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Abstract Propagating guided waves in a homoge-
neous, isotropic, prestressed, hyperelastic plate show
nonlinear characteristics that depend on the state of
initial prestress. These nonlinear phenomena include
higher harmonic generation, occurring when Lamb
wave modes of different frequencies (ωa and ωb) are
allowed to mix within the material generating sec-
ondary waves at frequencies 2ωa, 2ωb andωa ± ωb.
Further, if prescribed internal-resonance conditions are
satisfied, the amplitude of secondarywaves increases in
space, providing a response quantity which is depen-
dent on prestress and easy to be observed. Using the
finite element method, in this paper we investigate the
time and space evolution of higher harmonics arising in
one-waywavemixing. The influence of prestress on the
response is elucidated, observing the nonlinear param-
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eter β. It is further shown that the nonlinear ultrasonic
technique called sideband peak count-index (SPC-I)
can provide an effective monitoring tool for prestress.
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1 Introduction

Nondestructive evaluation (NDE) and structural health
monitoring (SHM) based on elastic wave propaga-
tion in waveguides ranges from traditional ultrason-
ics, which rely on the linear theory, to nonlinear ultra-
sonics, which exploit some of the nonlinear phenom-
ena observed in the experimental response and requires
appropriate models. These models account for geomet-
ric and material nonlinearities and describe the occur-
rence of nonlinearities while waves propagate. In this
paper, we numerically investigate the response char-
acteristics of a prestressed plate in view of an under-
standing of the potential of nonlinear parameters to
determine preexisting stress. This presents consider-
able challenge, but also has a lot of interesting engi-
neering applications, such as the monitoring of stress
in pressurized tanks or in other structural elements like
truss members or rails.

Ultrasound-based techniques show high potential in
different areas of NDE. Nonlinear ultrasonic (NLU)
techniques enable the identification and tracking of
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material degradation at an early stage and provide an
estimate of the damage statewhich ismore reliable than
that provided by linear ultrasonic (LU)-based NDE
techniques [1]. NLU techniques exhibit high sensitivity
to microstructural defects, fatigue [2], creep [3], mate-
rial degradation [4] and stress [5,6]. A large amount of
research was conducted about self and mutual interac-
tions of nonlinear waves for the unique sensitivity of
nonlinear wave interactions to material and geometric
nonlinearities [7].

The focus of the majority of investigators in this
area is on resonant higher harmonics generation, which
takes advantage of the spatially cumulative nature of
these propagating waves [8–25]. In particular, the work
by De Lima [12] and Deng [13] should be mentioned.
They investigated the physics of secondary harmonics
generation, Liu [20] studied the higher order harmonics
generation in weakly nonlinear cylinders, Wang [18]
derived the analytical expressions for the third harmon-
ics based on perturbation approach, and Müller [21]
analyzed the requirements of higher-harmonic genera-
tion.

When two waves propagate in a nonlinear medium,
their interaction occurs in a wave mixing zone, where
mutual wave interactions result in combinational har-
monics at the sum and difference frequencies [25–34].
If the two primary waves satisfy certain resonance con-
ditions, the mixed wave is also a propagating wave,
and its maximum amplitude is proportional to the size
of the mixing zone and the distance travelled [19,25].
Note that one primarywave and its resonant second har-
monic can be also such kind ofmixedwaves, generating
a secondary harmonic in a condition of self-wave mix-
ing. In the technique called one-way mixing, two pri-
mary waves propagating in the same direction [20,32]
are employed. Among the researchers who studied this
subject, Sun [19] investigated the wave mixing zone
and the backward propagation phenomenon, Ishii [26]
studied the interaction of guided elastic waves in an
isotropic plate based on perturbation approach, and
showed that the amplitude of the resonant harmon-
ics increases linearly with the propagation distance,
Hughes [27] and Yeung [29] evaluated the material
nonlinearity from mixed waves, Ding [31] demon-
strated the resonant wave mixing phenomena caused
by micro-cracks, Ju [34] used the wave mixing tech-
nique to monitor thermal aging of adhesive joints.

