
Convex Optimization of Launch Vehicle Ascent
Trajectories

Facoltà di Ingegneria Civile e Industriale
Dipartimento di Ingegneria Meccanica e Aerospaziale

Dottorato di Ricerca in Ingegneria Aeronautica e Spaziale – XXXIV Ciclo

Candidate

Boris Benedikter
ID number 1580339

Thesis Advisor

Dr. Alessandro Zavoli

Co-Advisors

Dr. Enrico Cavallini
Prof. Guido De Matteis

Thesis defended on 27 May 2022
in front of a Board of Examiners composed by:

Prof. Lorenzo Casalino (chairman)
Prof. Alfonso Pagani
Prof. Luisa Boni

Convex Optimization of Launch Vehicle Ascent Trajectories
Ph.D. thesis. Sapienza – University of Rome

© 2022 Boris Benedikter. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: April 17, 2023

Author’s email: boris.benedikter@uniroma1.it

mailto:boris.benedikter@uniroma1.it

Dedicated to
the people who always believed in me

iii

Abstract

This thesis investigates the use of convex optimization techniques for the ascent
trajectory design and guidance of a launch vehicle. An optimized mission design
and the implementation of a minimum-propellant guidance scheme are key to
increasing the rocket carrying capacity and cutting the costs of access to space.
However, the complexity of the launch vehicle optimal control problem (OCP), due
to the high sensitivity to the optimization parameters and the numerous nonlinear
constraints, make the application of traditional optimization methods somewhat
unappealing, as either significant computational costs or accurate initialization points
are required. Instead, recent convex optimization algorithms theoretically guarantee
convergence in polynomial time regardless of the initial point. The main challenge
consists in converting the nonconvex ascent problem into an equivalent convex OCP.
To this end, lossless and successive convexification methods are employed on the
launch vehicle problem to set up a sequential convex optimization algorithm that
converges to the solution of the original problem in a short time. Motivated by the
computational efficiency and reliability of the devised optimization strategy, the
thesis also investigates the suitability of the convex optimization approach for the
computational guidance of a launch vehicle upper stage in a model predictive control
(MPC) framework. Being MPC based on recursively solving onboard an OCP to
determine the optimal control actions, the resulting guidance scheme is not only
performance-oriented but intrinsically robust to model uncertainties and random
disturbances thanks to the closed-loop architecture. The characteristics of real-world
launch vehicles are taken into account by considering rocket configurations inspired
to SpaceX’s Falcon 9 and ESA’s VEGA as case studies. Extensive numerical results
prove the convergence properties and the efficiency of the approach, posing convex
optimization as a promising tool for launch vehicle ascent trajectory design and
guidance algorithms.

iv

Acknowledgments

My research would have been impossible without the aid and support of many
people, whom I would like to acknowledge and I will be forever grateful to.

First of all, I would like to thank my advisor, Dr. Alessandro Zavoli. He did
not only supervise my work but he has been constantly guiding my research since
day one of my PhD, transmitting to me his passion for research and teaching. His
ingenious solutions made the difference on many occasions where I was stuck and
much of the contributions of my research would have been impossible without him.

I would also like to show gratitude to Prof. Guido Colasurdo, who, together with
Dr. Zavoli, was my master’s thesis advisor and instilled in me the idea of applying
for the PhD program. His endless experience proved right again, as the PhD career
turned out to be one of the most fulfilling journeys of my life.

None of this could have happened without the support and funding of the Italian
Space Agency (ASI), which awarded me with a scholarship for the entire duration
of the PhD program that allowed me to attend international conferences and spend
a research period abroad. In particular, I would like to acknowledge Dr. Enrico
Cavallini, head of the Space Transportation Programs Office at ASI, who supervised
my research with keen interest and enthusiasm, shared insightful thoughts, and
always encouraged me to pursue novel research directions.

I would like to thank Prof. Zhenbo Wang, who hosted me as a visiting scholar
at the Autonomous Systems Lab at the University of Tennessee in Knoxville. He
approved my visit in a period when many professors would have hesitated due to the
COVID-19 pandemic, which forced students and teachers to work remotely. In these
difficult times, he welcomed me into his lab, punctually helped me to get through
all the bureaucratic aspects, and, most importantly, closely supervised my research,
contributing with excellent pieces of advice.

I would like to mention the incredible support of my mom and dad, who have
been by my side during my whole PhD career (and way before that). The assurance
of having a loving and comforting family behind helped me focus on my research,
and the results I achieved are also due to them.

My doctoral experience was so enjoyable also thanks to the closeness of all my
friends, older and newer. I would like to cite all of them individually, because every
one of them contributed in his own way to make my life so fun and likable over the
years, but it would require too many pages. I have to mention Lorenzo though, who
started the PhD on the same day I did and, from that moment on, shared with me
every moment of our PhD years. I have been very lucky to share this journey with
a true friend like him and I cannot imagine how my PhD career would have been
without him.

I would like to mention also my other PhD colleagues. Mimmo, being the oldest
student advised by Dr. Zavoli, shared with me a lot of his expertise and I am grateful
to him for all the notions and skills he transmitted me. Vincenzo, who just recently
joined Dr. Zavoli’s lab and watched over my workstation (which was essential to
obtain the results of this thesis) while I was abroad. I have to thank Simone, who
mentored me when I attended my first technical conference. That experience was a
stimulus to attend many more conferences and present original papers every time,
as conferences can be, as he says, “magical” places where to present the outcome of
your work and share thoughts with other students and professionals.

I would like to show my gratitude to all the beautiful people that I met in
Knoxville. Gage, my roommate, has been there for me since the moment I stepped
foot off the plane until the day I flew back. I have rarely met a person as kind and

v

welcoming as Gage, we had a great time together and I hope I will have the chance
to return his hospitality by welcoming him in Italy someday. I have to say thanks
to Jacopo, who has been a great friend and, being the only Italian guy I met in
Tennessee, together with his beautiful family, saved me from the nostalgia of my
home country. I want to thank Alex for being a friend and also a great roommate
the last few weeks that I stayed in Knoxville. Last, but not least, I am grateful
for the unforgettable weekends around the US that I spent, during that time, with
Enrico, “Maggico”, and, of course, Lorenzo.

This research was supported by the Agreement n. 2019-4–HH.0 CUP F86C170000-
80005 “Technical Assistance on Launch Vehicles and Propulsion” between the Italian
Space Agency and the Department of Mechanical and Aerospace Engineering of
Sapienza University of Rome.

vi

Contents

1 Introduction 1
1.1 Background . 2
1.2 Convex Optimization . 3
1.3 Model Predictive Control . 5
1.4 Objectives and Contributions . 7
1.5 Thesis Summary . 7

2 Methods for Optimal Control 9
2.1 General Statement of an Optimal Control Problem 9

2.1.1 System Dynamics . 10
2.1.2 Constraints . 10
2.1.3 Objective Function . 10
2.1.4 Phases . 11

2.2 Overview of Numerical Methods . 12
2.3 Direct Methods . 13

2.3.1 Shooting Methods . 14
2.3.2 Collocation Methods . 14

2.4 Alternative Methods . 18
2.4.1 Evolutionary Optimization 18
2.4.2 Machine Learning . 19

3 Convex Optimization 21
3.1 Preliminaries . 21

3.1.1 Linear and Convex Functions 21
3.1.2 Affine and Convex Sets . 21
3.1.3 Cones . 22
3.1.4 Hyperplanes and Polyhedra 22

3.2 Convex Programming Problems . 23
3.2.1 Linear Programming . 23
3.2.2 Quadratic Programming . 23
3.2.3 Quadratically-Constrained Quadratic Programming 23
3.2.4 Second-Order Cone Programming 24

3.3 Convexification Methods . 24
3.3.1 Lossless Convexification Methods 24
3.3.2 Successive Convexification Methods 25

3.4 Virtual Controls and Buffer Zones 27
3.5 Trust Regions . 28
3.6 Reference Solution Update . 29
3.7 Convergence Criteria . 30
3.8 Example: Low-Thrust Interplanetary Mission 30

Contents vii

3.8.1 System Dynamics . 30
3.8.2 Optimal Control Problem . 31
3.8.3 Convex Transcription . 32
3.8.4 Numerical Results . 34

4 Launch Vehicle Ascent Trajectory Optimization 39
4.1 VEGA Launch Vehicle . 39
4.2 Phases . 40

4.2.1 General Phase Sequence . 40
4.2.2 VEGA’s Phase Sequence . 42

4.3 System Dynamics . 43
4.3.1 Gravity . 44
4.3.2 Atmosphere . 44
4.3.3 Propulsion . 46
4.3.4 Equations of Motion . 47

4.4 Optimal Control Problem . 47
4.4.1 Objective Function . 48
4.4.2 Duration of the Phases . 48
4.4.3 Initial Conditions . 49
4.4.4 Target Orbit . 49
4.4.5 Stage Separation . 50
4.4.6 Liquid Rocket Engine Burn Time 50
4.4.7 Heat Flux . 50
4.4.8 Maximum Dynamic Pressure 50
4.4.9 Splash-Down Constraint . 51

4.5 Convex Formulation . 52
4.5.1 Change of Variables . 52
4.5.2 Constraint Relaxation . 53
4.5.3 Successive Linearization . 54
4.5.4 Trust Region on Time-Lengths 56
4.5.5 Virtual Controls and Buffers 56
4.5.6 Augmented Objective Function 57

4.6 Initialization Strategy . 57
4.7 Continuation Strategy . 59

5 Case Study: Ascent Toward a Low-Earth Polar Orbit 61
5.1 Problem Statement . 61
5.2 Convergence Behavior . 63
5.3 Sensitivity to the Initialization . 66

5.3.1 Filtering Approach . 66
5.3.2 Trust Region Approach . 69
5.3.3 Comparison Between Filtering and Trust Regions 71

5.4 Analysis of the Discretization Grid 71
5.5 Parametric Analysis of the Splash-Down Constraint 72

6 Case Study: Ascent of a Two-Stage Vehicle to the ISS 77
6.1 Two-Stage Launch Vehicle Model . 77
6.2 Phases . 77
6.3 Problem Statement . 78
6.4 Initialization . 79
6.5 Convergence Behavior . 80

Contents viii

7 Application to Upper Stage Guidance 85
7.1 Motivation for Upper Stage Guidance 85
7.2 Model Predictive Control Algorithms 86
7.3 Upper Stage Guidance Strategy . 88

7.3.1 Single-Return Strategy . 88
7.3.2 Multi-Return Strategy . 89

7.4 Single-Return Optimal Control Problem 90
7.4.1 Phase Sequence . 90
7.4.2 System Dynamics . 90
7.4.3 Objective and Constraints . 91
7.4.4 Convex Formulation . 92

7.5 Multi-Return Optimal Control Problem 94
7.5.1 Phase Sequence . 94
7.5.2 Objective and Constraints . 95
7.5.3 Convex Formulation . 96

7.6 Update of the OCP . 96
7.7 Softening the Heat Flux Constraint 97
7.8 Perturbation Model . 98
7.9 Numerical Results . 98

7.9.1 Problem Data . 99
7.9.2 Nominal Trajectories . 99
7.9.3 Monte Carlo Campaigns . 100

8 Conclusions 107
8.1 Future Work . 108

A Linearization Matrices for the Low-Thrust Problem 110

B Proof of Lossless Relaxation 112

Bibliography 114

ix

List of Figures

3.1 Reference frames used for the low-thrust transfer. 30
3.2 Optimal low-thrust trajectory. 36
3.3 Optimal thrust profile. 37
3.4 Spacecraft mass over time. 37
3.5 Evolution of the discretization grid due to the adaptive mesh refine-

ment process. 37
3.6 Control constraint relaxation error. 38

4.1 Europe’s launch vehicles: VEGA, Soyuz, Ariane 5-GS, and Ariane
5-ECA. 40

4.2 VEGA launch vehicle. 41
4.3 Phases of a typical launch vehicle ascent trajectory. 41
4.4 Phase sequence of a VEGA-like launch vehicle. 43
4.5 Atmospheric density. 45
4.6 Atmospheric temperature. 46
4.7 Angles used to parametrize the control direction. 58

5.1 Iteration sequence starting from the initial reference solution (dashed
black line) and transitioning from red (iter = 1) to green (iter = 22)
until convergence. 64

5.2 Three-dimensional visualization of the optimal trajectory with the
simulation of third stage ballistic return colored in red. 64

5.3 Control laws of the optimal solution. 65
5.4 Payload mass as function of the splash-down latitude. 73
5.5 Stage 3 trajectories from liftoff to splash-down. 74
5.6 Altitude profiles from fairing jettisoning to t(10)

f 74
5.7 Heat flux profiles from fairing jettisoning to t(10)

f 75
5.8 Relaxation error during Phase 10 of the trajectory constrained to

φR = 55 °. 75

6.1 Phases of the optimal control problem for the two-stage vehicle. . . . 78
6.2 Altitude profile across the iteration sequences for the ISS mission. . . 81
6.3 Visualization of the ISS ascent trajectory. 82
6.4 Optimal control laws in the ISS mission. 83
6.5 Relaxation error across Phase 5 of the ISS solution. 84

7.1 MPC flowchart. 87
7.2 Phases of the upper stage single-return guidance strategy. 89
7.3 Phases of the upper stage multi-return guidance strategy. 89

List of Figures x

7.4 Phases of the OCP recursively solved by the single-return MPC
algorithm. 90

7.5 Phases of the OCP recursively solved by the multi-return MPC algo-
rithm. 94

7.6 Nominal and perturbed thrust profiles. 99
7.7 Splash-down footprints for Case H. 102
7.8 Altitude profiles for Case H. 103
7.9 Control elevation profiles for Case H. 104
7.10 Heat flux profiles for Case H. 105

xi

List of Tables

3.1 Low-thrust trajectory design problem data. 34

5.1 VEGA-like rocket data. 62
5.2 Time-lengths of time-fixed arcs. 62
5.3 Discretization segments, order, and nodes in each phase. 63
5.4 Values used for the generation of the starting reference solution. . . . 63
5.5 Optimal solution of the convex approach compared with the EOS

solution. 65
5.6 Optimal solution of the convex approach compared with the EOS

solution with free coasting arcs. 66
5.7 Scattering range of the seeding parameters for the Monte Carlo analysis. 67
5.8 Results of the Monte Carlo analysis for several values of K and

different families of filtering weights. 68
5.9 Results of the Monte Carlo analysis on the combined effect of the

continuation strategy and the filtering approach. 69
5.10 Results of the Monte Carlo analysis using common trust region algo-

rithms. 70
5.11 Discretization grids considered in the Monte Carlo analysis. 71
5.12 Results of the Monte Carlo analysis on different grids. 72

6.1 Two-Stage Rocket Data . 77
6.2 Nominal time-lengths of time-fixed arcs 79
6.3 Discretization segments, order, and nodes in each phase. 79
6.4 Values used for the generation of the first guess trajectory of the

two-stage rocket. 80
6.5 Final solution compared with the DE solution. 83

7.1 Initial number of discretization segments, order, and nodes in each
phase of the single-return OCP. 96

7.2 Initial number of discretization segments, order, and nodes in each
phase of the multi-return OCP. 97

7.3 Standard deviations of the random-direction Gaussian in-flight dis-
turbance in terms of T/m percentage. 100

7.4 Results of the Monte Carlo campaigns (payload mass). 101
7.5 Results of the Monte Carlo campaigns (splash-down point). 101

1

Chapter 1

Introduction

The design of a safe and optimal launch vehicle ascent trajectory is a problem of great
interest in the aerospace industry, as present launch systems, which rely on chemical
propulsion, can inject into orbit only a small fraction of their initial mass. Hence,
the trajectory optimization is a crucial step in order to maximize the system carrying
capacity and reduce the cost of access to space. In this respect, a systematic and
computationally efficient optimization procedure is an asset during the preliminary
design phases of a launch system, as a means to determine the maximum payload
capability of various configuration concepts, in the advanced pre-flight analysis, to
assess the feasibility of specific mission scenarios, and, eventually, in the definition
of real-time guidance algorithms, where computational speed and reliability are
essential.

The design of a rocket ascent trajectory usually reduces to solving an optimal
control problem (OCP). The goal of the optimization is to find the control law
(i.e., the thrust direction time history) and the optimal values of other mission
parameters (e.g., the ignition and cut-off time instants of the stages) that maximize
a performance index (e.g., the carrying capacity to a desired orbit). However,
the resulting OCP is typically quite difficult to solve since it features nonlinear
dynamics and other numerous mission requirements, which also are often transcribed
as nonlinear constraints, and it is greatly sensitive to the optimization variables.
Due to this inherent complexity, traditional optimization methods may often appear
computationally expensive or too sensitive to the starting guess provided by the
user. In this thesis, convex optimization methods are investigated as a means to
solve a realistic and practical instance of the launch vehicle ascent problem in a
computationally efficient and systematic way.

Launch vehicle dynamics are subject to significant uncertainties, due to hard-to-
predict aerodynamic coefficients, scattering of propulsion system performance, and
sudden variations of the local environment, to name a few. Therefore, robustness
of the implemented guidance algorithms is an absolute necessity for the success of
a launch vehicle ascent mission. Traditionally, launch vehicles rely on open-loop
guidance algorithms in the atmospheric portion of the flight and on analytical
closed-loop guidance schemes when operating in vacuum. However, such approaches
are intrinsically suboptimal, as open-loop schemes do not account for actual in-
flight conditions (thus requiring extensive validation and verification tasks to ensure
robustness before each mission) and analytical guidance laws are formulated on the
basis of assumptions that only approximate the complexity of the ascent problem
(thus leading to suboptimal control policies). So, in this thesis, convex optimization
is embedded into a model predictive control (MPC) framework to set up an advanced
control synthesis method that recursively computes the optimal control and the

1.1 Background 2

associated trajectory by solving in real time the ascent OCP updated with navigation
measurements. The MPC framework is particularly appealing since it maximizes
the system performance thanks to the optimization-based update of the nominal
trajectory and inherently provides robustness to model uncertainties and external
random disturbances through the closed-loop architecture.

1.1 Background
The earliest variant of the ascent problem is due to Goddard [1], who posed the
problem of maximizing the final altitude of a vertically-ascending rocket subject
to gravity and atmospheric drag. Many authors have treated the problem, either
proposing analytical solutions under simplifying assumptions [2, 3] or, once superior
computing hardware was available, numerical approaches [4, 5].

The launch vehicle problem gained a renewed interest at the beginning of the
space race, when the need to maximize the payload capacity of the new launch
system concepts became crucial. The steepest descent methods represented the most
straightforward approach; however, the computational limits of existing hardware
restricted the practical employment of such methods only to simplified instances of
the ascent problem, which required continuous corrections based on post-flight data
to properly approximate the real problem [6].

In the 1960s, advancements in optimal control theory produced methods capable
of providing extremely accurate solutions with a minor computational effort, namely,
indirect methods. One of the first applications of an indirect approach to the ascent
problem is due to Jurovics [7]. Spurlock and Teren in Refs. [8, 9] essentially outline
the indirect procedure that underlies the DUKSUP computer program [6], which
has been consistently employed for three decades for trajectory design of several
families of NASA launch systems, such as Atlas, Titan, and the Space Shuttle, in
addition to other miscellaneous aerospace optimal control problems. More recent
work on the application of indirect methods to the design of ascent trajectories can
be found in Refs. [10–12].

Besides the pre-flight trajectory design task, indirect approaches were also pro-
posed in the definition of optimal guidance algorithms. Indeed, an open-loop scheme
is adopted while flying in the atmosphere and a closed-loop algorithm is implemented
only in the exoatmospheric fraction of the ascent mission [13]. This heterogeneity is
due to the intrinsic difficulty that underlies the endoatmospheric problem, which
precludes the derivation of analytical solutions and significantly hinders the con-
vergence of numerical algorithms. Indeed, rocket vacuum optimization software is
available since the earliest missions, as in the cases of the Saturn rocket Iterative
Guidance Mode (IGM) algorithm [14] and of the Power Explicit Guidance (PEG) of
the Space Shuttle [15]. Efforts to extend closed-loop vacuum guidance schemes to
the atmospheric flight, such as linear tangent steering with atmospheric terms in
the equations of motion [16], do not yield significant performance improvements, as
the presence of the atmosphere makes the underlying guidance strategy not optimal
(e.g., the linear tangent steering is optimal only for a rocket in vacuum over a flat
Earth). Instead, optimized open-loop atmospheric trajectories, coupled with early
release of closed-loop vacuum guidance (that is, while still in the atmosphere but
after the high dynamic pressure region), yield good performance results and still
represent the most popular strategy [13].

One of the first efforts to design a closed-loop guidance scheme for the whole
ascent is due to Leung and Calise [17], who proposed a hybrid approach to speed
up the numerical solution of the atmospheric problem by exploiting the analytical

1.2 Convex Optimization 3

solution to the necessary conditions of the vacuum problem. Later work proved
the real-time applicability of the method also in scenarios of increasing complexity
[18–20]. It is worth mentioning also the work by Lu et al. [21, 22], who outline an
indirect approach and solve the resulting boundary value problem (BVP) by means of
classical finite differences, instead of collocation, to further reduce the computational
time. However, indirect methods require the analytical derivation of the first-order
necessary conditions, which can be a cumbersome process when solving an actual
real-world engineering problem. Furthermore, their effectiveness is strongly related
to the quality of the first guess (both of the solution and of the adjoint variables),
which is usually quite difficult to provide for the ascent problem. In addition, if path
constraints are included in the formulation, an a priori knowledge of the structure
of the constrained arcs is necessary, which, in general, is hard to guess.

The difficulties related to the solution of complicated BVPs and the concurrent
progress in digital computer technology drove the attention of the aerospace commu-
nity toward direct optimization methods [23], which are based on a straightforward
transcription of the optimal control problem into a general nonlinear programming
(NLP) problem and are quite easy to set up. Over the years, a broad spectrum of
software tools based on direct transcription have been developed for solving the
ascent problem and a wide variety of other aerospace problems. One of the oldest
is POST [24], firstly released in the 1970s and still used today. It is noteworthy to
mention also OTIS [25], which is based on a direct optimization procedure detailed in
Ref. [26], and other general-purpose direct programs commonly employed for ascent
trajectory optimization, such as SOCS [27] and ASTOS [28]. Refs. [29, 30] illustrate
successful applications of direct procedures to the optimization of ascent trajectories,
which account for realistic mission requirements, such as the ballistic return of
burned-out stages, the maximum heat flux path constraint, and the deployment of
multiple satellites.

However, direct methods do not enforce first-order necessary conditions for
optimality on the continuous problem directly; thus, the optimal discrete solution
may differ from the continuous one, and typically exhibits control chattering [27].
Furthermore, even though they are characterized by a larger radius of convergence
than indirect ones, the attained solution depends on the accuracy of the initial
guess. Therefore, usually, when highly-sensitive problems are dealt with and no
accurate initialization is readily available, only convergence to a suboptimal solution
(i.e., featuring a merit index significantly worse than the global optimum) can be
reasonably expected. On top of that, the solution of a NLP problem requires a
relatively large computational effort, making general direct methods unsuitable for
time-critical applications.

1.2 Convex Optimization
In the last years, convex optimization techniques became increasingly popular
for solving optimal control problems in the aerospace community [31]. Convex
optimization is a special class of mathematical programming that allows for the
use of polynomial-time algorithms that provide a theoretically guaranteed optimal
solution with a limited computational effort. However, most aerospace problems are
not inherently convex, so these algorithms cannot be directly employed. Therefore,
several convexification techniques have been developed to convert a nonconvex
problem into a convex one. These methods can be grouped into lossless and
successive convexification techniques. The former consist in exploiting either a
convenient change of variables or a suitable constraint relaxation to reformulate

1.2 Convex Optimization 4

the problem as convex. For example, Açıkmeşe and Blackmore [32] proved that
problems with a certain class of nonconvex control constraints, such as rocket powered
descent [33], can be equivalently posed as relaxed convex problems. Since lossless
convexification methods introduce no approximation at all, they should always be
used when possible, as better performing than other convexification strategies [34].

When no lossless convexification can be performed, successive convexification
must be employed. Indeed, successive convexification offers a way to tackle the non-
convexities that cannot be handled by lossless convexification. A common successive
convexification approach consists in linearizing the nonconvex expressions around
a reference solution, which is recursively updated until convergence. Differently
from lossless convexification, the successive linearization generates a sequence of
approximated problems. The theoretical proof that successive convexification leads
to a (locally) optimal solution of the originally intended problem is available only
under appropriate assumptions [35–37]. Nevertheless, current research offers wide
numerical evidence of the effectiveness of successive convexification over a broad spec-
trum of applications, including spacecraft rendezvous [38], proximity operations [39],
formation flying [40], low-thrust transfers [41, 42], UAV path planning [43, 44], rocket
powered landing [45–48], atmospheric entry [49–52], and asteroid landing [53].

Convex optimization has been proposed also for solving the launch vehicle
ascent trajectory design problem. However, successful applications are limited to
simplified scenarios, where a flat Earth is assumed [54], atmospheric forces are
neglected [55, 56], or only the upper stage trajectory is optimized [35, 57]. Instead,
a much more complex instance of the ascent problem, featuring a realistic dynamical
model and practical mission requirements, is necessary to accurately predict the
system performance and assess its criticalities.

For instance, when designing the ascent trajectory of an expendable multi-stage
vehicle, the ballistic reentry of the stages after separation from the rocket must be
planned. While for many launch systems the return of the spent stages does not
represent a concern, as the burned-out stages fall in open water or in uninhabited
regions not too distant from the launch site, posing few safety concerns and not
requiring to enforce additional constraints in the optimization process, some rockets,
among which VEGA [58], require to carefully predict and actively constrain the
splash-down points of the spent stages to safe locations. This requires the inclusion
of a complete simulation of the ballistic return of the spent stages in the OCP
formulation, increasing the complexity of the problem, since return phases feature
nonlinear dynamics, making the OCP further nonconvex. Also, capturing the
dynamics of a high-velocity reentry in Earth’s atmosphere requires the use of a
sufficiently dense discretization mesh, which significantly increases the problem
dimension and the overall computational burden of the solution procedure.

The aforementioned limits of traditional optimization methods, such as the
sensitivity to the initial guess or the large computational effort of the solution
process, motivate the study of convex optimization strategies for the design of
launch vehicle ascent trajectories. Indeed, the inclusion of practical requirements
and an accurate description of the system dynamics are essential to guarantee the
validity of the attained solutions and evaluate the performance and criticalities
of a launch system, but imply a significant computational complexity due to the
nonconvexity of the related constraints. Therefore, this thesis investigates mindful
convexification techniques combined with state-of-the-art discretization methods to
solve a realistic instance of the ascent problem and yet set up a computationally
efficient and systematic optimization procedure to design the ascent trajectory of a
launch vehicle.

1.3 Model Predictive Control 5

1.3 Model Predictive Control
Model predictive control is an advanced method to control dynamical systems
subject to uncertain operating conditions and random disturbances. MPC is one
of the few control synthesis strategies that can optimize the system performance
while systematically accommodating mission constraints [59]. Specifically, MPC
consists in solving repeatedly an optimal control problem, with initial condition
updated using onboard system measurements, and implementing the computed
optimal control law in the time frames between the optimization procedures. The
closed-loop architecture inherently provides robustness to model uncertainties and
in-flight disturbances, as the continuous update of the optimal path compensates
for deviations from the nominal one, while the solution of an OCP guarantees the
optimality of the performance.

MPC was originally developed in the late 1970s for the control of petroleum
refineries [60, 61], where constraint satisfaction is an extremely important requirement
since operating points are often located on the boundaries of the admissible state
and control sets due to economic considerations [62]. MPC quickly gained popularity
in a wide variety of industries including chemical [63], pulp and paper [64], and
automotive [65]. Among the aerospace community, the interest toward MPC has
grown constantly over the years [66], featuring successful employment over diverse
problems, including rocket landing [67–69], spacecraft landing [70, 71], rendezvous
[72, 73], and formation flying [40, 74], to name a few. Indeed, aerospace systems
are among the most challenging applications for controller design due to tight
mission requirements, limited onboard resources, often unpredictable environmental
conditions, and operating points at the limits of the attainable performance. Thus,
MPC, being one of the few control techniques that can systematically address such
a wide spectrum of demands, represents an uniquely promising tool to control such
systems.

The earliest MPC controllers were limited to relatively simple problems, mostly
concerning linear systems, but the advances in technology and control theory enabled
the application of MPC to problems of increasing complexity. In this respect, the
interest toward nonlinear MPC has grown tremendously in the last decades [75],
motivated by the desire to extend the appealing properties of MPC controllers to
nonlinear systems. Still, the system nonlinearities pose serious challenges to the
design of fast and robust nonlinear controllers, but expectations are high and the
ongoing research continuously provides both significant theoretical results [76] and
numerical evidence of numerous successful applications [77].

The effectiveness of an MPC framework depends on two key aspects: the update
frequency and the recursive feasibility. The former dictates how often an updated
OCP is solved. The higher the frequency, the more the algorithm is capable of
rejecting the disturbance associated with the mismatch between the predicted optimal
states and the measured ones, thus becoming more robust to model uncertainties
and dispersions. Its value is bounded by the limited onboard computational capacity.
Instead, the recursive feasibility concerns the reliability of the optimization algorithm,
which must be able to solve the OCP over the entire mission duration. These two
requirements generally make traditional indirect and direct optimization methods
unsuitable for real-time applications. Indeed, although indirect methods provide an
extremely accurate solution with a limited computational cost, they exhibit high
sensitivity to the initialization and come with few convergence guarantees. Instead,
direct methods, which discretize the OCP over a mesh to obtain a general nonlinear
programming problem, are usually too expensive to be used onboard with acceptable
update frequencies. On the other hand, convex optimization techniques are natural

1.3 Model Predictive Control 6

candidates for real-time applications, as convex OCPs can be solved by means of
highly efficient interior point algorithms, which converge to the optimal solution in
polynomial time regardless of the initialization point [78].

This thesis investigates the use of MPC for the computational guidance of the
upper stage of a launch vehicle. In particular, VEGA’s third stage is taken as case
study. As already mentioned, some rockets require to actively constrain the splash-
down point of the upper stages to safe locations. Moreover, uncertainties on the
propulsive performance (especially on the cut-off time of a solid rocket motor) do not
allow to easily pinpoint a splash-down location but rather define a finite-dimension
footprint of possible impact points. Thus, a further system requirement consists in
bounding the extent of this region. To this aim, robust optimization and robust MPC
can be used to endow the guidance and control with some robustness guarantees.
However, these methods are usually overly conservative since they are primarily
based on min-max OCP formulations [79] or on constraint tightening [80]. On the
other hand, more recent tube-based MPC [81] or stochastic optimal control methods,
such as chance-constrained optimization [82–84] or covariance control [85–87], could
also be considered as viable options, but their application to the case of non-additive
disturbances, such as those that arise from dynamics under uncertain time-lengths,
can be quite challenging.

For all these reasons, VEGA’s third stage currently relies on a (pre-scheduled)
neutral axis maneuver to robustly minimize the size of the splash-down footprint
and make the return as insensitive as possible to the solid rocket motor (SRM)
performance dispersions [88]. This maneuver is based on the null miss condition
developed for ballistic missiles [89]: over the last few seconds of operation, the
stage is constrained to hold on to an attitude such that the splash-down point is
retained regardless of any additional velocity increments. The maneuver reduces the
carrying capacity of the launch vehicle since part of the propulsive energy is spent
in a non-optimal direction, but it robustly guarantees that the actual splash-down
location is sufficiently close to the predicted one, despite uncertainties on the cut-off
time of the SRM. However, the neutral axis maneuver can be quite difficult to
design with traditional methods and usually extensive trajectory validation and
verification tasks are required before each launch. As an alternative to the neutral
axis maneuver, the use of retro-rockets has been proposed to control the third stage
after the separation [90]. However, such a solution would need the integration of
additional hardware and mass into a consolidated architecture, hence it is scarcely
appealing.

This thesis investigates a novel guidance algorithm, based on embedding convex
optimization into a MPC framework. The convex OCP solved onboard explicitly
incorporates and optimizes the neutral axis maneuver. In this way, the model
predictive controller updates in real time the direction of the neutral axis attitude,
which must be maintained in the last seconds of operation in an open-loop fashion,
enhancing the system performance and reducing the size of the splash-down footprint.
This online computation of the neutral axis direction overcomes traditional issues in
the design of the neutral axis maneuver, which is often based on cumbersome and
time-consuming pre-flight procedures, and allows the integration of such a maneuver
in a modern computational guidance scheme, ensuring the system robustness to
extra burn seconds of the SRM.

1.4 Objectives and Contributions 7

1.4 Objectives and Contributions
This thesis features several technical contributions to the state of the art. First,
the seminal lossless convexification strategy originally proposed for powered descent
problems is extended and modified to suit the ascent problem. Leveraging optimal
control theory, rigorous proof of the validity and lossless property of the said con-
vexification strategy is provided under mild assumptions for this problem. Second,
the algorithmic robustness provided to a successive convexification framework by a
novel recursive update of the reference solution, named filtering is investigated. This
strategy successfully filters out oscillations in the search space and other common
undesired phenomena due to the successive linearization, such as artificial unbound-
edness, thanks to reduced weight assigned to the newly found solutions. Moreover,
conversely to other expedients commonly used to prevent artificial unboundedness,
such as trust regions, the implementation of the filtering technique does not alter the
OCP, as it does not imply the inclusion of additional constraints or penalty terms
in the formulation. This approach is of general validity and could be successfully
applied to other problems.

The thesis also investigates strategies to include safety-related mission require-
ments, often neglected in preliminary analyses, such as the prediction and the active
constraining of the splash-down points of the burned-out stages, which significantly
increase the computational complexity of the problem. Nevertheless, combinations
of original and consolidated convexification methods are devised and compared
throughout the dissertation and, in the end, an efficient and reliable strategy for the
optimization of a realistic launch vehicle ascent trajectory is retrieved.

Motivated by the algorithmic robustness and the short computational times of the
convex approach, the thesis also aims at investigating the real-time implementation
of convex optimization algorithms in a closed-loop guidance architecture such as
model predictive control. Indeed, minor modifications to the ascent trajectory design
algorithm are devised to cast the guidance problem of a launch vehicle upper stage as
a convex problem with satisfactory convergence properties. The application is of great
interest, as upper stages generally implement simple vacuum rocket guidance schemes
that cannot account for complex mission requirements. Instead, the convexification
process allows to consider realistic scenarios in the optimization and thus compute
online an optimal guidance law that meets all mission requirements.

Eventually, a significant contribution of the thesis is the definition of a novel
guidance strategy that robustly ensures the splash-down constraint of the spent stage
even in presence of uncertainties on the engine cut-off time, which is not negligible
for most solid rocket motors and is usually dealt with a neutral axis maneuver.
The MPC guidance poses itself as a systematic and innovative method to update
online the optimal ascent trajectory of the rocket on the basis of the encountered
conditions (hence, enhancing the system performance and providing robustness to
in-flight disturbances) and ensure the safety of the spent stage return without the
extensive validation and verification tasks that traditional design of the neutral axis
maneuver require before each mission.

1.5 Thesis Summary
The thesis is organized as follows.

Chapter 2 formulates a general optimal control problem and introduces some
essential definitions and notation convention that are adopted through all the
dissertation. The chapter surveys the traditional methods to solve an optimal

1.5 Thesis Summary 8

control problem, with particular focus on the direct methods, which are the ones
generally used to cast a convex optimal control problem into a discrete convex
program. Alternative methods, based on evolutionary optimization and machine
learning, for solving an OCP are also discussed and compared with the traditional
deterministic approaches.

In Chapter 3, after introducing some preliminary concepts of convex analysis,
several classes of convex optimization problems are defined. Then, convexification
methods to convert general problems into convex ones are described. The chapter
also discusses undesired phenomena due to the convexification of a nonlinear problem
and details state-of-the-art safeguarding modifications that can be implemented to
prevent such phenomena. A low-thrust interplanetary trajectory design problem is
taken as an example to illustrate the use of convexification techniques on a practical
problem.

Chapter 4 introduces the launch vehicle ascent trajectory optimization problem.
The chapter illustrates the phases, the dynamical model, and requirements that
characterize the ascent of a general launch vehicle, focusing on specific aspects of
the VEGA rocket. The ascent trajectory design problem is formulated as an optimal
control problem; thus, the chapter outlines the objective function, the optimization
variables, and the mission constraints that must be considered. Since the resulting
problem is nonconvex, a convexification strategy to convert the problem into a
convex one is presented along with some practical solution strategies, including
a systematic way to design a suitable initial guess and a numerical continuation
procedure to reduce the sensitivity of the algorithm to inaccurate initializations.

In Chapter 5, an ascent of a VEGA-like vehicle toward a low-Earth orbit is
taken as case study to investigate the effectiveness of the convex approach. The
convergence of the successive convexification algorithm is discussed on the basis
of a typical sequence of iterations. Then, focus is posed on the sensitivity of the
algorithm to the initialization, which is discussed on the basis of the results of several
Monte Carlo campaigns. The accuracy of the discretization is also investigated by
means of a Monte Carlo analysis that compares grids of different order. Finally, a
sensitivity analysis of the launch vehicle carrying capacity to different splash-down
locations is presented.

Chapter 6 reformulates the optimal control problem for a two-stage rocket
(inspired to SpaceX’s Falcon 9 rocket) to show the generality of the convex approach
and its effectiveness in diverse scenarios. The modifications to the phase sequence,
the mission constraints, and the initialization strategy compared to the VEGA-like
case are thoroughly discussed. Numerical results for an ascent from Cape Canaveral
to the International Space Station’s (ISS) orbit are presented and compared with an
unrelated optimization program.

In Chapter 7, the convex optimization approach is embedded into a model
predictive control framework to define a closed-loop guidance algorithm for the
upper stage of a launch vehicle. Two different guidance strategies, which differ by
the optimal control problem to recursively solve onboard, are proposed. In the first
one, the OCP comes directly from the complete ascent problem, while the second one
includes an additional return phase to robustly ensure the splash-down constraint
in the case of uncertain cut-off time of the stage. The results of a series of Monte
Carlo campaigns are presented to assess the performance and robustness of the
MPC framework in presence of in-flight disturbances, off-nominal conditions, and
uncertain motor performance.

Chapter 8 summarizes the key contributions of the thesis and suggests potential
future research directions.

