t0,1

)
, (53)

obtaining the following new solution in the limit

ub(x,y, t) =
Nb(x,y, t)
Db(x,y, t)

eiρ, (54)

where:

Nb(x,y, t) = cosh(σ(t− t0)+ 2iϕ)− sinϕsinξ cos(2cosϕ(x− x0))

+ cosϕcosξ cos(2sinϕ(y− y0)) (55)

and

Db(x,y, t) = cosh(σ(t− t0))+ sinϕsinξ cos(2cosϕ(x− x0))

+ cosϕcosξ cos(2sinϕ(y− y0)). (56)

Since the two growth rates coincide in this limit, and we are left with only one time parameter
t0, the AW appearance consists of only one emergence. The blow up condition is achieved only
if ξ = ϕ.

2.4.2. Rational limit. As in the NLS case, the rational limit to Peregrine like solutions is
achieved taking the long wave limit in both x and y directions. Then we introduce the following
notation

k1 = ϵδx, l1 = ϵδy, ϵ≪ 1, (57)

and, correspondingly, we choose the angles in the first quadrant

ϕ1,0 =
π

2
− ϵ

δx
2
+O(ϵ3), ϕ0,1 =

π

2
− ϵ

δy
2
+O(ϵ3), (58)

to get the nontrivial rational limit

u2P(x,y, t) =
NP(x,y, t)
DP(x,y, t)

eiρ, (59)
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where

NP(x,y, t) = (−3+ 4(x− x0)
2 + 16(t− t1,0)(t− t1,0 − i))

(
−3+ 4(y− y0)

2

+16(t− t0,1)(t− t0,1 + i))+ 64i(t1,0 − t0,1)− 128(t− t1,0)(t− t0,1)− 24 (60)

and

DP(x,y, t) = (−3+ 4(x− x0)
2 + 16(t− t1,0)

2)(−3+ 4(y− y0)
2 + 16(t− t0,1)

2)

+ 64(t1,0 − t0,1)
2 + 16((x− x0)

2 +(y− y0)
2). (61)

This 2+ 1 dimensional generalization of the NLS Peregrine solution does not depend on the
parameters δx and δy. It describes the nonlinear interaction of two rational Peregrine walls of
the type (37), parallel to the x and y axes. Like the Peregrine solution, it decreases rationally to
the background (4) as t→±∞; it decreases to the orthogonal walls for x2 + y2 ≫ 1, unlike the
Peregrine solution that decreases to the background in this limit. As the solutions (40)–(43), it
appears twice, but now the two appearances are described by the same function. This rational
solution, blowing up twice if t1,0 = t0,1, in the space-time points (x0,y0, t1,0 ±

√
3
4 ), should be

a particular example of the general class of rational AWs solutions presented in [59].

2.4.3. Periodic-rational limit. If one performs the above long wave limit only, say, in the y
direction, the solutions (40)–(43) leads to the following solution rational in y, periodic in x,
and rational/hyperbolic in t:

uPR(x,y, t) =
NPR(x,y, t)
DPR(x,y, t)

eiρ, (62)

where

NPR(x,y, t) = cosh(σ1,0(t− t1,0)+ 2iϕ1,0)(−7+ 16(i+ t− t0,1)(t− t0,1)+ 4(y− y1)
2

+ 4csc2ϕ1,0)− 8cotϕ1,0 sinh(σ1,0(t− t1,0)+ 2iϕ1,0)(i+ 2(t− t0,1))

+ sinϕ1,0 cos(k1(x− x1))(−3+ 16(i+ t− t0,1)(t− t0,1)+ 4(y− y1)
2) (63)

and

DPR(x,y, t) = cosh(σ1,0(t− t1,0))(1+ 16(t− t0,1)
2 + 4(y− y1)

2 + 4cot2ϕ1,0)

− 16cotϕ1,0 sinh(σ1,0(t− t1,0))(t− t0,1)+

− sinϕ1,0 cos(k1(x− x1))(1+ 16(t− t0,1)
2 + 4(y− y1)

2). (64)

To the best of our knowledge also this solution is new.
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3. MI and AW recurrence

In this section we use the matched asymptotic expansions technique introduced in [28] to
describe the relevance of the above exact AW solutions in the DS2 doubly periodic Cauchy
problem for AWs, in the case of one and two unstable modes.

