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At present, functional magnetic resonance imaging (fMRI) is one of the most useful methods of studying cogni-
tive processes in the human brain in vivo, both for basic science and clinical goals. Although neuroscience studies
often rely on group analysis, clinical applicationsmust investigate single subjects (patients) only. Particularly for
the latter, issues regarding the reliability of fMRI readings remain to be resolved. To determine the ability of intra-
run variability (IRV) weighting to consistently detect active voxels, we first acquired fMRI data from a sample of
healthy subjects, each ofwhomperformed4 runs (4 blocks each) of self-pacedfinger-tapping. Each subject's data
was analyzed using single-run general linear model (GLM), and each block was then analyzed separately to
calculate the IRV weighting. Results show that integrating IRV information into standard single-subject GLM
activation maps significantly improved the reliability (p = 0.007) of the single-subject fMRI data. This suggests
that taking IRV into account can help identify the most constant and relevant neuronal activity at the single-
subject level.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Over the last 20 years, functional magnetic resonance imaging
(fMRI) has become a standard tool for mapping human brain function.
It is also widely used for surgical planning (De Benedictis et al., 2010;
Skrap et al., 2012) and clinical diagnostics (Matthews et al., 2006).
Many experimental investigations have attempted to quantify the reli-
ability of activation maps based on fMRI data (Rombouts et al., 1997;
McGonigle et al., 2000; Loubinoux et al., 2001; Marshall et al., 2004;
Yoo et al., 2005; Aron et al., 2006; Vul et al., 2009), but this still remains
a largely problematic issue (Bennett and Miller, 2010). Problems with
the reliability of fMRI data are derived from the nature of the fMRI sig-
nal. For example, the blood-oxygenation-level dependent (BOLD) fMRI
technique uses thehemodynamic changes that accompany neuronal ac-
tivity to infer brain (electrical) activity. However, observed local vascu-
lar changes are very small, and the recorded signal exhibits a very low
signal to noise ratio. Therefore, BOLD is susceptible to several imaging
artifacts. To quantify neuronal activity in fMRI data accurately, all
known factors that could affect activation patterns in the fMRI study
must be taken into account. Such factors can include scanner noise, in
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addition to physiological variations, such as breathing and heart rate
(Hu et al., 1995), and patient motion (Lund et al., 2005).

Statistics can play a critical role in identifying and interpreting the
activation patterns generated in fMRI studies (Lindquist, 2008). An
easyway of enhancing the statistical power of fMRI results is to increase
either the number of subjects or the number of trials. However, this is
not an option in single-subject studies in the clinical environment, and
increasing the duration or number of runs is often not feasible because
it would inflict additional discomfort to the patient. Thus, clinical find-
ings are generally based on a single fMRI run, and it is important to be
able to localize reliable brain activity in this run. Unfortunately, very lit-
tle research has focused on single-subject fMRI (Fadiga, 2007) mainly
because of the lack of appropriate analytical methods to achieve an
adequate reliability at the single-subject level and, secondly because
single subject studies require a strong neuroanatomical background.
An important limitation of model-based analytical methods is their
dependence on a number of assumptions (Lu et al., 2003; Zang et al.,
2004). In the general linear model (GLM) with block design, a (possibly
generalized) linear model is fitted to model the BOLD activity along all
blocks using one or more predictors that describe the design of the
experiment (e.g., a zero/one vector for a task/resting design). This statis-
tical approach assumes that the neural activity associated with a task
does not change over time. However, the measure of signal stability
over time (i.e., over blocks) is an interesting information which, in our
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.03.076&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.neuroimage.2015.03.076
mailto:luciano.fadiga@iit.it
http://dx.doi.org/10.1016/j.neuroimage.2015.03.076
http://creativecommons.org/licenses/by-nc-nd//
http://www.sciencedirect.com/science/journal/10538119
www.elsevier.com/locate/ynimg