9

Chapter 2

Methods for Optimal Control

Optimization problems date back at least to the Greeks. One of the oldest was
Dido’s problem: the problem of finding the figure bounded by a curve which has the
maximum area for a given perimeter. Such figure is a circle, and the Greeks already
knew it. However, it took until the 19th century to prove it rigorously. In 1696,
Johann Bernoulli posed his famous brachistochrone problem [91]: given two points
A and B in a vertical plane, find the curve traced out by a point acted on only by
gravity, which starts at A and reaches B in the shortest time. This is considered
to be the first optimal control problem since it explicitly deals with controlling the
path or behavior of a dynamical system.

The brachistochrone problem served as a stimulus to formulate and solve a
number of other more general problems and thereby to establish optimal control
as a mathematical field [92]. Indeed, since then, many significant contributions
have been made in this topic. In 1766 Euler, after working several years with
Lagrange, published the Elementa Calculi Variationum [93], from which the calculus
of variations got its name. In the 1950’s, the appearance of practical, high-speed
digital computers radically changed the field by enabling the use of efficient numerical
methods. The aim of this chapter is to illustrate the different present-day methods
that can be used to solve an optimal control problem.

2.1 General Statement of an Optimal Control Problem
An optimal control problem consists in finding a control signal (e.g., rocket thrust
direction time-law) and other design parameters (e.g., the time-length of burn and
coasting arcs of a spacecraft) that drive a dynamical system from an initial state to a
final one while meeting all system requirements, expressed as a series of constraints,
and maximizing its performance (in terms of a convenient merit index).

The following notation conventions will be used through all the thesis to provide,
as much as possible, a consistent and clear formulation of the equations. Lowercase
Roman letters (e.g., a) are used to denote scalar quantities and functions, while
lowercase bold letters (e.g., v) denote vector variables and vector functions. Unless
stated otherwise, the Euclidean norm of a vector v is denoted with the same symbol
but non-bold, thus v = ∥v∥. Lastly, uppercase Roman letters (e.g., M) denote
matrices.

2.1 General Statement of an Optimal Control Problem 10

2.1.1 System Dynamics
The state of the dynamical system at time t is defined by a vector x(t), which
includes all the variables necessary to characterize, in a complete and unequivocal
way, the system under examination (e.g., position, velocity, and mass of a spacecraft).
The time-evolution of the state vector defines the trajectory of the system over a
considered integration interval [t0, tf] and is obtained as the solution of a set of
first-order ordinary differential equations (ODEs),

dx

dt
= f(x(t),u(t),p, t) (2.1)

The vector function f on the right-hand side of Eq. (2.1) is usually referred to as
the system dynamics. The vector u(t) includes all the control variables and p is the
vector of time-independent optimization parameters. The thrust vector generated
by a rocket engine or the aileron deflection of an aircraft are examples of control
variables, while the ignition time of a landing rocket or the duration of a coasting
arc during an orbit transfer are examples of optimization parameters.

2.1.2 Constraints
The solution of an optimal control problem must usually satisfy several system
requirements, which can be formulated as equality or inequality constraints. Con-
straints that are functions of only the state and control variables at initial and final
time are referred to as a boundary constraint and can be collected in a vector of
homogeneous algebraic equations

χ(x(t0),x(tf),u(t0),u(tf),p, t0, tf) = 0 (2.2)

Instead, general constraints that must be enforced through all the considered time
interval are called path constraints

ψ(x(t),u(t),p, t) ≤ 0 (2.3)

Note that Eq. (2.3) is posed as an inequality constraint, but path constraints can be
formulated also as equality constraints. Indeed, Eq. (2.3) is a general formulation
that includes equality constraints as special cases, as an equality ψ(x) = 0 can be
replaced by two inequalities, ψ(x) ≤ 0 and −ψ(x) ≥ 0.

2.1.3 Objective Function
The goal of the optimal control problem is to determine the continuous-time func-
tions x(t) and u(t) and the parameters p that extremize an objective function J ,
representative of the system performance. This implies either maximizing a merit
index (e.g., the payload mass of a launch vehicle) or minimizing a cost function (e.g.,
the time required to reach a target spacecraft).

Without loss of generality, in this thesis minimization problems are always
considered, since any maximization problem can be cast as an equivalent minimization
problem by changing the sign of the objective function.

The general expression of the objective function of an OCP is

J = φ(x(t0), t0,x(tf), tf ,p) +
∫ tf

t0
Φ(x(t),u(t),p, t)dt (2.4)

2.1 General Statement of an Optimal Control Problem 11

The first contribution, φ, is a function only of the boundary values of state and
time. Instead, the second one, Φ, depends on the time-evolution of the state and
control variables. If the function φ is null, then the problem is known as the problem
of Lagrange. Instead, if there are no integral terms Φ, the OCP is referred to as
problem of Mayer. The general case that features both Mayer and Lagrange terms
is called problem of Bolza.

It is worth noting that the same problem can be posed in any of the three forms.
For example, if the problem is in the Lagrange form,

J =
∫ tf

t0
Φ(x(t),u(t),p, t)dt (2.5)

then, by including the additional state variable xn+1 with its corresponding state
equation,

dxn+1
dt

= Φ(x(t),u(t),p, t) (2.6)

and the initial condition xn+1(t0) = 0, it is possible to replace the original objective
function of Eq. (2.5) with

J = φ(x(tf)) = xn+1(tf) (2.7)

Note that, while Mayer’s form is usually preferred for notational simplicity, it
increases the size of the OCP.

2.1.4 Phases
Often, it may be necessary (or just convenient) to split the time horizon of an
OCP into a collection of phases (or arcs). A phase is a portion of a trajectory in
which the system dynamics, Eq. (2.1), remain unchanged and the state and control
variables are not discontinuous. However, this does not imply that the ODEs must
change across phase boundaries, as the need to split the OCP may arise from other
necessities. For instance, many problems feature constraints at some interior point
t1 ∈ (t0, tf) and the only way to enforce a constraint at an internal point t1 is
dividing the OCP in correspondence of said point. Indeed, introducing a separation
may be useful in regions where the system state or the controls change rapidly or
even instantaneously, as quick variations may be difficult to incorporate in a global
time-continuous solution.

Phases usually occur sequentially in time and are delimited by the internal
boundaries. Specifically, internal boundaries are the extremal points of the phases of
an OCP, while external boundaries are the extremal points of the whole problem. A
superscript (i) indicates that a variable belongs to phase i. Thus, the boundaries
of each phase are denoted as t(i)0 and t

(i)
f . When the superscript is omitted, then t0

and tf denote the external boundaries of the OCP.
The initial and final boundaries of all phases can be grouped in the following sets

T0 =
{
t
(i)
0

∣∣∣ i = 1, . . . , N
}

(2.8)

Tf =
{
t
(i)
f

∣∣∣ i = 1, . . . , N
}

(2.9)

Likewise, the state and controls at the phase boundaries can be grouped in

X0 =
{
x(t(i)0)

∣∣∣ i = 1, . . . , N
}

(2.10)

2.2 Overview of Numerical Methods 12

Xf =
{
x(t(i)f)

∣∣∣ i = 1, . . . , N
}

(2.11)

U0 =
{
u(t(i)0)

∣∣∣ i = 1, . . . , N
}

(2.12)

Uf =
{
u(t(i)f)

∣∣∣ i = 1, . . . , N
}

(2.13)

The generalization of the boundary constraint of Eq. (2.2) to a problem of N
phases is

χ(X0,U0, T0,Xf ,Uf , Tf ,p) = 0 (2.14)
If a constraint includes variables from different phases is said to be a linkage
constraint.

Finally, the objective function of a multi-phase problem is

J = φ(X0, T0,Xf , Tf ,p) +
N∑

i=1

∫ t
(i)
f

t
(i)
0

Φ(i)(x(t),u(t),p, t)dt (2.15)

2.2 Overview of Numerical Methods
In general, it is not always possible to solve analytically an OCP, thus numerical
methods must be employed. Optimal control problems are infinite-dimensional
problems due to the fact that the state and control signal are continuous-time
functions. However, numerical methods for solving OCPs require a finite set of
variables and constraints. Therefore, the optimal control problem must be converted
somehow into a finite-dimensional problem. This is carried out by means of a
so-called transcription method.

Existing transcription methods can be grouped into two categories: indirect
methods and direct methods. Indirect methods are based on calculus of variations
for deriving the first-order optimality conditions. These necessary conditions form a
Hamiltonian boundary value problem (HBVP) that can be solved with consolidated
numerical schemes. From a practical standpoint, the differential constraints are
enforced through the introduction of continuous-time Lagrange multipliers, called
adjoint or costate variables, in the optimization problem. Indirect methods are char-
acterized by a high accuracy in the solution and require a small computational cost.
Furthermore, they guarantee the local optimality of the attained solution. However,
they also have several disadvantages. First, in practical problems, formulating the
HBVP is usually nontrivial or even impossible. Secondly, the radius of convergence
is small, hence a very accurate initialization point is required. This task can be
quite complicated since the costate variables do not have a clear physical meaning
and guessing suitable initial values is often challenging. Lastly, the handling of
path constraints in the optimization process is generally troublesome, as an a priori
knowledge of the constrained and unconstrained arc sequence is required.

On the other hand, direct methods discretize the optimal control problem over a
mesh (or grid) and turn it into a general nonlinear programming (NLP) problem.
Direct methods do not require the derivation of optimality conditions and are
characterized by a larger radius of convergence than the indirect methods, so the
initialization process is much easier. Also, since the system dynamics are converted
into a set of algebraic constraints through the discretization process, there is no need
to introduce (and initialize) the costate variables. Finally, the discretization of path
constraints is such that the solution process autonomously determines the intervals
where the constraints are active or not. However, the discretization generally defines
a great number of variables, resulting into a large, albeit sparse, NLP problem, which

2.3 Direct Methods 13

is much more expensive to solve than a HBVP. Another downside of direct methods
concerns the optimality of the attained solution, which is generally unknown or
difficult to assess.

Recently, convex programming emerged as a popular means to solve optimal
control problems thanks to the theoretical guarantees on the solution optimality and
the availability of highly efficient numerical algorithms [31]. Even though most real-
world problems cannot be readily solved as convex optimization problems, several
ideas have been proposed to convert a given nonconvex problem into a convex one,
through a process referred to as convexification. Once an optimal control problem
is posed in a convex form, it can be discretized by means of a direct collocation
method and solved as a convex program. In the following section, direct methods are
described, while a survey of state-of-the-art convexification techniques is provided in
Chapter 3.

2.3 Direct Methods
A direct method basically consists of discretizing the continuous-time functions, such
as state and control, to obtain a finite set of NLP variables and constraints. The
time discretization is carried out by dividing the time domain [t(i)0 , t

(i)
f] of each phase

i into M (i) segments. So, omitting from now on the superscript (i), one obtains
M + 1 points

t0 ≤ t1 ≤ · · · ≤ tM+1 ≤ tf (2.16)
Each point is referred to as node of the mesh.

Note that, in order to discretize time, the initial and final instants must be known.
However, in general, t0 and tf may be optimization variables (hence, unknown). To
account for free-time phases in the optimization procedure, a common strategy [94]
consists in replacing time t with a new independent variable τ , defined for each phase
over a fixed domain [0, 1]. Being the domain unitary, the time dilation σ between t
and τ corresponds to the arc time-length

σ = dt

dτ
= tf − t0 (2.17)

Then, σ is included as an additional optimization parameter (i.e., in the p vector)
for each phase and the system dynamics are expressed in terms of τ

dx

dτ
= σ

dx

dt
= σf (x,u,p, τ) (2.18)

At this point, a first classification of direct methods comes up, according to
which continuous-time variables should become NLP variables. Direct methods that
discretize only the control signal u(t), as uj = u(tj) for j = 1, . . . ,M + 1, are said
to perform a semi-discrete parameterization. In such an approach, the differential
constraints are accounted for in the optimization through a forward propagation
of the system dynamics; thus, this strategy is called shooting. Instead, methods
that discretize both state x(t) and control u(t), as xj = x(tj) and uj = u(tj) for
j = 1, . . . ,M + 1, perform a fully-discrete parameterization. These methods are
based on collocation to replace the differential equations with a set of algebraic
constraints, called defect constraints.

2.3 Direct Methods 14

2.3.1 Shooting Methods
When only the control is discretized, the state equations are solved via numerical
integration of the corresponding boundary value problem (BVP). From a practical
standpoint, starting from a first guess of the initial state, the controls, and the
parameters, one propagates (i.e., “shoots”) the differential equations from the initial
time t0 to the final time tf and evaluates the error on the boundary conditions.
Shooting methods are widely used because the resulting finite-dimensional problem
has a small number of variables, thus it can be solved with a limited computational
effort. However, a small change in the initial conditions can produce a very large
change in the final conditions.

To reduce the sensitivity of the shooting methods, a multiple shooting method
can be adopted. This approach consists in breaking the time domain into shorter
steps. State vectors at the internal points are additional variables and continuity
constraints are imposed and evaluated at the internal boundaries. The resulting
problem, albeit larger, features a sparse Jacobian matrix, as constraints of each
interval j are function, at most, of the variables in interval j and the adjacent
ones. The downside of such an approach is the increased number of variables and
constraints, which somehow contrast with the main idea of shooting methods.

It is worth mentioning that shooting methods are the only choice when using a
stochastic or heuristic algorithm rather than a deterministic (e.g., Newton-based) one.
Indeed, since heuristic algorithms do not follow a deterministic strategy to solve the
NLP problem, they feature a slower rate of convergence. Thus, to obtain a solution in
a reasonable time, the finite-dimensional problem must be characterized by a limited
number of variables. These algorithms can be very useful when classical methods
fail: for example, when a deterministic algorithm converges to a (manifestly) local
optimum instead of the global one. In fact, without the need for a good initialization,
heuristic algorithms are able to locate the global optimum region very efficiently.
That is why they are also referred to as global optimizers. However, the lack of
theoretical convergence guarantees, the greater computational effort, and the reduced
precision of the attained solution, make deterministic approaches the preferred option
whenever their use is possible.

2.3.2 Collocation Methods
If a fully-discrete parameterization is carried out, the differential equations are
collocated at each node and collected into a finite set of algebraic constraints,
called defect constraints. The expression of the constraints depends on the specific
collocation scheme.

In this thesis, two collocation methods are considered: trapezoidal and pseudospec-
tral. The former leverages the trapezoidal rule to formulate the defect constraints.
The ease of implementation and the sparsity of the resulting problem make it a
very common approach. However, the low order of the integration scheme requires
the use of a quite dense discretization grid, thus leading to a large and onerous
NLP problem to solve. Instead, pseudospectral methods approximate the state and
control with global interpolating polynomials and collocate the dynamics at a set
of nodes that corresponds to the roots of an orthogonal polynomial. In this way,
spectral convergence of the quadrature approximation error is ensured and extremely
accurate solutions are obtained even with a few number of nodes.

2.3 Direct Methods 15

Trapezoidal Discretization

In the trapezoidal method, the defect constraint linking node j to node j + 1 is
formulated as

xj+1 −
(
xj + hj

2 (fj + fj+1)
)

= 0 (2.19)

where hj = τj+1 − τj is the time-step and fj = f(xj ,uj ,p, τj).
It is worth noting that the trapezoidal collocation produces sparse Jacobian and

Hessian matrices. Thus, even though the problem size may be large, the sparsity of
the coefficient matrices allow for the use of sparse linear algebra algorithms, which
are much more efficient than their dense counterpart. Also, the sparsity implies a
reduced sensitivity of the problem to the initialization. To understand this, consider
that, with the exception of the boundary conditions, the majority of the Jacobian
matrix elements will be defined as

Gij = Change in defect constraint on segment i
Change in optimization variable on segment j (2.20)

So, changing a variable at a certain mesh node will affect only nearby constraints,
providing the solution algorithm with great capability of finding convenient search
directions and escaping local optima.

Since the discrete problem is only an approximation of the continuous-time OCP,
the accuracy of the solution of the discrete problem must be assessed. Clearly, a
denser mesh provides a more accurate discrete solution, but it is also associated with
a greater computational effort. Also, as documented in the literature [95], coarse
grids are less sensitive to inaccurate initializations. Thus, the choice of the grid
to use must result from a mindful tradeoff between the need for accuracy and the
computational efficiency and sensitivity of the optimization problem.

A possible strategy consists in using first a moderate number of (evenly-spaced)
nodes to obtain a solution of satisfactory accuracy, and then increasing the grid
size through an iterative mesh refinement process until the discretization error falls
below a desired threshold. To prevent the problem dimension from increasing too
rapidly during the mesh refinement process, additional nodes should be added only
in the segments where the local error is greater. This approach is called an adaptive
mesh refinement process. For instance, the approach due to Betts and Huffman [96]
consists of evaluating the accuracy of the attained solution at every refinement step
and solving an integer programming problem that minimizes (an estimate of) the
maximum relative error. Thus, the precise number and location of the extra nodes
are the output of said programming problem. Also, the maximum number of new
nodes that can be added in each interval and in the whole grid is limited to a small
value, as adding many nodes in a single step may cause convergence issues. Once
the new mesh is set up, the initialization of the OCP is obtained by interpolating
the previous solution at the new nodes.

From a practical standpoint, to evaluate the discretization error, the discrete
solution must be converted into a continuous-time solution (x̃(τ), ũ(τ)) that approx-
imates the real (unknown) solution (x̂(τ), û(τ)). The state x(τ) is approximated as
a vector of cubic splines, with the conditions

x̃(τj) = x(τj) (2.21)
d

dτ
x̃(τj) = f (x(τj),u(τj), τj) (2.22)

2.3 Direct Methods 16

Instead, the control is represented as a linear interpolation of the node values.
Whereas the control is assumed to be correct and optimal, the error between the
state x̃(τ) and the true solution is

εj =
∫ τj+1

τj

|x̃(τ) − x̂(τ)|dτ (2.23)

The integral in Eq. (2.23) can be either computed using a very accurate quadrature
method, with tolerance close to machine precision, albeit requiring a significant
computational effort, or it can be estimated using a step size smaller than the one
of the original grid. As for the latter, two trapezoidal (half) steps can be used to
estimate εj as

εj ≈ 1
2

∣∣∣∣x̃(τj + hj) − x̃(τj) − hj

4
(
f̃3 + 2f̃2 + f̃1

)∣∣∣∣ (2.24)

where

f̃k = f [x̃(sk), ũ(sk)] (2.25)

sk = τj + 1
2(k − 1)hj (2.26)

Only when the error falls below a given tolerance, the mesh refinement process
terminates.

Pseudospectral Methods

In a pseudospectral method, a finite basis of global interpolating polynomials is
used to approximate the state and control at a set of discretization points. The
time derivative of the state is approximated by the derivative of the interpolating
polynomial and is then constrained to be equal to the right-hand side of the equations
of motion at a set of collocation points. While any set of collocation points can
be used, the roots of an orthogonal polynomial are the preferred set, due to the
computational efficiency of Gaussian quadrature.

Although global pseudospectral methods can be extremely powerful to efficiently
capture the continuous-time dynamics with few nodes, their application is limited to
problems with smooth solutions, as polynomials can approximate rapidly changing
dynamics and discontinuous controls only with limited accuracy. Also, the quadrature
of complex dynamics over long time horizons may require a large number of nodes,
but high-order interpolating polynomials should not be used since their use may
lead to summing up of truncation errors and, thus, numerical issues. Last, but not
least, the defect constraints of a global pseudospectral method are associated with a
dense Jacobian matrix, hindering the robustness of the solution procedure to the
initialization point.

In this respect, a hp pseudospectral method is a more general strategy that solves
many of the issues mentioned above. Indeed, while a global pseudospectral method
can be classified as a p method, since grid convergence is attained exclusively by
increasing the order of the discretization, a hp discretization combines the advantages
of h and p schemes, as it splits the time domain into multiple subintervals and imposes
the differential constraints in each segment via local orthogonal collocation. In this
way, mesh nodes can be introduced near potential discontinuities and the exponential
convergence rate of pseudospectral methods is exploited in the whole domain, as it
is composed of local regions where the solution is smooth [97]. Also, the division

2.3 Direct Methods 17

of the time horizon into shorter intervals allows for the use of multiple lower-order
polynomials instead of one high-order global polynomial, setting up a numerically
more stable approach. Compared to p methods, the hp transcription generates
sparser problem instances, enabling the use of efficient numerical routines and
guaranteeing less sensitivity to the initialization point.

Pseudospectral methods are also classified according to which set of orthogonal
collocation points is used. For example, Radau Pseudospectral Method (RPM) uses
Legendre-Gauss-Radau (LGR) points [98]. The Lobatto Pseudospectral Method
(LPM) uses Lagrange polynomials for the approximations and Legendre-Gauss-
Lobatto (LGL) points for the orthogonal collocation [99]. In the Gauss Pseudospec-
tral Method (GPM), the state is approximated using a basis of Lagrange polynomials
similar to the LPM and the optimal control problem is orthogonally collocated at
the interior Legendre-Gauss (LG) points [100]. In this thesis, only the Radau pseu-
dospectral method (RPM) is considered since it is one of the most accurate and
performing pseudospectral methods [101]. The RPM is also a particularly convenient
scheme to embed in a hp discretization, as, differently from the LPM and GPM,
it avoids redundant control variables at the segment interfaces and provides the
optimal control at each mesh point (except for the final node of the final subinterval).
Indeed, being based on the Legendre-Gauss-Radau (LGR) abscissas, which include
the initial boundary but not the final one, locally, the RPM does not provide the
terminal control in each segment, but, globally, the ambiguity drops since the final
node of a segment corresponds to the initial boundary of the next one, for which,
instead, the control is available.

A detailed discussion on the implementation of a hp Radau pseudospectral
method can be found in the Refs. [102–104], thus only the major steps of the
discretization scheme are outlined in the following.

First, the hp method splits the independent variable domain τ ∈ [0, 1] of each
phase into h segments by defining a grid H of h+ 1 nodes

H = {τs | s = 1, . . . h+ 1} (2.27)

Thus,
0 = τ1 < · · · < τh+1 = 1 (2.28)

Then, each segment [τs, τs+1] for s = 1, . . . , h is discretized as a grid Ns of ps + 1
nodes

Ns = {ηj | j = 1, . . . ps + 1} (2.29)
where ps is the discretization order of the s-th segment and η is a new independent
variable defined in the interval [−1, 1]. Thus,

−1 = η1 < · · · < ηps+1 = 1 (2.30)

The new variable η can be mapped to the original domain by the following transfor-
mation:

τ = τs+1 − τs

2 η + τs+1 + τs

2 (2.31)

Since we employ the RPM, the first ps nodes of each segment correspond to the set
of ps LGR roots and constitute the collocation points Ks. Note that Ks is a subset
of Ns since it does not incorporate the terminal boundary η = 1.

Once the grid is set up, the state and control are discretized over it, and a finite
set of variables (xs

j ,u
s
j) is obtained. The superscript s denotes the s-th segment,

while the subscript j refers to the j-th node of the segment. In particular, in each

2.4 Alternative Methods 18

segment, the state is discretized over the set Ns and approximated using a basis of
Lagrange polynomials. Note that since the state is continuous among the segments
of a phase, in the algorithm implementation the same variable is used for both xs

ps+1
and xs+1

1 . Instead, the control is discretized only at the collocation points Ks, so
Lagrange polynomials of degree ps − 1 are used for the approximation. The final
control of the final segment is not included in the discrete problem and it is simply
extrapolated from the polynomial approximation of the control signal.

Path constraints are converted into a finite set of algebraic constraints by imposing
them at every node, while boundary conditions are imposed only at the initial or
final point of H. To take into account the system dynamics, the time derivative of
the state interpolating polynomial is constrained to be equal to the equations of
motion at the collocation points of each segment s = 1, . . . , h:

ps+1∑
j=1

Ds
ijx

s
j = τs+1 − τs

2 f s
i i = 1, . . . , ps (2.32)

where the same notation used for discrete-time variables was used for the dynam-
ics, f s

j = f(xs
j ,u

s
j ,p, τ(ηs

j)). In Eq. (2.32), Ds denotes the LGR differentiation
matrix [101], which can be efficiently computed via barycentric Lagrange interpola-
tion [105].

Similarly to local discretization methods, such as the trapezoidal collocation,
adaptive mesh refinement algorithms have been proposed also for hp pseudospectral
methods. Due to their complexity, these methods are not reported in the present
thesis, but the interested reader can refer to Ref. [97]

2.4 Alternative Methods
Recently, artificial intelligence and machine learning approaches became popular
methods to solve optimal control problems. While they are not the primary focus
of this thesis, it is worth to survey other possible approaches and highlight their
advantages and disadvantages compared to traditional deterministic optimization
methods.

2.4.1 Evolutionary Optimization
Evolutionary algorithms are global optimization techniques that are based on heuris-
tic rules, often inspired but not limited to natural paradigms, to find the solution of
an optimization problem [106]. For example, genetic algorithms (GAs) generate a
population of solutions, which then undergoes mutation, crossover, and selection
processes, inspired by the Darwinian evolution theory, to search for optimal solutions
over discrete spaces [107]. Instead, differential evolution (DE) is a variant of a GA to
solve problems defined over continuous spaces [108]. Particle Swarm Optimization
(PSO) [109] and Ant Colony Optimization (ACO) [110] are other popular meta-
heuristic methods that are based on imitating the foraging behavior of flocks of birds
and ant colonies, respectively.

Meta-heuristic approaches can be extremely appealing, as they allow finding
(nearly) optimal solutions to greatly challenging problems that traditional optimiza-
tion methods often fail solving because of nonlinear and non-differentiable objectives
or highly irregular feasibility domains. Indeed, local search algorithms require an
initialization point that lies in the basin of convergence of the global optimum to
converge to the latter, and, for some problems, it may be quite arduous to identify

2.4 Alternative Methods 19

this region in the search space; thus, only convergence to local optima with objectives
significantly worse than the global solution can be reasonably expected if adopting a
deterministic approach.

In the aerospace field, where mission design often requires solving extremely
challenging optimal control problems, non-deterministic approaches became quite
popular in the last decades. For instance, genetic algorithms are commonly employed
for solving high-dimensional combinatorial problems, such as active debris removal
missions [111–113]. Differential evolution has been successfully used to solve complex
continuous problems, such as multiple gravity-assist capture trajectory [114] and
rocket ascent trajectory design [115].

However, meta-heuristic algorithms are characterized by much slower convergence
rates, which greatly increase the computational cost compared to deterministic
algorithms. Also, most of these algorithms have few or no convergence guarantees,
meaning that the number of iterations necessary to find the global optimum or
a nearly-optimal solution within a desired tolerance is theoretically infinite or
unknown. These aspects make them unsuitable for time-critical applications, where
computational efficiency and convergence guarantees are crucial.

2.4.2 Machine Learning
Differently from evolutionary algorithms, which are commonly employed to aid the
design of an optimal spacecraft trajectory before flight, machine learning concepts like
neural networks (NNs) have been investigated by the aerospace community with the
aim of defining guidance and control policies for real-time onboard implementation.

Neural networks are universal function approximators, and can be used to
approximate the optimal closed-loop control law, that is, the map between the
observed spacecraft state (input vector) and the thrust magnitude and direction
(output vector). The evaluation of the policy is extremely fast, quicker than any
optimization process, thus highly appealing for time-critical applications.

The main challenge consists in training the neural network, that is, finding the
values of the network’s parameters that produce a reasonable approximation of
the optimal control law. Behavioral cloning (BC) is a popular training strategy
that, given a dataset of sample optimal trajectories from an “expert” (e.g., a set
of solutions provided by a deterministic solver), trains the network to replicate
the expert behavior by minimizing the difference between the network output and
the corresponding expert data. BC was successfully employed in diverse aerospace
applications, including interplanetary transfers [116], powered descent landing [117,
118], and hypersonic reentry [119, 120].

Reinforcement learning (RL) is an alternative method to train a NN to solve
an optimal control problem. Differently from BC, in RL the network is trained by
repeatedly interacting with a large number of realizations of the environment. In
practice, the training consists in simulating the problem dynamics and maximizing a
so-called reward function, which accounts for the OCP’s merit index and a measure
of the performance of the NN in approximating the problem’s model and constraints,
to turn the NN into an optimal control policy. Although RL is quite a novel research
trend among the aerospace community, several articles have been published on
the subject in the last few years, with application to the powered descent landing
problem [121, 122], low-thrust transfers [123–125], spacecraft rendezvous [126, 127],
proximity operations [128], and terminal guidance [129].

Machine learning techniques as those previously mentioned are highly appealing
for real-time guidance applications, as the low evaluation times and high accuracy in
function approximation of NNs provide a computationally light, closed-form control

2.4 Alternative Methods 20

law, specifically tailored to the considered problem. Also, the training of the NNs
with datasets that cover large portions of the problem’s domain, as in BC, or in
perturbed simulated environments, as in RL, provides an intrinsic layer of robustness
to the resulting policies, which may improve the effectiveness of these approaches
when considering off-nominal conditions. However, the extensive computational
effort needed for the training process and the absence of theoretical guarantees on
the effectiveness and actual robustness of such policies still limit their practical
application to relatively simple problems.

21

Chapter 3

Convex Optimization

Convex optimization is a class of mathematical programming with polynomial com-
plexity for which highly efficient numerical algorithms that converge in a limited,
short, time exist. Thanks to the theoretical guarantees on the optimality of the
attained solution and the computational efficiency, convex optimization is a highly
appealing tool to solve optimal control problems. In this chapter, the general formu-
lation of several classes of convex programming problems of increasing complexity,
starting from linear programming up to second-order cone programming, is pre-
sented. Also, convexification strategies to convert a nonconvex problem into a convex
one or a sequence of convex problems are detailed along with proper safeguarding
modifications to the original problem, such as virtual variables or trust regions.
An example nonconvex problem is solved with convex optimization techniques to
demonstrate the effectiveness of the presented strategies.

3.1 Preliminaries
This section introduces a few fundamental definitions and concepts that will be
frequently used throughout this thesis.

3.1.1 Linear and Convex Functions
A linear function is a function f : X → R that satisfies the equality

f(αx+ βy) = αf(x) + βf(y) (3.1)

for all x, y ∈ X and for all α, β ∈ R.
Instead, a convex function is a function g : X → R that satisfies the inequality

g(αx+ βy) ≤ αg(x) + βg(y) (3.2)

for all x, y ∈ X and for all α, β ∈ [0, 1] such that α+ β = 1. So, convexity is more
general than linearity, as the inequality sign is less restrictive than the equality sign
and Eq. (3.2) must hold only for certain values of α and β. Thus, any linear function
is also a convex function.

3.1.2 Affine and Convex Sets
A set A is affine if the line through any two distinct points in A lies in A, that is, if
for any x1, x2 ∈ A

θx1 + (1 − θ)x2 ∈ A, θ ∈ R (3.3)

3.1 Preliminaries 22

So, A contains the linear combination of any two points in A, provided that the
coefficients of the linear combination sum to one.

Instead, a set C is convex if the line segment between any two points in C lies
in C, that is, that is, if for any x1, x2 ∈ C

θx1 + (1 − θ)x2 ∈ C, θ ∈ [0, 1] (3.4)

The definition of a convex set is more general than that of an affine set, as Eq. (3.4)
must be satisfied only for some values of θ. Therefore, every affine set is also convex,
since it contains the entire line between any two distinct points in it, and therefore
also the line segment between the points.

Equation (3.4) can be extended to multiple points. Indeed, if xj ∈ C for
j = 1, . . . ,m and C is convex, then

θ1x1 + · · · + θmxm ∈ C, θj ≥ 0,
∑

j

θj = 1 (3.5)

The sum θ1x1 + · · · + θmxm is called a convex combination of the points xj . Analo-
gously to affine sets, a set is convex if and only if it contains every convex combination
of its points.

3.1.3 Cones
A set K is called a cone if for every x ∈ K

θx ∈ K, θ ≥ 0 (3.6)

A cone K is a convex cone if it is a convex set. In this case, according to Eq. (3.5),
the following property holds

θ1x1 + · · · + θmxm ∈ K, θj ≥ 0 (3.7)

with xj ∈ K for j = 1, . . . ,m. So, if xj are in a convex cone K, then every
nonnegative linear combination (also called a conic combination) of xj is in K.

3.1.4 Hyperplanes and Polyhedra
A hyperplane is a set of the form {

x
∣∣∣ aTx = b

}
(3.8)

where a ∈ Rn, a ̸= 0, and b ∈ R. Thus, an hyperplane is the solution set of a
nontrivial linear equation and, hence, an affine set.

A hyperplane divides Rn into two halfspaces. A (closed) halfspace is a set of the
form {

x
∣∣∣ aTx ≤ b

}
(3.9)

where a ̸= 0. Thus, a hyperplane is the solution set of a nontrivial linear inequality,
and is thus a convex, but not affine, set.

A polyhedron is defined as the solution set of a finite number of linear equalities
and inequalities{

x
∣∣∣ aT

j x ≤ bj , j = 1, . . . ,m, cT
j x ≤ dj , j = 1, . . . , l,

}
(3.10)

Thus, a polyhedron is the intersection of a finite number of halfspaces and hyperplanes.
Every polyhedron is a convex set. Also, all affine sets (e.g., hyperplanes and lines)
and halfspaces are polyhedra. A bounded polyhedron is sometimes called a polytope.

3.2 Convex Programming Problems 23

3.2 Convex Programming Problems
3.2.1 Linear Programming
A linear programming (LP) problem is the simplest class of optimization problems.
The canonical form of such a problem is

min
x

cTx (3.11)

s.t. Ax = b (3.12)
x ≥ 0 (3.13)

where x is the vector of decision variables and A, b, and c are constant coefficient
matrices and vectors. The objective function and the constraints are all affine
functions of the optimization variables. Thus, solving a LP problem consists in
finding the non-negative values x that minimize the linear objective function over a
polyhedron.

3.2.2 Quadratic Programming
If the objective function in Eq. (3.11) is replaced by a quadratic function of the
decision variables, then the problem is a quadratic programming (QP) problem and
can be expressed as

min
x

xTQx+ cTx (3.14)

s.t. Ax = b (3.15)
x ≥ 0 (3.16)

Thus, the constraints are, at most, linear, but the objective is quadratic, hence
featuring a greater complexity than the LP problem. It is worth mentioning that if
Q is a positive semi-definite (PSD) matrix (i.e., xTQx ≥ 0 ∀x), the QP problem
is convex and it can be solved in polynomial time. Otherwise, if Q is not positive
semi-definite, then the problem is NP-hard and it can feature multiple local minima
and stationary points.

3.2.3 Quadratically-Constrained Quadratic Programming
If not only the objective function but also the constraints are quadratic, then the
resulting problem is referred to as a quadratically-constrained quadratic programming
(QCQP) problem. The canonical form of a QCQP is

min
x

xTQ0x+ cT
0 x (3.17)

s.t. xTQ1x+ cT
1 x ≤ r (3.18)

Ax = b (3.19)
x ≥ 0 (3.20)

As for the QP class, a QCQP problem is convex if Q0 and Q1 are positive semi-definite
matrices. Otherwise, the QCQP problem is NP-hard.

3.3 Convexification Methods 24

3.2.4 Second-Order Cone Programming
A class of problems that is closely related to the convex QP and QCQP is second-order
cone programming (SOCP). The canonical form of a SOCP is

min
x

cTx (3.21)

s.t. Ax = b (3.22)
∥Fx+ g∥2 ≤ hTx+ r (3.23)

Thus, a SOCP consists of a linear objective, linear equality constraints, and second-
order cone inequality constraints.

Note that all previous classes of (convex) problems can be cast as a SOCP.
For instance, the quadratic constraint in Eq. (3.18) is equivalent to the squared
second-order cone constraint in Eq. (3.23) and the quadratic term xTQ0x of the
objective in Eq. (3.17) can be added as an auxiliary variable ξ to the linear objective
function in Eq. (3.21) if ξ is constrained via a second-order cone constraint as

∥R0x∥2 ≤ ξ (3.24)

with R0 such that Q0 = RT
0 R0. So, a SOCP is a more general form than LP, convex

QP, and convex QCQP. Nevertheless, a SOCP problem can be solved in polynomial
time with interior-point algorithms.

3.3 Convexification Methods
Convex optimization can be used to solve complex real-world problem even though
these are not inherently convex. Indeed, by means of proper convexification tech-
niques, nonconvex constraints can be converted into convex expressions. Convexifi-
cation methods can be grouped into two main categories: lossless and successive
methods.

3.3.1 Lossless Convexification Methods
Lossless convexification techniques are extremely powerful tools in optimization,
as they can transform a nonconvex problem into a convex problem that shares
the same solution as the original one, without introducing any approximations.
Therefore, it is apparent that such expedients should be used whenever it is possible,
as they dramatically reduce the optimization problem complexity and do not alter its
solution. Lossless convexification methods consist of either carrying out a convenient
change of variables or relaxing some nonconvex constraint into a convex form.

Change of Variables

Changes of variables in optimal control problems generally aim at replacing nonlinear
terms with linear ones. According to the literature, nonlinear terms including both
state and control variables in the system dynamics should be avoided whenever
possible, as their presence leads to numerical issues, such as high-frequency jitters
in the solution [130]. This is typically the case of variable-mass systems, such as
chemically-propelled spacecraft, since the dynamics contain the term T /m, with T
denoting the thrust vector and m the mass. In this case, it is convenient to define a
new control variable [33]

ũ = T

m
(3.25)

3.3 Convexification Methods 25

in lieu of u = T .
In general, new control variables are introduced with the aim of formulating an

OCP with control-affine dynamics

dx

dτ
= f̂(x(τ),p, τ) +B(τ)ũ(τ) (3.26)

where ũ(τ) is the transformed control vector. The result of replacing u(τ) with ũ(τ)
is that the dynamics are linear in the control, as the input matrix B depends, at most,
on the independent variable τ . It is worth noting that f̂ may still be a nonlinear
function of the other optimization variables, so further changes of variables or other
convexification techniques must be employed to obtain a convex problem instance.
Indeed, usually the convexification process is not based on just one transformation
but, rather, consists of a combination of several convexification techniques that must
be mindfully tailored to the specific problem in exam.