The doubly periodic Cauchy problem for AWs of the focusing DS2 equation (1), η = ν = 1,
reads

u(x+Lx,y, t) = u(x,y+Ly, t) = u(x,y, t),

q(x+Lx,y, t) = q(x,y+Ly, t) = q(x,y, t),

u(x,y,0) = 1+ ϵ v(x,y), q(x,y,0) = ϵ w(x,y), 0< ϵ≪ 1, (65)

where the initial perturbations can be expanded in Fourier modes as follows:

v(x,y) =
∑
µ,ν∈Z

cµ,νe
i(kµx+lνy). (66)

For |t|= O(1), the evolution is ruled by the linearized equation (7), and the solution is
described by the following formulas

u(x,y, t) = 1+ ϵ
∑
m,n∈D

(
|αm,n|

sin(2ϕm,n)
cos(kmx+ lny− arg(αm,n)−π/2)eΩm,nt+iϕm,n

+
|βm,n|

sin(2ϕm,n)
cos(kmx+ lny+ arg(βm,n)−π/2)e−Ωm,nt−iϕm,n)+O(ϵ)-oscillations,

(67)

q(x,y, t) = ϵ
∑
m,n∈D

cos(2θm,n)
sin(ϕm,n)

[
|αm,n|cos(kmx+ lny− arg(αm,n)−π/2)eΩm,nt

+|βm,n|cos(kmx+ lny+ arg(βm,n)−π/2)e−Ωm,nt
]
+O(ϵ)-oscillations, (68)

where

km = 2cosϕm,n cosθm,n, ln = 2cosϕm,n sinθm,n,

⇒ ϕm,n = arccos

(√
k2m+ l2n
2

)
,θm,n = arctan

(
ln
km

)
,

αm,n = e−iϕm,n c̄m,n− eiϕm,nc−m,−n,βm,n = eiϕm,n c̄−m,−n− e−iϕm,ncm,n, (69)

and

D =

{
m⩾ 1, n ∈ Z,

(
m
Lx

)2

+

(
n
Ly

)2

<
1
π2

}
∪

{
m= 0, n⩾ 1,

(
n
Ly

)2

<
1
π2

}
. (70)

In (67) we do not describe explicitly the O(ϵ) oscillations because they are associated with
the stable modes and remain O(ϵ) at later times; corrections to equation (67) are at O(ϵ2).

As time increases, the perturbation in (67) grows exponentially and, at t= O(log(1/ϵ)), it
becomes order one and the dynamics is described by the fully nonlinear theory. It is when the
exact solutions we constructed play a relevant role.
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3.1. One unstable mode

In the case of one unstable mode we have the two cases (27) and (28).
(a) If k⃗1,0 = (k1,0) is the only unstable mode, i.e.:

π < Lx < 2π, Ly < π ⇔ 1< k1 < 2, l1 > 2 ⇔
θ1,0 = 0, k1 = 2cosϕ1,0, 0< ϕ1,0 < π/3,

Ω1,0 = k1
√
4− k21 = 2sin(2ϕ1,0) = σ1,0, (71)

then equation (67) reduces to

u(x,y, t) = 1+ ϵ[
1

sin(2ϕ1,0)
(|α1,0|cos(2cosϕ1,0x− arg(α1,0)−π/2)eiϕ1,0+σ1,0t

+ |β1,0|cos(2cosϕ1,0x+ arg(β1,0)−π/2)e−iϕ1,0−σ1,0t)]+O(ϵ)-oscillations.
(72)

Since the exact solution u1,0(x,y, t) in (35) describes the nonlinear instability of the mode
±k⃗1,0, it is the natural candidate to describe the first AW appearance at t= O(log(1/ϵ)). Then
one chooses its appearance time t(1) as t(1) ≡ 1

σ1,0
log γϵ , γ > 0, with γ to be fixed. In the inter-

mediate time interval 1≪ t≪ O(log(1/ϵ)), (72) and u1,0(x,y, t) become

u(x,y, t)∼ 1+
ϵ|α1,0|

sin(2ϕ1,0)
cos[k1x− arg(α1,0)−π/2]eiϕ1,0+σ1,0t,

u1,0(x,y, t)∼ ei(ρ
(1)−2ϕ1,0)

(
1+

2ϵ
γ
sin(2ϕ1,0)cos

(
k1(x− x(1))