288 F. de Bertoldi et al. / NeuroImage 114 (2015) 287–293
view, has not been exploited enough. For example, it is possible that, in
the samevoxel, the stability of the BOLD signal across blocks of the same
run, relate with high reliability across different runs/session. In this
paper, we examined the possibility to make use of this information in
order to select those voxels that are more consistently activated across
the blocks forming a run to assess the reliability of fMRI data in single-
subject tests. The ideawas to fit amodel separately for each block to de-
fine intra-run variability (IRV) as a function of the variance of the esti-
mated coefficients of all blocks (i.e., increased heterogeneity of the
estimated coefficients among the blocks implies larger IRV). A previous
study used the inter-trial consistency of neuronal activity between dif-
ferent trials to estimate the functional relevance of different areas in a
complex cognitive task (Windischberger et al., 2002). Likewise, we set
out to determine whether IRV could be similarly effective in identifying
more reliable voxels. To this end, we evaluated the impact of weighting
standard GLM analysis data for IRV (i.e., the p-value from the GLM is di-
vided by weight, which is a function of the IRV) on the reliability of the
fMRI results. We ran a simulation and came to some conclusions based
on the features of themethod.More remarkably, we collected fMRI data
from 7 healthy subjects and adopted a specific experimental protocol to
dealwith potential clinical constraints. The 7 subjects underwent 2 fMRI
sessions, each consisting of 2 short runs (4 blocks each) of self-paced
finger-tapping to provide data with a high level of variability and low
statistical power. The data from each subject were first processed
using a single-run GLM analysis, and the reliability index across the 4
runs was calculated. We then calculated the respective IRV values for
each voxel of the resulting t-value maps and quantified the reliability
of the proposed IRV-weighted maps in detecting activation at the
single-subject level, as compared to standard GLM activation maps.
This allowed us to assess the impact of integrating IRV into fMRI data
analysis.

Methods

Subjects and fMRI protocol

Seven healthy subjects (4 males, 3 females, aged 19–24), all previ-
ously fMRI naive, were scanned while performing 4 identical runs
with a block design (15/15 s of task/rest conditions, with 45 volumes re-
corded; 4 blocks for each run). The subjects performed a self-paced
finger-tapping task with their right hand (all the subjects were right-
handed). To minimize subject error, all underwent specific training
before the start of the experiment. Four runswere acquired in 2 sessions
of 2 runs each, with a 15min gap between one session and the next. All
subjects gave their informed consent and the experimental protocol
was approved by the Udine Hospital Ethics Committee.

MRI acquisition

The MR images were acquired using a Siemens 1.5 T MRI whole-
body scanner (Siemens Avanto, Erlangen, Germany), a 12-channel
matrix head coil, and a custom-built head restrainer to minimize head
movements. Both structural and functional images were recorded
during theMRI sessions. High-resolution T1-weighted structural images
were acquired using the following parameters: number of volumes=1,
repetition time (TR) = 2300 ms, time of echo (TE) = 2.86 ms, flip
angle = 20, orientation = sagittal, number of slices = 160, volume
thickness = 1 mm, voxel size = 0.5 × 0.5 × 1 mm, and field of
view = 448 × 512. T2-weighted functional scans were performed
using the following parameters: number of volumes = 45, TR =
3000 ms, TE= 60ms, flip angle = 90, orientation = transversal, num-
ber of slices = 30, volume thickness = 1 mm, voxel size =
3.4375 × 3.4375 × 5 mm, field of view = 64 × 64, and acquisition
order = interleaved. The subjects wore special MR-compatible glasses
while receiving instructions.
Data preprocessing and analysis

The fMRI data analysis was carried out using the software packages
MATLAB 7.6 (MathWorks Inc. Natick, Ma, USA) and SPM8 (http://
www.fil.ion.ucl.ac.uk/spm/).

Preprocessing
In every subject, for each run, all volumes were realigned with

respect to the first scan of the same run and co-registered with each
participant's anatomical data. Functional time series were then
smoothed with a Gaussian kernel width at a half-maximum of 10 mm,
and high-pass temporal filtering (filter width, 45 s) was applied.

