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Abstract— We present a whole-body control architecture for
the generation of stable task-oriented motions in Wheeled
Inverted Pendulum (WIP) robots. Controlling WIP systems
is challenging because the successful execution of tasks is
subordinate to the ability to maintain balance. Our feedback
control approach relies both on partial feedback linearization
and Model Predictive Control (MPC). The partial feedback
linearization reshapes the system into a convenient form, while
the MPC computes inputs to execute the desired task by solving
a constrained optimization problem. Input constraints account
for actuation limits and a stability constraint is in charge
of stabilizing the unstable body pitch angle dynamics. The
proposed approach is validated by simulations on an ALTER-
EGO robot performing navigation and loco-manipulation tasks.

I. INTRODUCTION

Balancing mobile robots are constituted by a statically
unstable body, typically mounted on wheels, which can per-
form manipulation tasks by leveraging one or more actuated
arms with multiple degrees of freedom. These platforms offer
several advantages with respect to statically stable mobile
robots. They are more suitable to traverse uneven terrains and
they can perform fast and dynamic motions while carrying
weights, moving at speeds comparable to those of humans.
However, these capabilities implicitly require that the robot
is able to maintain dynamic balance at all times in order
to prevent falls. The underactuation of the dynamics renders
this a rather complex control problem.

Early research studies on balancing mobile robots, both
including transportation vehicles [1] and manipulators [2],
[3], [4], highlighted the potentialities of these platforms
which encouraged research groups to develop new robots
such as Golem Krang [5], the Ballbot [6], and the more
recent ALTER-EGO [7] shown in Fig. 1.

In the literature, several approaches have been proposed to
control robots of this kind. It is possible for instance to model
the platform as an inverted pendulum with the only goal of
maintaining balance, and account for the manipulator motion
as a disturbance to be compensated by the mobile base,
e.g., via sliding mode control [8]. In [9] a PD control law
has been used for balancing coupled with a PID controller
for navigation while performance has been improved with a
disturbance observer. Others, such as [10], propose a whole-
body control law for balancing, which also allows the robot
to gently interact with the environment. Task-space control
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Fig. 1. ALTER-EGO, a prototype WIP robot developed at the University
of Pisa [7].

was demonstrated to be applicable to WIP-based platforms
in [11], allowing to maintain balance while controlling the
end effector. This approach was further investigated by [12],
where task-space control has been extended to the class of
WIP robots in which the wheel motors are connected to the
robot base link that is then subject to the wheel reaction
torque.

Model Predictive Control (MPC) offers a powerful ap-
proach to the control of underactuated systems, especially
when constraints are to be enforced. Feedback linearization
in conjunction with MPC was used in [13] for a wheeled
inverted pendulum without arms. In [14] a hierarchical
structure is proposed, composed by an MPC-based reference
trajectory generator and an inverse dynamics controller to
track the reference trajectories. Whole-body MPC algorithms
instead allow to jointly perform re-planning and control,
but their implementation can be cost-demanding due to the
complex dynamics of the robots. Remarkable results were
achieved in [15] for a Ballbot-like omnidirectional mobile
manipulator, where real-time performance was achieved by
exploiting custom nonlinear solvers. These methods, al-
though proven to be effective, do not directly address the
stability problem related to the unstable balancing dynamics.
In fact, it is often required for the MPC to have a long
prediction horizon in order to generate stable behaviors,
either by regulating to zero the body pitch angle — possibly
limiting performance — or by tracking a pre-computed pitch
trajectory.

In this paper, we propose a whole-body MPC controller
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Fig. 2. Generalized coordinates for a WIP robot with nr = nl = 2 (left
arm coordinates are omitted for clarity). Note the displaced point on the
ground (xP , yP ) used for navigation tasks.

for WIP robots which explicitly addresses the instability
problem. The proposed scheme has a general formulation
that can accommodate different objectives. In particular, we
report examples of navigation and loco-manipulation tasks.
In order to reshape the system in a convenient way, we
perform MPC on a partially feedback-linearized system.
This structure allows us to address the instability problem
by introducing an explicit stability constraint. This idea is
inspired by our previous work on humanoid robots, where
we developed an Intrinsically Stable MPC (IS-MPC) [16]
with guarantees of recursive feasibility and internal stability,
and [17] where a similar approach was applied to anti-
jackknifing control of a tractor-trailer vehicle.