)
eσ1,0t+iψ1,0

)
. (73)

Comparing the leading order asymptotics (73) one fixes all the free parameters of u1,0 as
follows

ρ(1) = 2ϕ1,0, x
(1) =

arg(α1,0)+π/2
k1

, t(1) =
1

σ1,0
log

(
2sin2(2ϕ1,0)

ϵ|α1,0|

)
, (74)

showing that the first AW appearance is described, to leading order and at |t− t(1)|= O(1),
by

u(x,y, t) = e2iϕ1,0A
(
x− x(1), t− t(1),ϕ1,0

)
+O(ϵ), (75)

an elementary function of the initial data. We remark that, although the initial perturbation is
an arbitrary doubly periodic function of (x, y), since the only unstable mode is the horizontal
mode ±k⃗1,0, the AW is one-dimensional and the y dependence is confined at O(ϵ).

To describe analytically the AW recurrence, we also construct the first AW appearance at
negative times, following the same strategy, obtaining

u(x,y, t) = e−2iϕ1,0A(x− x(0), t− t(0),ϕ1,0)+O(ϵ), |t− t(0)|= O(1),

x(0) =
−arg(β1,0)+π/2

k1
, t(0) =− 1

σ1,0
log

(
2sin2(2ϕ1,0)

ϵ|β1,0|

)
. (76)
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Thenwe compare the two consecutive appearances (75) and (76), and using the time translation
property of the model, we infer that the dynamics is described by an FPUT recurrence of AWs,
and that the jth appearance is described by

u(x,y, t) = eiρ
( j)

A
(
x− x( j)1,0, t− t( j)1,0,ϕ1,0

)
+O(ϵ), |t− t( j)1,0|= O(1), j⩾ 1, (77)

where

ρ
( j)
1,0 = ρ

(1)
1,0 +( j− 1)4ϕ1,0, x

( j)
1,0 = x(1)1,0 +( j− 1)

arg(α1,0β1,0)

k1
,

t( j)1,0 = t(1)1,0 +( j− 1)
2

σ1,0
log

(
2sin2(2ϕ1,0)

ϵ
√
|α1,0β1,0|

)
. (78)

(b) If k⃗0,1 = (0, l1) is the only unstable mode, i.e.:

π < Ly < 2π, Lx < π ⇔ 1< l1 < 2, k1 > 2 ⇔
θ1,0 = π/2, θ0,1 = 0, l1 = 2cosϕ0,1, 0< ϕ0,1 < π/3,

σ0,1 = l1
√

4− l21 = 2sin(2ϕ0,1) =−Ω0,1, (79)

now the nonlinear stages of MI are described, to leading order, by the exact solution u0,1 and,
proceeding as before, one can show that the solution of the Cauchy problem (65) is described
by an FPUT recurrence of AWs, and that the jth appearance is described by

u(x,y, t) = eiρ
( j)
0,1A(y− y( j)0,1, t− t( j)0,1,ϕ0,1)+O(ϵ), |t− t( j)0,1|= O(1), j⩾ 1, (80)

where

ρ
( j)
0,1 = ρ

(1)
0,1 − ( j− 1)4ϕ0,1, y

( j)
0,1 = y(1)0,1 − ( j− 1)

arg(α0,1β0,1)

l1
,

t( j)0,1 = t(1)0,1 +( j− 1)
2

σ0,1
log

(
2sin2(2ϕ0,1)

ϵ
√
|α0,1β0,1|

)
(81)

and

ρ
(1)
0,1 =−2ϕ0,1, y

(1)
0,1 =

−arg(β0,1)+π/2
l1

, t(1)0,1 =
1

σ0,1
log

(
2sin2(2ϕ0,1)

ϵ
√
|β0,1|

)
. (82)

We remark that, in both cases, since we have only one growingmode (horizontal or vertical)
in the overlapping region, and since the Akhmediev type solution, describing the growth of
this unstable mode, contains enough free parameters for a successful matching, the remaining
mismatch cannot affect the leading order behavior at the appearance. Therefore this stabil-
ity argument plus uniqueness of the DS2 evolution imply that the appearance of the AW is
described by the one dimensional Akhmediev solution, and the dependence on both x and y
variables is hidden at O(ϵ).
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3.2. Two unstable modes