Constraint Relaxation

The relaxation of a nonconvex constraint is another common convexification strategy.
The relaxation usually concerns substituting a quadratic equality constraint, such as

xTQx = qTx+ r (3.27)

with a quadratic inequality constraint,

xTQx ≤ qTx+ r (3.28)

Note that Eq. (3.27) is a nonconvex constraint, while Eq. (3.28) is convex if the
coefficient matrix Q is positive semi-definite.

A relaxation is said to be exact (or lossless) if the optimal solution of the relaxed
problem is the same as the original. Therefore, even though Eq. (3.28) defines a
larger feasible domain for x, the optimal solution of the OCP satisfies Eq. (3.28)
with the equality sign. In practice, this occurs because the relaxed domain of x
contains only solutions with values of the objective function equal to or worse than
those that lie in the original domain, thus the solutions that strictly satisfy Eq. (3.28)
are naturally discarded.

The exactness of a specific constraint relaxation is often rigorously provable by
using elements of optimal control theory. More detailed discussions will be presented
in the next sections and chapters, with the help of practical examples.

3.3.2 Successive Convexification Methods
When no lossless convexification method can be applied to convert a nonconvex
constraint into a convex one, successive convexification must be employed. Successive
convexification consists in replacing a nonlinear, nonconvex, constraint with a linear
expression. For instance, a general nonlinear constraint

g(x) ≤ 0 (3.29)

can be replaced with
g0(x̄) +Gx(x̄)x ≤ 0 (3.30)

where x̄ denotes a reference solution that is used to define the linear expression. The
resulting constraint in Eq. (3.30) is a linear function of the optimization variables x

3.3 Convexification Methods 26

and a general function of the reference values. Indeed, g0 and the matrix Gx are
(possibly nonlinear) functions only of the reference solution.

There are multiple ways of defining the linearized constraint, but, in general,
it must be ensured that Eq. (3.30) is equivalent to Eq. (3.29) whenever x = x̄.
Indeed, Eq. (3.30) is just an approximation of the original constraint of Eq. (3.29),
but successive convexification is based on the fact that if the difference between
the optimal solution and the reference values is small enough, then the linearized
constraint approximates with great accuracy the original constraint.

To achieve convergence of the optimal and reference solutions, a sequential convex
optimization procedure must be implemented, where, at every iteration, a convex
problem is solved and the obtained solution is used to update the reference values.
Due to the fact that a sequence of convex problems is solved, these methods are
called successive convexification methods. The algorithm is said to converge when
the difference between the optimal and reference solution goes below a desired
threshold, and the converged solution satisfies Eq. (3.29). Convergence of the
successive convexification algorithm can be theoretically guaranteed only under
appropriate assumptions, but numerical evidence proves that convergence can be
achieved also in more general cases.

A general way of obtaining the linearized expression of Eq. (3.30) starting from
Eq. (3.29). is successive linearization. In practice, successive linearization consists in
replacing a nonlinear expression with its first-order Taylor series expansion around a
reference solution. Taylor series expansions provide quite accurate approximations,
as long as the solution does not deviate excessively from the reference values. For
instance, the general nonlinear constraint in Eq. (3.29) is linearized as

g(x̄) + ∂ḡ

∂x
(x− x̄) ≤ 0 (3.31)

Note that the Jacobian matrix ∂ḡ/∂x is evaluated on the reference solution.
Despite the need to analytically derive the Jacobian matrix, which is the main

downside of this strategy, successive linearization is a very powerful tool since it can
be applied to any nonlinear constraint. This is usually the preferred way to handle
nonlinear system dynamics, which are rarely suitable for any lossless convexification
technique.

The linearized dynamics can be expressed as

dx

dτ
= f(x,u,p, τ) ≈ Ax+Bu+ Pp+ c (3.32)

where the matrices A, B, and P , and the vector c are evaluated on the reference
solution and are defined as

A = ∂f

∂x
(x̄, ū, p̄, τ) (3.33)

B = ∂f

∂u
(x̄, ū, p̄, τ) (3.34)

P = ∂f

∂p
(x̄, ū, p̄, τ) (3.35)

c = f̄ −Ax̄−Bū− P p̄ (3.36)

In the literature [31], any method that is not based on Taylor series expansions
for deriving the form in Eq. (3.30) starting from the nonlinear constraint in Eq. (3.29)
is referred to as successive approximation. Successive approximations are generally

3.4 Virtual Controls and Buffer Zones 27

easier to implement than Taylor series, as no analytical derivation of the Jacobian
matrix is needed; however, a suitable ad hoc approximation of the nonlinear constraint
must be devised.

3.4 Virtual Controls and Buffer Zones
The linearization of a nonconvex problem may generate an infeasible convex problem,
even though the original formulation is feasible. This phenomenon is known as
artificial infeasibility [131–133]. This is a very undesirable phenomenon, as successive
convexification is based on solving a sequence of problems, and, if one intermediate
problem cannot be solved, then the entire process may end prematurely.

To prevent the occurrence of an infeasible problem, additional unconstrained
variables q, referred to as virtual controls, are added to the linearized dynamics

dx

dτ
= Ax+Bu+ Pp+ c+ q (3.37)

The addition of the virtual control signal makes any state x reachable in a finite
time, thus removing any infeasibility that might be related to the linearization of
the system dynamics.

Analogously, since the artificial infeasibility may arise also from the linearization
of other constraints, additional free variables w should be included to relax such
constraints. The introduction of these variables solves the infeasibility issue by
defining a virtual buffer zone, and w are thus called virtual buffers [52, 131]. For
instance, let us consider a linearized constraint such as in Eq. (3.31). If the linearized
expression may be a source of artificial infeasibility, then it must be replaced with
the buffered constraint

g(x̄) + ∂ḡ

∂x
(x− x̄) + w ≤ 0 (3.38)

Both virtual controls and virtual buffers should be used only when necessary by
the SOCP solver, as they are nonphysical variables. To ensure a correct behavior,
penalty terms must be added to the objective function of the convex problem , such
as

Jq = λqPq(q) (3.39)
Jw = λwPw(w) (3.40)

where Pq(·) and Pw(·) are suitable penalty functions and λq and λw denote positive
penalty weights. The penalty terms must highly penalize the use of the virtual
variables. However, excessively high coefficients in the objective function should be
avoided, as they may introduce numerical issues and hinder convergence; on the other
hand, too small penalties may lead to a nonphysical solution that actively exploits
virtual controls and buffers. Nevertheless, the process of selecting the value of the
penalty weights is generally straightforward, as finding the right order of magnitude
is usually enough to ensure convergence of q and w below a desired tolerance. For
instance, suitable values of λq and λw can be found through a trial-and-error process,
starting with very low weights and increasing the weights until sufficiently large
values that prevent the unnecessary use of the virtual variables are found.

3.5 Trust Regions 28

3.5 Trust Regions
Another undesired effect due to the linearization is artificial unboundedness [36, 131,
132], that is, the convexified problem may appear unbounded (i.e., the objective
function can be improved indefinitely without violating the constraints) even though
the original problem is not. This phenomenon generally occurs when the optimization
variables deviate excessively from the reference values, hence the first-order Taylor
series expansions do not represent anymore valid approximations of the original
expressions. To mitigate the risk of artificial unboundedness, a common approach
consists in limiting the search space to a so-called trust region.

To enforce a trust region, the deviation from the reference values must be
constrained somehow. For instance, a radius δi can be chosen for each optimization
variable xi and the following constraint can be imposed

|xi − x̄i| ≤ δi (3.41)

If the value of the trust radius δi is prescribed, then the trust region is said to be
hard, meaning that the maximum deviation is fixed and cannot be violated by the
solution. On the other hand, if δi is an optimization variable itself and it is included
in the objective function through a proper penalty term, then the trust region is
soft, as the algorithm must autonomously determine its optimal value.

Hard trust regions allow to solve a problem with full optimality if the optimal
solution lies in the (now-limited) search space. Thus, the choice of the trust radius is
crucial for the success of a hard trust region approach. Adaptive hard trust regions
have been proposed as an improvement of standard hard trust regions. When using
an adaptive trust region, the value of the trust radius is not fixed through all the
solution process, but updated at every iteration of the successive convexification
algorithm according to a set of rules. In general, the radius update criteria are
aimed at improving the convergence rate or facilitating rigorous proofs of guaranteed
convergence [37]. Examples of these rules vary from simple exponentially shrinking
sequences [44] to sophisticated algorithms that evaluate the linearization error at
each iteration and decide whether to expand or shrink the search space [131, 134].

Soft trust regions, instead, autonomously determine the trust radius size, without
any initialization. However, these may lead to a suboptimal solution if the penalty
weight is too high. Conversely, artificial unboundedness may still arise if a low weight
is picked. Thus, the user must be able to select a suitable penalty weight, which must
not be exaggeratedly high nor low. Whether it is easier to select a suitable penalty
weight rather than a starting trust radius depends on the specific problem instance.
In general, if an accurate reference solution is provided, then a soft trust region is
very effective; this is the case of real-time guidance, where only small deviations
from the nominal path are expected [135]. On the other hand, when designing a
trajectory from scratch, large deviations from the reference values are expected and
an adaptive hard trust region with a large initial radius is generally more effective
than a soft trust region [134].

Trust regions can be also classified according to which variables are constrained.
Indeed, constraining all variables may be unnecessary, as only some variables may be
responsible for artificial unboundedness. For instance, free-time problems are usually
more sensitive to changes in time-lengths than in other variables, so a trust region on
the duration of the arcs may be sufficient to prevent unboundedness [136, 137, 137].
Also, the linearization of nonlinear dynamics and constraints may require a trust
region on both state and control variables, such as in Refs. [44, 135, 138, 139].
However, if the OCP features control-affine dynamics and no linearized control

3.6 Reference Solution Update 29

constraint, then control variables do not need to be constrained through a trust
region, as the linearized expressions do not depend on reference controls [140, 141].
Finally, there are some cases where constraining some variables implicitly ensures
that also other variables will be constrained. For instance, in Refs. [36, 131, 134] the
authors argue that enforcing a trust region solely on the control variables implicitly
limits the deviation of the state variables among successive iterations.

It is worth mentioning that Eq. (3.41) serves only as an example, as the trust
region constraint can be posed in many ways. Indeed, trust regions can be classified
also according to how the deviation from the reference values is evaluated and
constrained. It is common to group multiple variables together and constrain the
p-norm of their deviation (with p = {1, 2,∞} to ensure convexity) to be smaller
than the trust radius. For instance,

∥x− x̄∥p ≤ δ (3.42)

Otherwise, quadratic trust regions, such as
(x− x̄)T (x− x̄) ≤ δ (3.43)

are also quite common in the literature [45, 138, 142].

3.6 Reference Solution Update
Successive convexification methods are based on replacing nonlinear (nonconvex)
expressions with linear expressions defined around a reference solution {x̄}. In the
first iteration, the reference values must be provided by the user, and this process is
generally called initialization. In later iterations, the reference solution is recursively
updated with the computed solutions. Most successive convexification algorithms
update the reference solution by replacing it with the last found solution; thus, the
i-th problem is formulated using the (i− 1)-th solution as reference.

A more general update strategy consists in computing the reference solution for
the i-th problem as a weighted sum of the K previous solutions. Thus,

x̄(i) =
K∑

k=1
αkx

max{0,(i−k)} (3.44)

where αk are constant weights and x(i) denotes the solution to the i-th problem.
Note that if i < K then the initial reference solution x(0) appears multiple times in
the sum.

This update method is called filtering [38, 136]. Using multiple previous solutions
generates a smoother sequence of reference solutions, as the weighted sum of different
solutions filters out possible diverging intermediate iterations. As a result, the
algorithm is less sensitive to artificial unboundedness, as deviations from the initial
reference solutions are intrinsically mitigated by the reduced weight given to every
new iteration. Thus, trust regions or other expedients typically necessary to prevent
artificial unboundedness can be avoided or used to a lesser extent.

Indeed, filtering can be a greatly appealing alternative to trust regions since
it does not introduce any additional constraints or penalty terms to the problem,
retaining its original objective and formulation. The downside of using multiple
solutions is generally a slower convergence rate, as changes to the reference solution
require more iterations than in a last-found-solution update approach. Finally, the
filtering technique can be used for the update of all optimization variables: states,
controls, and parameters. Some of these variables may be also subject to a trust
region constraint, as filtering does not exclude the use of a trust region.

3.7 Convergence Criteria 30

z

x

y

θ

φ

r

er

eθeφ

Ecliptic plane

Figure 3.1. Reference frames used for the low-thrust transfer.

3.7 Convergence Criteria
Eventually, the sequential algorithm terminates when all the following criteria are
met:

(i) the difference between the computed solution and the reference one converges
below an assigned tolerance

∥x− x̄∥∞ < ϵtol (3.45)

(ii) the computed solution adheres to the nonlinear dynamics within a tolerance
ϵf in each phase

max
j

∥∥∥ (Ajxj +Bjuj + Pp+ cj + qj) − f (xj ,uj ,p, τj)
∥∥∥

∞
< ϵf (3.46)

where j is the discretization node index;

(iii) the virtual buffers of the computed solution are below the dynamics tolerance

∥w∥∞ < ϵf . (3.47)

3.8 Example: Low-Thrust Interplanetary Mission
As an example, the use of convex optimization techniques on a low-thrust trajectory
design problem is investigated. This mission scenario considers a spacecraft that is
leaving the Earth with zero hyperbolic excess velocity and must rendezvous with
Mars at a prescribed final time.

3.8.1 System Dynamics
The spacecraft is modeled as a point mass subject to a three-degree-of-freedom
translational motion. The state variables are the position vector r, the velocity
vector v, and the spacecraft mass m. Spherical coordinates are adopted for describing

3.8 Example: Low-Thrust Interplanetary Mission 31

the spacecraft position, while velocity is expressed using Cartesian components in a
Local-Vertical-Local-Horizontal (LVLH) frame. The reference frames are shown in
Fig. 3.1. Therefore, the state vector x is

x =
[
r θ φ vr vθ vφ m

]
(3.48)

where r is the distance from the Sun, θ is the right ascension (i.e., the angular
displacement from the initial position), φ is the elevation (i.e., the angle between the
position vector and the ecliptic), and vr, vθ, and vφ are the components of velocity
along the three axes in the spherical coordinate system (er, eθ, eϕ).

The control to be optimized is the thrust vector T , which is expressed in the
same frame as the velocity,

T =
[
Tr Tθ Tφ

]
(3.49)

The low-thrust engine can regulate the thrust magnitude in a limited range. Thus,

∥T ∥ ≤ Tmax (3.50)

The considered equations of motion for the system are

ṙ = vr (3.51)

θ̇ = vθ

r cosφ (3.52)

φ̇ = vφ

r
(3.53)

v̇r =
v2

θ + v2
φ

r
− µ

r2 + Tr

m
(3.54)

v̇θ = −vrvθ

r
+ vθvφ

r
tanφ+ Tθ

m
(3.55)

v̇φ = −vrvφ

r
− v2

θ

r
tanφ+ Tφ

m
(3.56)

ṁ = −T

c
(3.57)

where µ is the gravitational parameter of the Sun and c is the effective exhaust
velocity of the engine, defined as the product of the Earth’s gravity acceleration at
sea level g0 by the specific impulse Isp.

3.8.2 Optimal Control Problem
The main goal of the optimization is to determine the control law that maximizes
the final mass, so the objective function J to minimize is:

J = −m(tf) (3.58)

where tf denotes the (fixed) final time.
The initial state is supposed to be fully assigned

x(t0) = x̃0 (3.59)

Note that, since the initial mass is prescribed, minimizing Eq. (3.58) is equivalent to
minimizing the propellant consumption.

3.8 Example: Low-Thrust Interplanetary Mission 32

At the final time, the spacecraft must rendezvous with Mars, that is, it must
share the same position and velocity of the planet at that time. Thus, the following
final conditions are enforced

r(tf) = r̃f (3.60)
v(tf) = ṽf (3.61)

Therefore, the resulting optimal control problem, P0, is

P0 : min
x, T

(3.58) (3.62)

s.t. (3.50), (3.51)–(3.57), (3.59), (3.60), (3.61)

3.8.3 Convex Transcription
The problem P0 is not convex due to the nonlinear dynamics in Eqs. (3.51)–(3.57).
However, it can be converted into a convex problem through a combination of lossless
and successive convexification methods.

First, a change of variables is carried out to replace nonlinear terms in the dy-
namics by linear terms and obtain a control-affine dynamical system as in Eq. (3.26).
The new control variables are introduced:

ur = Tr

m
(3.63)

uθ = Tθ

m
(3.64)

uφ = Tφ

m
(3.65)

uN = T

m
(3.66)

These can be collected into the new control vector, that is,

u =
[
ur uθ uφ uN

]
(3.67)

Substituting T with u in Eqs. (3.54)–(3.56) directly produces control-affine
equations, but the same is not true for Eq. (3.57), which becomes

ṁ = −muN

c
(3.68)

So, a further change of variables is carried out and the new state variable is
introduced

z = lnm (3.69)
The introduction of the z variable requires to reformulate the objective function,
which can be replaced by

J = −z(tf) (3.70)
Note that minimizing the new objective is equivalent to minimizing Eq. (3.58), as
the change of variable in Eq. (3.69) is a monotonic transformation.

By replacing the mass in Eq. (3.68) with z, defined in Eq. (3.69), the equations
of motion are linear in the control u

ṙ = vr (3.71)

3.8 Example: Low-Thrust Interplanetary Mission 33

θ̇ = vθ

r cosφ (3.72)

φ̇ = vφ

r
(3.73)

v̇r =
v2

θ + v2
φ

r
− µ

r2 + ur (3.74)

v̇θ = −vrvθ

r
+ vθvφ

r
tanφ+ uθ (3.75)

v̇φ = −vrvφ

r
− v2

θ

r
tanφ+ uφ (3.76)

ż = −uN

c
(3.77)

Since the equations are still nonlinear in the state variables, Eqs. (3.71)–(3.77) must
be linearized around a reference solution {x̄, ū} and the dynamics assume the form

ẋ = Ax+Bu+ c (3.78)

with c = f̄ − (Ax̄ + Bū) and A and B defined as in Eqs. (3.33) and (3.34) and
evaluated on the reference solution. The full expressions of matrices A and B are
reported in Appendix A.

The new control variables are not independent of each other. In fact, they must
satisfy the following constraint

u2
r + u2

θ + u2
φ = u2

N (3.79)

The constraint in Eq. (3.79) is a nonlinear, nonconvex, equality constraint. However,
its relaxation, attained by substituting the equality sign with the inequality sign

u2
r + u2

θ + u2
φ ≤ u2

N (3.80)

is convex and corresponds to a second-order cone constraint.
The convex relaxation defines a feasible set larger than the original one, but the

optimal solution satisfies Eq. (3.80) with the equality sign, making the relaxation
lossless. Intuitively, this can be understood by noting that the left-hand side
represents the acceleration provided by the engine to the system, while the right-
hand side is a measure of the propellant mass consumption, as the mass flow rate
is proportional to uN . So, if Eq. (3.80) is satisfied with the inequality sign, the
acceleration is smaller than the maximum acceleration that the engine could provide
for that value of uN . Since the goal of the optimization is to minimize the propellant
consumption, such a behavior will be automatically discarded by the solver, as only
solutions that satisfy Eq. (3.80) is with the equality sign are optimal. The rigorous
proof that this relaxation is exact is provided in Appendix B for the more general
problem of the launch vehicle.

The thrust-magnitude constraint in Eq. (3.50) must be enforced in terms of u.
Specifically, the following nonlinear path constraint is added to the OCP

uN ≤ Tmaxe
−z (3.81)

The introduction of Eq. (3.81) is the downside of applying this change of variables,
as such a constraint is nonconvex and needs to be linearized. Nevertheless, the
advantages of solving a control-affine problem outweigh the disadvantages related to
the inclusion of this nonlinear constraint, as the overall complexity of the problem

3.8 Example: Low-Thrust Interplanetary Mission 34

Table 3.1. Low-thrust trajectory design problem data.

Quantity Value Unit
µ 1.3271 × 1011 km3/s2

tf 253 days
Tmax 0.55 N
c 32.373 km/s
m(t0) 659.3 kg
r(t0) 1 AU
θ(t0) 0 deg
ϕ(t0) 0 deg
vr(t0) 0 km/s
vθ(t0) 29.784 km/s
vϕ(t0) 0 km/s
r(tf) 1.52 AU
θ(tf) 180 deg
ϕ(tf) 1.85 deg
vr(tf) 0 km/s
vθ(tf) 24.16 km/s
vϕ(tf) 0 km/s

is reduced. Equation (3.81) is replaced with its first-order Taylor series expansion
around a reference solution, that is

uN ≤ Tmaxe
−z̄(1 − (z − z̄)) (3.82)

To sum up, the following convex optimal control problem is formulated

P1 : min
x, u

(3.70) (3.83)

s.t. (3.59), (3.60), (3.61), (3.78), (3.80), (3.82)

Eventually, to obtain a SOCP program, P1 must be discretized. To this aim, a
trapezoidal collocation scheme, as described in Section 2.3.2 can be employed. The
discrete problem is then solved recursively until the convergence criteria Eqs. (3.45)
and (3.46) are met. Note that, since no virtual buffers were introduced, the criterion
in Eq. (3.47) is neglected.

3.8.4 Numerical Results
The data used to formulate the problem instance are reported in Table 3.1 and
are the same used in Ref. [42]. Since normalization is a key point in all numerical
solution approaches, in the present application, all the data are scaled by the initial
radius, the corresponding circular velocity, and the initial mass of the spacecraft,
which are used as nondimensionalization factors. The values used for the tolerances
of the successive convexification algorithm are ϵtol = 10−3 and ϵf = 10−6. Note that
no virtual controls or virtual buffers were introduced for this problem, as their use
was deemed unnecessary. Also, filtering or trust regions were not implemented.

As for the discretization, a starting mesh of M = 41 equally spaced nodes in time
was used to collocate the dynamics using the trapezoidal rule. Then, an adaptive

3.8 Example: Low-Thrust Interplanetary Mission 35

mesh refinement process, as described in Section 2.3.2 was carried out to add nodes
in the regions where the discretization error was above tolerance.

The starting reference solution was generated by forward propagation of the
original equations of motion, Eqs. (3.51)–(3.57), starting from the prescribed initial
state and assuming identically null thrust. Since at the initial time the spacecraft is
supposed to be on the circular Earth’s orbit, the first guess trajectory is simply a
propagation of such orbit from t0 to tf .

Figure 3.2 shows the optimal trajectory and the thrust direction. The thrust
magnitude is reported in Fig. 3.3. The optimal control features a bang-off-bang
structure, as usually happens when minimizing the propellant consumption. Specifi-
cally, there are two burn phases, at the start and at the end of the transfer, and a
short burn at an intermediate time. The whole mass profile is plotted in Fig. 3.4.
The overall propellant consumption is 127.45 kg that corresponds to a final mass of
531.85 kg. The results are in good agreement with Ref. [42], where the arrival mass
is 530.33 kg. The slight difference (1.52 kg) is ascribable to a numerical error due to
the different discretization grid, SOCP solver, or tolerances used.

Convergence was attained in 5 iterations in 0.1 s on the starting grid of 41 nodes.
After assessing the discretization accuracy of said grid, a mesh refinement process
was carried out. In particular, three refinement steps were needed to achieve a
discretization error, estimated as in Eq. (2.24), below 10−6 in each segment, using a
total of 85 unevenly spaced nodes. Figure 3.5 shows the sequence of used grids. In the
first iteration, the new nodes (colored in blue) were added diffusely over the starting
grid, except for the interval t ∈ [150, 210] days that was deemed sufficiently accurate.
This is due to the fact that the initial grid is quite coarse, so the discretization is
inaccurate in most intervals. In the second and third iterations, fewer nodes are
added and only in the neighborhood of the ignition or cut-off of the engine, as
the grid is sufficiently accurate to discretize the continuous dynamics, but it needs
greater density in the regions where the control is discontinuous.

Figure 3.6 reports the relaxation error due to replacing Eq. (3.79) with Eq. (3.80)
to obtain a convex problem. In particular, the plot reports the absolute value of
the difference between the left and right-hand side of the constraint. Since the
error is always below the solver feasibility tolerance (that is, the maximum tolerated
violation of equality constraints, set to 10−6), the relaxation is exact.

3.8 Example: Low-Thrust Interplanetary Mission 36

(a) Two-dimensional view.

(b) Three-dimensional view.

Figure 3.2. Optimal low-thrust trajectory.

3.8 Example: Low-Thrust Interplanetary Mission 37

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

||T
||

(%
 o

f
T

m
ax

)

Time (days)

Figure 3.3. Optimal thrust profile.

 520

 540

 560

 580

 600

 620

 640

 660

 0 50 100 150 200 250

m
 (

k
g
)

Time (days)

Figure 3.4. Spacecraft mass over time.

0 50 100 150 200 250

Time, days

0

1

2

3

It
er

at
io

n

Figure 3.5. Evolution of the discretization grid due to the adaptive mesh refinement
process.

3.8 Example: Low-Thrust Interplanetary Mission 38

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

 0 50 100 150 200 250

R
el

ax
at

io
n

 e
rr

o
r

Time (days)

Figure 3.6. Control constraint relaxation error.

39

Chapter 4

Launch Vehicle Ascent
Trajectory Optimization

This chapter introduces the launch vehicle ascent trajectory design problem. First,
details on VEGA, which is the considered vehicle in this thesis, are provided. Second,
the typical phases of a rocket ascent trajectory are described along with the specific
flight strategy of a four-stage vehicle. Then, the considered dynamical model
is presented, detailing the assumptions and the forces taken into account. The
design of the ascent trajectory is then cast an optimal control problem, which is
inherently nonconvex, and is thus later converted into a sequence of convex problems
through state-of-the-art convexification methods. Finally, a simple way to initialize
the optimization problem and a continuation strategy to reduce its sensitivity to
inaccurate initial guesses are presented.

4.1 VEGA Launch Vehicle
In this thesis, the launch vehicle that is being considered is VEGA (acronym for
Vettore Europeo di Generazione Avanzata). VEGA is an expendable four-stage
launch system designed to send small satellites into low Earth orbit (LEO) and
developed within a European Space Agency (ESA) program with the support of
Italy, Belgium, the Netherlands, Spain, Sweden, Switzerland, and France.

The VEGA program started in the 1990’s, when studies were carried on about
the possibility of using Ariane solid booster technology to design a small launch
vehicle that would complete the Ariane fleet. In fact, for many years, Ariane was
Europe’s only launch system and was used to guarantee access to space to European
countries. This market alone could not sustain the availability and reliability of
the service, so Ariane has evolved to meet the needs of the worldwide commercial
market, where it has been extremely successful. In 2011, a new launch site was built
in French Guiana for the Soyuz rocket in order to complete the performance range
offered by Ariane. A comparison between the vehicles currently operated by ESA is
illustrated in Fig. 4.1.

VEGA began as a national Italian project aimed at replacing the retired US
Scout rocket. In 1998, after the Italian space agency proposed VEGA as an European
project, it officially became an ESA project [143]. The launch vehicle prime contractor
role was entrusted to the Italian company ELV S.p.A. (renamed Spacelab S.p.A.
in 2018), owned jointly by Avio and the Italian space agency (ASI). The maiden
flight occurred on 13 February 2012, followed by other 19 flights (counting only two
failures).

4.2 Phases 40

Figure 4.1. Europe’s launch vehicles: VEGA, Soyuz, Ariane 5-GS, and Ariane 5-ECA.

Figure 4.2 illustrates the stage configuration of VEGA. VEGA is one of the few
four-stage launch vehicles. The first three stages are solid rocket motors (SRMs),
named P80, Z23, and Z9, while the last stage is a small re-ignitable liquid rocket
engine, AVUM (Attitude and Vernier Upper Module). The P80 first stage is very
similar to the solid rocket boosters used on the Ariane 5. VEGA’s second and third
stages use Zefiro solid rocket motors, which are smaller both in diameter and in
overall length than P80. AVUM has a bipropellant main propulsion system for orbit
injection and a monopropellant propulsion system for attitude control. It offers a
great flexibility to servicing a wide range of orbits and allows the launch vehicle to
deliver payloads to different orbits in case of shared launch.

4.2 Phases
In general, the ascent trajectory of a launch vehicle can be divided into several
phases. During each phase, the launch vehicle follows different guidance programs
to meet specific mission requirements through the entire ascent. In addition, there
are coasting phases that take place after the separation of each stage or between
firings of the same engine.

4.2.1 General Phase Sequence
The general phase sequence of an ascent trajectory is illustrated in Fig. 4.3. At the
initial time, the rocket stands vertical on the launch pad. After the liftoff, a vertical
ascent phase begins since the rocket cannot perform any maneuver and it has to
maintain the vertical attitude until it clears the pad and gets past the height of
the launch tower. The duration of this phase depends on the launch site structure.
For instance, the VEGA rocket lifts off from the Guiana Space Center, so it has to
ascend 73 m before rotating.

Once the rocket has cleared the launch pad, it can start rotating through a

4.2 Phases 41

Figure 4.2. VEGA launch vehicle.

Vertical ascent

Pitch-over

Atmosphere

Coasting arc

Gravity turn
(Stage 1)

Spent Stage
Return

Local tangent plane

Gravity turn
(Upper Stage)

Exoatmospheric
Flight

Figure 4.3. Phases of a typical launch vehicle ascent trajectory.

4.2 Phases 42

programmed rotation that takes place in a fixed vertical plane. This maneuver
is called pitch-over and is necessary to start a progressive rotation of the rocket
from the initial vertical orientation to the final quasi-horizontal orientation at the
burnout of the last stage. The pitch-over lasts only 5 to 20 seconds, depending
on the launch system, the target orbit, and other mission characteristics. During
this maneuver, the rocket rotates from the vertical orientation to an elevation (i.e.,
the angle between the rocket axis and the local horizontal) that also depends on
the considered mission and rocket. For certain launch vehicles a rotation of few
degrees is sufficient, while others require larger programmed rotations. The elevation
angle at the end of the pitch-over is usually called kick angle and it is an important
optimization parameter since small changes in its value can greatly affect the ascent
trajectory.

After the pitch-over, the rotation must continue, but, due to the presence of the
atmosphere, the only practical way to rotate the launch vehicle is a gravity turn
maneuver. Indeed, launch vehicles are structurally very stiff along their longitudinal
axis, but weak along the lateral ones, so that even a small traversal force (i.e., lift)
may cause structural failure. Thus, the gravity turn consists in maintaining a null
angle of attack by aligning the rocket axis with the relative velocity. In this way,
no lift is generated and the lateral load on the rocket is minimized. During the
gravity turn, the gravitational acceleration progressively rotates the rocket velocity,
as gravity, which acts in the radial direction, is no longer aligned with the thrust
(i.e. with the rocket longitudinal axis).

Once the rocket has reached a sufficiently high altitude and the atmosphere is
rarefied enough, the launch vehicle can follow a more efficient guidance law, as the
lateral aerodynamic load is no longer a concern. Indeed, the gravity turn is not an
optimal guidance program, but, rather, a necessary means to ascend through the
atmosphere with a slender vehicle.

Every time a stage burns out, it must separate from the rocket and, after a
minimum time interval that must elapse to ensure a safe separation, the following
stage can ignite. So, during the time interval that immediately follows the separation,
no thrust is generated and the trajectory is thus ballistic. These arcs are called
coasting phases. Coasting phases do not occur only at stage separation, but also
when a liquid rocket engine is turned off to be re-ignited later, as usually happens for
upper stages. If the coasting phases take place at low altitudes, then their optimal
duration corresponds exactly to the minimum value, in order to minimize the gravity
losses, otherwise their time-length must be determined by the optimization process.
Note that after each stage separation, a return phase also begins. Return arcs are
ballistic phases just as the coasting ones, as the spent stage is a passive object
subject only to gravity and the atmospheric forces. The difference between coasting
arcs and return phases lies in the fact that return phases end when the stage hits
the ground or splashes down in the sea.

4.2.2 VEGA’s Phase Sequence
The considered phase sequence for a VEGA-like launch vehicle is illustrated schemati-
cally in Fig. 4.4 and represents the typical flight strategy of a four-stage configuration.
Note that the phases are numbered progressively from 1 to 13 in chronological order,
with the relevant exception of the return phase, which, despite being the 13th arc,
chronologically starts at the burnout of the third stage, i.e., at the end of Phase 8,
and takes place concurrently with Phases 9–12. Hereinafter, let t(i)0 and t

(i)
f denote

the initial and final time of the i-th phase. For the sake of simplicity, if no phase
superscript is specified, then t0 and tf denote the liftoff time t(1)

0 and the fourth

4.3 System Dynamics 43

1. Vertical
ascent

2. Pitch-over

3. ZLGT 1

4. Coasting 1

5. ZLGT 2

6. Coasting 2

7. Stage 3
with fairing

8. Stage 3
w/o fairing

9. Coasting 3

10. Stage 4 (1)

11. Coasting 4

12. Stage 4 (2)13. Stage 3
Return

Figure 4.4. Phase sequence of a VEGA-like launch vehicle.

stage burnout t(12)
f , respectively. Likewise, let tR = t

(13)
f denote the return time of

the spent third stage.
The first stage ascent is divided into three phases to properly account for the

different guidance programs, namely, vertical ascent (Phase 1), pitch-over (Phase 2),
and gravity turn (Phase 3). The gravity turn maneuver continues for the entire
second stage burn, so Phase 5 lasts for the whole operation of Z23. The third
stage operates at sufficiently high altitudes and can adopt an optimal guidance
program, as aerodynamic loads do not represent a concern anymore. Since also the
thermal environment is less critical, during the third stage flight, the payload fairing
is jettisoned. Specifically, the fairing is released after an assigned (small) amount
of time that guarantees that the engine ignition transient is over and the vehicle
attitude is fully controllable at the jettisoning. To efficiently handle the related mass
discontinuity, the third stage operation is split into Phases 7 and 8 in correspondence
of the jettisoning. VEGA’s last stage performs a Hohmann-like maneuver and its
flight is conveniently split into two burn arcs, Phases 10 and 12, separated by a
coasting one, Phase 11. Note that three other brief coasting arcs (Phases 4, 6, and
9) are included at each stage separation. Finally, the return of the third stage is
included as Phase 13 of the OCP. The return of the previous stages is neglected since
their splash-down point is relatively close to the launch site and does not represent
a concern.

4.3 System Dynamics
The complete description of the rocket dynamics comprises three translational and
three rotational degrees of freedom. However, in the early phases of design, the
trajectory of the center of mass of the vehicle is of greater interest than its attitude
motion. Furthermore, the attitude of the launch vehicle only affects the trajectory in
the first phases, while its effect on the remainder of the ascent is minimal. Therefore,
in this study, rotational dynamics are neglected and the vehicle is modeled as a
point mass, in the context of a three-degree-of-freedom problem.

There are several possible choices for the state variables. The set used in this
study relies on the position vector r, the inertial velocity vector v, and the launch
vehicle mass m. Thus, the state vector is

x =
[
x y z vx vy vz m

]T (4.1)

4.3 System Dynamics 44

Note that the rocket position and velocity are expressed in Cartesian coordinates
with respect to an Earth-Centered Inertial (ECI) reference frame. In particular, the
x axis belongs to the Earth equatorial plane and passes through the meridian of the
launch site at the initial time, the z axis is aligned with Earth’s angular velocity,
and the y axis completes the right-hand frame. The main advantage of using this set
of state variables over, for example, a spherical coordinate system [134, 144], is the
fact that any trajectory can be studied, even missions to polar and high inclination
orbits, which are the typical targets for VEGA, without running into singularities.
As a downside, when using Cartesian coordinates, the terminal conditions result in
nonlinear expressions of the state variables.

The equations of motion for a non-lifting point mass in flight over a spherical
rotating planet are the following

ṙ = v (4.2)

v̇ = g + T

m
+ D

m
(4.3)

ṁ = −ṁe (4.4)

Indeed, the only forces acting on the system are the gravitational acceleration g,
the engine thrust T , and the atmospheric drag D. Also, the mass of the system
reduces over time due to the engine mass flow rate ṁe. In the following, each term
in Eqs. (4.2)–(4.4) is detailed.

4.3.1 Gravity
Rocket ascent trajectories studies often use a simple gravitational model, as the
effect of the gravitational perturbations on a launch vehicle is minimal and complex
models are used only in the advanced phases of trajectory design. In this thesis, a
basic gravitational model, which assumes a spherical Earth, has been considered.
So, the gravitational acceleration is modeled as

g = − µ

r3r (4.5)

where µ is Earth’s gravitational parameter.

4.3.2 Atmosphere
The atmosphere plays a major role in the rocket ascent trajectory. Indeed, the choice
of the atmospheric model radically affects the final results. An atmospheric model
provides the values of density ρ, pressure p, and temperature Θ for a discrete set of
altitudes h.

The most basic atmosphere model is the exponential one. The temperature is
assumed to be constant, while pressure and density decrease by a factor e over a
distance H. Thus,

ρ = ρ0e
− h−h0

H (4.6)

p = p0e
− h−h0

H (4.7)

ρ0, p0 and h0 are reference values. H is called scale height and can be computed as

H = RΘ
mg0

(4.8)

4.3 System Dynamics 45

Figure 4.5. Atmospheric density.

where R is the gas constant and m is the mean molecular mass. H can be assumed
constant over all altitudes or, in more accurate models, its value changes across
different altitude ranges. The former approach is of great interest because it can be
easily included in analytical solutions. However, it can be used only for problems
limited to a narrow range of altitudes since, actually, the scale height is a function
of altitude.

Because a launch vehicle altitude ranges from the sea level to orbital altitudes, a
more accurate atmospheric model must be used. In this respect, the U.S. Standard
Atmosphere 1976 model can be used to evaluate the air density and pressure as
functions of the altitude [145]. The latter is compared to the exponential one (with
H = 8.4 km) in Figs. 4.5 and 4.6. The density values of the two models are very
similar at lower altitudes (i.e., below 20 km), but at higher altitudes the standard
model is characterized by significantly lower densities than the exponential one.

It is worth noting that some atmospheric models are provided only at some
discrete altitudes; hence, the data must be interpolated. In particular, while temper-
ature can be simply interpolated linearly, pressure and density should be interpolated
exponentially (i.e., their logarithms are interpolated linearly), as this interpolation
technique represents quite accurately the real trend of p and ρ even over large
intervals of altitudes.