The paper is organized as follows. Section II gives some
background concepts by introducing the robot model, the
partial feedback linearization and the generic task definition.
Section III contains an overview of the proposed approach,
while Sect. IV describes in detail the IS-MPC algorithm.
Simulation results and concluding remarks are reported in
Sect. V and Sect. VI.

II. BACKGROUND

In this section we introduce the dynamic model of the con-
sidered WIP robot, describe the partial feedback linearization
procedure and define the task to be executed.

A. Modeling
The configuration of a WIP robot is defined as q =

(x, y, θ, φ, qr, ql), where (x, y) is the position of the
differential-drive robot base in the world frame, θ and φ are
respectively the yaw angle and the pitch angle of the body,
and qr ∈ Rnr and ql ∈ Rnl are the right and left arm joint
angles, respectively. The total number of dofs in the arms is
na = nr + nl. Figure 2 shows the schematic of an example
WIP robot having nr = nl = 2.

Denote the velocity vector by ν = (v, ω, vφ,vr,vl), where
v is the pseudovelocity of the robot base, ω = θ̇, vφ = φ̇,
vr = q̇r and vl = q̇l. The robot state is then x = (q,ν).

A reduced-order dynamic model of the WIP robot can be
expressed in compact form as [18]

q̇ = G(q)ν (1)
ν̇ = −M−1(q)(c(q,ν)−E τ ), (2)

where G is a matrix whose columns span the null space
of the Pfaffian nonholonomic constraint on the robot base,
M is the inertia matrix, c is a force vector containing
the gravity, centrifugal and Coriolis contributions, E is the
actuator selection matrix and τ are the torques acting on the
base wheels and the arm joints.

Due to the presence of the articulated arms and the
associated inertial couplings, the above model is considerably
more complicated than in the case of a WIP with no arms
(see [19] for a model of the latter). Therefore, we omit the
explicit expression of the various matrices in eqs. (1–2), with
the exception of the actuator selection matrix which takes the
form

E =


1/R 1/R 01×na

a/R −a/R 01×na

−1 −1 01×na

0na×1 0na×1 Ina×na

 , (3)

where R is the wheel radius and a is the semi-distance
between the wheels. The linear dependence of the first and
third rows is a consequence of the fact that the pitch angle
φ is not independently actuated — which makes the WIP
robot an underactuated system.

B. Partial feedback linearization

To simplify the design of our control scheme, we perform
a partial feedback linearization of model (1–2).

Let us focus on the following subset of equations from (2):
v̇
ω̇
v̇r
v̇l

 = α(x) + Ψ(x)τ . (4)

Define the following input transformation

τ = Ψ−1(x)(u−α(x)), (5)

where u are the new transformed inputs. Using (5) in (1–2)
results in a partially linearized dynamics which is conve-
niently reordered as

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

v̇ = u1

ω̇ = u2
(6)

q̇r = vr

v̇r = u3

q̇l = vl

v̇l = u4

η̇ = fη(x,u),
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having set η = (φ, vφ). The vector field describing the pitch
dynamics is now

fη(x,u) = r(x) + S(x)Ψ−1(x) (u−α(x)) ,

where r and S are respectively the drift and the input matrix
characterizing the original pitch dynamics in (1–2).

As intuition suggests, the pitch dynamics is inherently
unstable in this kind of system [20]. For instance, one
may easily verify that in a WIP robot the linearized pitch
dynamics around the static equilibrium (CoM over the wheel
axis) has a positive eigenvalue. A similar situation holds
when the linearization of the pitch dynamics is computed
around generic trajectories.