The simplest truly two dimensional AW dynamics takes place when there are only the two
unstable modes ±k⃗1,0 and ±k⃗0,1 (see the bottom left picture of figure 2), corresponding to the
constraint

π < Lx,Ly < 2π,
1
L2x

+
1
L2y

>
1
π2

,⇔

1< k1, l1 < 2, k21 + l21 > 4,⇔
0< ϕ1,0,ϕ0,1 < π/3, cos2ϕ1,0 + cos2ϕ0,1 > 1. (83)

Then the linear stage of MI (67), for |t|⩽ O(1), reduces to

u(x,y, t) = 1+ ϵ
[ 1
sin(2ϕ1,0)

(|α1,0|cos(2cosϕ1,0x− arg(α1,0)−π/2)eiϕ1,0+σ1,0t

+ |β1,0|cos(2cosϕ1,0x+ arg(β1,0)−π/2)e−iϕ1,0−σ1,0t)

+
1

sin(2ϕ0,1)

[
|α0,1|cos(l1y− arg(α0,1)−π/2)e−σ0,1t+iϕ0,1

+ |β0,1|cos(l1y+ arg(β1,0)−π/2)eσ0,1t−iϕ0,1

]
+O(ϵ)-oscillations. (84)

Reasoning as before, since the exact solution u2 of DS2 in (40)–(43) describes the nonlinear
interaction of the unstable modes ±k⃗1,0, ±k⃗0,1, it is the natural candidate to characterize this
nonlinear stage, and following exactly the same strategy as before, we find that the first AW
appearance is described to leading order by the solution (40)

u(x,y, t) = u2
(
x,y, t;ϕ1,0,ϕ0,1,x

(1),y(1), t(1)1,0 , t
(1)
0,1 ,ρ

(1)
)
+O(ϵ), (85)

where the solution parameters are expressed in terms of the initial data as follows

ρ(1) = 2(ϕ1,0 −ϕ0,1), x
(1) =

arg(α1,0)+π/2
k1

, y(1) =
−arg(β0,1)+π/2

l1
,

t(1)1,0 =
1

σ1,0
log

(
2b12 sin

2(2ϕ1,0)

ϵ|α1,0|

)
, t(1)0,1 =

1
σ0,1

log

(
2b12 sin

2(2ϕ0,1)

ϵ|β0,1|

)
. (86)

Therefore the first appearance of the AW in the Cauchy problem consists of the two
emergences described by the exact solutions (40)–(43) (see figure 3), whose parameters are
expressed in terms of the initial data through elementary functions.

As for the case of one unstable mode, we remark that, since we have only two growing
modes in the overlapping time region, and since the exact solutions (40)–(43), describing the
growth and the nonlinear interaction of these unstable modes, contains enough free parameters
for a successful matching, the remaining mismatch cannot affect the leading order behavior.
Therefore this stability argument plus uniqueness of the DS2 evolution imply that the first
appearance of the AW is described by the solutions (85) and (86), an elementary function of
the initial data.

To have an idea of how well the analytic solution u2 in (85) and (86) describe the first
appearance of the AW in the AW Cauchy problem, we evaluate the uniform distance between
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Figure 5. Here we study the two emergences of AWs in the time interval of the first
appearance, for the initial data ϵ= 10−3, c1,0 = 0.8+ i0.4, c−1,0 = 1.2− i0.1, c0,1 =
−0.64− i0.3, c0,−1 = 0.5+ i0.2. In the left picture we plot the max of the amplitude
of the AW ∥unum∥∞(t) as function of time, where unum is the numerical solution; the
first emergence at (x,y, t) = (3.24019,1.227442,3.780) with a peak of height 6.6786;
the second emergence at (x,y, t) = (3.24019,1.227442,5.868) with a peak of smaller
height 2.3631. Right picture: the uniform distance ∥unum − u2∥∞(t) between the ana-
lytic solution u2 (85) and (86) and the numerical solution unum; the two peaks of the dis-
tance correspond exactly to the two AW emergences of the left picture, and the distance
remains always ⩽ 5 · 10−4, smaller than the estimated error from theoretical considera-
tions O(10−3), indicated by the horizontal dotted line.

u2 and the numerical solution unum (obtained using the 4th order split step Fourier method
[40]):

∥unum − u2∥∞(t) := sup
x∈[0,Lx],y∈[0,Ly]

|unum(x,y, t)− u2(x,y, t)|, (87)

in the time interval in which the AW first appears, see figure 5. The agreement is excellent,
since the error is much smaller than expected from theoretical considerations.