The atmosphere interacts with the rocket by means of the aerodynamic force.
The aerodynamic force is proportional to the relative velocity vrel. If the atmosphere
is assumed to be rotating along with the Earth, then the relative velocity is given by

vrel = v − ωE × r (4.9)

where ωE is Earth’s angular velocity.
The aerodynamic force component parallel to the relative motion of the rocket is

4.3 System Dynamics 46

Figure 4.6. Atmospheric temperature.

the drag force D, which is computed as

D = −1
2CDSrefρvrelvrel (4.10)

where CD is the drag coefficient, Sref is the reference surface, and ρ is the atmospheric
density.

Actually, there is also a component of the aerodynamic force perpendicular to the
relative velocity, that is, the lift. However, launch vehicle trajectories are designed
to avoid high lateral loads, so the lift is much smaller than the drag and it can be
neglected without loss of accuracy.

4.3.3 Propulsion
The last force acting on the launch vehicle is the rocket thrust T , whose magnitude
T depends on the engine and on the atmospheric conditions. In particular, the
engine is characterized by a vacuum thrust Tvac, which, for a solid rocket motor, is
a prescribed function of time that is unique for each engine. The actual thrust on
the vehicle depends also on the external pressure p as

T = Tvac − pAe (4.11)

where Ae is the nozzle exit area.
While the thrust magnitude is prescribed by the motor characteristics and

the atmospheric conditions, the thrust direction vector T̂ must be optimized and
represents the control u. Its elements are expressed in the ECI frame and, since T̂
is a unit vector, the following relationship must be satisfied

T̂ 2
x + T̂ 2

y + T̂ 2
z = 1 (4.12)

4.4 Optimal Control Problem 47

However, since the thrust direction T̂ can be optimized only in some propelled
arcs, it may be convenient to fictitiously split the thrust magnitude T into three
contributions to account for the different guidance programs. For instance, during
the gravity turn maneuver (Phases 3 and 5) the rocket axis, which corresponds
to the thrust direction in a three-degree-of-freedom model, must be aligned with
the relative-to-atmosphere velocity vrel. Likewise, during the liftoff (Phase 1) the
thrust must be aligned with the local vertical r̂. Thus, let Ta denote the optimally
controlled thrust contribution, while Tb and Tc denote the thrust contribution during
the gravity turn and vertical ascent, respectively. Only one of these three terms can
be non-zero at a given time, depending on the flight phase. Thus,

Ta =
{
Tvac − pAe in Phases 2, 7, 8, 10, and 12
0 in the other phases (4.13)

Tb =
{
Tvac − pAe in Phases 3 and 5
0 in the other phases (4.14)

Tc =
{
Tvac − pAe in Phase 1
0 in the other phases (4.15)

So, the thrust force is expressed as

T = TaT̂ + Tbv̂rel + Tcr̂ (4.16)

Note that Tb and Tc are multiplied by the relative velocity unit vector and the radial
direction vector in Eq. (4.19), to constrain the thrust vector in the gravity turn and
vertical ascent directions.

The rocket propulsion is characterized by a continuous propellant mass ejection.
The mass flow rate ṁe is a function of time and depends on the engine. In general,
it is related to the thrust magnitude by the specific impulse Isp as

ṁe = T

g0Isp
(4.17)

where g0 is the gravity acceleration at sea level.
In this thesis, the vacuum thrust Tvac and mass flow rate ṁe time laws of the

solid rocket motors are prescribed and modeled as linear functions of time. Instead,
AVUM is assumed to generate a constant vacuum thrust and mass flow rate when
in operation.

4.3.4 Equations of Motion
The resulting equations of motion are

ṙ = v (4.18)

v̇ = − µ

r3r + Ta

m
T̂ + Tb −D

m
v̂rel + Tc

m
r̂ (4.19)

ṁ = −ṁe (4.20)

4.4 Optimal Control Problem
The design of a launch vehicle ascent trajectory is generally carried out by solving
an optimal control problem. The goal of the optimization is to find the control law

4.4 Optimal Control Problem 48

and other mission parameters, such as the duration of free-time arcs, that maximize
the payload mass injected into the target orbit.

Besides the payload maximization, the launch vehicle trajectory has to meet
several mission requirements that, in an optimal control problem, are expressed as
constraints, which are transcribed as differential, boundary, and path constraints.
The differential constraints are associated with the equations of motion, Eqs. (4.18)–
(4.20), and are transcribed into a set of algebraic constraints via a collocation method,
as described in Section 2.3.2. The boundary conditions include the initial, terminal,
and linkage constraints. Finally, the path constraints include some aero-mechanical
requirements that the trajectory must meet over arcs of finite duration to ensure
the integrity of the rocket and payload.

In this section, the assumptions, the objective function, and the constraints that
make up the ascent optimal control problem are listed and described.

4.4.1 Objective Function
Let mp,i and mdry,i denote the propellant and inert masses of the i-th stages, for
i = 1, . . . , 4. If the propellant and inert masses are assumed to be assigned, one can
equivalently decide to maximize the final mass, since it differs from the payload
mass by a constant value. Let the OCP be cast as a minimum problem, then the
cost function J to minimize is

J = −m(tf) (4.21)

4.4.2 Duration of the Phases
In general, the duration of the phases should be optimized in the trajectory design
process. However, there are some considerations that constrain (or fix) the duration
of some arcs. For instance, the vertical ascent duration is fixed since it should be
minimized to reduce the gravitational losses, thus its optimal value is known a priori
and corresponds to the time required to clear the pad, which depends on the launch
site and engine characteristics.

The time-length of the pitch-over maneuver is, in general, another optimization
parameter, but, since at the end of the pitch-over the angle of attack must be null
to initiate the gravity turn, its duration is fixed to a value that guarantees a small
angle of attack at t(2)

f . Another approach would consist in including the additional
constraint α(t(2)

f) = 0 and leaving the pitch-over duration as a decision variable,
but this would increase the complexity of the problem and result, at most, in a
very slight increase of performance, as the duration of this phase does not affect
significantly the carrying capacity of the launch vehicle. The time-lengths of the
gravity turn arcs (Phases 3 and 5) are also fixed since they are prescribed by the
(fixed) burn time of the first and second stage.

The duration of the third stage flight before jettisoning the payload fairing
should be minimized to dispose of the inert mass as soon as possible. Therefore, the
time-length of Phase 7 corresponds to the minimum time to ensure full controllability
of rocket attitude after the engine ignition transient. As a result, the duration of
Phase 8 is also fixed and prescribed by the overall engine burn time. As for AVUM,
the overall burn time is assigned, but the subdivision of the firings (Phases 10 and
12) is left to be optimized.

Lastly, the duration of the coasting arcs (Phases 4, 6, 9, and 11) is free in general.
However, atmospheric coastings should be minimized in length, thus the duration of
Phase 4 is fixed to the minimum value that guarantees a safe separation of Stage
1. It is worth remarking that the duration of the last coasting (Phase 11) has a

4.4 Optimal Control Problem 49

much greater impact on the performance of VEGA than the previous ones. Thus, in
this thesis, the duration of Phases 6 and 9 is fixed, as changes in these variables,
which are anyways constrained in narrow ranges due to visibility requirements, do
not affect significantly the overall performance [136].

4.4.3 Initial Conditions
The vehicle initial position corresponds to the launch base location at liftoff rLB and
its velocity is equal to the eastward inertial velocity due to Earth rotation. Thus,
the following initial conditions must be enforced

r(t0) = rLB (4.22)
v(t0) = ωE × rLB (4.23)

Instead, the initial mass of the system is free to be optimized, as it depends on the
payload mass, which is the objective to maximize.

4.4.4 Target Orbit
At the burnout of the last stage, the payload and AVUM must be on the target
orbit. An orbit is completely defined by a set of six parameters. These can either
be the position and velocity vectors at a certain time or the set of classical orbital
elements (COEs). For the sake of simplicity, in this thesis, a circular target orbit is
considered; so, fewer parameters need to be imposed, namely, the semi-major axis a,
the (null) eccentricity e, and the inclination i. Indeed, any requirement on the right
ascension of the ascending node Ω can be easily met by selecting correctly the time
window of the launch. As for the argument of the periapsis ω, its value is indifferent,
since ω is undefined for circular orbits.

If one considers a circular orbit of prescribed radius rdes and inclination ides at
tf , then the terminal conditions are

x(tf)2 + y(tf)2 + z(tf)2 = r2
des (4.24)

vx(tf)2 + vy(tf)2 + vz(tf)2 = µ/rdes (4.25)
r(tf) · v(tf) = 0 (4.26)

x(tf)vy(tf) − y(tf)vx(tf) = hz,des (4.27)

Equations (4.24) and (4.25) constrain the semi-major axis of the final orbit to be
rdes. Equation (4.26) guarantees that the radial velocity is null at payload release
by imposing that the scalar product of position and velocity is null. Thus, combined
with Eqs. (4.24) and (4.25), Eq. (4.26) ensures that the final orbit is circular. Finally,
Eq. (4.27) derives from the expression of the inclination in ECI coordinates, that is

i = cos−1
(
xvy − yvx

h

)
(4.28)

Indeed, since the angular momentum h of the target orbit is known and equal to√
µrdes, Eq. (4.28) can be conveniently expressed as in Eq. (4.27), with

hz,des = cos ides
√
µrdes. (4.29)

4.4 Optimal Control Problem 50

4.4.5 Stage Separation
In general, all state variables are continuous at the phase boundaries. However,
for a multi-stage rocket, whenever a stage burns out, it separates from the rocket.
Thus, the rocket mass instantaneously reduced by the dry mass of the spent stage.
These mass discontinuities are accounted for as linkage constraints between the last
propelled arc of that stage and the following coasting phase. Thus,

m(t(4)
0) = m(t(3)

f) −mdry,1 (4.30)

m(t(6)
0) = m(t(5)

f) −mdry,2 (4.31)

m(t(9)
0) = m(t(8)

f) −mdry,3 (4.32)

Likewise, another mass discontinuity occurs at the fairing jettisoning, which
results in the following constraint

m(t(8)
0) = m(t(7)

f) −mfairing (4.33)

4.4.6 Liquid Rocket Engine Burn Time
As mentioned above, the final stage burn is partitioned in two arcs (Phases 10 and
12). Since we assumed that mp,4 is fixed and all the propellant must be consumed,
the sum of the time-lengths of the two firings must be equal to the overall stage
burn time tb,4. Thus,

∆t(10) + ∆t(12) = tb,4 (4.34)

where ∆t(i) = t
(i)
f − t

(i)
0 .

4.4.7 Heat Flux
The high relative-to-the-atmosphere velocity produces an intense thermal flux on the
rocket. The payload is protected by the fairing during the initial phases. However,
once the atmospheric density is sufficiently low, the fairing should be jettisoned in
order to reduce the inert mass as soon as possible. As a consequence, the payload is
directly exposed to the heat flux, which must not exceed a given value. Thus, the
following path constraint is included in the formulation for Phases 8–12

Q̇ = 1
2ρv

3
rel ≤ Q̇max (4.35)

In line with VEGA’s user manual, the heat flux is evaluated according to a simple
model involving a free molecular flow acting on a plane surface perpendicular to the
relative velocity [58]. For the VEGA launcher, the maximum heat flux tolerated is
Q̇max = 900 W/m2.

4.4.8 Maximum Dynamic Pressure
Launch vehicles are not designed to withstand high lateral loads. Therefore, it is
important to ensure that, during the ascent, the aerodynamic force does not produce
an excessive lift. This constraint can be expressed as

qα ≤ (qα)max (4.36)

4.4 Optimal Control Problem 51

where α is the angle of attack and q is the dynamic pressure, which is evaluated as

q = 1
2ρv

2
rel (4.37)

The lateral load is actually critical only during the pitch-over maneuver, when α
increases and the atmospheric density is high.

The dynamic pressure is an important quantity to evaluate during the trajectory
design because the aerodynamic structural loads are proportional to it. For example,
consider the zero-lift gravity turn: the nominal angle of attack is null, but during a
real ascent the launch vehicle may fail to keep α to zero due to control inaccuracy
or unexpected wind. To guarantee always an acceptable lift, a more conservative
condition is imposed on the dynamic pressure q, which must remain below a safe
threshold

q ≤ qmax (4.38)
This constraint extends to the whole trajectory. The point of maximum dynamic
pressure is referred to as max-q and is one of the most critical load conditions for a
launch vehicle.

In this thesis, Eqs. (4.36) and (4.38) are not enforced as explicit constraints
in the optimization process, but are checked a posteriori on the attained solution.
Indeed, the maximum dynamic pressure mainly depends on the first stage thrust
profile, which, instead, is assumed to be prescribed in the present study. If the thrust
magnitude were an optimization variable, then the inclusion of the constraints on
the maximum dynamic pressure would have been mandatory.

4.4.9 Splash-Down Constraint
After the burn out and separation, the spent stages fall down to Earth. During the
trajectory design process, it is essential to predict the fallout region of each stage and
ensure that it is a safe zone for reentry. In this study, only the return of the third
stage is explicitly accounted for in the optimization, as it is the most concerning one
and its landing point requires to be actively constrained.

In fact, first and second stage have a relatively small final velocity and end up
falling fairly close to the launch site, so the safety constraint reduces to a simple
bound on the launch azimuth range. The fourth (and last) stage releases the payload
on the target orbit, so, at the burnout, it is in orbit itself and its reentry can be
controlled afterwards; after a certain time delay needed to provide a safe distance
between the upper stage and the separated spacecraft, AVUM performs an additional
burn for a controlled reentry into the Earth’s atmosphere. Instead, VEGA’s third
stage burns out at a velocity that is close to (but lower than) the circular orbit
velocity. As a result, it falls far away from the launch site.In this case, the inclusion
of Phase 13 is necessary to simulate the return trajectory of the spent stage and
predict the impact point, which must be constrained to a safe spot. The latter is
generally called a splash-down constraint [29, 30].

The initial conditions of the return phase correspond to the conditions at the
third stage burnout, so the following linkage constraints must be enforced

r(t(13)
0) = r(t(8)

f) (4.39)

v(t(13)
0) = v(t(8)

f) (4.40)

m(t(13)
0) = mdry,3 (4.41)

4.5 Convex Formulation 52

Also, terminal conditions must be imposed on the return phase to ensure that
the splash-down takes place in a safe area. Specifically,

x(tR)2 + y(tR)2 + z(tR)2 = R2
E (4.42)

z(tR) = RE sinφR,des (4.43)

where RE denotes the Earth radius. Equation (4.42) constrains the final altitude
of the returned stage to be null, so that the return time tR corresponds to the
instant when the stage hits the ground or splashes down in the sea, while Eq. (4.43)
constrains the splash-down location to a given latitude φR,des.

Note that, for missions toward polar or quasi-polar orbits (e.g., Sun-synchronous
orbits), constraining the latitude is equivalent to constraining the splash-down
distance from the launch base. Indeed, since the orbital plane of the trajectory
is selected during the pitch-over maneuver and remains (almost) constant in the
remainder of the ascent, as changing the plane later in the flight, at high velocities,
would be too costly in terms of propellant, the only quantity that can be efficiently
controlled is the downrange distance of the splash-down point from the launch base.
This turns out to be a simple, yet effective, way to impose the splash-down constraint,
as it consists in assigning just the final value of the z variable, and it well suits the
VEGA target orbits, which are typically high inclination orbits.

4.5 Convex Formulation
In this section, the launch vehicle ascent trajectory optimization problem is for-
mulated as a second-order cone programming (SOCP) problem. As detailed in
Section 3.2.4, a SOCP problem is characterized by a linear objective, linear equality
constraints, and second-order cone constraints. Since the dynamics and constraints
outlined in Sections 4.3 and 4.4 do not generate a convex problem, the OCP is
converted into an SOCP problem by applying several transformations. First, a
convenient change of variables, which produces control-affine dynamics, is exploited.
Second, a control constraint is relaxed into a second-order cone constraint and a proof
of the lossless property of the relaxation is also provided under mild assumptions.
The remaining nonconvexities are then tackled via successive linearization. Virtual
controls, buffer zones, and other general convexification expedients are introduced
in the formulation to prevent undesired phenomena due to the linearization, such as
artificial infeasibility and unboundedness.

4.5.1 Change of Variables
The equations of motion Eqs. (4.18)–(4.20) are nonlinear in both state and control
variables, and thus represent a source of nonconvexity. A successive linearization
of these equations would produce linear constraints, but, due to the coupling of
states and controls, high-frequency jitters would show up in the solution process,
hindering its convergence [130]. To prevent this undesired behavior, a change of
variables is exploited to obtain a control-affine dynamical system, following the same
approach originally proposed by Açıkmeşe and Ploen in Ref. [33] and briefly outlined
in Section 3.3.1. Thus, the new control variable is introduced

u = Ta

m
T̂ (4.44)

4.5 Convex Formulation 53

Note that u includes both the thrust-to-mass ratio Ta/m and the thrust direction
T̂ . Replacing the new control in Eqs. (4.18)–(4.20) provides the following dynamics

ṙ = v (4.45)

v̇ = − µ

r3r + u+ Tb −D

m
v̂rel + Tc

m
r̂ (4.46)

ṁ = −ṁe (4.47)

So, the change of variables directly produces control-affine equations in the same
form as in Eq. (3.26). Specifically,

dx

dτ
= f̂(x,p, τ) +Bu(τ) (4.48)

where the input matrix B is a constant matrix

B =

03×3
I3×3
01×3

 (4.49)

The new control variables must satisfy Eq. (4.12), which is reformulated as

u2
x + u2

y + u2
z = u2

N (4.50)

where the auxiliary variable uN represents the norm of the control vector u and
corresponds to the magnitude of the thrust-to-mass ratio. Thus, the following
constraint must be enforced

uN = Ta

m
(4.51)

The introduction of this nonlinear path constraint is the price to pay to obtain
control-affine dynamics. Nevertheless, the advantages of this change of variables
outweigh the disadvantages, since, despite the inclusion of the additional constraint,
the complexity of the problem is reduced compared to a coupling of state and control
variables in the dynamics.

4.5.2 Constraint Relaxation
The path constraint (4.50) is a nonlinear equality constraint that must be convexified
in order to be included in the SOCP formulation. Let us consider its relaxation
attained by substituting the equality sign with the inequality sign,

u2
x + u2

y + u2
z ≤ u2

N (4.52)

Equation (4.52) is a convex constraint (specifically, a second-order cone constraint).
The inequality sign allows the control variables to be located inside a sphere of
radius uN , rather than being constrained on its surface. Therefore, the convex
relaxation defines a larger feasible set than the original one. Nevertheless, the
following proposition ensures that, under mild assumptions, the resulting OCP
has the same solution as the original problem. Note that the return phase can be
temporarily removed from the optimal control problem, as, being an uncontrolled
phase, it is not affected by the control constraint relaxation.

4.5 Convex Formulation 54

Assumption 1. Constraint (4.35) is assumed to be inactive almost everywhere1 in
[t0, tf].
Remark 1. Assumption 1 states that the heat flux constraint is not active over
finite intervals of the solution. This assumption holds almost always for the ascent
problem, since typically the heat flux constraint is active only at isolated points in
time, e.g., at the fairing jettisoning.

Proposition 1. Let PA be the launch vehicle ascent OCP:

PA : min
x, u, tf

(4.21) (4.53)

s.t. (4.22)–(4.27), (4.30)–(4.35), (4.45)–(4.47),
(4.50), (4.51)

Let PR be the relaxed version of PA obtained by substituting Eq. (4.50) with Eq. (4.52),
that is:

PR : min
x, u, tf

(4.21) (4.54)

s.t. (4.22)–(4.27), (4.30)–(4.35), (4.45)–(4.47),
(4.51), (4.52)

The solution of the relaxed problem PR is the same as the solution of PA. That is, if
{x⋆;u⋆; t⋆f } is a solution of PR, then it is also a solution of PA and u⋆

x(t)2 +u⋆
y(t)2 +

u⋆
z(t)2 = u⋆

N (t)2 a.e. in [t0, t⋆f].

Proof. See Appendix B.

The proof of Proposition 1 is provided in Appendix B and follows the same
reasoning as in Refs. [134, 146]. The intuition that motivates the relaxation is the
same as in the seminal work on the planetary landing problem by Açıkmeşe and
Ploen [33], later extended to a broader class of problems [32]. When Eq. (4.52) is
strictly satisfied, the engine does not provide the maximum attainable acceleration
to the rocket and, since the goal of the optimization is to maximize the mass injected
into a target orbit, it is apparent that such a behavior is suboptimal, and thus will be
automatically discarded by the solution procedure. Finally, note that this relaxation
improves the convergence properties of the successive convexification algorithm
compared to a linearization of the constraint in Eq. (4.50), since it introduces no
approximation and fully preserves the nonlinearity of the original problem. The
benefits of performing a change of variables and relaxing the control constraint have
also been recently investigated and compared to direct linearization by Yang and
Liu [34], showing that keeping some nonlinearity in the convex problem through the
relaxation technique and then linearizing a control-affine dynamics achieves better
convergence properties.

4.5.3 Successive Linearization
Successive linearization is employed to handle the nonconvexities that cannot be
tackled via lossless convexification. In particular, the nonconvex constraints are
replaced with the first-order Taylor series expansion around a reference solution,
which is recursively updated until convergence is reached.

1A condition satisfied almost everywhere (a.e.) means that it can be violated only at a finite
number of points (a set of measure zero).

4.5 Convex Formulation 55

Equations of Motion

The equations of motion Eqs. (4.45)–(4.47) are control-affine but still nonlinear in
the state variables, thus they must be linearized as described in Section 3.3.2. So,
the dynamics can be written in the same form as Eq. (3.32),

dx

dτ
= Ax+Bu+ Pp+ c (4.55)

with x as in Eq. (4.1), u as in Eq. (4.44), and p being a one-dimensional vector that
contains the time-length ∆t of each phase:

p(i) =
[
∆t(i)

]
(4.56)

In this way, the duration of the free-time arcs can be included as additional variable
and optimized. Indeed, ∆t corresponds to the time dilation σ previously defined in
Eq. (2.17). So, the two symbols will be used interchangeably in the following.

Target Orbit

All terminal conditions at payload release, Eqs. (4.24)–(4.27), are nonlinear in the
state variables and must be linearized as

r̄(tf) · r̄(tf) + 2r̄(tf) · (r(tf) − r̄(tf)) = r2
des (4.57)

v̄(tf) · v̄(tf) + 2v̄(tf) · (v(tf) − v̄(tf)) = µ/rdes (4.58)
r̄(tf) · v̄(tf) + v̄(tf) · (r(tf) − r̄(tf)) + r̄(tf) · (v(tf) − v̄(tf)) = 0 (4.59)

v̄y(tf)(x(tf) − x̄(tf)) − v̄x(tf)(y(tf) − ȳ(tf)) − ȳ(tf)vx(tf) + x̄(tf)vy(tf) = hz,des
(4.60)

Heat Flux

The heat flux constraint of Eq. (4.35) is nonlinear and must be linearized as

Q̇(r̄, v̄) + ∂Q̇

∂r
(r̄, v̄) · (r − r̄) + ∂Q̇

∂v
(r̄, v̄) · (v − v̄) ≤ Q̇max (4.61)

where the partial derivatives of the thermal flux with respect to position and velocity
are

∂Q̇

∂r
= 1

2
dρ

dr
v3

rel + 3
2ρvrelωE × vrel (4.62)

∂Q̇

∂v
= 3

2ρvrelvrel (4.63)

Return Terminal Altitude

Also the condition on the return final radius, Eq. (4.42), must be linearized

r̄(tR) · r̄(tR) + 2r̄(tR) · (r(tR) − r̄(tR)) = R2
E (4.64)

4.5 Convex Formulation 56

Control Norm

The auxiliary control variable uN must be equal to the thrust-to-mass ratio at
every time and thus Eq. (4.51) represents a nonlinear path constraint that must be
linearized as

uN = Tvac − p(r̄)Ae

m̄

(
1 − m− m̄

m̄

)
− Ae

m̄

dp(r̄)
dr

· (r − r̄) (4.65)

4.5.4 Trust Region on Time-Lengths
Thanks to the change of variables of Eq. (4.44), the dynamics in Eqs. (4.45)–(4.47)
are linear in the control variables. Thus, the A and B matrices in Eq. (4.55) do not
depend on the reference solution control ū. This provides enhanced robustness to the
successive linearization sequence, as intermediate controls can change significantly
among the first iterations [38]. However, the linearized dynamics are still function
of the reference controls due to the matrix P . Nevertheless, when σ = σ̄, Eq. (4.55)
reduces to

dx

dτ
= Ax+Bu+ c̃ (4.66)

where
c̃ = σ̄f̂(x̄, τ) −Ax̄ (4.67)

For arcs of fixed duration, Eq. (4.66) automatically replaces Eq. (4.55), but the
other arcs may suffer from unboundedness issues when σ diverges excessively from
the reference value, and some expedient may be necessary to ensure convergence.

In the present application, only some phases exhibit an unstable behavior related
to σ. Specifically, Phases 10, 11, and 12 need further safeguarding constraints on
their duration. Note that since the sum of the time-lengths of Phases 10 and 12 is
constrained via Eq. (4.34), there is no need to act on the duration of both phases, and
a safeguarding expedient on only one of the two is sufficient to provide algorithmic
robustness.

Therefore, a soft trust region constraint is imposed on the duration of Phases 11
and 12,

|σ(i) − σ̄(i)| ≤ δ(i) i = 11, 12 (4.68)
The trust radii δ(i) are additional optimization variables that are constrained in
the interval [0, δ(i)

max]. Generally, a suitable choice of the upper bound is usually
somewhere between 1% and 10% of σ̄(i).

Moreover, to further incentivize σ ≈ σ̄, the trust radii are included in the cost
function as (slightly) penalized terms by introducing the penalty terms

J
(i)
δ = λ

(i)
δ δ(i) i = 11, 12 (4.69)

where λδ are the penalty weights, which should be as small as possible in order not
to shadow the originally intended objective and let the optimization autonomously
determine the optimal arc time-lengths.

4.5.5 Virtual Controls and Buffers
Since the linearization of the dynamics may cause artificial infeasibility, a virtual
control q is included in the equations of motion, as discussed in Section 3.4, to
prevent this undesired phenomenon. Thus, the relaxed linearized dynamics are

dx

dτ
= Ax+Bu+ Pp+ c+ q (4.70)

4.6 Initialization Strategy 57

Also the linearization of the boundary and path constraints may generate artificial
infeasibility, so virtual buffer zones are used to relax the linearized expressions and
guarantee the feasibility of the convex problem. In particular, Eqs. (4.57)–(4.65) are
grouped into a vector of constraints χ = 0 and then relaxed as χ = w, where w are
the virtual buffers.

The following penalty terms are defined to penalize the use of virtual variables

Jq = λq

N∑
i=1

M(i)+1∑
j=1

n
(i)
x∑

k=1
|qk(tj)| (4.71)

Jw = λw

nw∑
i=1

|wi| (4.72)

where N , M , nx, and nw denote the number of phases, discretization segments, state
variables, and buffered constraints, respectively.

4.5.6 Augmented Objective Function
The cost function of the convex problem includes, in addition to the final mass term
introduced in Eq. (4.21), the trust region penalty terms defined in Eq. (4.69) and
the virtual control and the virtual buffer zone penalties defined in Eqs. (3.39) and
(3.40). Thus, the augmented objective function to minimize is

J = −m(tf) + J
(11)
δ + J

(12)
δ + Jq + Jw (4.73)

4.6 Initialization Strategy
This section outlines a simple procedure to design a initial reference trajectory that
allows for convergence of the successive convexification algorithm.2 Indeed, the
convexification of the original problem nonlinear dynamics and constraints exploits
successive linearization, which replaces the original expressions with a first-order
Taylor series expansion around a reference solution {x̄, ū, σ̄}. Therefore, an initial
reference solution must be provided.

The design of the starting trajectory is a key step, as its choice affects the
convergence of the algorithm and the quality of the attained solution. Indeed,
sensitivity to the initialization is a major downside of traditional optimization
methods. For instance, indirect methods can achieve convergence only if a very
accurate first guess is provided. This is a cumbersome drawback as an initialization
is required not only for the trajectory, but also for the costate, which often has
an unclear physical meaning, and for the structure of the constrained arcs, which
is also difficult to guess in general. On the other hand, direct methods exhibit
greater robustness to the initialization, but the discretization of highly-sensitive
nonconvex OCPs, such as the one at hand, produces a NLP problem whose solution
depends significantly on the first guess. These limitations motivate the upstream
effort put into the careful convexification process, as a greater robustness is observed
in successive convexification algorithms compared to traditional direct optimization
methods [134, 136].

The present algorithm does not require an accurate initialization. This is a
particularly appealing property, as, in the preliminary phases of design of a launch

2A detailed analysis of the convergence of the successive convexification algorithm is provided in
Chapter 5.

4.6 Initialization Strategy 58

North

Up

u

φ

ψ

Local ta
ngent pl

ane

East

(a) Pitch-Over phase.

t

h = r × v

u

φ

ψ

Orbital pl
ane

v

r

(b) Out-of-atmosphere phases.

Figure 4.7. Angles used to parametrize the control direction.

vehicle trajectory, it can be quite difficult to lay out an accurate ascent trajectory
from scratch. Thanks to the convexification process, any starting trajectory with
an altitude profile always above sea level is sufficient to achieve convergence. Such
trajectories can be easily generated via numerical integration of the original rocket
equations of motion, Eqs. (4.18)–(4.20). Only the (unknown) control law, the
duration of free-time arcs, and the initial mass must be prescribed.

In general, designing adequate control laws may be a complex task. However, if
the atmosphere is removed from the dynamics and considering a small initial mass
m(t0) (i.e., a small payload mass), even trivial control laws can produce acceptable
starting trajectories. The control laws are parameterized in terms of two angles:
thrust elevation ϕ, which is the angle between the thrust direction and the local
horizontal, and thrust azimuth ψ, which, during the pitch-over phase, is the angle
measured clockwise from the north direction to the thrust vector and, during the out-
of-atmosphere phases, is the angle between the thrust vector and the orbital plane
(i.e., the plane where the position and velocity vectors lie). Figure 4.7 illustrates the
elevation and azimuth angle.

To design the starting trajectory, the elevation during the pitch-over is assumed
to vary linearly from 90◦ to a final value, the kick angle, here denoted as ϕ(t(2)

f). Since
the pitch-over maneuver takes place in a fixed vertical plane, the thrust azimuth law
is assumed constant during Phase 2, thus ψ(t) = ψ(2). The choice of the kick angle
may be slightly difficult, as it depends on many factors, such as the specific launch
vehicle configuration, the target orbit, and other mission parameters. However, a
suitable kick angle value can be guessed by a trial-and-error process, using values in
the range 70–89 degrees. Instead, there is a systematic way of choosing the value
for the pitch-over azimuth. Indeed, the pitch-over rotation places the rocket on
the correct heading for its ascent to orbit, since it is the most convenient phase
to select the plane of the ascent trajectory due to the reduced velocity in the first
seconds after liftoff. So, an accurate first guess for ψ(2) is the value that, under the
non-rotating Earth assumption, allows for reaching the target orbit plane without
further out-of-plane maneuvers, that is

ψ(2) = sin−1
(cos(ides)

cos(φLB)

)
(4.74)

where φLB is the latitude of the launch base. Equation (4.74) is exact only if
assuming a non-rotating Earth and neglecting the presence of the atmosphere, but

4.7 Continuation Strategy 59

the azimuth angle that it provides represents a suitable guess since it is quite close to
the optimal value of ψ(2). Unfortunately, when ides < φLB Eq. (4.74) does not hold
anymore and an ad hoc value must be provided for ψ(2) through a trial-and-error
process (generally starting from an eastward heading).

For stages 3 and 4, even simpler control laws can be assumed. Indeed, acceptable
starting trajectories can be designed by assuming that the orbital plane is kept
constant after the second stage burnout. For this reason, in the out-of-atmosphere
phases, the thrust azimuth angle ψ is defined as a measure of the thrust out-of-plane
component. So, ψ is assumed identically null during the flight of Z9 and AVUM. The
only quantity left to define the control direction is the elevation angle ϕ, defined, as
in the atmospheric phases, as the angle between the thrust and the local horizontal.
In Fig. 4.7b, t denotes the unit vector in the orbital plane that is orthogonal to the
radial direction. Since during the operation of upper stages the elevation angle is
usually close to zero, an acceptable trajectory can be obtained by assuming ϕ(t) = 0
in these phases. So, the only parameters to choose to simulate the flight of the
upper stages concern the subdivision of the fourth stage burn and the duration of
the intermediate coasting (Phase 11).

To sum up, the quantities necessary for generating an acceptable tentative
solution are: (i) the initial mass m(t0) (or, equivalently, the payload mass), (ii)
the kick angle ϕ(t(2)

f), and (iii) the time-lengths of Phases 10, 11, and 12. These
values should be selected on the basis of the specific launch vehicle and target orbit.
Nevertheless, their choice does not represent an arduous task, since a wide range of
values can generate acceptable trajectories.

4.7 Continuation Strategy
Since the original problem is not convex, there is no guarantee that the successive
convexification algorithm will converge to the global optimum of the original problem.
So, special care should be paid to the initialization procedure. It is apparent that
the first guess trajectory must be as close as possible to the optimal solution in order
to favor convergence; unfortunately, this is not a trivial task for problems as complex
as the one here investigated. The strategy described in Section 4.6 is a simple
way to generate a reasonable starting trajectory, but it is still possible that only
convergence toward a local optimum (with a significantly worse objective function)
or no convergence at all could be achieved. Therefore, it is essential to minimize the
sensitivity of the problem to the initial guess and maximize the convergence radius.

The standard way of dealing with the problem at hand is, first, solving the ascent
problem without the return phases and the corresponding splash-down constraints.
Then, once a solution has been obtained, the return of the spent stages is simulated
and, if necessary, the optimization is repeated including the return phases and
constraining the splash-downs to safe locations. Indeed, concerns on the splash-down
of the spent stages exist only if the simulation of the return trajectory corresponds to
an unsafe impact location. So, Phase 13 and the related constraints can be omitted
at first, and the focus can be on designing a reference solution for Phases 1–12 only.

To reduce the sensitivity to an inaccurate initial reference solution, a sequential
continuation procedure, which consists in solving problems of increasing complexity,
can be used, as it significantly improves the convergence properties of the algorithm.3
Three problem instances are considered:

3An analysis of the benefits of using a multi-step continuation procedure is presented in Chapter 5,
based on numerical experiments.

4.7 Continuation Strategy 60

1. time-fixed with no atmosphere P1,

2. time-fixed with atmosphere P2,

3. free-time with atmosphere P3.

The latter, P3, is the complete problem described in Section 4.5 (without the return
phase and the relative constraints). P2 is a slightly easier problem than P3, as the
time-lengths of the free-time phases are fixed to some reference values; so, there
are no instability issues related to deviations of time variables σ from the reference
values and there is no need to include the trust region constraints as in Eq. (4.68).
Instead, P1 is a much easier problem since, not only the duration of all phases is
fixed, but also the atmosphere is removed from the problem, thus reducing the
nonlinearity (and nonconvexity) of the underlying problem.

Each problem Pk uses the solution of the previous one Pk−1 as the initial guess.
Hence, only the reference trajectory for P1 must be provided. However, thanks to
the convexification process detailed in Section 4.5, P1 is quite robust to the choice
of the initial reference trajectory (even though the same is not true for P2 and P3),
which, therefore, can be chosen in a large set, without compromising the convergence
of the optimization procedure.

It is worth noticing that the success of the multi-step procedure depends on the
convergence of all problems, namely, P1, P2, and P3. The feasibility and existence
of the solution of each problem is guaranteed by the inclusion of virtual controls
and buffer zones. This, in turn, avoids that the solution process is ever prematurely
interrupted, and thus allows for the success of the three-step procedure.

61

Chapter 5

Case Study: Ascent Toward a
Low-Earth Polar Orbit

In this chapter, numerical results are presented to discuss the effectiveness of
the successive convexification approach for the ascent trajectory optimization of
a multistage launch vehicle to a Low-Earth Orbit (LEO). First, the convergence
properties of the algorithm are examined, highlighting not only the convergence
speed and the number of iterations, but also the quality of the converged solution,
which is compared to the solution obtained by means of an unrelated optimization
method. Second, the sensitivity of the algorithm to the starting (i.e., first guess)
reference solution is investigated by means of a Monte Carlo campaign. Then, the
accuracy and performance of the discretization method is assessed by comparing the
errors on the final orbit elements and the run times of different meshes. Finally, a
parametric study on different splash-down locations is presented to determine how
the splash-down constraint affects the carrying capacity of the launch vehicle.

The described algorithm has been implemented in C++ using Gurobi [147] as
SOCP solver. All the computational time measurements are relative to tests run on
a computer equipped with Intel® Core™ i7-9700K CPU @ 3.60 GHz.

5.1 Problem Statement
The considered case study is a mission toward a 700 km circular polar Earth orbit
(ides = 90◦), which is the reference target orbit for VEGA [58]. The vehicle is
assumed to take off from the equator in correspondence of the Guiana Space Center
meridian. Indeed, the Guiana Space Center is located only 500 km north of the
equator, at a latitude of 5◦.

The data used to model the VEGA-like launch vehicle are summarized in Table 5.1.
The main assumption concerns the thrust magnitude and mass flow rate curves
(T (t) and ṁe(t)), which are approximated as linear functions of time. These linear
laws were designed by retaining the total impulse, which is the quantity that most
affects the overall trajectory, so the model of the launch vehicle is representative of
the real system performance. Other design values include the fairing mass mfairing
(535.3 kg), the drag coefficient CD (0.381), and the reference surface S (9.079 m2).
Although a realistic aerodynamic model would be needed to accurately predict the
splash-down location, for this work, in a simplified manner, the same coefficients are
used also for the ballistic return of the spent stage. Notwithstanding, the algorithm
can extended to more realistic aerodynamic characterizations of the launch vehicle
and stage return. Finally, the U.S. Standard Atmosphere 1976 model is used to

5.1 Problem Statement 62

evaluate the air density and pressure as functions of the altitude [145].

Table 5.1. VEGA-like rocket data.