The experimental observability of the cumulative
effect of secondary and combination harmonics was

demonstrated in several works, among which [27,29,
31,35,36], respectively, for edge waves, pipes and
shear waves in plates, damage and fatigue evaluation.
With specific regard to Lamb waves in plates, Pineda
Allen [37] showed that the combination internally res-
onant waves are spatially cumulative, moreover, Hu
[38] observed the cumulative effect of the combina-
tion of low-frequency S0 modes. In the last paper, an
experiment with an empty and filled tank demonstrates
that the amplitude of the secondary combination peaks
depends on the presence of the fluid, and hence on the
stress too. The results reported in the literature point
at the effectiveness of the combination harmonics in
characterizing material nonlinearities, which could be
extended to a problem of stress monitoring. One prac-
tical difficulty is related to the multiple sources of non-
linearity, amongwhich also damage plays an important
role. In the case of pressurized tanks, a manometer can
measure the gas pressure, which will enable to separate
the contribution of damage from that of stress.

Recently, a newly developed NLU technique called
sideband peak count-index (or SPC-I) has shown
promising results in engineering structural health mon-
itoring. The details of SPC and SPC-I analysis process
have been reported in the literature [39,40] and will be
described briefly in Sect. 4. The SPC techniquewas first
successfully applied inmonitoring degradation of glass
fiber reinforced cement composites [41]. Later, appli-
cability of the SPC-I technique in monitoring dam-
age evolution in polymer composite plates has been
investigated [42]. Nondestructive evaluation of con-
crete usingSPC-I technique has been also reported [43–
46]. Experimental results show that the SPC-I tech-
nique is very sensitive to damage in concrete. Other
relevant investigations using SPC-I technique involve
crack detection in metallic materials such as aluminum
plates and aircraft lugs [47]. Conclusions have been
drawn from these investigations that for micro-cracks,
SPC-I is more sensitive than LU parameters and it out-
performs other nonlinear techniques. Recently, SPC-
I has been applied to monitor porosities in additively
manufactured parts [48] as well as steel tube welded
joints [49] and adhesion defects in FRCM reinforce-
ments [50]. Also, a recently modified SPC-I technique
called sideband peak intensity (or SPI) has been pro-
posed formonitoring impact damage and shows consis-
tent trends as SPC-I techniques [51], which reinforces
the conclusion that nonlinear SPC-I technique is reli-
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able and has advantages in monitoring early stages of
damage.

In this work, we conduct numerical finite-element
(FE) simulations to investigate the generation of higher
harmonics in one-waymixing, and elucidate the depen-
dence of their amplitudes on the initial prestress aswell.
The finite element model implements the second-order
approximation of the equations ofmotion obtainable by
perturbation approach. Different states of prestress are
considered, including uniaxial and biaxial, with wave-
fronts orthogonal or parallel to the principal directions
of prestress. The influence of prestress on the response
is elucidated, observing the nonlinear parameter β. It
is further shown that the application of the new non-
linear ultrasonic technique SPC-I enables an effective
monitoring of the state of prestress.

2 Wave propagation in prestressed plates

2.1 Nonlinear equations of motion of a prestressed
plate

The equations of motion of a prestressed solid can be
formulated using the classical approach of acoustoe-
lasticity. Three different configurations of the material
points P are distinguished, which are: the natural con-
figuration C0, free of stress and strains, the initial con-
figuration C , which is a stressed and strained equilib-
rium state, and the current configuration C(t)(Fig. 1a).
The coordinates of point P in the natural, initial and cur-
rent configurations are, respectively: a(P),X(P) and
x(P, t). We define these coordinates with respect to the
same rectangular Cartesian common frame. A motion
of the material body is a one-parameter mapping [7]:

x = X + u(t) = Aa + u(t)

= (I + α)a + u(t) = a + ui + u(t)
(1)

where ui is the static displacement vector field taking
from the natural to the initial state. Physical quantities
in the initial state are referred to with the superscript
“i”. It is assumed that the initial state is attained by
a static displacement of the kind ui = αa, where α

and A are given diagonal tensors related to the initially
applied stress; a and A can be assumed to be diago-
nal without loss of generality by letting the principal
axes coincide with the reference frame. The final con-

Fig. 1 Sketch of natural, initial and current configurations (a)
and sketch of the plate (b)

figuration is reached superimposing to the initial state
a dynamic disturbance u(t).