We end this paper with some considerations on the possibility of blow up in the first appear-
ance of the AW (85) and (86). If we compare the difference between the time parameters
t(1)1,0 − t(1)0,1 coming from the Cauchy problem

t(1)1,0 − t(1)0,1 =
1

σ1,0
log

(
2b12 sin

2(2ϕ1,0)

ϵ|α1,0|

)
− 1

σ0,1
log

(
2b12 sin

2(2ϕ0,1)

ϵ|β0,1|

)
(88)

with the critical difference (46) and (47) corresponding to the blow up of the solution (40), we
infer that we have blow up if one of the following two equations are satisfied(

b12σ2
1,0(B+

√
B2 − 1)

2ϵ|α1,0|

)σ1,0

=

(
b12σ2

0,1(A+
√
A2 − 1)

2ϵ|β0,1|

)σ0,1

, (89)

(
b12σ2

1,0

2ϵ|α1,0|(B+
√
B2 − 1)

)σ1,0

=

(
b12σ2

0,1

2ϵ|β0,1|(A+
√
A2 − 1)

)σ0,1

. (90)

If (89) holds, then blow up occurs at the first emergence; if (90) holds, then blow up occurs at
the second emergence.

Equations (89) and (90) depend on the initial data parameters ϵ,cm,n, and on the unstable
mode parameters ϕ1,0,ϕ0,1. If, for instance, we fix the initial condition parameters, then the
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Figure 6. The left picture shows the solid and dashed curves in the (ϕ1,0,ϕ0,1) plane
on which the blow-up conditions (89) and respectively (90) are satisfied, for the ini-
tial data c1,0 = 0.8+ i0.4, c−1,0 = 1.2− i0.1, c0,1 =−0.64− i0.3, c0,−1 = 0.5+ i0.2
and ϵ= 10−3. The light and dark gray regions (for which sinϕ1,0 + sinϕ0,1 > 1) are the
regions where blow-up can occur; light and dark tones color indicate respectively the
regions where only two modes and more than two modes are unstable. The right picture
shows the solid and dashed curves in the (c1,0,c0,1) plane on which the blow-up condi-
tions (89) and respectively (90) are satisfied, for ϕ1,0 = 0.7, ϕ0,1 = 0.5, and ϵ= 10−3.

blow up regions in the (ϕ1,0,ϕ0,1) plane are curves (see the left picture in figure 6). If we fix
instead the unstable mode parameters (ϕ1,0,ϕ0,1), in the space of real initial data of the type

u(x,y,0) = 1+ 2ϵ[c1,0 cos(2cosϕ1,0x)+ c0,1 cos(2cosϕ0,1y)], c1,0,c0,1 ∈ R, (91)

the blow up regions in the (c1,0,c0,1) plane are again curves (see the right picture in figure 6).
Since curves have zero measure in the plane, we conclude that, generically, the first appear-

ance of the AW does not give rise to blow up. But the amplitude of the AW can be arbitrarily
large if the parameters are sufficiently close to the singular curves, and situations of this type
are expected to take place also at later times, during the recurrence.

Similar considerations are expected to be valid for a generic Cauchy problem of AWs
involving more than two unstable modes, and will be the subject of future investigation.

4. Future perspectives

The results of this paper and of paper [33] open several research directions we plan to follow
in the near future. (1) The proper implementation of the finite gap formalism developed in [33]
to solve, in terms of elementary functions of the initial data, the generic spatially doubly peri-
odic Cauchy problem of AWs for the DS2 equation, in the case of a higher, but finite, number
of unstable nonlinear modes, since matched asymptotic expansions are not adequate to study
AW recurrence in this case [28]. (2) The use of the analytic solution of the AW Cauchy prob-
lem to study the probability of generating multidimensional AWs of amplitude greater than a
certain critical value in a given time interval. (3) The generalization to the 2+ 1 dimensional
DS2 equation of the perturbation theory of AWs developed for 1+ 1 dimensional NLS type
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equations in [15–17, 19], to describe analytically the order one effects of physical perturbations
of the DS2 equation on the AW dynamics.
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