Single-run t-value maps
A 1st-level GLM analysis was performed separately for each run. The

reference function applied was created by convolving a box-car with a
canonical hemodynamic response function of the same on–off period
as the stimulus (Friston et al., 1995, 2006a,b). Two t maps of each run
was obtained for each subject after thresholding all single-run t maps
at p b 0.05 and p b 0.01.

Single-block t-value maps
We also conducted a separate GLM analysis of each block in every

run to define the estimated value of the model separately for every
block. Sixteen single-block t maps (4 in each run) were obtained for
each subject.

IRV index

Themethod presented here is for a simple task/rest design. The pro-
totypical model for the task/rest design can be described as follows:

Y ¼ aþ bX þ ε; ð1Þ

where X is a 0/1 indicator function— i.e. 0 at rest and 1 under task con-
dition — possibly convolved with a canonical hemodynamic response
function, a is the average effect at rest scan, b is the extra activation in-
duced by the stimulus, and ε is the error term (i.e., the homoscedastic
white noise with null mean and variance σ). After fitting the model to
the recorded data, 2 quantities were computed: the deviance explained
by the model (modelDev) and the residual deviance (residDev). The F
statistic, which is typically used to infer the effect of a stimulus, was
derived from the ratio between these 2 quantities:

F ¼ modelDev=residDev � N−2ð Þ ð2Þ

where N is the number of observations. The t statistic was also based on
these quantities, seeing as:

t ¼ sign bð Þ � sqrt Fð Þ: ð3Þ

The present study assumes that the effect (i.e. the true coefficient of
the model) of the task may change over time (i.e., between the 4
blocks). Thus, we defined a slightly more complex model:

Y ¼ a1Z1 þ a2Z2 þ a3Z3 þ a4Z4 þ b1X1 þ b2X2 þ b3X3 þ b4X4 þ ε; ð4Þ

where Zi has a value of 1 in trial i and 0 otherwise, and Xi has a value of 1
under the stimulus in trial i and 0 otherwise. Likewise, the ai coefficients
represent the effects at rest, and bi denotes the effect of the stimulus in
trial i. Thewhite noise ε is assumed homoscedastic, but it can be trivially
extended to noise which has constant variance only within the block
(i.e., heteroscedastic errors). We defined modelDevB as the explained
deviance of model (4) minus modelDev, the explained deviance of
model (1). It can be interpreted as the gain in the explained deviance
when moving from model (1) to model (4) (i.e., moving from a com-
mon stimulus effect among the trials to a different effect in each trial).

http://www.fil.ion.ucl.ac.uk/spm/
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If the effect of the stimulus in each block was constant, thenmodelDevB
would be (about) equal to zero.

Normalizing this quantity in a zero-one interval, we obtained an
initial raw indicator of the IRV as follows:

IRV ¼ modelDevB= modelDevBþ residDevBð Þ ¼ modelDevB=residDev ð5Þ

with residDevB= residDev−modelDevB being the residual deviance of
themodel (4). The IRV index resembled the definition of the R2 index of
regression analysis. Indeed, IRV index can be interpreted as the propor-
tion of residual deviance due to the difference in the estimated effects
between blocks. Low IRV values (i.e., close to 0) indicate that the coeffi-
cients vary little between the blocks, whereas IRV values close to one
suggest that there is large variation between the blocks.

The IRV index has been introduced under the assumption of inde-
pendent observations.However, this is not the typical assumption of
the fMRI signal that is characterized by temporal autocorrelation.With-
in the GLM framework, there are many approaches that deal with this
dependence among error terms, such as temporal filtering, correlation
removal or modeling of the correlation structure (an excellent review
is given in Woolrich et al., 2001). Despite these methods provide only
asymptotically valid inferential results (Worsley and Friston, 1995),
they have been shown to be generally valid (Purdon and Weisskoff,
1998; Ashburner et al., 2003) and constitute the most widely used
approach to fMRI data analysis. The extension of the IRV index to the
case of auto-correlated errors is straightforward. Since we set the IRV
indexwithin the general framework of theGLM—which dealswith cor-
related errors— the index can be applied without further modification.