Quantity Stage 1 Stage 2 Stage 3 Stage 4 Unit
mp 87 898 23 926 10 006 397 kg
mdry 8417 2563 1326 813 kg
tb 102.0 75.0 110.0 502.1 s
Tvac(0) 2827 1075 299 2.45 kN
Tvac(tb) 1885 717 222 2.45 kN
ṁe(0) 1034 383 105 0.79 kg/s
ṁe(tb) 689 255 77 0.79 kg/s
Ae 3.09 1.70 1.18 0.07 m2

The values used for the time-lengths of the arcs of fixed duration are reported in
Table 5.2. The duration of the remaining phases, instead, has to be optimized. The
threshold on the bearable heat flux Q̇max is set to 900 W/m2.

Table 5.2. Time-lengths of time-fixed arcs.

Phase ∆t (s)
1 4.1
2 6.6
3 91.3
4 6.6
5 75.0
6 37.3
7 5.4
8 104.6
9 15.4

Unless otherwise specified, the following values were used to set up the succes-
sive convexification algorithm. The default values for the penalty weights of the
augmented objective function are λ(11)

δ = λ
(12)
δ = 10−4 and λq = λw = 104. The

convergence and dynamics tolerances were set equal to ϵtol = 10−4 and ϵf = 10−6.
Filtering was used to enhance the convergence properties of the algorithm by con-
sidering the weighted sum of K = 3 previous solutions. The default weights are
α1 = 6/αN , α2 = 3/αN , and α3 = 2/αN with αN = 11, so that the weight sum is
unitary.

As for the discretization, a hp-pseudospectral method based on Radau collocation,
as described in Section 2.3.2, was used to discretize the OCP. Table 5.3 reports the
default values of h and p for every phase of the problem. The values have been
devised in a heuristic way in order to meet the desired discretization accuracy. In
particular, since Phases 1–12 are relatively brief and do not feature rapidly changing
dynamics, no internal subdivision is necessary and h is simply set to 1. Instead,
the return phase is split into 10 equally-spaced segments to accurately capture the
reentry dynamics while avoiding the use of high-order approximating polynomials.
In each segment, the same discretization order p is used.

Finally, all dimensional quantities are scaled in order to improve the numerical
behavior of the algorithm. Specifically, the Earth radius, the corresponding circular

5.2 Convergence Behavior 63

Table 5.3. Discretization segments, order, and nodes in each phase.

Phase
1 2 3 4 5 6 7 8 9 10 11 12 13

h 1 1 1 1 1 1 1 1 1 1 1 1 10
p 5 5 17 5 19 14 5 19 9 19 19 19 10
Nodes 6 6 18 6 20 15 6 20 10 20 20 20 101

orbit velocity, and a reference mass of 10 000 kg are used as normalization factors in
the optimization.

5.2 Convergence Behavior
In this section, the convergence properties of the successive convexification algorithm
are discussed. To this aim, an example reference solution is designed, then the
sequence of iterations is reported and commented. For the sake of simplicity, the
return phase and the related variables and constraints are omitted from the OCP.

To set up the optimization, a starting reference solution must be provided. This
can be handily generated as described in the Section 4.6. For instance, a reasonable
reference trajectory can be obtained by using the parameters reported in Table 5.4.
Note that a very small payload mass mpl = 100 kg was selected. Note that this mass
is significantly lower than the nominal payload that the VEGA rocket can carry to
a low-Earth polar orbit (about 1400 kg). This conservative choice allows to design
an ascent trajectory that does not fall back to Earth even using trivial control laws
in the forward propagation of the dynamics and a rough guess of the other mission
parameters, as described in Section 4.6. The duration of Phase 10 is omitted in
Table 5.4, as this value comes from Eq. (4.34), once ∆t(12) and the overall burn time
of the stage are assigned.

Table 5.4. Values used for the generation of the starting reference solution.

Quantity Value Unit
mpl 100.0 kg
ϕk 80.0 deg
∆t(11) 2500.0 s
∆t(12) 200.0 s

The sequence of iterations obtained by seeding the algorithm with the aforemen-
tioned reference solution is illustrated in Fig. 5.1. The dashed black line denotes
the initial trajectory, while the intermediate solutions correspond to the solid lines.
The color of the solid lines transitions from red to green, according to the iteration
number. In this case, the continuation strategy detailed in Section 4.7 was not
implemented, so the reference solution was used to solve directly the complete prob-
lem, P3. The termination criteria were met after 22 iterations. This is a relatively
short sequence of iterations, if considering that the initial reference solution is quite
far from the optimal solution of the problem. The overall computational time is
12.8 s, that is, each iteration requires 0.58 s on average (without any specific code
optimization).

5.2 Convergence Behavior 64

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000 3500

h
 (

k
m

)

Time (s)

 0

 5

 10

 15

 20

Figure 5.1. Iteration sequence starting from the initial reference solution (dashed black
line) and transitioning from red (iter = 1) to green (iter = 22) until convergence.

-60
 0

 60
 120

-30

 30

 90

Longitude (deg)

Latitude (deg)

Figure 5.2. Three-dimensional visualization of the optimal trajectory with the simulation
of third stage ballistic return colored in red.

Virtual buffers are actively exploited in the first 10 iterations, as apparent in
Fig. 5.1, where the value of the terminal altitude does not match the desired target
orbit radius. It was observed that, without the virtual buffers, the intermediate
problems would otherwise be infeasible (despite the inclusion of virtual controls).
Thus, virtual buffers are essential to ensure the recursive feasibility of the sequential
process.

The converged trajectory is illustrated in Fig. 5.2. The figure also reports a simu-
lation of the return phase. This simulation provides a valuable piece of information,
as the value of the splash-down latitude, φ⋆

R = 65.79◦, of this unconstrained return
corresponds to the optimal splash-down point (i.e., the point that maximizes the
payload capacity of the system to the target orbit).

Figure 5.3 shows the optimal control laws of each controlled phase in terms of
the elevation angle ϕ, as defined in Section 4.6. As for the pitch-over, one should
constrain the initial elevation to 90◦ to ensure the control continuity with the vertical
ascent phase. However, if using Cartesian coordinates, this would require adding
a nonlinear constraint to the formulation, so, for the sake of simplicity, the initial

5.2 Convergence Behavior 65

81.80

82.00

82.20

82.40

82.60

82.80

 5 6 7 8 9 10

C
o
n
tr

o
l

el
ev

at
io

n
 (

d
eg

)

Time (s)

(a) Pitch-Over (Phase 2).

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

 240 260 280 300 320

C
o
n
tr

o
l

el
ev

at
io

n
 (

d
eg

)

Time (s)

(b) Stage 3 (Phases 7-8).

0.25

0.30

0.35

0.40

0.45

0.50

 350 400 450 500 550 600 650 700

C
o
n
tr

o
l

el
ev

at
io

n
 (

d
eg

)

Time (s)

(c) First burn of stage 4 (Phase 10).

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

 3300 3320 3340 3360 3380 3400 3420

C
o
n
tr

o
l

el
ev

at
io

n
 (

d
eg

)

Time (s)

(d) Second burn of stage 4 (Phase 12).

Figure 5.3. Control laws of the optimal solution.

Table 5.5. Optimal solution of the convex approach compared with the EOS solution.

Quantity Convex EOS Unit Difference (%)
mpl 1400.73 1396.74 kg 0.29
∆t(10) 359.71 357.60 s 0.59
∆t(11) 2583.50 2660.70 s 2.90
∆t(12) 142.39 144.50 s 1.46

pitch-over control direction is unconstrained in the present study. Nevertheless, the
initial pitch-over elevation differs from 90◦ by only a few degrees. All the control
laws are regular and very smooth, further proving the optimality of the attained
solution.

The discretization accuracy of the converged solution was verified by forward
propagation of the original equations of motion (4.2)–(4.4) using the optimal control
laws. In particular, the discrepancies in the terminal conditions were inspected. The
largest inaccuracy concerns the semi-major axis of the final orbit. However, the
error is less than 50 m, which correspond to a relative error equal to 0.0008%. This
inaccuracy is in agreement with the finite precision of the SOCP solver. A deeper
analysis on the solution accuracy is presented in Section 5.4.

To validate the quality of attained results, the same problem was solved also
using EOS [108], a direct shooting algorithm based on differential evolution that was
already successfully employed to solve a similar instance of the problem at hand [115].
The comparison between the two solutions is reported in Table 5.5. The payload
mass difference is approximately 5 kg and is due to the different sets of time-lengths
found. Indeed, the problem features many local optima with different times but
similar costs, so the optimization process can converge unpredictably toward one of
these. Nevertheless, note that the difference in cost is minimal; so, both solutions
are acceptable for any practical purpose. Compared to the convex approach, the
main drawback of EOS is the large computational effort required (approximately 20
minutes on the same hardware).

5.3 Sensitivity to the Initialization 66

Table 5.6. Optimal solution of the convex approach compared with the EOS solution with
free coasting arcs.

Quantity Convex EOS Unit Difference (%)
mpl 1400.84 1402.36 kg 0.11
∆t(4) 6.60 6.60 s <0.01
∆t(6) 38.40 40.70 s 5.65
∆t(9) 17.43 6.60 s 164.09
∆t(10) 359.90 358.10 s 0.50
∆t(11) 2582.24 2595.40 s 0.51
∆t(12) 142.20 144.00 s 0.01

As a final remark, the assumption of fixing the duration of the coasting arcs
(Phases 6 and 9 in particular) can be easily removed. Indeed, starting from the
same reference solution discussed before (hence with the nominal coasting times
from Table 5.2), if the OCP is solved with free time-length of Phases 4, 6, and 9
(with the only requirement of guaranteeing a minimum stage separation time of 6.6 s
for safety reasons) a slightly improved solution is found, as reported in Table 5.6.
The optimal coasting times are slightly different from the nominal values, with
the relevant exception of the duration of the first coasting (Phase 4) that is the
same as in the fixed-time case and corresponds to the lower bound. However, the
change in the payload mass is very small (< 1 kg), thus showing that assuming
fixed duration of the coasting arcs does not affect the launch vehicle performance.
Also, convergence was attained in a number of iterations (24) comparable to the
time-constrained case, showing that the success of the convex optimization method
does not depend on this assumption and does not require additional trust regions.
Finally, The solution found by the convex approach when freeing the duration of
Phases 4, 6, and 9 is in good agreement with the one found by EOS when freeing
the same variables, validating the quality of the attained solution (see Table 5.6). In
the following, all coasting times, except for Phase 11, are prescribed to the nominal
values of Table 5.2 for the sake of simplicity.

5.3 Sensitivity to the Initialization
This section investigates the sensitivity of the algorithm to the starting reference
solution and assesses the ability of the algorithm to converge to the optimal solution
even when starting from an inaccurate reference trajectory. In particular, the
robustness of the algorithm when implementing the filtering technique for updating
the reference solution (described in Section 3.6) is compared with the use of traditional
methods to prevent artificial unboundedness, namely hard and soft trust regions,
through a series of Monte Carlo campaigns. The effect of the numerical continuation
strategy presented in Section 4.7 on the success rates of the filtering and trust region
approaches is also discussed.

5.3.1 Filtering Approach
A study on the effectiveness of the filtering technique for updating the reference
solution was carried out, to assess, in a systematic way, its robustness to a randomly
sampled initial guess trajectory and the corresponding computational effort (mea-

5.3 Sensitivity to the Initialization 67

sured in terms of the average run time). To this end, a Monte Carlo analysis was
carried out, using different sets of weights. In addition to the aforementioned set of
weights (α = [6/11, 3/11, 2/11], referred to as custom in the following), that was
devised in a heuristic way, several distributions of weights inspired by well-known
sequences in mathematics were considered. Also, the effect of taking into account
fewer or more terms in the weighted sum is investigated by considering different
values of K, which denotes the number of previously found solutions used in the
recursive update.

Table 5.7. Scattering range of the seeding parameters for the Monte Carlo analysis.

Parameter Lower
bound

Upper
bound Unit

mpl 250 500 kg
ϕk 75 80 deg
∆t11 2000 2800 s
∆t12 100 300 s

Each Monte Carlo campaign consisted of generating a set of 2000 random initial
trajectories as described in Section 4.6 by sampling the initialization parameters in
the ranges reported in Table 5.7. Note that the values of the payload mass used for
designing the starting trajectories are larger than the one used in Section 5.2. This
is due to the fact that lower values (e.g., below 250 kg) were found to generate first
guess trajectories for which the algorithm often fails to converge, regardless of the
adopted set of weights. The ranges in Table 5.7, instead, are the ones that maximize
the convergence rate of the algorithm and allow to better highlight the effects of the
filtering method on the convergence rate.

In the present analysis, three families of sets of weights were considered, in
addition to the custom set previously introduced. The first family is generated
by using a linear sequence of K terms taken in reverse order and normalized by
their sum (e.g., α = [3, 2, 1]/αN , with αN = 6 for K = 3). The second family of
weights uses a geometric sequence of terms: the weights are the first K powers of
two, taken in reverse order and normalized by their sum (e.g., α = [4, 2, 1]/αN ,
with αN = 7 for K = 3). The last family of weights corresponds to a monotonic
subset of the Fibonacci sequence, starting from 1, with terms taken in reverse order
and normalized by their sum (e.g., α = [5, 3, 2, 1]/αN , with αN = 11 for K = 4).

Table 5.8 presents the results of the Monte Carlo analysis in terms of success
rate and run time. A run is considered successful if it converges to a solution with a
payload mass value that is greater than 95% of the optimal one reported in Table 5.5.
The latter is deemed very close the to global optimum of the problem instance since,
despite the high number of runs of the Monte Carlo analysis, none provided a better
performing solution. Unsuccessful runs are those for which the algorithm either
diverges (i.e., exceeds the maximum number of iterations imax = 100) or it converges
to a suboptimal solution (i.e., a feasible solution, but deemed unacceptable since
the payload mass is lower than 95% of the optimal value). The reported run time
statistics are evaluated by considering successful solutions only.

The results show that the effectiveness of the algorithm strongly depends on
K. Indeed, when K = 1 the method was never able to achieve convergence,
suggesting that if filtering is not employed, then another strategy should be pursued
to prevent artificial unboundedness, such as a trust region on state or control variables
[131, 132, 134, 148]. By setting K = 2, the algorithm can successfully converge to
the optimal solution, but only in a limited number of cases. Instead, if K ≥ 3, the

5.3 Sensitivity to the Initialization 68

Table 5.8. Results of the Monte Carlo analysis for several
values of K and different families of filtering weights.

K
Distribution
of weights

Success
rate (%)

Run time (s)
Min Mean Max

1 Linear1 0.0 – – –
2 Linear1 16.7 4.6 30.3 76.0

3
Linear2 55.9 4.4 25.8 75.2
Geometric 51.7 4.4 25.6 60.4
Custom 54.4 4.5 27.4 82.0

5
Linear 59.9 6.0 32.2 90.1
Geometric 58.0 5.2 26.9 78.5
Fibonacci 61.4 5.9 28.1 74.7

7
Linear 54.4 8.6 32.9 100.2
Geometric 58.5 5.5 25.2 74.2
Fibonacci 60.4 6.0 27.6 67.7

1 For K = 1 and 2 the linear set is identical to the geometric
and Fibonacci sets.

2 For K = 3 the linear set is identical to the Fibonacci set.

algorithm appears to be much more reliable and it finds the optimal solution in
the majority of cases. The best success rates are observed for K = 5, but the most
efficient setups are the ones that are based on three solutions. This is due to the
fact that filters that use more solutions are generally more conservative, as newer
solutions are assigned smaller weights, and, despite showing increased ability to
compensate for diverging solutions that may appear across the successive iterations,
may require more iterations to converge, thus a longer computational time. On the
other hand, if fewer solutions are taken into account in the update, the convergence
is generally achieved in fewer iterations, as the search space is explored more rapidly,
but the algorithm is more sensitive to artificial unboundedness and other diverging
phenomena. As for the choice of the weight distribution, the homogeneity of the
results for the each K indicates that all the considered families of sets are valuable
options. Indeed, only slight differences are observed, suggesting that the geometric
set is associated with the shortest mean run times, but the most robust families are
the linear one, for K < 5, and the Fibonacci one, for K ≥ 5.

Another Monte Carlo analysis was carried out to assess if the multi-step numerical
continuation strategy could improve the success rate of the filtering approach. Besides
the 3-step strategy described in Section 4.7, a 1-step approach, which merely consists
in solving directly P3, and a 2-step method, which first solves P1 and then exploits
its solution as a starting guess of P3, were also considered. Since the performance
of all the considered families of weights are comparable, only the custom set of
weights was used in this analysis. The same 2000 random initial trajectories as in
the previous Monte Carlo campaigns were used. The results of the analysis are
reported in Table 5.9. The effect of adopting the multi-step continuation strategy
is practically null in terms of success rate (defined as in the previous Monte Carlo
campaign). Indeed, the increase in the success rate when solving 2 or 3 problems
instead of directly P3 is minimal. Instead, solving multiple instances of the problem
increases significantly the computational time of the optimization process, thus
making the use of the continuation strategy unappealing in this case.

5.3 Sensitivity to the Initialization 69

Table 5.9. Results of the Monte Carlo
analysis on the combined effect of the
continuation strategy and the filtering
approach.

NP
† Success

rate (%)
Run time (s)‡

Min Mean Max
1 54.4 4.5 27.4 82.0
2 54.5 18.8 73.2 201.4
3 54.9 20.0 80.4 196.1

† Number of problem instances solved in the
continuation strategy.

‡ The run times are evaluated by considering
the successful solutions only.

5.3.2 Trust Region Approach
For the sake of comparison, the effectiveness of the use of a trust region in place of
the filtering technique was also investigated. In this respect, a further Monte Carlo
campaign was carried out using the same 2000 randomly generated initial reference
trajectories employed for evaluating the filtering performance, but considering
alternatively (i) an adaptive hard trust region, such as the one used in Refs. [52,
131, 134], or (ii) a soft quadratic trust region, such as in Refs. [135, 141]. Both trust
regions were applied only on the control variables, since this was observed to be
the most effective strategy for the problem under investigation. Thus, the following
constraint was added in each controlled phase i

|uk − u
(i)
k | ≤ δk for k = 1, . . . , n(i)

u (5.1)

where n(i)
u is the number of control variables.

The initial trust radius of the adaptive hard trust region was set to 10 m/s2, as
it was recognized as the value that granted the best success ratio after a parametric
analysis. The trust radius is updated at every iteration j according to a measure of
the quality of the linear approximation

ρ(j) = Ĵ (j−1) − Ĵ (j)

L(j−1) − L(j) (5.2)

where L = −m(tf) + J
(11)
δ + J

(12)
δ + Jq + Jw is the augmented cost function of the

convex problem and Ĵ is an augmented objective function that includes a measure
of the linearized dynamics error, which, in case of a hp-pseudospectral scheme, is

Ĵ = −m(tf) + λf

N∑
l=1

h(l)∑
s=1

p
(l)
s∑

i=1

∣∣∣∣∣∣∣
p

(l)
s +1∑
j=1

Ds,l
ij x

s,l
j −

τ
(l)
s+1 − τ

(l)
s

2 f s,l
i

∣∣∣∣∣∣∣ (5.3)

where N denotes the number of phases, λf = 104 is the dynamics error penalty weight,
and f is the right-hand side of the nonlinear equations of motion (4.45)–(4.47).

It is worth remarking here that ρ(j) provides an estimate of the quality of the
convex approximation, as it compares the nonlinear cost reduction ∆Ĵ (j) with the

5.3 Sensitivity to the Initialization 70

Table 5.10. Results of the Monte Carlo analysis
using common trust region algorithms.

NP
† Trust

region
Success
rate (%)

Run time (s)
Min Mean Max

None 0.0 – – –
1 Hard 0.2 28.9 61.7 131.8

Soft 0.0 – – –
None 0.1 48.8 65.0 74.8

2 Hard 0.3 45.2 84.9 110.9
Soft 28.3 24.7 82.5 167.7
None 0.1 60.9 68.6 76.3

3 Hard 4.3 11.5 67.9 309.2
Soft 29.1 29.6 90.0 189.1

† Number of problem instances solved in the continua-
tion strategy.

convex problem cost reduction ∆L(j). When ρ(j) ≤ 0, the trust region is shrunk by
a factor 2 and the new solution is rejected, then the iteration is repeated with the
new trust radius. If 0 < ρ(j) ≤ 0.25 the iteration is accepted, but the trust radius is
still reduced by a factor 2. Instead, the reference solution is updated and the trust
radius is retained when 0.25 < ρ(j) ≤ 0.7. Finally, if ρ(j) > 0.7 the approximation is
supposed to be accurate and the trust radius is increased by a factor 3.2. Note that
if ρ(j) is greater than unity the linear cost reduction under-predicts the actual ∆Ĵ
and is thus conservative, hence the trust radius can be increased.

Instead, the principle of the soft trust region is much easier, as the trust radii
δk from Eq. (5.1) are nonnegative optimization variables that are included in the
augmented cost function of the convex problem through a penalty term Jδ =∑nu

k=1 λδk
δk. The penalty weights λδk

were supposed equal to 10−3 for every control
variable uk and were selected on the basis of a parametric study that determined
the most performing value in terms of success rate.

Table 5.10 reports the results of the Monte Carlo analysis. It is apparent that
solving the ascent problem is quite challenging if using a trust region and starting
from an initial guess generated as described in Section 4.6. Indeed, the success rate
is zero or close to zero if no trust region is implemented or if either a soft or a hard
one are used.

The success rate can be improved if a continuation strategy, as described in
Section 4.7, is adopted. Indeed, the use of a 2-step or 3-step numerical continuation
strategy increases the convergence rate of the algorithm and allows to compare
the performance of the considered trust regions with greater detail, as solving
intermediate problems, which either neglect the atmosphere or fix the time-lengths
of the launch vehicle ascent phases, reduces the sensitivity of the algorithm to the
initial guess. However, even with this improvement, both the hard and soft trust
region appear to be much less robust than the filtering approach, as the success rates
are always below 30%. This is due to the fact that, in general, trust regions work
better when the initial reference trajectory is closer to the optimal solution, while
in this application an accurate guess is supposed not to be available, as a launch
vehicle ascent trajectory is quite hard to design from scratch.

5.4 Analysis of the Discretization Grid 71

Table 5.11. Discretization grids considered in the Monte Carlo analysis.

Grid
Nodes per phase Total

nodes1 2 3 4 5 6 7 8 9 10 11 12
Default 6 6 18 6 20 15 6 20 10 20 20 20 167
A 5 5 9 5 9 9 5 9 5 9 9 9 88
B 5 5 17 5 17 17 5 17 9 17 17 17 148
C 9 9 33 9 33 33 9 33 17 33 33 33 284

5.3.3 Comparison Between Filtering and Trust Regions
Even though advanced trust region implementation demonstrated to be highly
effective without particularly good initial guesses in diverse applications, including
atmospheric entry [52, 148] and rocket landing [45, 135], a proper tuning of the
involved parameters (such as the initial radius of the adaptive hard trust region or
the penalty weights of the soft trust region) may require a significant effort. Instead,
the filtering approach is much easier to set up, as the method sensitivity to the values
of the weights is low and high success rates are achieved by every considered family
as long as K ≥ 3. In this respect, filtering appears as an effective and easy-to-set-up
method to improve the convergence of successive convexification algorithms.

Finally, it is worth noting that the circumstances under which the Monte Carlo
campaigns were carried out were particularly challenging. Indeed, to assess whether
the proposed algorithm is able to solve the optimal ascent trajectory problem even
starting from a rough initial guess, the starting trajectories were randomly generated
by considering wide ranges of the seeding parameters (i.e., kick angle, payload
mass, and coasting times). Greater success rates can be achieved if a more accurate
initialization guess is used. A typical scenario is real-time guidance, where a nominal
trajectory is already available and the vehicle path usually deviates only slightly
from it. In that case, the algorithm converges in fewer iterations and with success
rates very close to 100% regardless of using either filtering or a trust region (see
Chapter 7).

5.4 Analysis of the Discretization Grid
A further analysis was carried out to investigate the efficiency and accuracy of several
hp grids. In addition to the “default” mesh introduced in Table 5.3, three additional
grids were considered. For each grid, three different values of h (i.e., the number
of segments each phase is divided into) were investigated. Table 5.11 reports the
number of discretization nodes in each phase for each mesh. Grid B is obtained from
the default one by picking for each phase the number of intervals equal to the closest
power of 2. This allows to set h equal to 1, 2, or 4, and still use local polynomials
of the same order p in each phase segment, as the number of time intervals is a
multiple of h. Grid A is obtained by starting from grid B and halving the number
of intervals (and thus the local polynomials order p) in each phase, but keeping the
minimum number of nodes above 5. Conversely, grid C is designed by doubling the
intervals (and correspondingly the order) of each phase of grid B. When increasing
h, it is ensured that the number of segments in a phase is less than the number of
intervals in order to use local polynomials of, at least, order p = 2. Finally, note
that, for the sake of simplicity, we did not include the return phase in this analysis.

The same 2000 initial reference trajectories as in Section 5.3 were considered

5.5 Parametric Analysis of the Splash-Down Constraint 72

Table 5.12. Results of the Monte Carlo analysis on different grids.

Grid h
Success
rate (%)

Run time (s) Average error
Min Mean Max a (km) e i (deg)

Default 1 55.4 3.4 16.9 71.3 6.6e-02 1.3e-05 1.5e-04
1 55.6 1.3 7.3 35.8 7.0e-02 8.4e-05 2.5e-04

A 2 56.4 1.3 6.4 40.0 6.1e+00 1.7e-03 3.3e-04
4 0.0 – – – – – –
1 55.1 2.9 18.3 55.5 4.1e-02 9.0e-06 5.1e-04

B 2 56.1 3.3 15.6 51.9 2.6e-02 2.2e-05 7.2e-04
4 54.9 2.3 15.5 47.6 1.4e-01 7.0e-05 4.8e-03
1 53.9 15.9 65.1 164.3 2.5e-02 4.1e-06 3.7e-04

C 2 54.7 5.0 29.2 95.7 2.0e-02 1.4e-05 1.3e-03
4 54.9 5.0 26.8 77.8 5.6e-02 2.5e-05 3.2e-03

for this campaign. Furthermore, the custom set of filtering weights was used in the
update of the reference solution across iterations and no trust region is enforced
on the state or control variables. Table 5.12 reports the results of the Monte
Carlo analysis. Results are presented in terms of success rate, run time, and errors
on the final orbital elements, namely semi-major axis a, eccentricity e, and orbit
inclination i. The errors on the orbital elements are evaluated as differences between
the desired values and the elements corresponding to the propagated final state,
which is computed by numerical integration of the equations of motion of the original
problem, that is, Eqs. (4.2)–(4.4), from liftoff to the burnout of the last stage using
the optimal control laws. The run time and average error on the terminal value of the
orbital elements refer to the successful runs only, as previously done in Section 5.3.1.

As expected, the computational time increases as the total number of nodes
increases. For instance, solving the problem with grid C is more demanding than
solving it over grid A. Nevertheless, for a given grid, the solution process can be more
efficient if the phases are split into smaller segments, i.e., increasing h. On the other
hand, increasing h on a given grid implies lower order polynomials, which appear as
less accurate. Indeed, the average errors on the propagated orbital elements increase
as h increases. This is particularly emphasized for grid A, the one with fewest nodes,
which leads to large inaccuracies whenever h > 1. Indeed, as a limiting case, when
grid A is used with h = 4, only unphysical solutions featuring a payload mass 10%
greater than the attainable one are obtained; hence, no run is deemed successful.
Instead, the success rates of all the other grids are comparable. The default mesh
appears as a reasonable trade-off between accuracy and efficiency, as the mean run
time is quite small and the errors on the final orbital elements are acceptable for
any practical purpose.

5.5 Parametric Analysis of the Splash-Down Constraint
In the results presented in the previous sections, the return of the spent stage
(Phase 13) was omitted to focus the analysis on the ascent. Indeed, the inclusion
of the return phase increases significantly the complexity of the problem, making
the solution procedure less robust to inaccurate starting reference trajectories, such
as the ones obtained through the strategy outlined in Section 4.6. So, a common

5.5 Parametric Analysis of the Splash-Down Constraint 73

 1384

 1386

 1388

 1390

 1392

 1394

 1396

 1398

 1400

 1402

 55 60 65 70 75 80

P
ay

lo
ad

 M
as

s
(k

g
)

Splash-Down Latitude (deg)

 55

 60

 65

 70

 75

 80

Figure 5.4. Payload mass as function of the splash-down latitude.

approach consists in solving the ascent problem first and then simulate the return
trajectory of the spent stages. Eventually, if the splash-down points are not deemed
safe, the ballistic reentry of the concerning stages are included in the OCP and
constrained to different locations.

In this section, the return of the third stage is included in the OCP as Phase 13.
The effect of varying the splash-down point on the trajectory and on the overall
system performance is analyzed on the basis of a parametric study, discussing also
the interaction between the splash-down and the heat flux constraint.

From a practical standpoint, a grid of impact points was defined within φR,des =
55◦ and φR,des = 80◦ with an increment step equal to 1◦. Since the latitude
of the unconstrained (hence, optimal) return corresponds to φ⋆

R = 65.79◦, the
unconstrained trajectory was used as initial guess of the problems with splash-down
latitudes constrained to the two grid values adjacent to φR,des (that is, 65◦ and 66◦).
Then, the problems constrained to the other splash-down latitudes were sequentially
solved by using the converged solution of the OCP with the adjacent φR,des as
starting reference solution. This approach ensures that the initialization is quite
accurate, as the difference in the splash-down point is small Indeed, on average only
8 iterations were required to meet the convergence criteria. On the other hand, the
inclusion of the return phase significantly increases the problem dimension, thus
each iteration was computationally more demanding (requiring 0.95 s on average)
than when solving the OCP without Phase 13. Nevertheless, the overall solution
process of an OCP required, on average, a computational time of 7.75 s.

The default grid detailed in Table 5.3 to discretize the problem. Numerical
integration forward in time of the equations of motion showed that, on this grid,
the error on the splash-down point is less than 20 km. This error may appear large
compared to the one on the semi-major axis, which is below 100 m, but the return
dynamics are much more sensitive due to the nonlinear atmospheric forces that act
on the spent stage until the splash-down. Indeed, if the atmospheric drag is removed
from the equations of motion, the error on the splash-down location drops to 500 m,
which is in agreement with the errors on the payload orbital elements.

The optimal payload mass is plotted in Fig. 5.4 as a function of the splash-
down latitude. While moving the spent stage return point significantly changes
the trajectory, as shown in Figs. 5.5 and 5.6, it does not necessarily hinder the
performance. Indeed, the payload curve is essentially flat in the interval φR ∈

5.5 Parametric Analysis of the Splash-Down Constraint 74

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90

A
lt

it
u
d
e

(k
m

)

Splash-Down Latitude (deg)

 55

 60

 65

 70

 75

 80

Figure 5.5. Stage 3 trajectories from liftoff to splash-down.

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200 300 400 500 600 700

A
lt

it
u
d
e
 (

k
m

)

Time (s)

 55

 60

 65

 70

 75

 80

Figure 5.6. Altitude profiles from fairing jettisoning to t(10)
f .

5.5 Parametric Analysis of the Splash-Down Constraint 75

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 200 300 400 500 600 700

H
e
a
t

F
lu

x
 (

W
/m

2
)

Time (s)

 55

 60

 65

 70

 75

 80

Figure 5.7. Heat flux profiles from fairing jettisoning to t(10)
f .

[60◦, 72◦] and variations only below 1 kg are observed. When the splash-down
location is moved beyond 72◦, the decrease in performance is more evident, but it
still does not represent a concern as a shift of 15◦ causes a loss of only 3 kg. Instead,
moving the splash-down point closer than 60◦ appears to be more critical, as a
greater performance drop is observed. Nevertheless, even constraining the third
stage to fall 10◦ closer than φ⋆

R results in a payload reduction by only 1% of its
optimal value.

It is worth studying how the heat flux and splash-down constraints interact
with each other. Figure 5.7 shows the heat flux history that the payload undergoes
from the fairing jettisoning until the end of the first firing of Stage 4. Red curves
correspond to splash-down locations at lower latitudes, i.e., closer to the launch site,
while blue ones are associated with high-latitude returns. In all trajectories for which
φR ≥ 57◦, the heat flux constraint is active only at the boundaries of Phase 8, so
Assumption 1 holds in all these cases. Instead, the heat flux constraint is active over
intervals of finite duration when the splash-down point is moved closer than 57◦. In
particular, the heat flux peak is delayed and occurs during Phase 10. Note that the
duration and location of the bounded arc are very difficult to predict, but, thanks
to the direct discretization method, the optimal switching structure is automatically
determined by the optimization process and no a priori guess is required.

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

 350 400 450 500 550 600 650 700

 800

 820

 840

 860

 880

 900

 920

R
e
la

x
a
ti

o
n
 e

rr
o
r

H
e
a
t

F
lu

x
 (

W
/m

2
)

Time (s)

Figure 5.8. Relaxation error during Phase 10 of the trajectory constrained to φR = 55◦.

5.5 Parametric Analysis of the Splash-Down Constraint 76

Figure 5.8 reports the relaxation error during Phase 10 of the solution correspond-
ing to φR = 55◦. This solution is particularly interesting as Assumption 1 does not
hold anymore in the interval [576.6, 604.2] s. The relaxation error is always below the
solver feasibility threshold (10−6), except for the final node of the phase that, due to
the Radau discretization scheme, is not an optimization variable and is extrapolated
a posteriori from the approximating polynomial. Nevertheless, even though no
theoretical proof can be provided, the relaxation is lossless even in the interval where
Assumption 1 does not hold, as the resulting controls satisfy Eq. (4.52) with the
equality sign with a precision in agreement with the solver feasibility tolerance.

77

Chapter 6

Case Study: Ascent of a
Two-Stage Vehicle to the ISS

This chapter presents a second case study for the ascent trajectory of a launch vehicle,
with the aim of showing that the convex optimization approach here discussed for
the design of launch vehicle ascent is sufficiently general to be applied to any launch
vehicle mission.

6.1 Two-Stage Launch Vehicle Model
Instead of a VEGA-like configuration, here a two-stage launch vehicle is considered.
The vehicle is based on the SpaceX Falcon 9 Full Thrust rocket [149]. The values of
propellant and dry masses, burn time, vacuum thrust, mass flow rate, and nozzle
exit area adopted in the present study are summarized in Table 6.1. Note that, since
the Falcon 9 is equipped with liquid rocket engines, the vacuum thrust and mass
flow rate are assumed constant over time. Furthermore, the fairing mass is 1700 kg,
the drag coefficient CD is assumed to be constant and equal to 0.329, while the
reference surface Sref is 10.52 m2. Finally, an isothermal and exponential atmosphere
model is considered, with a scale height H equal to 8.4 km for any altitude.

Table 6.1. Two-Stage Rocket Data

Quantity Stage 1 Stage 2 Unit
mp 410 843 107 509 kg
mdry 22 200 4000 kg
tb 162 397 s
Tvac 8227 934 kN
ṁe 2536 270.8 kg/s
Ae 11.039 1.227 m2

6.2 Phases
As described in Section 4.2.1, the ascent trajectory of a launch vehicle is a succession
of different guidance programs, namely vertical ascent, gravity turn, and out-of-
atmosphere phases, possibly separated by coasting arcs. The phase structure used to
model the ascent trajectory of a two-stage vehicle is reported in Fig. 6.1. Differently

6.3 Problem Statement 78

1. Vertical
ascent

2. Pitch-over

3. ZLGT

4. Coasting 1

5. Stage 2 (1)

6. Coasting 2

7. Stage 2 (2)

Figure 6.1. Phases of the optimal control problem for the two-stage vehicle.

from the VEGA-like rocket, there is no need to include (nor to constrain) the return
phases of the spent stages, as the first stage burns out at a relatively small velocity
and, if uncontrolled, splashes down relatively close to the coast, while the second
stage burns out in orbit, so it can re-enter the Earth with a programmed maneuver
after payload release.

6.3 Problem Statement
The goal of the problem is to maximize the final mass of the system. Thus,

J = −m(tf) (6.1)

The launch vehicle dynamics are the same as for the VEGA-like case. The rocket
is supposed to lift off from Cape Canaveral (located at a latitude equal to φLB =
28.585◦) and must release the payload into the ISS’s orbit, which is assumed to be a
circular 400 km altitude orbit with an inclination of 51.6◦. So, the initial and final
conditions are

r(t0) = rLB (6.2)
v(t0) = ωE × rLB (6.3)

x(tf)2 + y(tf)2 + z(tf)2 = r2
des (6.4)

vx(tf)2 + vy(tf)2 + vz(tf)2 = µ/rdes (6.5)
r(tf) · v(tf) = 0 (6.6)

x(tf)vy(tf) − y(tf)vx(tf) = hz,des (6.7)

The fairing is assumed to be jettisoned as soon as the first stage separates from the
rocket. Thus,

m(t(4)
0) = m(t(3)

f) −mdry,1 −mfairing (6.8)
For the sake of simplicity, no heat flux constraint is considered in the present case,
even though it could be easily included as for the VEGA-like case.

The time-lengths of Phases 1–3 and the duration of the first coasting are assumed
as fixed parameters and their values are reported in Table 6.2. Instead, the time-
lengths of the last three phases are free. Since the total propellant mass of the upper
stage is fixed, and fully consumed, the sum of the duration of Phases 5 and 7 must
equal the overall burn time tb,2

∆t(5) + ∆t(7) = tb,2 (6.9)

To enhance convergence, a soft trust region constraint was posed on the duration of
Phases 6 and 7

|σ(i) − σ̄(i)| ≤ δ(i) i = 6, 7 (6.10)

6.4 Initialization 79

The trust radii are penalized through the additional terms

J
(i)
δ = λ

(i)
δ δ(i) i = 6, 7 (6.11)

and the corresponding penalty weights were set equal to λ(6)
δ = 10−4 and λ(7)

δ = 10−3.

Table 6.2. Nominal time-lengths of time-fixed arcs

Phase ∆t (s)
1 5.00
2 6.00
3 151.00
4 1.00

Analogously to the VEGA-like case, a hp-pseudospectral discretization method,
based on Radau collocation, was used to discretize the OCP. Table 6.3 reports
the values of h and p for every phase of the problem. Differently from the VEGA
case, where only the atmospheric return required splitting the domain in multiple
segments, the ascent phases of the Falcon 9 rocket require a greater number of nodes
because of longer time-lengths. To avoid the use of high-order polynomials, Phases 3,
5, and 6 were split into h = 2 subintervals.