Strains are defined using the Green-Lagrange tensor
of finite strains:

E f = 1

2
(∇x∇xT − I) = α + 1

2
(∇u + ∇uT)

+ 1

2
α2 + α∇u + 1

2
∇u∇uT

(2)

where the superscript “ f ” represents the final state and
∇ is the gradient operator with respect to the natural
coordinates a.

We will consider a hyperelastic material admitting
a strain energy function �. If the medium is isotropic,
its strain energy function is unaffected by any arbitrary
rotation of the reference frame, hence � can be writ-
ten as a power series of the invariants I1, I2, and I3
of the strain tensor E f . Neglecting infinitesimals of
order higher than three in �, the strain energy can be
expressed as:

� =
(

λ + 2μ

2

)
I 21 + 2μI2 +

(
l + 2m

3

)
I 31

+ 2mI1 I2 + nI3

(3)
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where I1 = trE f , I2 = (trE f )2 − tr(E f 2), and
I 3 = detE f , λ and μ are the Lamé constants (sec-
ond order) and l,m and n are the Murnaghan constants
(third order) [52]. The constitutive relation express-
ing the first Piola–Kirchhoff stress S in this hypere-
lastic body is obtained manipulating the strain energy.
According to Murnaghan, the relation between the
Cauchy stress tensor σ and the strain energy function
is written as:

σ = 1

det∇x
∇x

∂�

∂E f
∇xT (4)

from the relation between the Cauchy stress tensor and
the first Piola–Kirchoff stress tensor, that is:

S = det∇x σ∇x−T = ∇xT

with Ti j = ∂�

∂E f
i j

.
(5)

This results into the following expression of the first
Piola–Kirchhoff tensor S:

S = (I + α + �u)[(λ(trE f )I + 2μE f )

+ (l(trE f ))2 − m[(trE f )2 − tr(E f E f )])I
+ 2m(trE f )E f + n coE f ]

(6)

where co indicates cofactor.
Finally, we can set up the field equations of motion

in the natural configuration and in the absence of body
forces other than inertia as:

DivS = ρ0ü (7)

where ρ0 is the natural material density, the operator
Div involves derivatives with respect to natural coordi-
nates a.

When considering a wave propagating in a plate
(Fig. 1b), free-stress equations on the upper and lower
surfaces have to be added to Eq. (7), that is:

Sn3 = 0 on a3 = ±h/2 (8)

where n3 is the unit vector normal to the upper and
lower surfaces of the plate.

2.2 Perturbation approach to the solution of
second-order approximation

A second-order approximation of the equations of
motion entails retaining first and second powers of α in

terms not involving∇u; first and second powers of α in
terms involving∇u; discarding terms involving powers
higher than two of∇u. In this way, the stress tensor can
be divided into two parts: SI collecting the first order
terms, and SII which gathers the second order terms:
S = SI +SII + O[E,α]3. Its second-order approxima-
tion will then be written as:

SNL = SI + SII. (9)

A classical way to solve of the set of Eqs. (7) and (8) is
perturbation approach. This implies writing the solu-
tion u as the sum of a primary solution u1 and a sec-
ondary solution u2:

u = u1 + u2 with |u2| << |u1|. (10)

This approach is illustrated in detail in [12] and [5].
Here we will recall only the main results, which will
guide interpretation of the numerical results.

Substituting Eq. (10) into Eqs. (7) and (8), and sep-
arating linear (superscript I) and quadratic (II) terms of
SNL containing derivatives of u1 and u2 (superscripts
1 and 2), yields [7]:

SNL = SI1+SI2+SII1+SII2 � SI1+SI2+SII1. (11)

The terms SI1 and SI2 contain only the derivatives of u1

and u2, respectively. The term SII1 instead contains the
quadratic terms in u1. Finally, SII2 contains quadratic
terms in u2 and mixed products of u2 and u1, and is
neglected in the analytical approach to the solution of
the nonlinear problem [5,12]. The obtained hierarchy
of equations of motion consists in a free-vibration lin-
ear problem which coincides with the linear approxi-
mation:

DivSI1 = ρ0ü1 SI1n3 = 0 on a3 = ±h/2 (12)

and a forced linear problem where the forcing terms
depend on the solution of the first-order problem:

DivSI2 + f1 = ρ0ü2

SI2n3 = −SII1n3 on a3 = ±h/2
(13)

where f1 = DivSII1 andSII1 are the volumeand the sur-
face forcing term, respectively. They are both known
once the solution to the first-order problem is deter-
mined.
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Equations (12) and (13) have some analogies with
those of parametrically excited structures, in which
case, the parametric excitations appear as forcing terms
in the equation of motion of order ε1, similarly to the
forcing term in Eq. (13) [54–56]. Consequently, when
the frequency of the parametric excitation coincides
with one of the frequencies of the system, the ampli-
tude of the combination terms is enhanced (principal
parametric resonances). However, it must be noticed
that, in the case treated in this paper, the forcing term
of Eq. (13) is tied to the free-response at the zero-order.