IRV maps

For balanced designs, the IRV can be computed by fitting a single-
block analysis for each block. The numerator in the IRV formula (5) is
equal to the variance of the estimated parameters (SPM con_000*.
image) for each block, multiplied by the number of blocks minus one
(3 in the current). The denominator is the residual sum of the mean
squared error of a single-run analysis (ReMS. Image), multiplied by its
degrees of freedom.

Correlation between the IRV and the overlap score

The measure of reliability of a given voxel was defined as the “over-
lap score,” which denoted the proportion of runs in which the signifi-
cance of a given voxel was p b 0.05 (the index assumes values 0, 0.25,
0.5, 0.75, or 1 when there are four valid runs and 0, 0.33, .66, or 1
when there are only three).We then explored the relationship between
IRV and the reliability of the overlap score (i.e., inter-runs). For eachmap
of the seven subjects, we computed the correlation between the overlap
score and the IRV. To confirm the statistical significance of our findings,
the seven correlations are used to test the hypotheses of null correlation
by means of a one-sample t-test with two-tailed alternatives.

The IRV-weighting method

For each t-map, we calculated a correspondent IRV-weightedmap in
order to assess the potential improvement of the standard GLManalysis
after the introduction of the IRV parameter.

IRV-weighted t maps and p maps
The values of the computed IRV maps were standardized using the

overall mean for each subject:

w ¼ 1−IRVð Þ=mean 1−IRVð Þ ð6Þ

wheremean(1− IRV)means the average 1 − IRV among all m voxels.
Subsequently, the t maps were converted to p maps (i.e., maps of p
values), and the value of each voxel was divided by the correspondent
w value. In this way, the voxels with stable signal among blocks —

i.e., small IRV, hence highw— are favored, while voxels signal changing
over blocks — i.e., high IRV and small w — are penalized. The resulting
IRV-weighted p map was then thresholded with the same threshold
used in the other steps of the analysis (p b 0.05 or p b 0.01). Note that
it could be convenient to transform back the weighted p maps to
weighted t maps.

Theorem 1, which formalizes the procedure, is stated below and an
informal discussion of the consequences of this theorem is also provid-
ed. The theorem's proof is given in the Appendix A.

Theorem 1. Let be pi, i=1,…,m the p-values derived from the test sta-
tistics Ti (2) or Ti (3), that is, testing the null hypothesis Hi of coefficient
b = 0 in model (1) for the voxel i.

i) Define wi for each voxel as in Eq. (6) and pi
w = pi / wi. The average

Type I error among all m tests is bounded by α for each α in (0,1],
that is:

∑i¼1;…;mP pwi ≤αjHi

� �
=m≤α:

ii) More, generally, for any choice of wi subject to
a) the weights wi are a function of the observed data only through

IRVi and
b) ∑i = 1,…,m wi = m (i.e., their sum equalsm).

The same property holds.

Theorem 1 states that the Type I error (i.e., 1 − Specificity) is
controlled at level α “on average” among all voxels. This mean that,
considering all voxels together, the proportion of false positives is the
same as in the standard analysis. We can make additional comments
about any single voxel. The condition pi

w = pi / wi ≤ α used to select
the active voxels can be restated as pi ≤ αwi. This means that weighting
the p-values is equivalent to thresholding the (unweighted) p-values at
different levels, i.e. αwi, which depends on the IRVi of the single voxel.

The proposed approach is a special case of a more general one.
From thesis ii), it is made clear that two conditions are sufficient to
make any weighted method valid. Therefore, the one proposed here is
just one among infinitely many other possible choices. The optimal
definition of weights depends on many parameters and is not an aim
of this work. Finally, it can be noted that the method shares many
aspects with weighted multiplicity control methods (Benjamini
and Hochberg, 1997), in particular from the data-driven weighted
methods (Westfall et al., 2004). If desired, the control of the Familywise
Error Rate (FWER) can be easily reached by changing condition
ii.b) ∑i = 1,…,mwi = 1 (instead of m), which is equivalent to
thresholding the actual piw at level α/m instead of α (the proof is trivial
from Theorem 1). Furthermore, using the same definition of weights
we can control of the False Discovery Rate following the guidelines
proposed by Genovese et al. (2006). In this case, however the main
goal is the reliability and not the control of the multiple Type I error.