Table 6.3. Discretization segments, order, and nodes in each phase.

Phase
1 2 3 4 5 6 7

h 1 1 2 1 2 2 1
p 5 5 20 5 20 20 10
Nodes 6 6 41 6 41 41 11

Virtual controls and buffers were added to the formulation to relax the linearized
dynamics and terminal constraints. The values of the penalty weights are the same
as for the VEGA-like case, that is, λq = λw = 104. Also, the same nondimensional-
ization factors were used to scale the data, that is, the Earth radius is the reference
length, the corresponding circular orbit velocity is the reference velocity, and a
reference mass of 10 000 kg is considered.

6.4 Initialization
To find a suitable initial guess, a reference trajectory is obtained according to the
strategy described in Section 4.6. Indeed, by assuming no atmosphere and assigned
values of the unknown initial mass, control laws, and arc time-lengths, a trajectory
can be designed through forward propagation of the rocket equations of motion.
Simple parametric control laws are adopted in the pitch-over (Phase 2) and the two
second stage burns (Phases 5 and 7). The control laws are expressed in terms of the
elevation angle ϕ and the azimuth angle ψ, defined as in Section 4.6. During the
pitch-over phase, the elevation varies linearly from 90◦ to ϕ(t(2)

f), which denotes the
kick angle and must be guessed. Since the maneuver takes place in an inertially-fixed
plane, the azimuth is kept equal to a constant value ψ(2), which is picked as in
Eq. (4.74). For the upper stage phases, the tentative control laws are designed such

6.5 Convergence Behavior 80

that the orbital plane is kept constant after the first stage burnout, hence ψ ≡ 0 in
the second stage phases. On the other hand, the elevation is set to be identically
null in the last burn, while it is assumed to vary linearly from a given value ϕ(t(5)

f)
to zero in the first firing of the second stage.

To sum up, the only variables to guess in order to generate a tentative solution
are the initial mass m0, the kick angle ϕ(t(2)

f), the initial elevation of the upper
stage ϕ(t(5)

f), and the time-lengths of the second stage phases. The values to pick
depend on the specific launcher and target orbit. Nevertheless, coming up with
suitable values is not an arduous task, especially if a three-step continuation strategy,
as outlined in Section 4.7, is adopted since the solution of P1 does not require an
extremely accurate initialization. For instance, the first guess values used to generate
the starting reference trajectory are reported in Table 6.4.

Table 6.4. Values used for the generation of the first guess trajectory of the two-stage
rocket.

Quantity Value Unit
m0 558 000 kg
ϕ(t(2)

f) 89.5 deg
ϕ(t(5)

0) 20.0 deg
∆t(5) 394.5 s
∆t(6) 3000.0 s
∆t(7) 2.5 s

It is worth noticing that the upper stage is expected to perform a Hohmann-like
maneuver, but the propellant distribution among the two firings of the second stage
is quite different from VEGA’s last stage, as most of the propellant is consumed
during the first burn, leaving only a very small fraction of the overall impulse for
the injection maneuver. This is due to the greater acceleration (i.e., thrust-to-mass
ratio) provided by the upper stage engine of the Falcon 9 in the last seconds of
operation compared to VEGA. Another difference concerns the kick angle value,
which, for the Falcon 9, is much closer to 90◦, as this kind of launch vehicle rotates
much more slowly than lighter vehicles such as VEGA.

6.5 Convergence Behavior
In this section, the convergence of the successive convexification algorithm for the
two-stage rocket problem is investigated. Differently from Section 5.2, where the
complete problem P3 was solved directly starting from the first guess solution, here
the convergence in each step of the three-step continuation strategy is discussed.
The tolerances on the convergence and dynamics were set equal to ϵtol = 10−4 and
ϵf = 10−6. Also, filtering was used to enhance convergence, based on K = 3 previous
solutions, with weights α = [6, 3, 2]/αN and αN = 11.

Figure 6.2 reports the altitude profiles throughout the successive iterations for all
the continuation steps. The dashed lines denote the starting trajectories, while the
solid lines gradually transition from red to green to illustrate the convergence process.
The largest variations occur in the first sequence (Fig. 6.2a). This is due to the rough
tentative trajectory, which is quite distant from the solution of P1. Nevertheless,
the process converges rapidly: after just 10 iterations, the difference between one

6.5 Convergence Behavior 81

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000 3500

h
 (

k
m

)

Time (s)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

(a) Starting from the first guess trajectory and solving the time-fixed,
with no atmosphere problem.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500 3000 3500

h
 (

k
m

)

Time (s)

 0

 1

 2

 3

 4

 5

(b) Starting from the no-atmosphere solution and solving the time-
fixed atmospheric problem.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500 3000 3500

h
 (

k
m

)

Time (s)

 0

 1

 2

 3

 4

 5

 6

 7

 8

(c) Starting from the atmospheric time-fixed solution and solving
the free-time problem.

Figure 6.2. Altitude profile across the iteration sequences for the ISS mission.

6.5 Convergence Behavior 82

solution and the next one is minimal, and the altitude profiles in Fig. 6.2a start
overlapping. Convergence within the desired tolerance is attained in 18 iterations.

When the problems P2 and P3 are considered, the differences between one
iteration and the next one are smaller. Indeed, when the atmosphere is added
(Fig. 6.2b), the most evident change concerns the maximum altitude reached before
the long coasting phase, which is reduced by a few tens of kilometers. This is
mainly due to the decrease in the effective engine thrust caused by the (non-null)
external pressure. In this step, convergence is attained in 5 iterations. Finally, in
the third step, where the time-lengths of the second stage arcs are also optimized,
the differences among the profiles plotted in Fig. 6.2c are almost unnoticeable. Only
slight changes in the time-lengths are needed to find the optimal solution. The
reason is twofold: (i) the solution of P2 is an accurate initial guess for P3 and (ii)
the penalty terms Jδ on time-length deviations favor solutions in the neighborhood
of the reference trajectory. Indeed, the ascent problem features many locally optimal
solutions, but, for any practical purpose, some of these solutions are deemed as
performing as the global optimum, as they feature similar values of the payload
mass. In order to let the algorithm adjust the time-lengths of free-time arcs to
the optimal values and, thus, prevent convergence toward a local optimum with a
payload mass significantly smaller than the global optimum, it is key to pick values
as small as possible for the time-deviations penalty weights λδ. This third step
requires 8 iterations to achieve convergence.

It is worth remarking that the successful convergence of the successive convex-
ification process strongly depends on the presence of virtual controls and virtual
buffers, as their inclusion was observed to be necessary to prevent the formulation
of infeasible intermediate problems, which would otherwise interrupt the sequence
prematurely. Indeed, it has been observed that, during the iterative process, the
virtual controls q and the virtual buffers w are actively used in the first iterations,
then rapidly approach zero and stay below the desired threshold value (10−6) in
almost all the remaining iterations.

-60
 0

 60
 120-30

 30

 90

Longitude (deg)

L
atitude (deg)

Figure 6.3. Visualization of the ISS ascent trajectory.

The final trajectory is visualized in Fig. 6.3 and the converged solution is
summarized in Table 6.5. For the sake of comparison, this case study was also solved
by means of the differential evolution (DE) algorithm EOS [108]. The two solutions
are in good agreement: the difference in payload mass is less than 50 kg, which
corresponds to 0.18% of the payload mass mpl and 0.01% of the lift-off mass m0,
thus in accordance with the prescribed tolerances. The burn times of the second
stage firings are substantially the same, as the difference is only of 0.01 s. Instead, a
larger discrepancy is observed in the duration of the second coasting arc. The cause
for the additional 34 seconds is related to the provided initial guess (3000 s). Indeed,

6.5 Convergence Behavior 83

Table 6.5. Final solution compared with the DE solution.

Quantity Convex DE Diff. (%) Unit
m0 572 507.53 572 556.36 0.01 kg
mpl 26 256.59 26 304.45 0.18 kg

∆t(5) 394.19 394.20 <0.01 s
∆t(6) 2954.90 2920.72 1.17 s
∆t(7) 2.81 2.80 0.20 s

8.00
10.00
12.00
14.00
16.00
18.00
20.00
22.00
24.00
26.00
28.00

 0 50 100 150 200 250 300 350

E
l

(d
eg

)

Time (s)

CVX
DE

(a) Second stage first firing

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

 0 0.5 1 1.5 2 2.5

E
l

(d
eg

)

Time (s)

CVX
DE

(b) Second stage second firing

Figure 6.4. Optimal control laws in the ISS mission.

the solution of the free-time convex problem is handled by (slightly) penalizing the
∆t deviation from the reference value via Eq. (6.10); thus, sometimes, locally optimal
solutions in the neighborhood of the reference times may be preferred if they feature
a payload mass close to the global optimum.

Figure 6.4 shows the time history of the optimal thrust direction elevation angle,
defined as the angle between the in-plane component of the thrust and the local
radial direction, during the two upper stage firings. In both phases, the time-laws
appear quite regular, suggesting the optimality of the attained solution. Specifically,
during the first firing (Fig. 6.4a) the trend is almost linear; instead, in the second
firing (Fig. 6.4b), the control angle is kept constant. The second burn angle appears
to be shifted with respect to the DE solution one, which is kept almost to zero for
the whole firing. This is due to the different coasting duration, which affects the
rocket orientation at the time of the second ignition. Finally, it is worth noting that
the convex approach achieves a speed-up factor of about 100x–300x compared to
the fully optimized parallel-execution DE solver.

The exactness of the relaxation of the control constraint (4.50) into Eq. (4.52) can
be empirically verified by inspecting the relaxation error eR = |u2

x + u2
y + u2

z − u2
N |

at each discretization node. As an example, Fig. 5.8 reports the relaxation error
during Phase 5, clearly showing that the equality constraint is always satisfied within
the prescribed tolerance (here set equal to 10−6).

6.5 Convergence Behavior 84

10
-9

10
-8

10
-7

10
-6

10
-5

 0 50 100 150 200 250 300 350

R
e
la

x
a
ti

o
n

 e
rr

o
r

Time (s)

Figure 6.5. Relaxation error across Phase 5 of the ISS solution.

85

Chapter 7

Application to Upper Stage
Guidance

This chapter investigates a closed-loop guidance, based on convex optimization
and model predictive control, for the upper stage of a launch vehicle. Specifically,
two guidance strategies are considered. The first one, which recursively solves an
optimal control problem that comes directly from the launch vehicle ascent trajectory
optimization problem discussed in Chapter 4, provides robustness to model errors and
random external disturbances. The second one, instead, incorporates an additional
return phase in the OCP to reduce the scattering of the splash-down location of the
spent stage even in the case of uncertain stage cut-off time. Numerical results are
presented to assess and compare the performance and robustness of both approaches
with reference to VEGA’s third stage case study.

7.1 Motivation for Upper Stage Guidance
Robust and efficient guidance algorithms are paramount in the final phases of a
launch vehicle ascent to guarantee the accurate injection of the payload into the
target orbit, even in presence of non-negligible uncertainties, and to enhance the
vehicle responsiveness in off-nominal conditions. Indeed, launch vehicles feature
significant model uncertainties with respect to the performance of the propulsion
system, dispersions of the aerodynamic coefficients, and unpredicted variations of
local atmospheric conditions, to name a few. Therefore, the design of a reliable
guidance algorithm, capable of working in a not fully deterministic scenario, is
mandatory to ensure the system in-flight autonomy.

While safety-related considerations must be necessarily taken into account when
dealing with vehicles that operate in uncertain environments, the design of aerospace
systems should also be performance-oriented. To this end, the definition of optimal
guidance strategies is key to maximizing the launch vehicle performance (e.g., in
terms of carrying capacity).

This thesis investigates the optimal guidance of the third stage of a VEGA-like
launch vehicle as a case study. This peculiar rocket configuration is such that the
velocity of the third stage at separation is quite high, hence the burned-out stage
ends up falling far away from the launch site. Two major concerns arise from this
aspect: (i) an accurate prediction of the (nominal) impact point of the spent stage is
required, and (ii) the actual impact point must be sufficiently close to the nominal
one, despite external disturbances, model uncertainties, and the launch vehicle
intrinsic dispersions.

7.2 Model Predictive Control Algorithms 86

At present, the guidance of Z9 relies on a neutral axis maneuver in the last
seconds before cut-off to meet these requirements. Similarly to the null miss condition
developed for ballistic missiles [89], the neutral axis maneuver (NAM) prescribes
the attitude of the rocket, so that the ground impact point is retained regardless
of any additional velocity increments. Under the assumption of Keplerian motion
(i.e., subject only to inverse-square gravity) during the return phase, an analytical
guidance law can be derived. However, due to the presence of the atmosphere, such a
model is inexact and the guidance algorithm requires a consistent effort for trajectory
validation and verification to ensure robustness before each launch, making this
approach cumbersome and time-consuming.

Instead, if a more realistic dynamical model were used in the guidance scheme, the
onboard algorithm would provide a much more reliable prediction of the splash-down
location and thus reduce the dependance on time-consuming pre-flight procedures.
Also, a closed-loop architecture provides greater robustness to random in-flight
disturbances and model uncertainties than an open-loop one, being based on the
encountered flight conditions, and the recursive computation of the optimal trajectory
and control signal guarantees better system efficiency than tracking a pre-scheduled
flight plan. Therefore, motivated by the computational efficiency and reliability
of the convex approach to the launch vehicle ascent trajectory optimization, even
when considering a realistic dynamical model and practical constraints, a model
predictive control framework that incorporates convex optimization is investigated
as a closed-loop strategy for a safe and performing upper stage guidance.

7.2 Model Predictive Control Algorithms
MPC consists essentially of a feedback controller that generates the control signal by
solving an OCP with updated initial conditions and parameters in a receding-horizon
manner. The flowchart in Fig. 7.1 represents a general MPC algorithm. The loop
starts with the reading of the data coming from the navigation system, which concern
the present state of the system and other parameters that characterize the OCP
(e.g., the local atmospheric conditions). Then, the optimal control problem instance
is formulated on the basis of the measured state, which is used to set up the initial
condition of the problem and adjust the dynamical model and constraints. The
output of the optimization is a control signal that maximizes the system performance
according to the OCP merit index and ensures that all constraints will be satisfied.
The OCP is defined over a time domain, referred to as the prediction horizon, that is
longer than the control horizon, which is the time interval T that elapses between one
control step and the next one and determines the MPC update frequency. Indeed,
the prediction horizon must last long enough to evaluate the system performance
and account for all the mission constraints. The extent of the control horizon, on the
other hand, is much shorter. Over the control horizon, the optimal control signal is
used for actuation purpose, then the MCP cycle repeats until the stopping criterion
is met.

It is worth noting that, in a theoretical study as the present thesis, the actuation
of the optimal control law and the subsequent interaction with the environment is
replaced with a simulation of the system dynamical model, sometimes referred to as
truth model, perturbed by a noise signal that approximates the expected external
disturbances and allows to take into account effects due to unmodeled dynamics.

7.2 Model Predictive Control Algorithms 87

Start

Measure the actual state

Solve the updated
OCP over the pre-

diction horizon

Implement the OCP’s
control signal over
the control horizon

Simulation over
the control horizonNoise

Stopping
criterion?

End

No

Yes

Figure 7.1. MPC flowchart.

7.3 Upper Stage Guidance Strategy 88

7.3 Upper Stage Guidance Strategy
An MPC scheme provides inherent robustness to model errors and additive noise
thanks to the closed-loop architecture. In most applications, these classes of uncer-
tainties cover all the significant sources of mismatch between the predictive model
and the truth one. However, if the system is subject to a different class of uncertainty,
then some further expedients must be devised to make the MPC algorithm robust.

For instance, upper stages equipped with a solid rocket motor, such as VEGA’s
third stage, feature a non-negligible dispersion on their cut-off time. Indeed, the
thrust profile that a SRM will provide is difficult to predict and the burn time
can be estimated only with a limited accuracy. Since even a few seconds of extra
operation of the stage may move the return point of the spent stage by hundreds of
kilometers, a guidance strategy has to explicitly account for such an uncertainty to
ensure robustness.

Two guidance strategies are investigated in this thesis, both of which make use of
an MPC framework to guide the flight of the third stage of VEGA in a closed-loop
fashion. The two strategies mainly differ by the OCP that is recursively solved.
The first strategy relies on the definition of an OCP that directly comes from the
solution of the ascent problem presented in Section 4.4, where only the flight of the
third and fourth stages (Phases 7–13) are considered. The second strategy, instead,
assumes that, in the last few seconds of operation, Z9 switches to an open-loop
control law. To increase the robustness of the splash-down point to uncertainties on
the SRM cut-off time, an additional return phase is included in the OCP, and the
open-loop control is tailored to minimizing the dispersion of the splash-down point
by evaluating (and updating) directly onboard and in a systematic way the neutral
axis direction. Due to this main difference, in the following, the former strategy is
referred to as single-return strategy and the latter as multi-return strategy.

It is worth noticing that the simulation of two return trajectories (instead of one)
increases the problem dimension and complexity, requiring a larger computational
effort. Therefore, the multi-return strategy should be implemented only if the system
features a significant uncertainty on the cut-off time of the stage. Instead, if the
stage were equipped with a liquid rocket engine, which can be turned off more
easily than a SRM, the single-return strategy is a more convenient approach, as it is
inherently robust and allows for higher update frequencies.

7.3.1 Single-Return Strategy
Figure 7.2 illustrates the phases of the ascent of a VEGA-like rocket from the third
stage ignition until payload release into orbit, while accounting also for the return of
the spent third stage. The phases of the flight are identified by letters instead of
numbers to avoid confusion with the phases of the OCP.

The closed-loop MPC guidance is implemented for the entire operation of the
third stage, that is, Phases A and B. The stopping criterion of the MPC algorithm
is the burnout of the stage, which is supposed to take place at a well-known time.
Then, an estimate of the necessary propellant consumption to release the payload in
the desired orbit can be retrieved by solving the ascent OCP for the remainder of
the flight (i.e., Phases C–F)1. Likewise, the final position and velocity at the cut-off
can be used to simulate the return of the spent third stage (Phase G).

1The guidance of the fourth stage flight is out of the scope of this dissertation.

7.3 Upper Stage Guidance Strategy 89

A. Stage 3
w/ Fairing

B. Stage 3
w/o Fairing

C. Coasting 3

D. Stage 4 (1)

E. Coasting 4

F. Stage 4 (2)G. Return

Figure 7.2. Phases of the upper stage single-return guidance strategy.

A. Stage 3
w/ Fairing

B. Stage 3
w/o Fairing

N. Stage 3
N-Axis

C. Coasting 3

D. Stage 4 (1)

E. Coasting 4

F. Stage 4 (2)G. Return

Figure 7.3. Phases of the upper stage multi-return guidance strategy.

7.3.2 Multi-Return Strategy
To design a guidance algorithm that is robust not only to generic in-flight disturbance
and model errors but also to an uncertain cut-off time of the solid rocket motor, the
guidance strategy must explicitly incorporate, in some form, an open-loop neutral
axis maneuver.

Figure 7.3 reports the phase sequence of the multi-return strategy. Differently
from the single-return approach, the third stage flight is here split in three phases.
The first two phases (Phases A and B) model the vehicle flight before and after the
payload fairing jettisoning, respectively, while the third one (Phase N) models the
neutral axis maneuver. The neutral axis phase is quite different from the rest of the
stage operation, as, during this phase, the attitude of the rocket (hence, the thrust
vector) is prescribed in a constant, open-loop neutral axis direction.

The MPC guidance scheme is applied only in Phases A and B, that is, from the
third stage ignition until the moment when the neutral axis maneuver starts, which
is the MPC stopping criterion and corresponds to the minimum cut-off time of the
SRM. From that point on, the open-loop neutral axis maneuver (Phase N) begins
and the rocket holds on to a constant attitude, which is the same attitude of the
vehicle during the last MPC cycle. Phase N terminates as soon as the SRM actually

7.4 Single-Return Optimal Control Problem 90

7. Stage 3
w/ Fairing

8. Stage 3
w/o Fairing

9. Coasting 3

10. Stage 4 (1)

11. Coasting 4

12. Stage 4 (2)

13. Nominal
Return

Figure 7.4. Phases of the OCP recursively solved by the single-return MPC algorithm.

burns out.
Also in this case, a prediction of the propellant consumption of the fourth stage

can be retrieved by solving the ascent OCP relative to Phases C-F and the splash-
down point can be estimated by simulating the return of the spent stage with initial
position and velocity corresponding to the measured burnout conditions.

7.4 Single-Return Optimal Control Problem
The MPC controller generates at every time step a control law by solving in real time
a finite-horizon optimal control problem. In this section, the upper stage guidance
problem considered in the single-return algorithm is described and formulated as
a multi-phase OCP. In particular, the OCP is obtained essentially by removing
Stages 1 and 2 from the complete ascent OCP described in Section 4.4. First, the
phase sequence of the OCP is outlined; then, the considered dynamical model is
presented; and finally, the objective function and all the constraints of the OCP are
reported.

7.4.1 Phase Sequence
Figure 7.4 illustrates schematically the considered phase sequence of the OCP. It is
obtained simply by starting from the phase sequence of the complete ascent problem
(reported in Fig. 4.4) and removing all the arcs that precede the third stage ignition.
Indeed, Phases 7–13 are the same as for the complete ascent.

7.4.2 System Dynamics
The dynamical model here considered is the same as described in Sec. 4.3. The
vehicle state x is described by its position r, velocity v, and mass m,

x =
[
x y z vx vy vz m

]T (7.1)

The thrust direction T̂ corresponds to the control of the system, whose elements,
being a unit vector, must satisfy the following identity at any time

T̂ 2
x + T̂ 2

y + T̂ 2
z = 1 (7.2)

7.4 Single-Return Optimal Control Problem 91

The resulting equations of motion are

ṙ = v (7.3)

v̇ = − µ

r3r + Ta

m
T̂ − D

m
v̂rel (7.4)

ṁ = −ṁe (7.5)

Note that, since the upper stage does not perform the gravity turn maneuver or a
vertical ascent, the only thrust contribution that appears in Eqs. (7.3)–(7.5) is the
optimally controlled one, Ta, while Tb and Tc are dropped.

7.4.3 Objective and Constraints
The goal of the optimization is to minimize the propellant consumed during the
fourth stage operation. Indeed, if the guidance algorithm minimizes the propellant
mass, not only it will provide better responsiveness in off-nominal conditions, but it
will also increase the launch vehicle nominal payload, as smaller fuel tanks will lead
to an increment of the vehicle carrying capacity. The objective can be equivalently
formulated as maximizing the final mass (or minimizing its opposite). Thus, the
considered cost function is

J = −m(tf) (7.6)
In an MPC framework, the initial condition of the OCP is updated at every control

step with the real-time measurements x̃0, therefore the initial state is completely
assigned

x(t0) = x̃0 (7.7)
Differently from the ascent problem considered before, in the upper stage problem

the initial mass is prescribed. So, to maximize the final mass, the assumption of fixed
propellant consumption must be dropped for the fourth stage. Otherwise, m(tf)
would be determined as the diffeence between the initial mass and the propellant
and inert masses, making the optimization pointless. Therefore, the constraint in
Eq. (4.34) is removed from the problem and the overall burn time of AVUM is a
free optimization variable. If the optimization provides burn times shorter than
nominal, then the unused propellant can be considered as additional payload mass.
Conversely, if longer than nominal burn times are found, less payload can be loaded
on the vehicle. Note that the propellant mass of the third stage is still supposed
prescribed.

The final conditions of Phase 12 are the same as detailed in Section 4.4. Indeed,
if considering a circular target orbit with semi-major axis ades and inclination ides,
the following constraints are imposed

x(tf)2 + y(tf)2 + z(tf)2 = a2
des (7.8)

vx(tf)2 + vy(tf)2 + vz(tf)2 = v2
des (7.9)

r(tf) · v(tf) = 0 (7.10)
x(tf)vy(tf) − y(tf)vx(tf) = hz,des (7.11)

To constrain the splash-down point of the spent stage, the following conditions
are imposed at the end of Phase 13

x(tR)2 + y(tR)2 + z(tR)2 = R2
E (7.12)

z(tR) = zR,des (7.13)

7.4 Single-Return Optimal Control Problem 92

Since the OCP is a multi-phase problem, proper linkage conditions must be
imposed at each internal boundary. In particular, all state variables are continuous
across phases, with the relevant exception of the mass, which is discontinuous at the
fairing jettisoning and at the third stage separation. Thus,

m(t(8)
0) = m(t(7)

f) −mfairing (7.14)

m(t(9)
0) = m(t(8)

f) −mdry,3 (7.15)

As for Phase 13, its initial position and velocity are equal to the burnout conditions
of the third stage, while its mass is equal to the dry mass of the stage. Thus,

r(t(13)
0) = r(t(8)

f) (7.16)

v(t(13)
0) = v(t(8)

f) (7.17)

m(t(13)
0) = mdry,3 (7.18)

Finally, the constraint on the maximum heat flux is included in the formulation
for Phases 8–12

Q̇ = 1
2ρv

3
rel ≤ Q̇max (7.19)

7.4.4 Convex Formulation
The same convexification strategy devised to convert the ascent OCP into a sequence
of convex problems that quickly converges to the optimal solution can be used on the
upper stage problem. This is a crucial step in the design of the guidance algorithm,
as it greatly reduces the cost of the onboard optimization and enables the model
predictive controller to attain high update frequencies.

First, lossless convexification strategies, namely a change of variables and a
control constraint relaxation, are employed to obtain control-affine equations of
motion. So, the new control is introduced

u = Ta

m
T̂ (7.20)

which includes both the thrust-to-mass ratio Ta/m and the thrust direction vector
T̂ . By replacing T̂ with u in Eqs. (7.3)–(7.5), control-affine dynamics are obtained

ṙ = v (7.21)

v̇ = − µ

r3r + u− D

m
v̂rel (7.22)

ṁ = −ṁe (7.23)

The new control vector must satisfy Eq. (7.2), which becomes

u2
x + u2

y + u2
z = u2

N (7.24)

The additional variable uN represents the thrust-to-mass ratio. Thus, the following
nonlinear path constraint is included

uN = T

m
(7.25)

7.4 Single-Return Optimal Control Problem 93

Equation (7.24) is a nonlinear equality constraint that is suitable for a lossless
relaxation, as Proposition 1 from Section 4.5.2 holds also for the upper stage problem.
So, by replacing the equality with an inequality, a second-order cone constraint is
formulated

u2
x + u2

y + u2
z ≤ u2

N (7.26)

The equations of motion (7.21)–(7.23) are linearized around a reference solu-
tion {x̄, ū, s̄} and augmented with a virtual control signal q to prevent artificial
infeasibility

dx

dτ
= Ax+Bu+ Pp+ c+ q (7.27)

The same penalty term Jq as in Eq. (4.71) is be added to the cost function to penalize
the use of virtual controls.

The final conditions at the payload release, Eqs. (7.8)–(7.11), are linearized as

r̄(tf) · r̄(tf) + 2r̄(tf) · (r(tf) − r̄(tf)) = a2
des (7.28)

v̄(tf) · v̄(tf) + 2v̄(tf) · (v(tf) − v̄(tf)) = v2
des (7.29)

r̄(tf) · v̄(tf) + v̄(tf) · (r(tf) − r̄(tf)) + r̄(tf) · (v(tf) − v̄(tf)) = 0 (7.30)
v̄y(tf)(x(tf) − x̄(tf)) − v̄x(tf)(y(tf) − ȳ(tf)) − ȳ(tf)vx(tf) + x̄(tf)vy(tf) = hz,des

(7.31)

Likewise, the constraint on the terminal radius at the splash-down, Eq. (7.12), is
reformulated as

r̄(t(13)
f) · r̄(t(13)

f) + 2r̄(t(13)
f) · (r(t(13)

f) − r̄(t(13)
f)) = R2

E (7.32)

The heat flux constraint in Eq. (4.35) is another nonlinear expression that is
replaced by its Taylor series expansion reported in Eq. (4.61). Analogously, Eq. (7.25)
is linearized as

uN = Tvac − p(r̄)Ae

m̄

(
1 − m− m̄

m̄

)
− Ae

m̄

dp(r̄)
dr

· (r − r̄) (7.33)

Virtual buffer zones are introduced to relax the linearized constraints and prevent
artificial infeasibility. So, Eqs. (7.28)–(7.33) are grouped into a vector χ = 0 that is
then relaxed as χ = w. The vector w holds all the virtual buffers, which are highly
penalized by adding the following penalty term to the cost function

Jw = λw ∥w∥1 (7.34)

with λw denoting the penalty weight of the virtual buffers.
Finally, to prevent excessive changes from the reference value, a soft trust region

constraint is imposed on the time-lengths σ of Phases 11 and 12

|σ(i) − σ̄(i)| ≤ δ(i) i = 11, 12 (7.35)

The trust radii δ(i) are added to the set of optimization variables and bounded in a
fixed interval [0, δ(i)

max]. The soft trust region penalty terms are

J
(i)
δ = λ

(i)
δ δ(i) i = 11, 12 (7.36)

7.5 Multi-Return Optimal Control Problem 94

7. Stage 3
w/ Fairing

8. Stage 3
w/o Fairing

9. Coasting 3

10. Stage 4 (1)

11. Coasting 4

12. Stage 4 (2)

13. Nominal
Return

Perturbation
Impulse

14. Perturbed
Return

Figure 7.5. Phases of the OCP recursively solved by the multi-return MPC algorithm.

The augmented cost function of the convex problem includes the trust radii, the
virtual control, and the virtual buffer penalties

J = −m(tf) + J
(11)
δ + J

(12)
δ + Jq + Jw (7.37)

To sum up, the convex problem to solve in the single-return strategy, denoted as
PS , is

PS : min
x, u p

(7.37) (7.38)

s.t. (7.7), (7.13)–(7.18), (7.27)–(7.33), (7.35)

7.5 Multi-Return Optimal Control Problem
In the multi-return MPC algorithm, a different optimal control problem is formulated.
The OCP is analogous to the single-return OCP, but it includes an additional return
phase, which relates to a fictitious object, with the same position and mass of the
third stage at cut-off, but a different velocity obtained by a slight perturbation of
fixed magnitude and unknown direction. This direction corresponds to the direction
of the velocity perturbation such that the splash-down locations of the two return
phases will match. Note that, by definition, such a direction is the neutral axis
direction, which the algorithm computes as a by-product of the optimization at each
control cycle.

7.5.1 Phase Sequence
Figure 7.5 reports the phases of the multi-return OCP. The difference with the phase
sequence of the single-return OCP is the inclusion of a second return (Phase 14)
perturbed with respect to the nominal return (Phase 13) by a velocity increment.

7.5 Multi-Return Optimal Control Problem 95

Phase 13 refers to the nominal return phase, that is, the one with initial position
and velocity corresponding exactly to the state values at the end of Phase 8 (i.e.,
the nominal burnout of the SRM). Instead, Phase 14 simulates a perturbed return,
that is, the initial conditions differ from the nominal values by a velocity increment
∆VNA, which has fixed magnitude but unknown direction. The magnitude of the
velocity perturbation is in the order of the maximum extra ∆V that the SRM can
provide after the nominal cut-off, while the direction is an optimization variable,
which is further constrained to be aligned with the control direction at the end of
Phase 8. In this way, at the nominal burnout, the rocket is oriented in the ∆VNA
direction and, since both returns are constrained to fall in the same splash-down
point, ∆VNA corresponds to the neutral axis direction, which is thus an output of
the optimization process.

Thus, the perturbation that differentiate the perturbed return from the nominal
one is an instantenous ∆V that models the effect of extra seconds of operation of
the third stage compared to the nominal (i.e., minimum) cut-off time. Including
the direction of ∆VNA as an optimization parameter represents an expedient to
account for and optimize the neutral axis maneuver in the OCP. Indeed, modeling
the manevuer as a finite-duration arc in the OCP is not straightforward, as its
duration depends on the SRM actual performance, which is unknown a priori and
uncontrollable.

7.5.2 Objective and Constraints
The multi-return OCP, denoted as PM shares the same objective, Eq. (7.6), and
dynamics, Eqs. (7.3)–(7.5), of the single return problem PS . In addition, PM

incorporates all the constraints of PS and it introduces more constraints related to
the perturbed return (Phase 14).

The splash-down point of the perturbed return is constrained to the same point
as the nominal return (Phase 13). Thus, the following conditions are imposed at the
end of Phase 14

x(tP R)2 + y(tP R)2 + z(tP R)2 = R2
E (7.39)

z(tP R) = zR,des (7.40)

with tP R denoting the splash-down time of the perturbed return trajectory (Phase 14).
The initial position and velocity of Phase 14 are equal to the burnout conditions

of the third stage, except for a velocity increment, denoted as ∆VNA. Instead, the
mass is equal to the dry mass of the stage. Thus,

r(t(14)
0) = r(t(8)

f) (7.41)

v(t(14)
0) = v(t(8)

f) + ∆VNA (7.42)

m(t(14)
0) = mdry,3 (7.43)

A continuity constraint between the velocity perturbation ∆VNA and the final
control direction at the nominal burnout of the third stage is imposed to ensure that,
from the nominal burnout time onwards, the rocket is in the neutral axis direction.
Thus,

∆VNA/∆VNA = T̂ (t(8)
f) (7.44)

7.6 Update of the OCP 96

Table 7.1. Initial number of discretization segments, order, and nodes in each phase of the
single-return OCP.

Phase
7 8 9 10 11 12 13

h 1 1 1 1 1 1 5
p 5 19 9 19 19 19 20
Nodes 6 20 10 20 20 20 101

7.5.3 Convex Formulation
The convexification of the multi-return OCP follows the same rationale used to
convexify PS . So, all the common constraints, including the dynamics, are tackled
in the same way as detailed in Section 7.4.4. The only constraint introduced in PM

that needs to be linearized is the constraint on the terminal radius of the perturbed
return, Eq. (7.39), which is reformulated as

r̄(t(14)
f) · r̄(t(14)

f) + 2r̄(t(14)
f) · (r(t(14)

f) − r̄(t(14)
f)) = R2

E (7.45)

The virtual controls, virtual buffers, and the trust region on the time-lengths
of Phases 10 and 11 defined for PS are introduced also in PM . Thus, the resulting
convex OCP to solve in the multi-return algorithm is

PM : min
x, u p

(7.37) (7.46)

s.t. (7.7), (7.13)–(7.15), (7.27)–(7.33), (7.35), (7.40)–(7.45)

7.6 Update of the OCP
At the end of every control cycle, the OCP must be updated with the measurements
coming from the navigation system. Therefore, the initial condition, Eq. (7.7), is
updated with the measured (or simulated) state at that time. Also, the starting
reference solution {x̄, ū, s̄} is replaced with the optimal solution computed at the
previous time, removing the portion of flight elapsed between the two control steps.

Since the extent of the OCP time domain (i.e., the prediction horizon) reduces at
each update due to the receding-horizon implementation of the MPC algorithm, the
size of the discretization grid may also be reduced at every step to save computational
resources. So, starting from the hp grids in Tables 7.1 and 7.2, the number of nodes
reduces linearly over time until a minimum value of 5 nodes per segment. Analogously,
the phases of the OCP should be removed as soon as they are elapsed, thus Phase 7
is removed from the OCP as soon as the fairing is jettisoned.

In the multi-return problem, Phase 8 is split into two uneven segments of different
order p, as a small segment is introduced near the end of the phase to prevent
numerical issues to the discretization of rapidly changing dynamics. Indeed, during
the transition to the neutral axis attitude, the rocket rotates by approximately 40◦ in
a few seconds, thus a global interpolating polynomial would feature high-frequency
oscillations in that region to model such a rapid maneuver.

It is worthwhile mentioning that in the present study the time to solve the
optimization problem is supposed null, but actually the simulation should introduce a
delay between the measurement of the updated state and the actuation of the optimal
control law. This delay may introduce significant deviations from the predicted

7.7 Softening the Heat Flux Constraint 97

Table 7.2. Initial number of discretization segments, order, and nodes in each phase of the
multi-return OCP.

Phase
7 8 9 10 11 12 13 14

h 1 2 1 1 1 1 5 5
p 5 [19, 5] 9 19 19 19 20 20
Nodes 6 25 10 20 20 20 101 101

trajectory if the solution time is long. Nevertheless, thanks to the convexification
strategy, the time required to solve the OCPs is assumed to be sufficiently brief to
neglect the computation delay. Preliminary numerical results confirm the validity of
this hypothesis.

7.7 Softening the Heat Flux Constraint
Recursive feasibility of the OCP is key to the design of an MPC controller, as the
optimization procedure must provide a control signal at every control step. The
formulated convex problem includes virtual controls and buffer zones to ensure
the feasibility of each instance. Under nominal circumstances, these expedients
would guarantee the feasibility of the OCP, as proved in Chapter 5. However, when
the system operates in off-nominal conditions, satisfying some constraints may be
impossible, and, as a result, the optimization may provide unphysical solutions
that actively exploit virtual variables or no solution at all. A common strategy to
avoid this undesired phenomenon is relaxing the initial condition and turn the hard
constraint of Eq. (7.7) into a soft constraint with a corresponding penalty term in
the augmented objective function (e.g., as proposed in Ref. [69]). This is a general
approach that can be readily employed regardless of the application. However, as
such, it does not exploit any knowledge on the problem characteristics. Instead, if
possible, identifying the critical mission requirements and formulating a properly
relaxed problem is a more efficient approach.

For the problem under investigation, only the constraint on maximum thermal
flux (4.61) may cause an infeasible problem instance. Indeed, the nominal trajectory
is such that the heat flux is greater than or equal to the threshold just until the
fairing jettisoning. So, due to off-nominal initial conditions or external disturbances
in the dynamics, the heat flux may be greater than expected at some points in the
simulation and keeping it below threshold may be impossible. The infeasibility is
solved by softening the heat flux constraint Eq. (4.61) as

˙̄Q+ ∂ ˙̄Q
∂r

· (r − r̄) + ∂ ˙̄Q
∂v

· (v − v̄) ≤ Q̇max
(
1 + δQ̇

)
(7.47)

where δQ̇ is a non-negative optimization variable that is penalized in the cost function
via the term

JQ̇ = λQ̇δQ̇ (7.48)

Conversely to penalty terms on virtual variables, high values should not be assigned
to the penalty weight λQ̇. Indeed, if the relaxation of the heat flux constraint
is highly penalized, then the optimization would recognize virtual controls as a
more convenient option and thus violate the dynamics and never meet the converge

7.8 Perturbation Model 98

criterion (3.46). Instead, a better approach consists in considering a conservative
nominal threshold on the bearable heat flux Q̇max and accepting a (small) violation
of such a threshold due to the external disturbances. So, in practice, assigning a
small value to the penalty weight λQ̇ appears as the most effective strategy.