C. Task definition

We will consider general task functions defined as

r = h(q), (7)

with r ∈ Rm. By differentiating (7) we obtain

ṙ =
∂h(q)

∂q
q̇ =

∂h(q)

∂q
G(q)ν = J(q)ν,

where J(q) is the m× (3 + na) task Jacobian.
For the simulations, we will consider two specific task

functions. The first (navigation task) describes the coor-
dinates (xP , yP ) of a point P on the ground which is
displaced1 from the base by a distance d along the sagittal
axis (see Fig. 2). The task function and the associated task
Jacobian are easily computed as

h(q) =

(
xP
yP

)
=

(
x+ d cos θ
y + d sin θ

)
,

J(q) =

(
cos θ −d sin θ 01×(na+1)

sin θ d cos θ 01×(na+1)

)
.

While the values of the arm generalized coordinates have
no instantaneous effect on the navigation task, arm motions
can dynamically contribute to the stabilization of the pitch
dynamics.

The second task function used in the simulations will be
the position of the end-effector, chosen as one of the two
hands (loco-manipulation task). In this case, all generalized
coordinates directly contribute to the task.

III. PROPOSED APPROACH

The problem addressed in this paper is that of generating
in real-time a whole-body motion of the WIP robot such that:
• the task function r(t) tracks a desired reference trajec-

tory rd(t);
• balance is maintained;
• constraints on both states (joint limits, velocity limits)

and inputs (torque limits) are satisfied.
A block scheme of the proposed solution approach is

shown in Fig. 3. The input is the task trajectory rd(t) to
be tracked. At each iteration, the IS-MPC algorithm solves

1A nonzero displacement guarantees that J(q) will be full rank, which
is an implicit requirement of our MPC-based approach.

an optimization problem over a receding control horizon to
compute the transformed inputs u, from which the original
torque inputs τ will be reconstructed. To achieve real-
time performance, the optimization problem is formulated
as a Quadratic Program (QP) by approximately linearizing
system (6) around an auxiliary trajectory obtained from the
solution predicted at the previous iteration, and using the
same trajectory to compute the cost function as well as to
map torque limits to linear constraints on the transformed
inputs.

An essential component of the IS-MPC algorithm is
the explicit stability constraint included in the QP. Such
constraint will avoid the onset of instability in the pitch
dynamics, ultimately guaranteeing that the robot maintains
balance while executing the assigned task.

In the next section we describe in detail the IS-MPC
algorithm and its various components.

IV. IS-MPC

The proposed method is based on the MPC paradigm and
works over discrete sampling intervals of duration δ. At each
sampling time tk, an optimal control problem is solved over
a control horizon Tc = Nδ.

Below we introduce the prediction model, the stability
constraint, the input constraints and the resulting QP for-
mulation.

A. Prediction model

At the k-th iteration, the prediction model is obtained by
linearizing (6) around an auxiliary trajectory defined as fol-
lows. Denote by (xk−1,xk|k−1,xk+1|k−1 . . . ,xk+N−1|k−1)
the predicted state trajectory at the (k−1)-th iteration, where
xk−1 is the current state at tk−1 and the following samples
xk|k−1,xk+1|k−1 . . . ,xk+N−1|k−1 are obtained by injecting
the QP solution inputs at tk−1 into the corresponding predic-
tion model2. From this trajectory, we can build the auxiliary
trajectory (x̄k, . . . , x̄k+N ) by letting

x̄k+i =


xk i = 0,

xk+i|k−1 i = 1, ..., N − 1

x̄k+N−1 i = N.

(8)

The current state xk = x(tk) is used as first sample of the
auxiliary trajectory to increase its precision and therefore
the accuracy of the subsequent linearization procedure. Note
also that the auxiliary trajectory is prolonged up to tk+N

by replicating the last sample xk+N−1|k−1 of the predicted
state trajectory at the (k − 1)-th iteration.