Simulation study
We explored the behavior of the proposed method through a simu-

lation study. The aim of this simulation is to highlight the main features
of themethod and it is certainly not intended to be an exhaustive explo-
ration of all possible scenarios. We simulate the data from a linear
model under the following setting: we consider 4 blocks, each with 4
scans (2 rests, 2 tasks). Errors are standard normal. The number of
voxels (i.e. tested hypotheses) is 1000. Ten percent of the voxels are
active (i.e. false null hypothesis), hence with non-null effect (i.e. the
coefficient of the linear model). In this setting, we assume that the
“reliable” voxel will have stable signal (i.e., a constant coefficient)



Fig. 2. Schematic depiction of the relationship between the IRV index and the overlap area. (a) A
(i.e., the most reliable areas). (b) The single-run t map of the same subject (on the right). The t
value, the 2 time courses are very different: voxel 1, which falls inside the most reliable area, s
unthresholded on the left (0 b IRV b 1) and thresholded (0 b IRV b 0.1) in the center. The IRV v
right, the left hemisphere is visualized by a 3D rendering of the thresholded map. On the surfa
higher variability.

Fig. 1. Median IRV (ordinate) as a function of the reliability (abscissa) for the 7 subjects.
The reliability was determined by the fraction of the runs in which a given voxel reached
a significance level of p b 0.05 (as described in the section on Improving the reliability by
weighting the intra-run variability on real data).
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among the blocks, while the “unreliable” voxels will have block-specific
coefficients, which are drawn from a normal with mean 2 and standard
deviation SigmaB. We explored the following scenarios: SigmaB= 1, 2,
and 3;when SigmaB is larger the effects among the blocks aremore var-
iable; therefore, “reliable” and “unreliable” voxels share the same effect
in mean, but the “unreliable” voxels have non-constant coefficients
among the blocks with an intra-run variability driven by SigmaB. We
now identify the active voxels using a p-map with threshold alpha =
0.05. The proportion of truly active voxels identified by the method is
computed for “reliable” and “unreliable” voxels. The same proportions
are computed for the IRV-weighted p-map (alpha= 0.05).We replicate
the data generation and the estimate of the proportion 1000 times
(i.e., 1000 Monte Carlo iterations) and compute the average scores.

Improving the reliability by weighting the intra-run variability on real data

Reliability index
From the single-run t maps of each subject, the index of reliability

(Irel) between all possible pairs of runs (e.g., run 1 vs. run 2, run 1 vs.
xial slice of a single subject's anatomical image. The blue area represents the overlap areas
ime course of 2 exemplificative voxels is shown on the left side. Despite the comparable t
hows a more regular time profile compared to voxel 2, which falls outside. (c) IRV maps,
alue enabled us to identify the most reliable voxel between the 2 selected voxels. On the
ce, the primary motor cortex (red circle) is well-delineated from the surrounding area of



Fig. 4.Herewe report the results of the simulation study. The sensitivity (ordinate) is plot-
ted as a function of the intra-run variability SigmaB (abscissa). The sensitivity is the prob-
ability of detecting an active voxel. Therefore, it is strictly connected to the reliability
(defined in this work as the probability of detecting an active voxel in two subsequent
runs) that can approximately be computed as the square of the sensitivity. A remarkable
result is the reduction in sensitivity of the unreliable voxels markedly stronger by using
IRV-weighted method.

Fig. 3. IRVmaps of the 4 runs in one subject. The maps reveal a spatial pattern of low IRV
values, indicating reliability across the 4 runs consistent with the left primary motor area
of the hand (red square).
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run 3, etc.) is computed using the overlap method (Rombouts et al.,
1997). More specifically, for each pair of runs, we considered the size
of the activated area in the first (Va) and second (Vb) runs at the 2
chosen thresholds (p b 0.01 and p b 0.05). Next, as a measure of
reproducibility, we computed the size of the areas activated in both
runs (V overlap). Finally, the reliability of each pair of runs is defined
as 2 × V overlap / (Va + Vb). To obtain a single value of Irel for each
subject, we averaged the various indices calculated for the different
pairs of runs. The Irel ranged between zero and one.