7.8 Perturbation Model
To simulate the actual stage operation, a numerical integration of the original
dynamical model, Eqs. (7.3)–(7.5), is carried out. To account for model uncertainty
and external disturbance, white Gaussian noise is added to the equations of motion,
resulting in the following stochastic differential equation (SDE)

dx = f(x,u, t)dt+G(x,u, t)dBt (7.49)

where Bt is a nB-dimensional Wiener process (standard Brownian motion) and the
matrix G determines how the external disturbances affect the system.

In the present case, the external disturbance is supposed to be a random accel-
eration with zero mean and a standard deviation proportional to the thrust level
by a factor αG. In particular, two different noise contributions are considered: the
first one is aligned with the thrust direction, while the second one is in a random
direction. The intensity of the former is supposed to be αG∥ times larger than the
one of the latter, as most of the noise is usually in the thrust direction. The resulting
G matrix is

G = αG
T

m

 03×1 03×3
αG∥T̂ I3×3
01×1 01×3

 (7.50)

Note that the dimension of the Wiener process is nB = 4.
The initial conditions at the stage ignition are perturbed to account for possible

performance dispersions of the previous stages. The position error is modeled as
a perturbation of the altitude only, as perturbations in other directions do not
significantly affect performance. Errors on r are uniformly sampled in the range
[−∆r,∆r]. Instead, the scattered initial conditions on the velocity are generated by
uniformly sampling noise from a sphere of radius ∆v.

As for the SRM thrust profile used in the simulations, every run considers a
perturbed thrust law that features an additional burn time ∆tb of up to 5 s and
a small increase in the engine total impulse ∆Itot up to 0.5% with respect to the
nominal one used as a reference in the OCP. By randomly scattering these quantities,
a constant, nonzero thrust level is assumed in the extra seconds of operation

Tvac(t > tb,nom) = ∆Itot
∆tb

(7.51)

The nominal thrust profiles and some examples of perturbed laws are shown in
Fig. 7.6.

7.9 Numerical Results
In this section, numerical results are presented to assess the performance and
robustness of the MPC framework. The single and multi-return guidance strategies
are compared and the advantages of including a perturbed return phase in the
guidance OCP are investigated.

7.9 Numerical Results 99

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120

T
h
ru

st
 i

n
 v

a
c
u
u
m

 (
k
N

)

Time (s)

Figure 7.6. Nominal and perturbed thrust profiles.

The algorithms were implemented in C++ and the OCP was solved using Gurobi
[147] as second-order cone programming solver. All the simulations ran on a computer
equipped with Intel® Core™ i7-9700K CPU @ 3.60 GHz.

7.9.1 Problem Data
The considered case study is the same as in Chapter 5, that is, an ascent trajectory
from an equatorial launch base to a 700 km circular orbit with ides = 90◦, with the
relevant difference that the splash-down latitude of the third stage is arbitrarily
constrained to φR,des = 60◦. The same data were used to model the launch vehicle
stages and aerodynamic coefficients, with the exception of the uncertain additional
burn time of the third stage, which is modeled as detailed in Section 7.8.

The duration of the phases is the same as reported in Table 5.2. In particular,
the third stage nominal burn time is tb,3 = 110 s, which is also the minimum burn
time considered in the simulations, while delayed cut-offs (up to 5 s) can provide
a maximum velocity increment of ∆VNA = 25 m/s. Since the fairing is released
∆t(7) = 5.4 s after ignition, Phase 8 lasts ∆t(8) = 104.6 s. The duration of the coasting
arc that follows the third stage separation (Phase 9) is fixed to ∆t(9) = 15.4 s, while
the time-lengths of all the other phases are unconstrained.

In the OCP, the threshold on the heat flux used to compute the solution is set
to Q̇max = 900 W/m2. However, Q̇max is a nominal value and is lower than the
actual bearable heat flux that must not be exceeded in simulations (1135 W/m2)
[58]. Therefore, the softening of the heat flux constraint as in Eq. (7.47) with a
small value of the penalty coefficient (λQ̇ = 10−2) is justified.

The values of the other parameters of the successive convexification algorithm
are the same used in Chapter 5. Specifically, the penalty weights on the time-
lengths, λ(11)

δ and λ
(12)
δ , were set to 10−4, while, the penalty weights of the virtual

variables were set to λq = λw = 104. The tolerances on the convergence criteria,
Eqs. (3.45)–(3.47), were prescribed as ϵtol = 10−4 and ϵf = 10−6.

7.9.2 Nominal Trajectories
The nominal trajectories are the optimal trajectories computed in a fully deterministic
scenario (i.e., without accounting for uncertainties or disturbances). These are used

7.9 Numerical Results 100

as initial reference solutions in the first MPC cycle. The nominal trajectories of the
single and multi-return approaches can be computed via the convex optimization
approach described in Chapter 4, with the only difference of including Phase 14 and
the related constraints in the OCP for the multi-return scenario.

The nominal solutions also provide valuable information on the (nominal) perfor-
mance of the two strategies. For instance, the achievable payload mass considering
only the nominal return in the optimization is m⋆

pl = 1400.1 kg. Instead, when
including a perturbed return, the payload reduces to m⋆

pl = 1328.3 kg. The carrying
capacity of the multi-return strategy is smaller due to the fact that constraining
also the perturbed return forces the third stage to be oriented in the neutral axis
direction at burnout, while the single-return problem does not take into account such
a requirement. Thus, the difference in the payload mass represents the (nominal)
cost of performing the neutral axis maneuver.

7.9.3 Monte Carlo Campaigns
A Monte Carlo analysis on the combined effect of off-nominal initial conditions,
in-flight disturbance, and uncertain thrust profiles, as described in Section 7.8, was
carried out for both the single-return strategy and the multi-return one. When
relying on the single-return guidance strategy, in case of longer-than-nominal cut-
off time, the control direction is kept constant and equal to the attitude at the
nominal burnout for all the extra seconds of operation. This allows to compare the
multi-return guidance strategy with the single-return one, which optimizes only the
nominal return of the spent stage.

The initial radius error is scattered uniformly in a range of values [−∆r,∆r]
with ∆r = 500 m and the initial velocity error is sampled from a sphere of radius
∆v = 40 m/s. Three levels of in-flight disturbance were considered as reported in
Table 7.3 and called Low (L), Medium (M), and High (H). In each case, the standard
deviation of the noise in the thrust direction is 5 times greater than the one in a
random direction, thus αG∥ = 5.

Table 7.3. Standard deviations of the random-direction Gaussian in-flight disturbance in
terms of T/m percentage.

Parameter Case L Case M Case H
αG 0.25 ‰ 0.5 ‰ 1 ‰

In each simulation, the additional burn time ∆tb is sampled uniformly in the
range [0, 5]s, while the additional total impulse ∆Itot is a fraction of the nominal
one uniformly sampled in the range [0, 5]‰. The update frequency of the MPC is
set to 1 Hz, meaning that the OCP is solved every T = 1 s.

Four hundred independent MPC simulations were carried out for each disturbance
intensity level αG for both the single and multi-return approaches. The stats on
the achieved payload mass of the Monte Carlo campaigns are reported in Table 7.4
in terms of minimum, mean, maximum, and standard deviation σ. The attainable
payload mass is estimated for each run by using the conditions at the burnout of the
SRM as initial conditions and solving the ascent OCP relative to Phases 9–12. As
expected, for both algorithms, as the intensity of the in-flight disturbance increases,
larger dispersions on the payload mass are observed. The payload mass ranges of
the two algorithms are of comparable size, but the multi-return average payload
is smaller by approximately 75 kg due to the cost of the (induced) neutral axis

7.9 Numerical Results 101

Table 7.4. Results of the Monte Carlo campaigns (payload mass).

Method Case
Payload mass (kg)

Min Mean Max σ

Single
return

L 1359.19 1409.74 1449.70 17.10
M 1335.17 1405.21 1482.21 24.41
H 1254.00 1407.49 1503.37 39.77

Multi
return

L 1278.39 1331.44 1375.78 18.16
M 1266.97 1329.81 1389.62 23.56
H 1215.90 1331.64 1456.62 41.06

Table 7.5. Results of the Monte Carlo campaigns (splash-down point).

Method Case
φR (deg) Footprint

size (km)Min Mean Max σ

Single
return

L 59.74 63.60 68.15 1.87 1021.88
M 59.30 63.33 68.65 2.00 1093.53
H 57.78 63.63 75.40 2.73 1488.32

Multi
return

L 59.72 60.00 60.21 0.09 50.38
M 59.17 60.01 60.62 0.20 106.44
H 58.25 60.02 61.41 0.38 209.48

maneuver.
It is worth noting that the average payload mass attained by both algorithms

is slightly greater than the nominal values (m⋆
pl = 1400.1 kg for the single-return

and m⋆
pl = 1328.3 kg for the multi-return) due to the additional Itot that provides

more energy to the system. The gain in payload mass of the multi-return strategy is
smaller due to the fact that the additional impulse is provided in the neutral axis
direction, which is not optimal.

The major difference in the behavior of the two strategies lies in the splash-down
point, as reported in Table 7.5. The splash-down points were evaluated by forward
propagation of the equations of motion, Eqs. (7.3)–(7.5), starting from the simulated
burnout state. The additional impulse provided by the SRM shifts the mean splash-
down point attained by the single-return strategy farther by approximately 3.6◦

regardless of the disturbance intensity level, meaning that this deviation depends
only on the SRM performance dispersion. Instead, the multi-return algorithm retains
the mean splash-down location with great accuracy (the largest error is 0.02◦ in
case H) thanks to the fact that the thrust vector is oriented in the neutral axis
direction during the extra seconds of operation. The range of the spent stage impact
latitude increases for both approaches as the disturbance intensity increases, but,
while the lower bounds are comparable, the upper bounds of the return points
corresponding to the single-return strategy are much more distant from the desired
value. This asymmetry is due to the fact that the additional SRM impulse moves
the return point only farther; thus, the two disturbances add up for the single-return
approach. Instead, the neutral axis maneuver compensates for the SRM performance
uncertainty and the range of the attained φR is symmetric. Also, the dispersion of

7.9 Numerical Results 102

(a) Same scale for
latitude and lon-
gitude.

-100 -80 -60 -40 -20 0 20 40

Longitude error (km)

-500

0

500

1000

1500

2000

L
at

it
u

d
e

er
ro

r
(k

m
)

Multi-Return

Single-Return

AVUM Nominal Groundtrack

Nominal Return

(b) Zoomed scale of the longitude error.

Figure 7.7. Splash-down footprints for Case H.

the return point is significantly reduced when employing the multi-return algorithm,
with standard deviations σ one order of magnitude smaller than in the single-return
approach.

Table 7.5 also reports the footprint length, which is computed as the major axis
of the 95% confidence ellipse of the simulated splash-down points. The footprints for
case H are illustrated in Figure 7.7 for both approaches. The figure clearly shows
that the single-return strategy leads to a greater dispersion of the splash-down point.
Figure 7.7a shows that both footprints are almost aligned with the South-North
direction, as the dispersion of the latitude is much greater than the one of the
longitude. Indeed, the latter is only due to the Earth’s rotation, since longer return
trajectories fall further west and shorter ones further east, due to the different return
times, causing a slight horizontal dispersion. In Figure 7.7b, the axes use different
scales to better visualize the dispersion of the impact points.

The trajectories for case H, which is associated with the largest envelopes, are
reported in Fig. 7.8 and compared with the nominal one, which is denoted by the
black line. Besides the altitude profile of the simulated third stage operation, the
figure also illustrates the optimal solution of the ascent OCP defined by Phases 9
to 12 and the simulation of the spent stage return with the burnout state as initial
condition. The trajectories of both guidance strategies deviate significantly from the
nominal trajectory during the central portion of the flight, as the MPC approach
autonomously recomputes the optimal path to compensate for the encountered
disturbances. Also, the single-return strategy features a much greater dispersion on
the return point, as shown in Fig. 7.8a.

The implemented control histories during the third stage flight are shown in
Fig. 7.9 in terms of the elevation angle, which is defined as the angle between the
thrust direction T̂ and the local horizontal. The elevation profiles are close to the
nominal controls for most of the stage operation, with larger deviations toward the
end. Indeed, due to the external disturbance, meeting the splash-down constraint
requires larger control actions as the burnout time approaches. Figure 7.9b shows

7.9 Numerical Results 103

(a) Single-return algorithm.

(b) Multi-return algorithm.

Figure 7.8. Altitude profiles for Case H.

7.9 Numerical Results 104

(a) Single-return algorithm.

(b) Multi-return algorithm.

Figure 7.9. Control elevation profiles for Case H.

the different orientation of the neutral axis direction compared to the optimal one, as
the maneuver requires the rocket to quickly rotate by approximately 40◦ downward.

The encountered heat flux profiles are illustrated in Fig. 7.10. Due to the
relaxation introduced in Eq. (7.47), the nominal threshold Q̇max is violated at some
points in the flight. Nevertheless, the heat flux is never greater than 1000 W/m2,
except for a few simulations of the single-return strategy in the proximity of the
burnout where, due to the additional seconds of SRM operations, the relative velocity
increases more than predicted. Considering that the payload can bear a flux of up
to 1135 W/m2, the thermal requirement is satisfied within an acceptable error. It is
worth remarking that the violation is not avoidable by the guidance strategy, as it
depends on the encountered in-flight disturbance and the scattering of the initial
conditions, since increased initial velocity and reduced altitude expose the system to
more critical thermal conditions.

As for the algorithm computational efficiency, the average solution time of the
single-return OCP was 1.50 s, while solving the multi-return problem required 3.20 s
on average. The multi-return OCP is thus more expensive to solve, due to the
additional return phase and the related constraints that significantly increase the
problem dimension and complexity. However, the multi-return strategy is the only
one that is robust to dispersion of the SRM cut-off time. So, the multi-return strategy
is the unique option when dealing with a system such as VEGA’s third stage, for

7.9 Numerical Results 105

(a) Single-return algorithm.

(b) Multi-return algorithm.

Figure 7.10. Heat flux profiles for Case H.

which the uncertainty on the SRM burn time is significant. Nevertheless, if the
burnout time is known in advance with greater accuracy, the single-return strategy
is the best candidate, as it is computationally less demanding, thus allows for higher
update frequencies and thus more robustness than a multi-return approach.

It is worth mentioning that at every control step of every simulation, the successive
convexification algorithm always converged to a solution, proving the great robustness
of the devised algorithm to off-nominal starting conditions. Indeed, compared to the
sensitivity study in Section 5.3, the initial guess in real-time guidance applications
is much more accurate, as the mismatch between the flown and nominal trajectory,
which is the initial reference solution of the successive convexification algorithm, is
small, thus a success rate of 100% is achieved. This achievement is also due to the
inclusion of virtual variables and the softening of the heat flux constraint, which are
essential to prevent the formulation of an infeasible problem instance.

As a final remark, the solution times of both OCPs appear incompatible with a
1 Hz update frequency, but this issue could be easily addressed by using optimized
software, dedicated hardware, and custom convex solvers, for which the computation

7.9 Numerical Results 106

times are expected to be at least one order of magnitude lower. Also, previous
investigations on this topic show that good MPC performance could be obtained
even with less frequent updates, in the range 1–3 s [150].

107

Chapter 8

Conclusions

This thesis investigated a convex approach to the optimization of the ascent trajectory
of a multistage launch vehicle. To tackle the intrinsic nonconvexities of the problem,
several convexification methods were examined. These include a convenient change
of variables, to produce control-affine dynamics, combined with a lossless relaxation
of a nonlinear control constraint into a second-order cone constraint. Leveraging
optimal control theory, the thesis provided rigorous proof of the exactness of said
relaxation approach, showing the equivalence between the relaxed problem and the
original one. Thus, the benefits of such a convexification method were apparent, as
the novel formulation reduces the complexity of the problem and shares the same
solution as the original problem.

Successive linearization was essential to tackle the nonlinear dynamics and
constraints in a systematic way. However, differently from lossless convexification
methods, the linearization introduces an approximation error and convergence of
the resulting sequential algorithm cannot be theoretically guaranteed. Thus, several
methods to enhance the convergence of successive linearization were examined and
compared, including the addition of virtual variables, traditional trust regions, and
a novel method for the update of the reference solution called filtering. The latter is
an original contribution of the present research, which proved to be greatly effective
for the launch vehicle problem but is a general strategy that can be beneficial to any
application. Indeed, filtering does not depend on or modify the problem formulation
by any means, yet it provides algorithmic robustness to the sequential procedure
thanks to the reduced weight assigned to new, potentially diverging, solutions in the
update of the reference one.

A VEGA-like launch vehicle was taken as a case study due to the particularly
arduous requirements it poses to the trajectory design task. The main difficulty
is related to the need to predict and actively constrain the splash-down location
of the third spent stage to a safe region. To account for such a requirement, a
simulation of the reentry trajectory of the burned-out stage was included in the
optimal control problem. Despite the additional phase increases the complexity
and dimension of the optimization problem, the convexification strategy proved
to be reliable and computationally efficient, and an analysis on the launch vehicle
performance sensitivity to the splash-down location of the third stage was carried out,
showing that moving the return point of the spent stage can significantly change the
mission profile and is thus a major criticality of the VEGA rocket. Also, the ascent
of a two-stage launch vehicle, inspired to SpaceX’s Falcon 9 rocket, was considered as
a second case study to assess the effectiveness of the convex optimization approach
in a different mission scenario and even for a different launch vehicle configuration,
eventually proving the generality of the investigated methodology.

8.1 Future Work 108

The convex approach features two key merits: first, the computational burden
of the overall procedure is significantly reduced compared to traditional direct
optimization methods; second, the sensitivity to the initialization does not represent
a concern, as convergence can be achieved even starting from a rough reference
trajectory. Therefore, it represents a fast and reliable alternative to traditional
optimization methods, which, in turn, often manifest high sensitivity to the supplied
first guess solution or require a large computational effort to achieve convergence.

These beneficial properties make the convex approach potentially suitable for
optimization-based real-time guidance, as brief computational times and reliability
are key elements in time-critical applications. So, this thesis investigated the
implementation of a closed-loop guidance algorithm, based on embedding the convex
optimization approach into a model predictive control framework, for the upper
stage of a launch vehicle.

In particular, two guidance strategies were devised according to the in-flight
uncertainties that the system is expected to be subject to. The first one was proven
to provide robustness to generic model errors and random external disturbances by
recursively solving an optimal control problem that comes directly from the complete
ascent trajectory optimization problem. However, to robustly ensure a splash-down
constraint in the presence of uncertainty on the stage cut-off time, which is often
non-negligible for solid rocket motors, the optimal control problem associated with
the second guidance strategy was modified to incorporate an additional return phase,
perturbed by a velocity increment and constrained to the same splash-down point
as the nominal return. In this way, the solution of the OCP provides the neutral
axis attitude, which can thus be reliably computed and updated onboard and with
minor computational cost, resulting in better system performance, as such a strategy
leverages the information on the encountered flight conditions, and cut the lengthy
and time-consuming validation and verification tasks that a pre-scheduled neutral
axis maneuver would require before each launch to ensure robustness.

Monte Carlo campaigns have been carried out to investigate the effectiveness of
the proposed guidance strategies in presence of in-flight disturbances, off-nominal
operating conditions, and uncertain SRM performance. The optimal control of the
third stage of a VEGA-like launch vehicle was investigated as case study. The results
of the Monte Carlo campaigns provide significant evidence of the robustness of the
MPC framework. In this respect, the reliability of the convex optimization approach
plays a pivotal role since it can autonomously recompute a revised optimal trajectory
even starting from an inaccurate initial guess. Furthermore, the computational
efficiency of the solution process allows for high update frequencies that allow to
effectively compensate for mismatches between the predicted state and the measured
one and, thus, set up a robust and efficient guidance algorithm.

8.1 Future Work
Future research may be directed toward studying even more realistic scenarios,
incorporating additional nonconvex boundary or path constraints. For instance,
visibility requirements were not accounted for in this study, but are essential to
ensure that the launch vehicle is trackable during the most critical phases of the
ascent. These may be posed as (concave) minimum altitude requirements that
the rocket must meet to be visible from a given ground station or may require
the addition of nonlinear mission-dependent constraints in the formulation. Also,
the flexibility of the considered convexification approach to different target orbits,
including non-circular ones, and launch vehicle configurations can be investigated

8.1 Future Work 109

with minor modifications to the OCP. An interesting research direction would be the
concurrent optimization of the thrust law of the stages and the ascent trajectory. In
this way, the optimization would not be limited to the trajectory design task, but it
would aim at designing a comprehensively optimal launch system. Naturally, all these
additional requirements would increase the complexity of the problem; so, mindful
convexification approaches should be devised to retain the overall computational
efficiency of the solution process.

As for the performance of the successive convexification algorithm, greater
convergence rates can be achieved if better initialization strategies are devised.
Indeed, due to the high sensitivity to the decision parameters, designing a launch
vehicle ascent trajectory from scratch is quite arduous. The thesis investigated a
three-step continuation strategy that, however, only partially mitigated the need for
a good initialization. So, more robust strategies to easily design a suitable initial
guess for the optimization process should be investigated. Also, further speed-ups
are expected if custom convex programming solvers are used instead of off-the-shelf
libraries and the algorithm runs on dedicated hardware.

Finally, even though the preliminary results on the effectiveness of the devised
closed-loop guidance of a launch vehicle upper stage are encouraging, an extensive
validation and verification campaign is still necessary to demonstrate the practical
real-time implementation of the proposed MPC algorithms. Nevertheless, the
continuous effort to develop more performing computing hardware, which will
imply higher update frequencies, combined with the ongoing research in convex
optimization, allows to look forward to the future with great confidence on the use
of computational, optimization-based algorithms for the guidance of launch vehicles
to come.

110

Appendix A

Linearization Matrices for the
Low-Thrust Problem

With reference to Eq. (3.78), A is a 7 × 7 matrix and the analytical expressions of
its non-null elements of are reported below:

A14 = 1 (A.1)

A21 = − vθ

r2 cosφ (A.2)

A23 = vθ tanφ
r cosφ (A.3)

A25 = 1
r cosφ (A.4)

A31 = −vφ

r2 (A.5)

A36 = 1
r

(A.6)

A41 = 2µ
r3 −

v2
φ + v2

θ

r2 (A.7)

A45 = 2vθ

r
(A.8)

A46 = 2vφ

r
(A.9)

A51 = −vφvθ tanφ
r2 + vrvθ

r2 (A.10)

A53 = vφvθ

r cos2 φ
(A.11)

A54 = −vθ

r
(A.12)

A55 = vφ tanφ
r

− vr

r
(A.13)

A56 = vθ tanφ
r

(A.14)

A61 = v2
θ tanφ
r2 + vφvr

r2 (A.15)

A63 = − v2
θ

r cos2 φ
(A.16)

111

A64 = −vφ

r
(A.17)

A65 = −2vθ tanφ
r

(A.18)

A66 = −vr

r
(A.19)

Analogously, the B matrix is

B =

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

c

(A.20)

112

Appendix B

Proof of Lossless Relaxation

The proof that the optimal solution of PR, defined in Eq. (4.54), is the optimal
solution also of problem PA, defined in Eq. (4.53), is here provided. Proposition 1
is proved by contradiction, using the direct adjoint approach [151]. First, the
Hamiltonian H must be introduced, which is

H = λ·f(x,u, t) = λr ·v+λv ·
(

− µ

r3r + u+ Tb −D

m
v̂rel + Tc

m
r̂

)
+λm (−ṁe) (B.1)

where λ(t) =
[
λT

r λT
v λm

]T is the costate vector, conveniently split in position,
velocity, and mass subvectors. To take into account the path constraints, the
Lagrangian L is defined as

L = H − µQ(Q̇− Q̇max) − µu(u2
x + u2

y + u2
z − u2

N) (B.2)

where µu(t) and µQ(t) are the Lagrange multipliers associated with the constraints
from Eqs. (4.52) and (4.35), respectively. The optimal solution must satisfy the
complementary slack conditions. Thus,

µQ ≥ 0, µQ(Q̇− Q̇max) = 0 (B.3)

µu ≥ 0, µu

(
u2

x + u2
y + u2

z − u2
N

)
= 0 (B.4)

According to Pontryagin’s minimum principle, the optimal control u⋆ must be such
that

u⋆ = arg min
u∈U

H(x⋆,u,λ, t) (B.5)

where U is the set of controls that satisfies Eq. (4.52). Thus,

U(x, t) =
{

(ux, uy, uz) : u2
x + u2

y + u2
z ≤ ((Tvac − pAe) /m)2

}
(B.6)

where uN was replaced with Eq. (4.51). The Karush–Kuhn–Tucker (KKT) condition
for minimizing the Hamiltonian over u ∈ U is:

∂L

∂u
= λv − 2µuu = 0 (B.7)

The costate equations are:

λ̇ = −∂L

∂x
= −

[
∂f

∂x

]T

λ− µQ
∂Q̇

∂x
− 2µuuN

∂uN

∂x
(B.8)

113

The Jacobian matrix of the dynamics has the following structure:

∂f

∂x
=

03×3 I3×3 03×1
Avr Avv avm

01×3 01×3 01×1

 (B.9)

where Avr and Avv are full (i.e., without any identically null elements) 3×3 matrices
and avm is a full 3 × 1 vector. The costate equations expand to:

λ̇r = −AT
vrλv − µQ

∂Q̇

∂r
− 2µuuN

∂uN

∂r
(B.10)

λ̇v = −λr −AT
vvλv − µQ

∂Q̇

∂v
(B.11)

λ̇m = −avm · λv − 2µuuN
∂uN

∂m
(B.12)

A transversality condition useful for the present demonstration is

λm(tf) = 1 (B.13)

Finally, since the terminal time tf is free, the Lagrangian is null at the final boundary,

L(tf) = 0 (B.14)

Now, we show that the constraint in Eq. (4.52) must be active almost everywhere.
In particular, first we assume that (4.52) is strictly satisfied, i.e., it is not active, and
then argue that it is not possible since it generates a contradiction. When Eq. (4.52)
is not active, the complementary condition in Eq. (B.4) requires that µu = 0. Thus,
the KKT condition from Eq. (B.7) becomes

λv(t) = 0 (B.15)

Leveraging Assumption 1, the heat flux constraint is inactive almost everywhere.
Thus, according to Eq. (B.3):

µQ = 0 (B.16)
Replacing Eqs. (B.15), (B.16), and µu = 0 in the costate equations (B.10)–(B.12)
leads to

λr(t) = 0 (B.17)
λ̇m = 0 (B.18)

Because of Eqs. (B.15) and (B.17), the Lagrangian condition (B.14) requires that

λm(tf) = 0 (B.19)

However, this violates Eq. (B.13), thus generating a contradiction. This contradiction
proves that the optimal solution of PR must satisfy Eq. (4.52) with the equality
sign.

114

Bibliography

[1] Goddard, R. H., “A Method of Reaching Extreme Altitudes,” Nature, Vol.
105, No. 2652, 1920, pp. 809–811. https://doi.org/10.1038/105809a0.

[2] Tsien, H. S., and Evans, R. C., “Optimum Thrust Programming for a Sounding
Rocket,” Journal of the American Rocket Society, Vol. 21, No. 5, 1951, pp.
99–107. https://doi.org/10.2514/8.4372.

[3] Lawden, D. F., “Stationary Rocket Trajectories,” The Quarterly Journal
of Mechanics and Applied Mathematics, Vol. 7, No. 4, 1954, pp. 488–504.
https://doi.org/10.1093/qjmam/7.4.488.

[4] Tsiotras, P., and Kelley, H. J., “Goddard Problem with Constrained Time of
Flight,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 2, 1992,
pp. 289–296. https://doi.org/10.2514/3.20836.

[5] Seywald, H., and Cliff, E. M., “Goddard Problem in Presence of a Dynamic
Pressure Limit,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 4,
1993, pp. 776–781. https://doi.org/10.2514/3.21080.

[6] Spurlock, F., and Williams, C. H., “DUKSUP: A Computer Program
for High Thrust Launch Vehicle Trajectory Design & Optimization,” 50th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014. https://doi.
org/10.2514/6.2014-3671.

[7] Jurovics, S., “Optimum Steering Program for the Entry of a Multistage Vehicle
Into a Circular Orbit,” ARS Journal, Vol. 31, No. 4, 1961, pp. 518–523.
https://doi.org/10.2514/8.5545.

[8] Spurlock, O. F., and Teren, F., “Payload Optimization of Multistage Launch
Vehicles,” Tech. Rep. D-3191, NASA, Cleveland, Ohio, 1966.

[9] Spurlock, O. F., and Teren, F., “Optimum Launch Trajectories for the ATS-E
Mission,” Journal of Spacecraft and Rockets, Vol. 8, No. 12, 1971, pp. 1202–1208.
https://doi.org/10.2514/3.59787.

[10] Colasurdo, G., Pastrone, D., and Casalino, L., “Optimization of Rocket Ascent
Trajectories Using an Indirect Procedure,” Guidance, Navigation, and Control
Conference, 1995. https://doi.org/10.2514/6.1995-3323.

[11] Martinon, P., Bonnans, F., Laurent-Varin, J., and Trelat, E., “Numerical
Study of Optimal Trajectories with Singular Arcs for an Ariane 5 Launcher,”
Journal of Guidance, Control, and Dynamics, Vol. 32, No. 1, 2009, pp. 51–55.
https://doi.org/10.2514/1.37387.

https://doi.org/10.1038/105809a0
https://doi.org/10.2514/8.4372
https://doi.org/10.1093/qjmam/7.4.488
https://doi.org/10.2514/3.20836
https://doi.org/10.2514/3.21080
https://doi.org/10.2514/6.2014-3671
https://doi.org/10.2514/6.2014-3671
https://doi.org/10.2514/8.5545
https://doi.org/10.2514/3.59787
https://doi.org/10.2514/6.1995-3323
https://doi.org/10.2514/1.37387

Bibliography 115

[12] Casalino, L., and Pastrone, D., “Optimization of Hybrid Propellant Mars
Ascent Vehicle,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,
2014. https://doi.org/10.2514/6.2014-3953.

[13] Hanson, J., Shrader, M., and Cruzen, C., “Ascent Guidance Comparisons,”
AIAA Guidance, Navigation, and Control Conference, Scottsdale, AZ, 1994.
https://doi.org/10.2514/6.1994-3568.

[14] Smith, I. E., “General Formulation of the Iterative Guidance Mode,” Tech.
Rep. TM X-53414, NASA, 1966.

[15] McHenry, R. L., Long, A. D., Cockrell, B. F., Thibodeau III, J. R., and Brand,
T. J., “Space Shuttle Ascent Guidance, Navigation, and Control,” Journal of
the Astronautical Sciences, Vol. 27, No. 1, 1979, pp. 1–38.

[16] Chang, H. P., “Spherical Atmospheric Linear Tangent (SATLIT) Guidance,”
Tech. Rep. NAS 8-37814, NASA, 1993.

[17] Leung, M. S. K., and Calise, A. J., “Hybrid Approach to Near-Optimal Launch
Vehicle Guidance,” Journal of Guidance, Control, and Dynamics, Vol. 17,
No. 5, 1994, pp. 881–888. https://doi.org/10.2514/3.21285.

[18] Calise, A. J., Melamed, N., and Lee, S., “Design and Evaluation of a Three-
Dimensional Optimal Ascent Guidance Algorithm,” Journal of Guidance,
Control, and Dynamics, Vol. 21, No. 6, 1998, pp. 867–875. https://doi.org/10.
2514/2.4350.

[19] Gath, P. F., and Calise, A. J., “Optimization of Launch Vehicle Ascent
Trajectories with Path Constraints and Coast Arcs,” Journal of Guidance,
Control, and Dynamics, Vol. 24, No. 2, 2001, pp. 296–304. https://doi.org/10.
2514/2.4712.

[20] Calise, A. J., and Brandt, N., “Generation of Launch Vehicle Abort Trajectories
Using a Hybrid Optimization Method,” Journal of Guidance, Control, and
Dynamics, Vol. 27, No. 6, 2004, pp. 929–929. https://doi.org/10.2514/1.7989.

[21] Lu, P., Sun, H., and Tsai, B., “Closed-Loop Endoatmospheric Ascent Guidance,”
Journal of Guidance, Control, and Dynamics, Vol. 26, No. 2, 2003, pp. 283–294.
https://doi.org/10.2514/2.5045.

[22] Lu, P., and Pan, B., “Highly Constrained Optimal Launch Ascent Guidance,”
Journal of Guidance, Control, and Dynamics, Vol. 33, No. 2, 2010, pp. 404–414.
https://doi.org/10.2514/1.45632.

[23] Kelley, H. J., “Gradient Theory of Optimal Flight Paths,” ARS Journal,
Vol. 30, No. 10, 1960, pp. 947–954. https://doi.org/10.2514/8.5282.

[24] Brauer, G. L., Cornick, D. E., and Stevenson, R., “Capabilities and applications
of the Program to Optimize Simulated Trajectories (POST). Program summary
document,” Tech. Rep. CR-2770, NASA, 1977.

[25] Vlases, W. G., Paris, S. W., Lajoie, R. M., Martens, M. J., and Hargraves,
C. R., “Optimal Trajectories by Implicit Simulation,” Tech. Rep. TR WRDC-
TR-90-3056, Boeing Aerospace and Electronics, Wright-Patterson Air Force
Base, Ohio, 1990.

https://doi.org/10.2514/6.2014-3953
https://doi.org/10.2514/6.1994-3568
https://doi.org/10.2514/3.21285
https://doi.org/10.2514/2.4350
https://doi.org/10.2514/2.4350
https://doi.org/10.2514/2.4712
https://doi.org/10.2514/2.4712
https://doi.org/10.2514/1.7989
https://doi.org/10.2514/2.5045
https://doi.org/10.2514/1.45632
https://doi.org/10.2514/8.5282

Bibliography 116

[26] Hargraves, C., and Paris, S., “Direct Trajectory Optimization Using Nonlinear
Programming and Collocation,” Journal of Guidance, Control, and Dynamics,
Vol. 10, No. 4, 1987, pp. 338–342. https://doi.org/10.2514/3.20223.

[27] Betts, J. T., and Huffman, W. P., “Sparse Optimal Control Software SOCS,”
Tech. Rep. MEA-LR-085, Boeing Information and Support Services, Seattle,
Washington, 1997.

[28] Wiegand, A., “ASTOS User Manual,” Unterkirnach, Germany: Astos Solutions
GmbH, Vol. 17, 2010.

[29] Spangelo, I., and Well, K. H., “Rocket Ascent with Heat-Flux and Splash
Down Constraints,” Automatic Control in Aerospace 1994, IFAC Post-
print Volume, Pergamon, Oxford, 1995, pp. 9–15. https://doi.org/10.1016/
B978-0-08-042238-1.50005-7.

[30] Weigel, N., and Well, K. H., “Dual Payload Ascent Trajectory Optimization
with a Splash-Down Constraint,” Journal of Guidance, Control, and Dynamics,
Vol. 23, No. 1, 2000, pp. 45–52. https://doi.org/10.2514/2.4485.

[31] Liu, X., Lu, P., and Pan, B., “Survey of Convex Optimization for Aerospace
Applications,” Astrodynamics, Vol. 1, No. 1, 2017, pp. 23–40. https://doi.org/
10.1007/s42064-017-0003-8.

[32] Açıkmeşe, B., and Blackmore, L., “Lossless Convexification of a Class of
Optimal Control Problems with Non-Convex Control Constraints,” Automatica,
Vol. 47, No. 2, 2011, pp. 341–347. https://doi.org/10.1016/j.automatica.2010.
10.037.

[33] Acikmese, B., and Ploen, S. R., “Convex Programming Approach to Powered
Descent Guidance for Mars Landing,” Journal of Guidance, Control, and
Dynamics, Vol. 30, No. 5, 2007, pp. 1353–1366. https://doi.org/10.2514/1.
27553.

[34] Yang, R., and Liu, X., “Comparison of Convex Optimization-Based Approaches
to Solve Nonconvex Optimal Control Problems,” AIAA Scitech 2019 Forum,
2019. https://doi.org/10.2514/6.2019-1666.

[35] Liu, X., and Lu, P., “Solving Nonconvex Optimal Control Problems by Convex
Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3,
2014, pp. 750–765. https://doi.org/10.2514/1.62110.

[36] Mao, Y., Szmuk, M., and Açıkmeşe, B., “Successive Convexification of Non-
Convex Optimal Control Problems and Its Convergence Properties,” 55th
Conference on Decision and Control (CDC), IEEE, 2016, pp. 3636–3641.
https://doi.org/10.1109/CDC.2016.7798816.

[37] Bonalli, R., Cauligi, A., Bylard, A., Lew, T., and Pavone, M., “Trajectory
Optimization on Manifolds: A Theoretically-Guaranteed Embedded Sequen-
tial Convex Programming Approach,” Proceedings of Robotics: Science and
Systems, 2019. https://doi.org/10.15607/RSS.2019.XV.078.

[38] Benedikter, B., Zavoli, A., and Colasurdo, G., “A Convex Optimization
Approach for Finite-Thrust Time-Constrained Cooperative Rendezvous,” Ad-
vances in the Astronautical Sciences, Vol. 171, 2019, pp. 1483–1498.

https://doi.org/10.2514/3.20223
https://doi.org/10.1016/B978-0-08-042238-1.50005-7
https://doi.org/10.1016/B978-0-08-042238-1.50005-7
https://doi.org/10.2514/2.4485
https://doi.org/10.1007/s42064-017-0003-8
https://doi.org/10.1007/s42064-017-0003-8
https://doi.org/10.1016/j.automatica.2010.10.037
https://doi.org/10.1016/j.automatica.2010.10.037
https://doi.org/10.2514/1.27553
https://doi.org/10.2514/1.27553
https://doi.org/10.2514/6.2019-1666
https://doi.org/10.2514/1.62110
https://doi.org/10.1109/CDC.2016.7798816
https://doi.org/10.15607/RSS.2019.XV.078

Bibliography 117

[39] Lu, P., and Liu, X., “Autonomous Trajectory Planning for Rendezvous and
Proximity Operations by Conic Optimization,” Journal of Guidance, Control,
and Dynamics, Vol. 36, No. 2, 2013, pp. 375–389. https://doi.org/10.2514/1.
58436.