The first-order problem Eq. (12) describes the free-
vibration of infinite plates. For a given angular fre-
quency ω, the infinite admissible wavenumbers km can
be obtained by solving the eigenvalue problemwhich is
obtained enforcing wave-like solutions. Note that the
symbols ω and f are used, respectively, for the fre-
quency in rad/s and in Hz. The related eigenfunction
Um(a3) is the m-th wave mode shape. The results are
usually represented in the dispersion diagram, which
includes a set of curves, each one associated with a
wave mode, which represent wavenumbers or phase or
group velocity as a function of frequency. Dispersion
curves depend on the initial state of prestress (see [5]).
The m-th wave mode at frequency ω can be written as:

u1m(a1, a3, t) = Um(a3)e
i(kma1−ωt). (14)

These modes satisfy a reciprocity relationship which is
the analogous of the orthogonality condition for wave
modes [53]. The reciprocity enables writing the forced
response in terms of wave mode superposition and also
determining the expansion coefficients. Since the free-
vibrationwavemodes are the same for the second-order
homogeneous problem, the second-order forced solu-
tion to Eq. (13) can also be written in terms of wave
mode expansion.

2.3 Generation of higher harmonics

It is clear from the equations presented in the former
subsection that if two waves with different frequency
(ωa and ωb, with ωa > ωb) propagate in a plate, wave
mixing occurs. Thismeans that higher harmonics of the
fundamental frequency are generated (2ωa and 2ωb),
as well as the sum (ωa + ωb) and difference (ωa −
ωb), resulting in the phenomenon called wave mixing.
Figure2 shows a schematic frequency spectrum which
depicts the interaction of fundamental waves and the

Fig. 2 Schematic diagram of frequency spectrum for ultrasonic
guided wave mixing, and wave mixing zone in plate

combinational secondary harmonic generation due to
wave mixing.

Let us assume that two waves with angular frequen-
cies ωa and ωb and corresponding wavenumbers ka
and kb are excited at a1 = 0. The primary waves of
amplitudes A and B will be expressed by:

u1(a1, a3, t) = AUa(a3)e
i(kaa1−ωa t)

+ BUb(a3)e
i(kba1−ωbt).

(15)

Substituting (15) into the second-order equations (13)
results into volume f1 and surface SI2 forcing terms
which contain sum and difference frequencies:

f1 = f2ωa (a3)e
i2(kaa1−ωa t)

+ f2ωb (a3)e
i2(kba1−ωbt)

+ f+(a3)e
i((ka+kb)a1−(ωa+ωb)t)

+ f−(a3)e
i((ka−kb)a1−(ωa−ωb)t)

(16)

SI2 = S2ωa (a3)e
i2(kaa1−ωa t)

+ S2ωb (a3)e
i2(kba1−ωbt)

+ S+(a3)e
i((ka+kb)a1−(ωa+ωb)t)

+ S−(a3)e
i((ka−kb)a1−(ωa−ωb)t)

(17)

where f2ωa and S2ωa (f2ωb and S2ωb ) are the amplitudes
of the forcing terms due to the self-interaction of the
excited mode at frequency ωa (ωb) and f+, S+, f−, S−
are due to the mutual interaction of the modes at sum
(ωa + ωb) and difference frequencies (ωa − ωb). The
second-harmonic generation is considered as a special
case of sum frequency generation, in which only one
primary single mode is excited.

123



M. Wang et al.

The secondary solution is written in terms of modal
superposition including all the frequencies deriving
from self and mutual interaction:

u2(a1, a3, t) =
∑
w

∞∑
m=1

Uw
m(a3)A

w
m(a1)e

iwt + c.c.