The prediction model at tk can now be computed as
the linear approximation of the partially feedback-linearized
dynamics (6) around the auxiliary trajectory. In particular,
for the pitch dynamics we will use the following model

η̇ = Ā
k+i
η η + B̄

k+i
η uk+i + f̄

k+i
η , (9)

2At the first iteration, when a previous solution is not available, the inputs
are simply set to zero.
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desired task trajectory
IS-MPC QP

partial feedback
linearization

auxiliary 
state trajectory

joint
torques
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z { 1
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transformed 
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Fig. 3. A block scheme of the proposed approach. The z−1 block stores the solution of each iteration and makes it available at the next, after replacing
its first sample with the current state, see (8).

for i = 0, . . . , N − 1, where

Ā
k+i
η =

∂fη
∂η

∣∣∣∣
x̄k+i,ūk+i

, B̄
k+i
η =

∂fη
∂u

∣∣∣∣
x̄k+i,ūk+i

f̄
k+i
η = fη

∣∣
x̄k+i,ūk+i − Ā

k+i
η η̄k+i − B̄k+i

η ūk+i,

and (ūk, . . . , ūk+N−1) is the QP solution at tk−1. Note
that this piecewise time-invariant (but still time-varying)
approximation neglects the effect of the variation of the arm
coordinates qr, ql with respect to the auxiliary trajectory.

B. Stability constraint

As already mentioned, the pitch dynamics in a WIP
robot is unstable. This is obviously true also for its linear
approximation (9). To cope with this instability, we include
in the QP formulation a constraint on the inputs in order
to guarantee that the evolution of φ does not diverge3. To
formulate such a constraint, we will retain the time-varying
prediction model (9) for t < tk+N , and use a time-invariant
approximation for t ≥ tk+N , as proposed in [21].

In particular, let x∗ = (q∗, 0(3+na)×1) and

q∗ = (x̄k+N , ȳk+N , θ̄k+N , φ∗, q̄k+N
r , q̄k+N

l ). (10)

where the configuration at the last sample of the auxiliary
trajectory has been used, with the exception of φ̄k+N which
has been replaced by φ∗, the value of the pitch angle that puts
the WIP in static equilibrium when the arms are at q̄k+N

r ,
q̄k+N
l . The time-invariant approximation that we will use for
t ≥ tk+N is defined as

η̇ = A∗ηη + f∗η (11)

where the dynamic matrix and the constant drift, respectively

A∗η =
∂fη
∂η

∣∣∣∣
x∗,0

, f∗η = fη
∣∣
x∗,0 −A

∗
ηη
∗,

are computed at x = x∗ and u = 0, and we have set η∗ =
(φ∗, 0).

The particular choice of the state and inputs at which the
linear approximation is frozen can be justified by noting that
the state x∗ is a static equilibrium for system (6) which
requires no input (u = 0). In the terminology of [16], this
corresponds to using a truncated tail to derive the stability

3Note that this is conceptually different from enforcing a box constraint
on φ, which would unnecessarily restrict the range of admissible motions
for the system.

constraint. In practice, this is the most viable option due
to the fact that the value of the input at tk+N is neither a
decision variable in the current QP nor available from the
solution of the previous QP.

At this point, let us perform a coordinate transformation(
ηs
ηu

)
= T ∗η,

with T ∗ chosen in such a way that the unstable component4

ηu evolves according to

η̇u = λ∗uηu + f∗u , (12)

with λ∗u > 0 is the positive eigenvalue of A∗η in the
time-invariant linearized pitch dynamics (11) and f∗u is the
corresponding constant drift on ηu.

As shown in [16], in spite of the instability of (12) the
trajectory of η in (11) is guaranteed to be bounded provided
that the following stability condition is satisfied

ηk+N
u = −

∫ ∞
tk+N

e−λ
∗
u(τ−tk+N )f∗u dτ = −f

∗
u

λ∗u
. (13)

This is a condition on the terminal state of the prediction
model (9) which is easily rewritten as a constraint on the
control inputs inside the control horizon.

C. Input constraints

The input constraints account for the physical limitations
of the robot actuators, which take the form

abs(τ k+i) ≤ τM i = 0, ..., N − 1, (14)

where abs(·) denotes component-wise absolute value and
τM is the vector of symmetric torque limits. In view of
the nonlinear mapping (5) between torques τ and inputs u,
to transform (14) into a linear constraint on u we simply
evaluate the mapping along the auxiliary trajectory, obtaining

(Ψ̄
k+i

)
−1
ᾱk+i−τM ≤(Ψ̄

k+i
)
−1
uk+i≤(Ψ̄

k+i
)
−1
ᾱk+i+τM

(15)
where Ψ̄

k+i
= Ψ(x̄k+i) and ᾱk+i = α(x̄k+i).