Measure of gain in reliability
At both the thresholds adopted (p b 0.01 and p b 0.05),we calculated

the Irel index for the standard t maps (Irel std) and the IRV-weighted t
maps (Irel wgt). Subsequently, for each subject, we quantified the gain
in reliability reached with the proposed IRV-weighting method
(gain Irel), as follows:

gain Irel ¼ Irel wgt=Irel stdð Þ−1: ð7Þ

Finally, to assess the statistical significance of the results obtained,
we performed a two-tailed t-test using the 2 scores of each single
subject as paired samples.

Results

Correlation between the IRV and the overlap score

The median IRV as a function of the voxel overlap score across runs
in the 7 subjects is shown in Fig. 1. The 7 correlations were tested
with a t-test as described in the section on Correlation between the
IRV and the overlap score. The resulting p b 0.001 significance level
obtained from the correlation strongly supports the hypothesis of a
negative correlation between these two variables. Therefore, the stable
voxels tend to have lower IRV values. In sense, this justifies the simplifica-
tion we have made in the simulation section (Simulation study) to iden-
tify the reliable voxels, in which one has a stable signal (i.e., low IRV).

Fig. 2 provides a schematic depiction of the relationship between the
IRV index and the overlap area. Fig. 2b displays the time courses of 2
voxels, one falling inside and one falling outside the most reliable area,
here called the “overlap area” (i.e., the overlap area of a voxel with
p b 0.05 in all runs). As can be seen in the figure, the voxels have very
similar t values in the first single-run activation. However, the signal
of the more reliable voxel is visibly more constant than that of the
other voxel. Furthermore, the first voxel has a lower IRV value
(Fig. 2c), with the estimated effect in every block being similar
(i.e., small variance among the estimated coefficients). This finding
supports the idea that IRVmaps can help to identifymore reliable voxels
(Figs. 2b and c). The IRV maps revealed patterns of low values of
variability between blocks in specific regions of the brain area under
study, suggesting that their activation was more consistent across
different runs (see the example in Fig. 3).

A comparison of the IRV-weighted t maps and the t maps

Simulation study results
Several noteworthy findings can be observed from the results pre-

sented in Fig. 4. The sensitivity of the reliable voxels does not change
when the intra-run variability SigmaB increases. There is no practical
difference between standard and IRV-weighted method. The sensitivity
of unreliable voxels, on the contrary, is heavily affected by SigmaB. Big-
ger is the variability between blocks, bigger is the loss of power of the
test (i.e. the sensitivity). The reduction in sensitivity is markedly stron-
ger for IRV-weighted method. This is the result that we expected since
our aim was not to detect effects that are not reliable. The control at
level α of the mean proportion of the false null IRV-weighted method
has been proved in Theorem 1 and confirmed by the simulation
(i.e., bounded by 0.95 both for the standard method and the IRV-
weightedmethod for every value of SigmaB).We also run other simula-
tions varying the setting such as the number of blocks and the number
of scan per block. Despite the magnitude of the effect of IRV-weighted
method may change from setting to setting, the overall picture remains
very similar to Fig. 4 (data not shown).
Real data results

Comparison of the 2 sets of results showed a gain in reliability in
all subjects with the proposed IRV-weighting method at both the
thresholds we adopted (p b 0.05 and p b 0.01), as shown in Tables 1
and 2. The estimated gain in reliability was greater at p b 0.01 (mean
gain +15.6%), with respect to p b 0.05 (mean gain +12.9%), but both
these figures were statistically significant (p = 0.009 and p = 0.032,
respectively). Fig. 5 shows an example of strong consistency between
the area of overlap and the single-run IRV-weighted map, highlighting
the increased precision achieved by our approach with respect to an
equivalent standard single-run t map.