(18)

with w = 2ωa, 2ωb, ωa + ωb, ωa − ωb and where c.c.
stands for complex conjugate. Aw

m(a1) is the spatially
modulated amplitude of the m-th mode at frequency
w, which can be obtained from the solution of the
second-order forced problem exploiting the reciprocity
relation. It was shown that the amplitude of the sec-
ondary solution remains bounded when the wavenum-
bers kw

m at frequencies w differ from the wavenum-
bers ka , kb or ka ± kb [12]. On the contrary, when
some internal resonance conditions are satisfied, that
is: kw

r = ka, kb or ka ± kb (synchronism or phase
velocity matching) where subscript r stands for inter-
nally resonant, and there is nonzero volume and surface
power flux between primary and secondary modes (see
[12] for the definition of volume and power flux), the
amplitude of the secondary r -th mode grows linearly
in the direction of propagation. This cumulative effect
occurs at the expense of the primary lower harmonics,
in the absence of further energy fed to the system, as in
our case, so that the energy balance is satisfied. In the
absence of internal resonance, all modes are needed to
represent the secondary solution. However, when one
mode is in resonance with the primary wave, this mode
is the dominant term in the solution. Henceforth, it is
desirable that waves a and b are excited at the same
location and that they satisfy self or internal-resonance
conditionswithwaves at sumor difference frequencies,
which ensures an effective mixing.

Similarly to that, in nonlinear vibrations, we have an
internal resonance when one or more natural frequen-
cies are commensurable. When an internal resonance
coincides with a parametric resonance, the combina-
tion of the two types gives rise to simultaneous reso-
nances, and the system vibrates at more than one mode
at different frequencies, although only one frequency
is directly excited by the parametric excitation.

The amplitudes and rate of accumulation of the har-
monics can be obtained by measuring the response at
some points following the mixing. This is expressed
by the nonlinear parameter β, which is the constant
ratio between the amplitude of the secondary resonant

Table 1 Material properties of 7075-T651 aluminum alloy:
mass density, Lamé constants and Murnaghan third order elastic
constants

ρ (kg/m3) λ (GPa) μ (GPa) l (GPa) m (GPa) n (GPa)

2810 52.3 26.9 −252.2 −325 −351.2

harmonics and the product of the amplitude of the pri-
mary waves and the abscissa where the displacements
are observed [25,27]:

β2a = A2ωa
r

A2a1
β2b = A2ωb

r

B2a1

βa+b = A(ωa+ωb)
r

ABa1
βa−b = A(ωa−ωb)

r

ABa1

(19)

where the superscripts 2a, 2b, a + b and a − b refer to
the frequencies ωa , ωb, ωa + ωb, and ωa − ωb respec-
tively.

3 Finite element analysis

3.1 Description of the model

AFEmodelwas used to numerically simulate nonlinear
guided wave propagation in a plate. A time-step analy-
sis was carried out with COMSOL, using the equations
of motion (7) and (8) [5,6], where the stress tensor is
defined as the second-order approximation of Eq. (9).
Attenuation is omitted. Different fromwhat happens in
the two-scale approach to the solution, in this way we
will include also the contribution of quadratic terms in
u2 and mixed products of u2 and u1. The equations of
motion are enforced in a 2D domain (Fig. 3a), which is
an area with thickness h = 10mm and length l = 4000
mm, representing a plate with upper and lower surfaces
free of stress. The length is sufficient not to see the
reflection from the right boundary. The 2D setup of the
model implies that geometrical spreading is ignored.
Thematerial is 7075-T651 Aluminum, whosemechan-
ical properties are reported in Table 1.

A state of plane strain is assumed for the plate,whose
motion takes place in the plane a1-a3 (Fig. 3a), with
propagation in the a1 direction. This corresponds to
a displacement field with two components u1 and u3,
with u2 = 0. On the right end of the plate, displace-
ments are constrained to zero. Primary waves are gen-
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Fig. 3 Sketch of the 2D FE model (right) and amplitude of S0
displacements applied on the left end (left) (a) and forcing func-
tion in time (left) and frequency (right) in the case ofwavemixing
(b)

erated enforcing a Dirichlet boundary condition on the
left end of the plate. This is the so-called side inci-
dence method, which entails forcing the boundary with
a time-history of displacements which, in space, corre-
spond to the u1 and u3 components of the primarywave
mode shape we are willing to excite [5]. A sketch of the
displacement field applied at the boundary is reported
inFig. 3a for theS0mode. In time,wewill use harmonic
functions at the frequency of the primary wave modes
enveloped by a Gaussian curve so as to include a num-
ber of cycles equal to 28, which provides sufficiently
narrow peaks in the frequency domain. For the sake
of brevity, an example concerning the wave mixing is
reported in Fig. 3b. Frequency and mode shapes are the
Rayleigh–Lamb waves obtainable from Eq. (12).