Since in the auxiliary trajectory we have set x̄k = xk, the
linear constraint (15) on the first input uk — which is the
only one actually applied in a MPC algorithm — is exactly
equivalent to the original constraint (14) on τ k.

4The unstable component ηu plays in our context a similar role to that
of the capture point [22] (also known as the divergent component of motion
[23]) in humanoid locomotion.
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D. QP formulation

The cost function of our QP is built by adding three
different terms aimed at solving the tracking problem.

The first term is designed in such a way to implement a
kinematic control law for the task variables r. In particular,
we let

ṙr = ṙd +K (rd − r), (16)

where K is a positive definite matrix, and ask IS-MPC to
generate inputs that force ṙ to track5 ṙr. Based on this, we
let

Lr =

N∑
i=1

‖ṙk+i − ṙk+i
r ‖2W r

=

N∑
i=1

∥∥∥J(q̄k+i)νk+i − (ṙk+i
d +K (rk+i

d − h(q̄k+i)))
∥∥∥2
W r

where || · ||W denotes the 2-norm weighted by matrix W .
Note that:
• the nonlinearity of J(·) and h(·) is dealt with by eval-

uating these terms over the auxiliary trajectory q̄k+i;
• thanks to the partial feedback linearization, all compo-

nents of the velocity vector νk+i depend linearly on the
transformed input samples (i.e., the decision variables
at tk), except for vφ, which is then replaced by the
corresponding term in ν̄k+i.

To regularize the optimization problem and to decrease the
control effort, the cost function includes a second term

Lu =

N−1∑
i=0

‖uk+i‖2W u
.

Finally, a third term introduces preferred positions and ve-
locities for the arm joint coordinates

La =

N−1∑
i=0

‖qk+i
r,l ‖

2

W p
+ ‖q̇k+i

r,l ‖
2

W v
.

The IS-MPC algorithm solves at each iteration the follow-
ing QP problem:

min
uk,...,uk+N−1

Lr + Lu + La

subject to:
• stability constraint (13)
• input constraints (15), i = 0, . . . , N − 1.

To extend this formulation, one can easily add state
constraints by rewriting them as linear constraints on the
decision variables by means of the prediction model (9).

As usual with MPC, only the first input of the solution is
applied to the robot. To this end, the first sample uk of the
optimal input is used to compute the joint torque command

τ k = Ψ−1(xk)(uk −α(xk)). (17)

The remaining input samples in the solution are used to
predict the auxiliary trajectory for the next iteration.

5In fact, one may easily verify that if ṙ converges to ṙr as given by (16),
then r will converge to the desired trajectory rd(t).

V. SIMULATION RESULTS

The proposed method was validated by MATLAB simu-
lations on the ALTER-EGO WIP robot shown in Fig. 1. For
each arm, we have considered only two degrees of freedom,
namely the shoulder pitch angle and the elbow angle. The
robot has an overall mass m = 21.32 kg, with the arm links
contributing respectively for 1.8 kg and 1.0 kg. The wheel
radius is R = 0.13 m and the semi-distance between the
wheels is a = 0.248 m. The torque limits are set to ±10 N·m
for the wheels, ±6 N·m for the shoulders and ±1.1 N·m for
the elbows.

The sampling time is chosen as δ = 0.02 s while the MPC
control horizon is Tc = 0.5 s. Each QP contains 150 decision
variables and is solved using the quadprog function in
MATLAB. The entire control loop runs in real-time (i.e.,
each iteration requires less than 0.02 s) on a standard laptop
computer.

A. Navigation task

In the first simulation, the proposed method is applied to a
navigation task. The desired ground trajectory is a sine wave
in x, y, with an amplitude of 0.2 m and a a wavelenght of
1 m. The desired velocity along the x direction is 0.3 m/s.

As explained in Sect. II-C, for navigation tasks it is
necessary to use as task function the position of a point
displaced from the base; in particular, we have set d = 0.2 m.