Tables 1, 2
Indices of reliability of the standard single-run t maps (Irel std) and the single-run IRV-
weighted t maps (Irel wgt). Analysis of all subjects at p b 0.05 (left) and p b 0.01 (right).
The last column reports the estimated gain in reliability for each subject, and the last
row presents the mean gain in Irel (Gain Irel).

p b 0.05 p b 0.01

Subject Irel std Irel wgt % Change Subject Irel std Irel wgt Gain Irel

S1 0.16 0.19 +18.1% S1 0.089 0.110 +23.4%
S2 0.18 0.19 +4.5% S2 0.125 0.130 +3.6%
S3 0.29 0.32 +8.4% S3 0.171 0.206 +20.1%
S4 0.46 0.46 +0.4% S4 0.325 0.335 +2.9%
S5 0.27 0.33 +22.1% S5 0.150 0.193 +28.8%
S6 0.59 0.60 +2.6% S6 0.472 0.504 +6.7%
S7 0.09 0.12 +34.1% S7 0.021 0.025 +23.7%
Mean +12.9% Mean +15.6%
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Discussion and conclusion

In this paper, we explored the hypothesis that the most reliably ac-
tivated voxels should have the lowest IRV of the BOLD signal (i.e., high
stability between blocks). First, we established a statistical relationship
between the IRV index and the reliability between runs. Furthermore,
we developed a method that integrates this information and produced
statistical maps that are more reliable than standard t maps. Both
these findings support our initial hypothesis. The efficacy of themethod
depends on the fact that the most reliable areas maintain stable activity
over time when subjected to the same stimulation for a short period.

Previous fMRI studies demonstrated the same phenomena for a
BOLD signal, showing a high degree of reproducibility of the hemody-
namic response in the same subject, cortical area, and day (Aguirre
et al., 1998). However, some authors previously questioned whether
nervous activity invariance occurs over time (Waites et al., 2007). Dur-
ing experiments, various factors, such as cognitive state, task strategy
and, in the clinical context, the compliance and the functional level of
the subject have been reported to induce variation in task performance,
thus affecting the stability of the BOLD signal over time (Waites et al.,
2007; Baldo et al., 2001).

To test the robustness of the proposed IRVmethod in various exper-
imental conditions, including clinical settings, we adopted a specific
protocol with short runs of self-paced finger tapping. In this task,
many sources of intra-individual variability, such as a change in force/
velocity or errors in task execution, can affect the signal. Despite these
potential sources of variability, our results show that the core of the ac-
tivation, reliable between runs, is characterized by higher stability of the
signal within a single run. The findings, highlight the weakness of the
Fig. 5. Qualitative evaluation of functional activation maps. Axial anatomical image of the subje
corresponding single-run IRV-weighted tmap (p b 0.05) on the left, and the area activated in al
voxels shown in Fig. 2 are circled in all 3 images: voxel 1 (green circle) and voxel 2 (blue circle).
to the standard single-run tmap is evident. Moreover, the least reliable voxel (voxel 2), despite
the IRV-weighted map.
standard GLM approach in fMRI data analysis. The latter only generates
an average result by considering all the blocks together. Thus, when the
signal changes over the blocks (i.e., over time), the hypotheses assumed
for the statistical models are incorrect. Our approach tends to penalize
the unstable voxels rather than affect the stables ones. Fig. 5 shows an
example of an unreliable voxel (i.e., not active in the overlap map)
that was obtained with a single-run standard analysis appearing inac-
tive in the IRV-weighted map. The simulation study confirms all these
results. The power (i.e., sensibility) of the tests on unreliable voxels de-
creases with increasing IRV. Our results point also to the possibility of
using IRV maps to localize brain functions by identifying core areas of
activation associated with a given function. Previous works have
discussed the possibility of using the functional response to a specific
task to define distinct brain regions (Friston et al., 2006a,b; Saxe et al.,
2006; Duncan et al., 2009). The preliminary observations of the present
study suggest that the spatial patterns, defined by a decrease in IRV
values, correspond to areas in the functional motor network, and that
these patterns are well delineated from the surrounding area of higher
variability (i.e., with higher IRV). As shown in Fig. 2, not all of the regions
with IRV decrement correspond to the most reliable areas (blue areas).
In our view, the IRV index tends to highlight all the “real” stable activa-
tions, not necessarily the reliable activations between the runs; this is
the case for example of “real” activations with high signal stability de-
gree but run-related.Moreover, previous studies reported that the base-
line signal intensity can vary across areas and subjects due to vascular
compliance or vascular density, thus affecting the validity of the fMRI
analysis (Harrison et al., 2002). On the contrary, the IRV should be inde-
pendent from the signal intensity level and it should be effective even
for voxels where the signal amplitude is low, but constant. Such aspects
suggest that the independent use of the IRVmap could represent amore
sensitive and specific approach to mapping brain functions than the
standard map.