The FEmodel was set so that the maximum element
size is 1/10 of the shortest wavelength of interest and
the time step is 1/100 of the largest frequency of inter-
est. The elements used were four-nodes second-order
Lagrange elements.

We will conduct numerical experiments with two
different primary waves, whose frequencies and phase
velocities are reported in Table 2. One case mixes two
wavemodes S0 at relatively low frequencies (Fig. 4). In

Table 2 Frequencies (kHz) and phase velocities cph (m/s) of
the primary and secondary wave modes for wave mixing and
self-resonance

f a (KHz) f b (KHz) caph cbph c2aph c2bph ca+b
ph ca−b

ph

S0-53.70 71.60 5323 5305 5244 5133 5197 5343

S1-355 – 6165 – 6165 – – –

this case, internal resonance conditions are not strictly
satisfied, as can be seen fromTable 2 andFig. 4.Despite
that, we will show that quite strong secondary harmon-
ics are obtained with cumulative growth of amplitude
in space. The other case employs the S1 mode as pri-
mary wave, generating the secondary self-resonant S2
wave (Fig. 5). In this casewe have exact resonance con-
ditions, which not only occur for modes S1 and S2, but
also for higher harmonics, in a condition of multiple
internal resonance.

3.2 Higher harmonic generation in unstressed plates

For the sake of brevity, in this subsection, the results are
monitored only for the numerical experiment involving
wave mixing of the S0 mode in the unstressed case.

Figure6a and b report the u1 displacement com-
ponent respectively in time and space domains. Pri-
mary and secondary waves are present in each plot.
The secondary waves can be observed in the tail of the
response, in fact, they have slightly lower group veloc-
ities than the primary, as it is apparent from Fig. 4. Fig-
ure6c reports the contour plot of the u1 component,
which has a symmetric distribution on the height of the
plate compatible with the S0 mode. Also, this demon-
strates that in the current simulation, all the waves gen-
erated by the mixing are S0 modes.

Figure7 shows theFourierTransformof the response
in terms of u1 component of displacement on the plate
surface, and at a distance of 100 mm from the left
boundary. This picture shows the occurrence of the pri-
mary harmonics at the frequencies fa and fb contained
in the disturbance applied at the boundary, together
with secondary harmonics f2a , f2b, fa−b, and fa+b.
Figure7 also compares the response to a disturbance
containing mixed frequencies to that with one single-
frequency: when excited separately, the 53.7 and 71.6
kHz S0 waves generate secondary harmonics at integer
multiples of the fundamental frequency.
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Fig. 4 Dispersion diagrams in the frequency range used for S0 wave mixing with indication of secondary harmonics
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Fig. 5 Dispersion diagrams and self-resonant modes S1–S2

Figure8 reports the nondimensional amplification
coefficients for the different secondary harmonics w:

Ampw =
(
Aw

AB

)
a1

/ (
Aw

AB

)
a1=100

(20)

that are the ratios between amplitude of the secondary
harmonics and products of the amplitudes of primary
waves at different increasing abscissae (subscript a1),
divided by the same quantity these ratios assume at
a1=100mm. Note that when w = 2ωa , B = A and
whenw = 2ωb, A = B. In the four curves, the dots rep-
resent the values retrieved from the Fourier transforms
of the numerical responses. These normalized ampli-
tudes increase linearly, apart from some predictable
slight deviation for the secondary harmonic 2ωa , due
to its increased mismatch of the resonance conditions
(Fig. 4). It can also be seen that the slopes of the curves

do not differ much. These results indicate that cumula-
tive harmonic generation mixing the primary S0 mode
is achievable at low frequency.

Given that in the problem under study attenuation
and geometrical spreading are omitted, the amount of
nonlinear cumulative effect which could be observed
in experiments can be smaller.