The weight matrices used in the QP cost function are
W r = 50 I , W u = diag{0.05, 0.05, 1, 1, 1, 1} and W p =
W v = I , while the gain in eq. (16) is set to K = I .

Figure 4 is a stroboscopic view of the generated motion,
while Fig. 5 shows the norm of the tracking error exy and the
input torques. At the start of the simulation, there is an initial
error due to the fact that the robot state is not matched with
the desired trajectory. This error increases at first, a behavior
which represents the typical undershoot characterizing the
response of non-minimum phase systems. In fact, in order
to achieve a stable forward acceleration of the base, the robot
has to first move backwards so as to tilt the pitch angle in the
forward direction. After this transient, the desired trajectory
is followed with good accuracy.

The torque plots show that the arm actuators are actively
involved in the constrained minimization of the cost function,
confirming the whole-body nature of our approach.

An animation of the generated motion is included in
the accompanying video, where it is also shown that re-
moving the stability constraint leads to the robot imme-
diately losing balance. The video also contains simula-
tion results for two additional navigation scenarios: track-
ing a circular ground trajectory and reaching a navigation
set-point (not shown here for lack of space). See also
https://youtu.be/PyyoZNOeklE.

B. Loco-manipulation task

The second simulation deals with a loco-manipulation
task. In particular, we assign as desired trajectory for the
right hand a helix with a radius r = 0.2 m, placed at an
average height of 0.9 m from the ground.
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Fig. 4. Navigation task with ALTER-EGO: Stroboscopic view of the
generated motion with actual (red) and desired (green) task trajectories.

0 5 10 15 20
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0.2

0.3
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-2

-1

0

1

0 5 10 15 20

-3

-2

-1

0

1

Fig. 5. Navigation task with ALTER-EGO: tracking error norm (top), arm
torques (center), wheel torques (bottom). Torque limits are not shown since
all actuators are far from saturation.

The weight matrices for the QP cost function are W r =
20 I , W u = diag{0.1, 0.025, 0.05, 0.01, 1, 1}, W p =
diag{10−4, 0.8, 1, 1} and W v = diag{0.01, 0.1, 1, 1}, while
the gain in eq. (16) is again set to K = I .

A stroboscopic view of the generated motion is shown
in Fig. 6, with the tracking error norm exyz and the input
torques reported in Fig. 7. Again, the tracking error exhibits
an initial transient after which is reduced essentially to
zero, with some negligible fluctuations. In the right arm,
the shoulder torque is doing most of work, by hovering
around 4 N·m to compensate gravity, while the elbow torque
saturates to the upper limit, fully confirming the validity
of the input constraint transformation procedure discussed
in Sect. IV-C. Left arm torques are much smaller, but still
actively involved in motion generation.

Animation of this motion is also included in the accom-
panying video, along with two additional loco-manipulation
scenarios concerning the right hand: tracking a mid-air
circular trajectory and reaching a certain hand posture. See

Fig. 6. Loco-manipulation task with ALTER-EGO: Stroboscopic view of
the generated motion with actual (red) and desired (green) task trajectories.

0 5 10 15 20
0

0.2

0.4

0.6

0 5 10 15 20
0

2

4

6

0 5 10 15 20

-1

0

1

2

3

Fig. 7. Loco-manipulation task with ALTER-EGO: tracking error norm
(top), arm torques (center), wheel torques (bottom). Arm torque limits are
shown by dashed lines, while wheel torque limits are outside the plot range.

also https://youtu.be/PyyoZNOeklE.

VI. CONCLUSION

We presented a general task-oriented MPC algorithm for
a WIP robot with arms, which uses an explicit stability
constraint to handle the unstable pitch dynamics. We have
discussed its application to navigation and loco-manipulation
tasks, and validated its performance by simulations in such
scenarios. Results show that the proposed approach generates
stable motions that guarantee accurate task tracking. Our
naive MATLAB implementation on a standard laptop com-
puter is computationally very efficient, so one can confidently
expect an optimized C++ implementation to provide full real-
time performance on an experimental platform.

Future work will target experimental validation, a non-
linear formulation of the stability constraint, the analysis of
recursive feasibility, and the use of NMPC methods such as
Real Time Iteration.
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