In summary, in this paper, we showed that IRV can be used as an ad-
ditional parameter for detecting the activation of the most relevant
areas associated with a given function. We demonstrated that integra-
tion of IRVmaps into standard GLM analysis produces more reliable re-
sults than using GLM analysis alone, thus supporting our initial
hypothesis. These findings indicate that IRV may aid characterization
of “core” brain activations in single-subject fMRI, even in a single run.
It is essential however, to further validate our method with larger co-
horts of subjects performing other tasks, perhaps related to higher cog-
nitive functions, such as language and sensory perception, that are
characterized by larger inter- and intra-individual variability. In this
study, we presented themethod for a simple task/rest design. However,
future studies that apply the same method to more complex designs
(e.g. event-related) should be conducted. However, IRV map could
ct in Fig. 2. Three different maps are shown: a single-run tmap (p b 0.05) on the right, the
l single-run activations (p b 0.05), here called the “Overlap Area”, in the center. The same 2
The similarity between the overlap area and the single-run IRV-weightedmapwith respect
its slightly higher t value with respect to voxel 1, is not active in either the overlap area or
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potentially serve as a stand-alone method to identify core areas of
specific brain functions. Future studies could include an assessment of
the consistency of the various spatial patterns detected by both IRV
and t maps in different runs and in different tasks. Another important
area that could be explored in future works is the functional relevance
of the stability of signals over time. The inability to distinguish between
essential and nonessential areas is one of the main limitations of fMRI.
Including transcranial magnetic stimulation or direct cortical stimula-
tion in patients undergoing neurosurgical operations could provide
insightful information to better define both the functional relevance
and the sensitivity/specificity of IRV spatial patterns.
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Appendix A

Proof

Let us recall that modelDevi, modelDevB, and residDevBi are indepen-
dent random variables by the Cochran's theorem. residDevi is a sufficient
complete statistic for σi (i.e., the variance of εi in Eq. (1)). By definition,
IRVi is ancillary statistic to σi (which essentially cancels out in the ratio
in the same way as any F statistic does). Therefore, IRVi is independent
of the test residDevi through Basu's theorem. Since test statistic Ti, as
defined in Eq. (2) or (3), is a function of modelDevi and residDevi, while
IRVi is a function ofmodelDevBi and residDevBi, Ti and IRVi are independent
random variables. This holds for all p-values calculated by transformation
of the null CDF of test statistics Ti. The same independence holds between
Ti and wi, since Ti is independent of all other wj with j ≠ i (see also
the proof for Theorem 3 in Farcomeni and Finos, 2013). Therefore, the
condition pi w = pii / wi ≤ α can be restated as pi ≤ αwi and,
thus, P(pi ≤ αwi|Hi) ≤ αwi. Now Σi = 1,…,mP(pi ≤ α wi|Hi) ≤ αΣi = 1,…,m

I(Hi) ∗ wi ≤ αm(I(Hi) = 1 or 0, depending on whether or not Hi is a true
null hypothesis, and result i) holds true. The proof of thesis ii) is a trivial
generalization of the proof of thesis i).
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