[40] Morgan, D., Chung, S.-J., and Hadaegh, F. Y., “Model Predictive Control
of Swarms of Spacecraft Using Sequential Convex Programming,” Journal
of Guidance, Control, and Dynamics, Vol. 37, No. 6, 2014, pp. 1725–1740.
https://doi.org/10.2514/1.G000218.

[41] Wang, Z., and Grant, M. J., “Optimization of Minimum-Time Low-Thrust
Transfers Using Convex Programming,” Journal of Spacecraft and Rockets,
Vol. 55, No. 3, 2018, pp. 586–598. https://doi.org/10.2514/1.A33995.

[42] Wang, Z., and Grant, M. J., “Minimum-Fuel Low-Thrust Transfers for Space-
craft: A Convex Approach,” IEEE Transactions on Aerospace and Electronic
Systems, Vol. 54, No. 5, 2018, pp. 2274–2290. https://doi.org/10.1109/TAES.
2018.2812558.

[43] Wu, Y., Wang, Z., Benedikter, B., and Zavoli, A., “A Convex Approach
to Multi-phase Trajectory Optimization of eVTOL Vehicles for Urban Air
Mobility,” AIAA SciTech Forum, 2022. https://doi.org/10.2514/6.2022-2159.

[44] Foust, R., Chung, S.-J., and Hadaegh, F. Y., “Optimal Guidance and Control
with Nonlinear Dynamics Using Sequential Convex Programming,” Journal
of Guidance, Control, and Dynamics, Vol. 43, No. 4, 2020, pp. 633–644.
https://doi.org/10.2514/1.G004590.

[45] Szmuk, M., Acikmese, B., and Berning, A. W., “Successive Convexification
for Fuel-Optimal Powered Landing with Aerodynamic Drag and Non-Convex
Constraints,” AIAA Guidance, Navigation, and Control Conference, 2016.
https://doi.org/10.2514/6.2016-0378.

[46] Sagliano, M., “Pseudospectral Convex Optimization for Powered Descent and
Landing,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 2, 2018,
pp. 320–334. https://doi.org/10.2514/1.G002818.

[47] Sagliano, M., “Generalized hp Pseudospectral-Convex Programming for Pow-
ered Descent and Landing,” Journal of Guidance, Control, and Dynamics,
Vol. 42, No. 7, 2019, pp. 1562–1570. https://doi.org/10.2514/1.G003731.

[48] Liu, X., “Fuel-Optimal Rocket Landing with Aerodynamic Controls,” Journal
of Guidance, Control, and Dynamics, Vol. 42, No. 1, 2019, pp. 65–77.
https://doi.org/10.2514/1.G003537.

[49] Wang, Z., and Grant, M. J., “Constrained Trajectory Optimization for
Planetary Entry via Sequential Convex Programming,” Journal of Guid-
ance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2603–2615.
https://doi.org/10.2514/1.G002150.

[50] Wang, Z., and Grant, M. J., “Autonomous Entry Guidance for Hypersonic
Vehicles by Convex Optimization,” Journal of Spacecraft and Rockets, Vol. 55,
No. 4, 2018, pp. 993–1006. https://doi.org/10.2514/1.A34102.

https://doi.org/10.2514/1.58436
https://doi.org/10.2514/1.58436
https://doi.org/10.2514/1.G000218
https://doi.org/10.2514/1.A33995
https://doi.org/10.1109/TAES.2018.2812558
https://doi.org/10.1109/TAES.2018.2812558
https://doi.org/10.2514/6.2022-2159
https://doi.org/10.2514/1.G004590
https://doi.org/10.2514/6.2016-0378
https://doi.org/10.2514/1.G002818
https://doi.org/10.2514/1.G003731
https://doi.org/10.2514/1.G003537
https://doi.org/10.2514/1.G002150
https://doi.org/10.2514/1.A34102

Bibliography 118

[51] Sagliano, M., and Mooij, E., “Optimal Drag-Energy Entry Guidance via
Pseudospectral Convex Optimization,” AIAA Guidance, Navigation, and
Control Conference, 2018. https://doi.org/10.2514/6.2018-1315.

[52] Calabuig, G. J. D., and Mooij, E., “Optimal On-board Abort Guidance based
on Successive Convexification for Atmospheric Re-Entry,” AIAA Scitech Forum,
2021. https://doi.org/10.2514/6.2021-0860.

[53] Pinson, R., and Lu, P., “Rapid Generation of Optimal Asteroid Powered
Descent Trajectories via Convex Optimization,” AAS/AIAA Astrodynamics
Specialist Conference, 2015, pp. 2655–2672.

[54] Zhang, K., Yang, S., and Xiong, F., “Rapid Ascent Trajectory Optimization for
Guided Rockets via Sequential Convex Programming,” Proceedings of the Insti-
tution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol.
233, No. 13, 2019, pp. 4800–4809. https://doi.org/10.1177/0954410019830268.

[55] Li, Y., Guan, Y., Wei, C., and Hu, R., “Optimal Control of Ascent Trajectory
for Launch Vehicles: A Convex Approach,” IEEE Access, Vol. 7, 2019, pp.
186491–186498. https://doi.org/10.1109/ACCESS.2019.2960864.

[56] Li, Y., Pang, B., Wei, C., Cui, N., and Liu, Y., “Online Trajectory Op-
timization for Power System Fault of Launch Vehicles via Convex Pro-
gramming,” Aerospace Science and Technology, Vol. 98, 2020, p. 105682.
https://doi.org/10.1016/j.ast.2020.105682.

[57] Cheng, X., Li, H., and Zhang, R., “Efficient Ascent Trajectory Optimiza-
tion Using Convex Models Based on the Newton-Kantorovich/Pseudospectral
Approach,” Aerospace Science and Technology, Vol. 66, 2017, pp. 140 – 151.
https://doi.org/10.1016/j.ast.2017.02.023.

[58] Vega User’s Manual, Arianespace, 2014.

[59] Kouvaritakis, B., and Cannon, M., Model Predictive Control, Advanced Text-
books in Control and Signal Processing, Springer International Publishing,
2016. https://doi.org/10.1007/978-3-319-24853-0.

[60] Cutler, C. R., and Ramaker, B. L., “Dynamic Matrix Control – A Computer
Control Algorithm,” Joint Automatic Control Conference, Vol. 17, 1980, p. 72.

[61] Prett, D. M., and Gillette, R. D., “Optimization and Constrained Multivariable
Control of a Catalytic Cracking Unit,” Joint Automatic Control Conference,
Vol. 17, 1980, p. 73.

[62] Mayne, D., Rawlings, J., Rao, C., and Scokaert, P., “Constrained Model
Predictive Control: Stability and Optimality,” Automatica, Vol. 36, No. 6,
2000, pp. 789 – 814. https://doi.org/10.1016/S0005-1098(99)00214-9.

[63] Eaton, J. W., and Rawlings, J. B., “Model-Predictive Control of Chemical
Processes,” Chemical Engineering Science, Vol. 47, No. 4, 1992, pp. 705 – 720.
https://doi.org/10.1016/0009-2509(92)80263-C.

[64] Matsko, T., “Internal Model Control for Chemical Recovery,” Chemical Engi-
neering Progress, Vol. 81, No. 12, 1985, pp. 46–51.

https://doi.org/10.2514/6.2018-1315
https://doi.org/10.2514/6.2021-0860
https://doi.org/10.1177/0954410019830268
https://doi.org/10.1109/ACCESS.2019.2960864
https://doi.org/10.1016/j.ast.2020.105682
https://doi.org/10.1016/j.ast.2017.02.023
https://doi.org/10.1007/978-3-319-24853-0
https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/10.1016/0009-2509(92)80263-C

Bibliography 119

[65] Hrovat, D., Di Cairano, S., Tseng, H. E., and Kolmanovsky, I. V., “The
Development of Model Predictive Control in Automotive Industry: A Survey,”
2012 IEEE International Conference on Control Applications, 2012, pp. 295–
302. https://doi.org/10.1109/CCA.2012.6402735.

[66] Eren, U., Prach, A., Koçer, B. B., Raković, S. V., Kayacan, E., and Açıkmeşe,
B., “Model Predictive Control in Aerospace Systems: Current State and
Opportunities,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 7,
2017, pp. 1541–1566. https://doi.org/10.2514/1.G002507.

[67] Pascucci, C. A., Bennani, S., and Bemporad, A., “Model Predictive Control
for Powered Descent Guidance and Control,” European Control Conference
(ECC), 2015, pp. 1388–1393. https://doi.org/10.1109/ECC.2015.7330732.

[68] Jung, Y., and Bang, H., “Mars Precision Landing Guidance Based on Model
Predictive Control Approach,” Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of Aerospace Engineering, Vol. 230, No. 11, 2016,
pp. 2048–2062. https://doi.org/10.1177/0954410015607893.

[69] Wang, J., Cui, N., and Wei, C., “Optimal Rocket Landing Guidance Using
Convex Optimization and Model Predictive Control,” Journal of Guidance,
Control, and Dynamics, Vol. 42, No. 5, 2019, pp. 1078–1092. https://doi.org/
10.2514/1.G003518.

[70] Carson, J., and Acikmese, A., “A Model-Predictive Control Technique with
Guaranteed Resolvability and Required Thruster Silent Times for Small-Body
Proximity Operations,” AIAA Guidance, Navigation, and Control Conference
and Exhibit, 2006. https://doi.org/10.2514/6.2006-6780.

[71] Reynolds, T., and Mesbahi, M., “Small Body Precision Landing via Con-
vex Model Predictive Control,” AIAA SPACE and Astronautics Forum and
Exposition, 2017. https://doi.org/10.2514/6.2017-5179.

[72] Hartley, E. N., “A Tutorial on Model Predictive Control for Spacecraft
Rendezvous,” European Control Conference (ECC), 2015, pp. 1355–1361.
https://doi.org/10.1109/ECC.2015.7330727.

[73] Weiss, A., Baldwin, M., Erwin, R. S., and Kolmanovsky, I., “Model Predictive
Control for Spacecraft Rendezvous and Docking: Strategies for Handling Con-
straints and Case Studies,” IEEE Transactions on Control Systems Technology,
Vol. 23, No. 4, 2015, pp. 1638–1647. https://doi.org/10.1109/TCST.2014.
2379639.

[74] Keviczky, T., Borrelli, F., Fregene, K., Godbole, D., and Balas, G. J., “Decen-
tralized Receding Horizon Control and Coordination of Autonomous Vehicle
Formations,” IEEE Transactions on Control Systems Technology, Vol. 16,
No. 1, 2008, pp. 19–33. https://doi.org/10.1109/TCST.2007.903066.

[75] Mayne, D., “Nonlinear Model Predictive Control: Challenges and Oppor-
tunities,” Nonlinear Model Predictive Control, Springer, 2000, pp. 23–44.
https://doi.org/10.1007/978-3-0348-8407-5_2.

[76] De Nicolao, G., Magni, L., and Scattolini, R., “Stability and Robustness of
Nonlinear Receding Horizon Control,” Nonlinear Model Predictive Control,
Springer, 2000, pp. 3–22. https://doi.org/10.1007/978-3-0348-8407-5_1.

https://doi.org/10.1109/CCA.2012.6402735
https://doi.org/10.2514/1.G002507
https://doi.org/10.1109/ECC.2015.7330732
https://doi.org/10.1177/0954410015607893
https://doi.org/10.2514/1.G003518
https://doi.org/10.2514/1.G003518
https://doi.org/10.2514/6.2006-6780
https://doi.org/10.2514/6.2017-5179
https://doi.org/10.1109/ECC.2015.7330727
https://doi.org/10.1109/TCST.2014.2379639
https://doi.org/10.1109/TCST.2014.2379639
https://doi.org/10.1109/TCST.2007.903066
https://doi.org/10.1007/978-3-0348-8407-5_2
https://doi.org/10.1007/978-3-0348-8407-5_1

Bibliography 120

[77] Qin, S. J., and Badgwell, T. A., “An Overview of Nonlinear Model Predictive
Control Applications,” Nonlinear Model Predictive Control, Springer, 2000, pp.
369–392. https://doi.org/10.1007/978-3-0348-8407-5_21.

[78] Boyd, S., Boyd, S. P., and Vandenberghe, L., Convex Optimization, Cambridge
University Press, 2004. https://doi.org/10.1017/CBO9780511804441.

[79] Bemporad, A., and Morari, M., “Robust Model Predictive Control: A Survey,”
Robustness in identification and control, 1999, pp. 207–226. https://doi.org/
10.1007/BFb0109870.

[80] Chisci, L., Rossiter, J., and Zappa, G., “Systems with Persistent Disturbances:
Predictive Control with Restricted Constraints,” Automatica, Vol. 37, No. 7,
2001, pp. 1019–1028. https://doi.org/10.1016/S0005-1098(01)00051-6.

[81] Langson, W., Chryssochoos, I., Raković, S., and Mayne, D., “Robust Model
Predictive Control Using Tubes,” Automatica, Vol. 40, No. 1, 2004, pp. 125–133.
https://doi.org/10.1016/j.automatica.2003.08.009.

[82] Mesbah, A., “Stochastic Model Predictive Control: An Overview and Perspec-
tives for Future Research,” IEEE Control Systems Magazine, Vol. 36, No. 6,
2016, pp. 30–44. https://doi.org/10.1109/MCS.2016.2602087.

[83] Lew, T., Lyck, F., and Müller, G., “Chance-Constrained Optimal Altitude
Control of a Rocket,” European Conference for Aeronautics and Space Sciences
(EUCASS), 2019. https://doi.org/10.13009/EUCASS2019-388.

[84] Oguri, K., Ono, M., and McMahon, J. W., “Convex Optimization over Sequen-
tial Linear Feedback Policies with Continuous-time Chance Constraints,” 2019
IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 6325–6331.
https://doi.org/10.1109/CDC40024.2019.9029604.

[85] Chen, Y., Georgiou, T. T., and Pavon, M., “Optimal Steering of a Lin-
ear Stochastic System to a Final Probability Distribution, Part I,” IEEE
Transactions on Automatic Control, Vol. 61, No. 5, 2016, pp. 1158–1169.
https://doi.org/10.1109/TAC.2015.2457784.

[86] Chen, Y., Georgiou, T. T., and Pavon, M., “Optimal Steering of a Lin-
ear Stochastic System to a Final Probability Distribution, Part II,” IEEE
Transactions on Automatic Control, Vol. 61, No. 5, 2016, pp. 1170–1180.
https://doi.org/10.1109/TAC.2015.2457791.

[87] Benedikter, B., Zavoli, A., Wang, Z., Pizzurro, S., and Cavallini, E., “Co-
variance Control for Stochastic Low-Thrust Trajectory Optimization,” AIAA
SciTech Forum, 2022. https://doi.org/10.2514/6.2022-2474.

[88] Giannini, M., and Cruciani, I., “VEGA LV Qualification Process: GNC aspects
on HWIL Testing and Analysis,” 5th European Conference for Aeronautics
and Space Sciences, 2013.

[89] Regan, F. J., and Anandakrishnan, S. M., Dynamics of Atmospheric Re-
Entry, American Institute of Aeronautics and Astronautics, 1993, Chap. 6, pp.
175–177. https://doi.org/10.2514/4.861741.

https://doi.org/10.1007/978-3-0348-8407-5_21
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1007/BFb0109870
https://doi.org/10.1007/BFb0109870
https://doi.org/10.1016/S0005-1098(01)00051-6
https://doi.org/10.1016/j.automatica.2003.08.009
https://doi.org/10.1109/MCS.2016.2602087
https://doi.org/10.13009/EUCASS2019-388
https://doi.org/10.1109/CDC40024.2019.9029604
https://doi.org/10.1109/TAC.2015.2457784
https://doi.org/10.1109/TAC.2015.2457791
https://doi.org/10.2514/6.2022-2474
https://doi.org/10.2514/4.861741

Bibliography 121

[90] Martens, G., Vellutini, E., and Cruciani, I., “Innovative Strategy for Z9
Reentry,” 6th International Conference on Astrodynamics Tools and Techniques
(ICATT), 2016.

[91] Willems, J. C., “1696: The Birth of Optimal Control,” Decision and Control,
1996., Proceedings of the 35th IEEE Conference on, Vol. 2, IEEE, 1996, pp.
1586–1587. https://doi.org/10.1109/CDC.1996.572753.

[92] Goldstine, H. H., A History of the Calculus of Variations from the 17th through
the 19th Century, Vol. 5, Springer Science & Business Media, 2012.

[93] Euler, L., “Elementa Calculi Variationum,” Novi commentarii academiae
scientiarum Petropolitanae, 1766, pp. 51–93.

[94] Betts, J. T., Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, Vol. 19, Siam, 2010. https://doi.org/10.1137/1.
9780898718577.

[95] Kelly, M. P., “Transcription Methods for Trajectory Optimization,” Tutorial,
Cornell University, Ithaca, New York, 2015.

[96] Betts, J. T., and Huffman, W. P., “Mesh Refinement in Direct Tran-
scription Methods for Optimal Control,” Optimal Control Applications and
Methods, Vol. 19, No. 1, 1998, pp. 1–21. https://doi.org/10.1002/(SICI)
1099-1514(199801/02)19:1<1::AID-OCA616>3.0.CO;2-Q.

[97] Darby, C. L., Hager, W. W., and Rao, A. V., “An hp-Adaptive Pseudospectral
Method for Solving Optimal Control Problems,” Optimal Control Applications
and Methods, Vol. 32, No. 4, 2011, pp. 476–502. https://doi.org/10.1002/oca.
957.

[98] Garg, D., “Advances in Global Pseudospectral Methods for Optimal Control,”
Ph.D. thesis, University of Florida, Gainesville, FL, 2011.

[99] Elnagar, G., Kazemi, M. A., and Razzaghi, M., “The Pseudospectral Legendre
Method for Discretizing Optimal Control Problems,” IEEE Transactions on
Automatic Control, Vol. 40, No. 10, 1995, pp. 1793–1796. https://doi.org/10.
1109/9.467672.

[100] Huntington, G. T., “Advancement and Analysis of a Gauss Pseudospectral
Transcription for Optimal Control Problems,” Ph.D. thesis, Massachusetts
Institute of Technology, 2007.

[101] Garg, D., Patterson, M., Hager, W. W., Rao, A. V., Benson, D. A., and Hunt-
ington, G. T., “A Unified Framework for the Numerical Solution of Optimal
Control Problems Using Pseudospectral Methods,” Automatica, Vol. 46, No. 11,
2010, pp. 1843 – 1851. https://doi.org/10.1016/j.automatica.2010.06.048.

[102] Patterson, M. A., and Rao, A. V., “GPOPS-II: A MATLAB Software for
Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian
Quadrature Collocation Methods and Sparse Nonlinear Programming,” ACM
Trans. Math. Softw., Vol. 41, No. 1, 2014. https://doi.org/10.1145/2558904.

[103] Ross, I. M., and Fahroo, F., “Pseudospectral Knotting Methods for Solving
Nonsmooth Optimal Control Problems,” Journal of Guidance, Control, and
Dynamics, Vol. 27, No. 3, 2004, pp. 397–405. https://doi.org/10.2514/1.3426.

https://doi.org/10.1109/CDC.1996.572753
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1002/(SICI)1099-1514(199801/02)19:1<1::AID-OCA616>3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1099-1514(199801/02)19:1<1::AID-OCA616>3.0.CO;2-Q
https://doi.org/10.1002/oca.957
https://doi.org/10.1002/oca.957
https://doi.org/10.1109/9.467672
https://doi.org/10.1109/9.467672
https://doi.org/10.1016/j.automatica.2010.06.048
https://doi.org/10.1145/2558904
https://doi.org/10.2514/1.3426

Bibliography 122

[104] Sagliano, M., Theil, S., D’Onofrio, V., and Bergsma, M., “SPARTAN: A Novel
Pseudospectral Algorithm for Entry, Descent, and Landing Analysis,” Advances
in Aerospace Guidance, Navigation and Control, Springer International Publish-
ing, Cham, 2018, pp. 669–688. https://doi.org/10.1007/978-3-319-65283-2_36.

[105] Berrut, J.-P., and Trefethen, L. N., “Barycentric Lagrange Interpolation,”
SIAM Review, Vol. 46, No. 3, 2004, pp. 501–517. https://doi.org/10.1137/
S0036144502417715.

[106] Izzo, D., Märtens, M., and Pan, B., “A Survey on Artificial Intelligence Trends
in Spacecraft Guidance Dynamics and Control,” Astrodynamics, Vol. 3, No. 4,
2019, pp. 287–299. https://doi.org/10.1007/s42064-018-0053-6.

[107] Zavoli, A., Federici, L., Benedikter, B., and Colasurdo, G., “Comparative
Analysis of Genetic Crossover Operators for the Optimization of Impulsive
Multi-Rendezvous Trajectories,” AIDAA 2019 - XXV International Congress,
Rome, Italy, 2019.

[108] Federici, L., Benedikter, B., and Zavoli, A., “EOS: a Parallel, Self-Adaptive,
Multi-Population Evolutionary Algorithm for Constrained Global Optimiza-
tion,” 2020 IEEE Congress on Evolutionary Computation (CEC), 2020, pp.
1–10. https://doi.org/10.1109/CEC48606.2020.9185800.

[109] Pontani, M., and Conway, B. A., “Particle Swarm Optimization Applied to
Space Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 33,
No. 5, 2010, pp. 1429–1441. https://doi.org/10.2514/1.48475.

[110] Radice, G., and Olmo, G., “Ant Colony Algorithms for Two Impluse Interplan-
etary Trajectory Optimization,” Journal of Guidance, Control, and Dynamics,
Vol. 29, No. 6, 2006, pp. 1440–1444. https://doi.org/10.2514/1.20828.

[111] Hokamoto, S., and Murakami, J., “Genetic-Algorithm-Based Rendezvous
Trajectory Design for Multiple Active Debris Removal,” 28th International
Symposium on Space Technology and Science, 2011.

[112] Zona, D., Federici, L., and Zavoli, A., “Preliminary Design of Multi-Chaser
Active Debris Removal Missions with Evolutionary Algorithms,” AAS/AIAA
Astrodynamics Specialist Conference, Virtual, 2021.

[113] Federici, L., Zavoli, A., and Colasurdo, G., “Evolutionary Optimization of
Multirendezvous Impulsive Trajectories,” International Journal of Aerospace
Engineering, Vol. 2021, 2021. https://doi.org/10.1155/2021/9921555.

[114] Federici, L., Zavoli, A., and Colasurdo, G., “Preliminary Capture Trajectory
Design for Europa Tomography Probe,” International Journal of Aerospace
Engineering, Vol. 2018, 2018. https://doi.org/10.1155/2018/6890173.

[115] Federici, L., Zavoli, A., Colasurdo, G., Mancini, L., and Neri, A., “Integrated
Optimization of First-Stage SRM and Ascent Trajectory of Multistage Launch
Vehicles,” Journal of Spacecraft and Rockets, Vol. 58, No. 3, 2021, pp. 786–797.
https://doi.org/10.2514/1.A34930.

[116] Izzo, D., Öztürk, E., and Märtens, M., “Interplanetary Transfers via Deep Rep-
resentations of the Optimal Policy and/or of the Value Function,” Proceedings

https://doi.org/10.1007/978-3-319-65283-2_36
https://doi.org/10.1137/S0036144502417715
https://doi.org/10.1137/S0036144502417715
https://doi.org/10.1007/s42064-018-0053-6
https://doi.org/10.1109/CEC48606.2020.9185800
https://doi.org/10.2514/1.48475
https://doi.org/10.2514/1.20828
https://doi.org/10.1155/2021/9921555
https://doi.org/10.1155/2018/6890173
https://doi.org/10.2514/1.A34930

Bibliography 123

of the Genetic and Evolutionary Computation Conference Companion, Asso-
ciation for Computing Machinery, New York, NY, USA, 2019, p. 1971–1979.
https://doi.org/10.1145/3319619.3326834.

[117] Sánchez-Sánchez, C., and Izzo, D., “Real-Time Optimal Control via Deep
Neural Networks: Study on Landing Problems,” Journal of Guidance, Control,
and Dynamics, Vol. 41, No. 5, 2018, pp. 1122–1135. https://doi.org/10.2514/1.
G002357.

[118] Cheng, L., Wang, Z., Song, Y., and Jiang, F., “Real-Time Optimal Control for
Irregular Asteroid Landings Using Deep Neural Networks,” Acta Astronautica,
Vol. 170, 2020, pp. 66–79. https://doi.org/10.1016/j.actaastro.2019.11.039.

[119] Shi, Y., and Wang, Z., “A Deep Learning-Based Approach to Real-Time
Trajectory Optimization for Hypersonic Vehicles,” AIAA Scitech Forum, 2020.
https://doi.org/10.2514/6.2020-0023.

[120] Shi, Y., and Wang, Z., “Onboard Generation of Optimal Trajectories for
Hypersonic Vehicles Using Deep Learning,” Journal of Spacecraft and Rockets,
Vol. 58, No. 2, 2021, pp. 400–414. https://doi.org/10.2514/1.A34670.

[121] Gaudet, B., and Furfaro, R., “Adaptive Pinpoint and Fuel Efficient Mars
Landing Using Reinforcement Learning,” IEEE/CAA Journal of Automatica
Sinica, Vol. 1, No. 4, 2014, pp. 397–411. https://doi.org/10.1109/JAS.2014.
7004667.

[122] Furfaro, R., Scorsoglio, A., Linares, R., and Massari, M., “Adaptive Generalized
ZEM-ZEV Feedback Guidance for Planetary Landing via a Deep Reinforcement
Learning Approach,” Acta Astronautica, Vol. 171, 2020, pp. 156–171. https:
//doi.org/10.1016/j.actaastro.2020.02.051.

[123] Holt, H., Armellin, R., Scorsoglio, A., and Furfaro, R., “Low-Thrust Tra-
jectory Design Using Closed-Loop Feedback-Driven Control Laws and State-
Dependent Parameters,” AIAA Scitech Forum, 2020. https://doi.org/10.2514/
6.2020-1694.

[124] Miller, D., Englander, J. A., and Linares, R., “Interplanetary Low-Thrust
Design Using Proximal Policy Optimization,” AAS/AIAA Astrodynamics
Specialist Conference, 2019.

[125] Federici, L., Scorsoglio, A., Zavoli, A., and Furfaro, R., “Autonomous Guidance
for Cislunar Orbit Transfers via Reinforcement Learning,” 2021 AAS/AIAA
Astrodynamics Specialist Conference, Big Sky, virtual, 2021.

[126] Broida, J., and Linares, R., “Spacecraft Rendezvous Guidance in Cluttered
Environments via Reinforcement Learning,” 29th AAS/AIAA Space Flight
Mechanics Meeting, American Astronautical Society Ka’anapali, Hawaii, 2019,
pp. 1–15.

[127] Federici, L., Scorsoglio, A., Zavoli, A., and Furfaro, R., “Meta-Reinforcement
Learning for Adaptive Spacecraft Guidance during Multi-Target Missions,”
72nd International Astronautical Congress (IAC), Dubai (UAE), 2021.

[128] Federici, L., Benedikter, B., and Zavoli, A., “Deep Learning Techniques for
Autonomous Spacecraft Guidance During Proximity Operations,” Journal of
Spacecraft and Rockets, 2021, pp. 1–12. https://doi.org/10.2514/1.A35076.

https://doi.org/10.1145/3319619.3326834
https://doi.org/10.2514/1.G002357
https://doi.org/10.2514/1.G002357
https://doi.org/10.1016/j.actaastro.2019.11.039
https://doi.org/10.2514/6.2020-0023
https://doi.org/10.2514/1.A34670
https://doi.org/10.1109/JAS.2014.7004667
https://doi.org/10.1109/JAS.2014.7004667
https://doi.org/10.1016/j.actaastro.2020.02.051
https://doi.org/10.1016/j.actaastro.2020.02.051
https://doi.org/10.2514/6.2020-1694
https://doi.org/10.2514/6.2020-1694
https://doi.org/10.2514/1.A35076

Bibliography 124

[129] Federici, L., Scorsoglio, A., Ghilardi, L., D’Ambrosio, A., Benedikter, B.,
Zavoli, A., and Furfaro, R., “Image-based Meta-Reinforcement Learning for
Autonomous Terminal Guidance of an Impactor in a Binary Asteroid System,”
AIAA Scitech 2022 Forum, San Diego (CA), USA, 2022. https://doi.org/10.
2514/6.2022-2270.

[130] Liu, X., Shen, Z., and Lu, P., “Entry Trajectory Optimization by Second-Order
Cone Programming,” Journal of Guidance, Control, and Dynamics, Vol. 39,
No. 2, 2016, pp. 227–241. https://doi.org/10.2514/1.G001210.

[131] Mao, Y., Szmuk, M., and Acikmese, B., “Successive convexification: A super-
linearly convergent algorithm for non-convex optimal control problems,” arXiv
preprint, 2018.

[132] Szmuk, M., Reynolds, T. P., and Açıkmeşe, B., “Successive Convexification
for Real-Time Six-Degree-of-Freedom Powered Descent Guidance with State-
Triggered Constraints,” Journal of Guidance, Control, and Dynamics, Vol. 43,
No. 8, 2020, pp. 1399–1413. https://doi.org/10.2514/1.G004549.

[133] Wang, Z., and McDonald, S. T., “Convex Relaxation for Optimal Rendezvous
of Unmanned Aerial and Ground Vehicles,” Aerospace Science and Technology,
Vol. 99, 2020, p. 105756. https://doi.org/10.1016/j.ast.2020.105756.

[134] Benedikter, B., Zavoli, A., Colasurdo, G., Pizzurro, S., and Cavallini, E.,
“Convex Approach to Three-Dimensional Launch Vehicle Ascent Trajectory
Optimization,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 44,
No. 6, 2021, pp. 1116–1131. https://doi.org/10.2514/1.G005376.

[135] Sagliano, M., Heidecker, A., Hernández, J. M., Farì, S., Schlotterer, M., Woicke,
S., Seelbinder, D., and Dumont, E., “Onboard Guidance for Reusable Rockets:
Aerodynamic Descent and Powered Landing,” AIAA Scitech Forum, 2021.
https://doi.org/10.2514/6.2021-0862.

[136] Benedikter, B., Zavoli, A., Colasurdo, G., Pizzurro, S., and Cavallini, E.,
“Convex Optimization of Launch Vehicle Ascent Trajectory with Heat-Flux
and Splash-Down Constraints,” 2022. https://doi.org/10.2514/1.A35194.

[137] Benedikter, B., Zavoli, A., Colasurdo, G., Pizzurro, S., and Cavallini, E.,
“Autonomous Upper Stage Guidance with Robust Splash-Down Constraint,”
72nd International Astronautical Congress (IAC), Dubai, UAE, 2021.

[138] Szmuk, M., Eren, U., and Acikmese, B., “Successive Convexification for Mars
6-DoF Powered Descent Landing Guidance,” AIAA Guidance, Navigation,
and Control Conference, 2017. https://doi.org/10.2514/6.2017-1500.

[139] Szmuk, M., and Acikmese, B., “Successive Convexification for 6-DoF Mars
Rocket Powered Landing with Free-Final-Time,” AIAA Guidance, Navigation,
and Control Conference, 2018. https://doi.org/10.2514/6.2018-0617.

[140] Chen, Y., Cutler, M., and How, J. P., “Decoupled Multiagent Path Planning
via Incremental Sequential Convex Programming,” 2015 IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 5954–5961.
https://doi.org/10.1109/ICRA.2015.7140034.

https://doi.org/10.2514/6.2022-2270
https://doi.org/10.2514/6.2022-2270
https://doi.org/10.2514/1.G001210
https://doi.org/10.2514/1.G004549
https://doi.org/10.1016/j.ast.2020.105756
https://doi.org/10.2514/1.G005376
https://doi.org/10.2514/6.2021-0862
https://doi.org/10.2514/1.A35194
https://doi.org/10.2514/6.2017-1500
https://doi.org/10.2514/6.2018-0617
https://doi.org/10.1109/ICRA.2015.7140034

Bibliography 125

[141] Malyuta, D., Reynolds, T., Szmuk, M., Acikmese, B., and Mesbahi, M.,
“Fast Trajectory Optimization via Successive Convexification for Spacecraft
Rendezvous with Integer Constraints,” AIAA Scitech Forum, 2020. https:
//doi.org/10.2514/6.2020-0616.

[142] Malyuta, D., Reynolds, T., Szmuk, M., Mesbahi, M., Acikmese, B., and
Carson, J. M., “Discretization Performance and Accuracy Analysis for the
Rocket Powered Descent Guidance Problem,” AIAA Scitech Forum, 2019.
https://doi.org/10.2514/6.2019-0925.

[143] Manual, V. U., “Arianespace,” , 2006.

[144] Benedikter, B., Zavoli, A., and Colasurdo, G., “A Convex Approach to Rocket
Ascent Trajectory Optimization,” 8th European Conference for Aeronautics and
Space Sciences (EUCASS), 2019. https://doi.org/10.13009/EUCASS2019-430.

[145] NOAA, NASA, and USAF, U.S. Standard Atmosphere, U.S. Government
Printing Office, 1976.

[146] Liu, X., Shen, Z., and Lu, P., “Exact Convex Relaxation for Optimal Flight of
Aerodynamically Controlled Missiles,” IEEE Transactions on Aerospace and
Electronic Systems, Vol. 52, No. 4, 2016, pp. 1881–1892. https://doi.org/10.
1109/TAES.2016.150741.

[147] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2020.

[148] Wang, Z., and Lu, Y., “Improved Sequential Convex Programming Algorithms
for Entry Trajectory Optimization,” Journal of Spacecraft and Rockets, Vol. 57,
No. 6, 2020, pp. 1373–1386. https://doi.org/10.2514/1.A34640.

[149] SpaceX, Falcon 9 Launch Vehicle Payload User’s Guide, SpaceX, 2019.

[150] Benedikter, B., Zavoli, A., Colasurdo, G., Pizzurro, S., and Cavallini, E., “Au-
tonomous Upper Stage Guidance Using Convex Optimization and Model Pre-
dictive Control,” AIAA ASCEND, 2020. https://doi.org/10.2514/6.2020-4268.

[151] Hartl, R. F., Sethi, S. P., and Vickson, R. G., “A Survey of the Maximum
Principles for Optimal Control Problems with State Constraints,” SIAM
Review, Vol. 37, No. 2, 1995, pp. 181–218. https://doi.org/10.1137/1037043.

https://doi.org/10.2514/6.2020-0616
https://doi.org/10.2514/6.2020-0616
https://doi.org/10.2514/6.2019-0925
https://doi.org/10.13009/EUCASS2019-430
https://doi.org/10.1109/TAES.2016.150741
https://doi.org/10.1109/TAES.2016.150741
https://doi.org/10.2514/1.A34640
https://doi.org/10.2514/6.2020-4268
https://doi.org/10.1137/1037043

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Convex Optimization
	Model Predictive Control
	Objectives and Contributions
	Thesis Summary

	Methods for Optimal Control
	General Statement of an Optimal Control Problem
	System Dynamics
	Constraints
	Objective Function
	Phases

	Overview of Numerical Methods
	Direct Methods
	Shooting Methods
	Collocation Methods

	Alternative Methods
	Evolutionary Optimization
	Machine Learning

	Convex Optimization
	Preliminaries
	Linear and Convex Functions
	Affine and Convex Sets
	Cones
	Hyperplanes and Polyhedra

	Convex Programming Problems
	Linear Programming
	Quadratic Programming
	Quadratically-Constrained Quadratic Programming
	Second-Order Cone Programming

	Convexification Methods
	Lossless Convexification Methods
	Successive Convexification Methods

	Virtual Controls and Buffer Zones
	Trust Regions
	Reference Solution Update
	Convergence Criteria
	Example: Low-Thrust Interplanetary Mission
	System Dynamics
	Optimal Control Problem
	Convex Transcription
	Numerical Results

	Launch Vehicle Ascent Trajectory Optimization
	VEGA Launch Vehicle
	Phases
	General Phase Sequence
	VEGA's Phase Sequence

	System Dynamics
	Gravity
	Atmosphere
	Propulsion
	Equations of Motion

	Optimal Control Problem
	Objective Function
	Duration of the Phases
	Initial Conditions
	Target Orbit
	Stage Separation
	Liquid Rocket Engine Burn Time
	Heat Flux
	Maximum Dynamic Pressure
	Splash-Down Constraint

	Convex Formulation
	Change of Variables
	Constraint Relaxation
	Successive Linearization
	Trust Region on Time-Lengths
	Virtual Controls and Buffers
	Augmented Objective Function

	Initialization Strategy
	Continuation Strategy

	Case Study: Ascent Toward a Low-Earth Polar Orbit
	Problem Statement
	Convergence Behavior
	Sensitivity to the Initialization
	Filtering Approach
	Trust Region Approach
	Comparison Between Filtering and Trust Regions

	Analysis of the Discretization Grid
	Parametric Analysis of the Splash-Down Constraint

	Case Study: Ascent of a Two-Stage Vehicle to the ISS
	Two-Stage Launch Vehicle Model
	Phases
	Problem Statement
	Initialization
	Convergence Behavior

	Application to Upper Stage Guidance
	Motivation for Upper Stage Guidance
	Model Predictive Control Algorithms
	Upper Stage Guidance Strategy
	Single-Return Strategy
	Multi-Return Strategy

	Single-Return Optimal Control Problem
	Phase Sequence
	System Dynamics
	Objective and Constraints
	Convex Formulation

	Multi-Return Optimal Control Problem
	Phase Sequence
	Objective and Constraints
	Convex Formulation

	Update of the OCP
	Softening the Heat Flux Constraint
	Perturbation Model
	Numerical Results
	Problem Data
	Nominal Trajectories
	Monte Carlo Campaigns

	Conclusions
	Future Work

	Linearization Matrices for the Low-Thrust Problem
	Proof of Lossless Relaxation
	Bibliography