3.3 States of prestress under investigation

Three different states of initial prestress are investigated
and represented in Fig. 9, specifically: uniaxial stress in
the direction of the wave propagation (a1, case A), uni-
axial stress orthogonal to the direction of wave prop-
agation (a2, case B), and plane state of stress in the
plane (a1, a2) with equal principal stresses along the
two directions a1, a2 which is called plane-isotropic
state (case C). The corresponding strains are reported

123



Monitoring prestress in plates by sideband peak count-index

Fig. 6 Finite-element analysis results

Fig. 7 FFT of the response in terms of u1 on the plate surface,
and at a distance of 100 mm from the left boundary the 53.7
kHz and 71.6 kHz S0 waves were excited simultaneously (wave
mixing) and separately

Fig. 8 Cumulative growth of secondary harmonics

Table 3 States of prestrain

α1 α2 α3

Case A α −να −να

Case B −να α −να

Case C α α −2να

in Table 3 (ν = 0.33), where α is the applied initial
strain, α1, α2 and α3 are the strains in a1, a2 and a3
directions, respectively. For each of the A, B, and C
cases, both α > 0 (tensile strain) and α < 0 (compres-
sion strain) are investigated. It is taken a limit value
α = 0.004, which is about 50% of the yielding strain
for 7075-T651 Aluminum. It should be noticed that,
due to the coupling induced by the nonlinearity, the
prestrain applied in direction a2 affects the motion in
the plane (a1,a3) where displacements take place.

3.4 Higher harmonic generation in prestressed plates

In this section, the effect of initial stress on the gener-
ation of higher harmonics is illustrated.

Figure10 compares the response spectrum in pre-
stressed cases A, B and C, for S0 wave mixing at fre-
quencies f a = 71.60 kHz and f b = 53.70 kHz. The
response quantity observed is the displacement u1 on
the plate surface 400mm away from the left end, with
tensile prestrain set to α = 0.001. We can see from the
details reported in Fig. 10b–e that the largest increase in
the amplitude of the secondary harmonics is obtained
for case C, then A. The case B presents the smallest
variation.

Figures11, 12 and 13 illustrate the effect of the
increase of strain (α from 0.001 to 0.004) in the dif-
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Fig. 9 Schematic diagram
of three states of stress,
wave propagation in a1
direction. Cases A and B:
uniaxial prestress. Case C:
prestress in the plane of the
plate

ferent states of stress A, B and C, respectively. The
response quantity observed is again the component
u1 of displacement picked up 400mm away from the
left boundary. Similar to Fig. 10, in cases A and C
an increase of strain causes a increase of the FFT
amplitudes of all the secondary harmonics, while in
case B an increase of strain results in a reduction
of the secondary-harmonic amplitudes. Quantitatively,
the variation of case B is smaller than in other cases.

The parameter β is useful in quantitative analysis
of the material and geometric nonlinearity. To under-
stand the effect of prestress, we introduce and observe
the parameter �β, which is defined as the difference
between βα in prestrained conditions and in stress-free
initial state (α = 0), i.e., �βa−b = βa−b

α − βa−b
α=0. Fig-

ure14 reports the quantity �βa−ba1 for the different
prestress states as a function of α, for a1 = 400 mm.

The picture reports both the discrete points for those
values of α at which the response was observed, and
their linear fit. It can be seen that a linear increase in�β

with increasing α is observed in cases A and C, which
corresponds to a cumulative second harmonic genera-
tion for the all harmonics. Also, in case B, the magni-
tude of �β linearly increases for increasing α, but it is
an out-of-phase contribution with respect to the wave
propagating in the unstressedmedium. Figure14 shows
that the nonlinear harmonics have the highest sensitiv-
ity to stress when they propagate in the same direction
as the nonzero component of the uniaxial stress, and
the lowest when they propagate orthogonally to it.

It can be concluded that the observed response quan-
tity �β has the potential to be employed in stress
monitoring. Moreover, the presented results show that
the interpretation of the information derived from the

Fig. 10 a FFT of the response in the different initial stress cases and b–e details of the secondary harmonic peaks
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Fig. 11 Details of the secondary harmonic peaks as a function of the initial state of strain—case A
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Fig. 12 Details of the secondary harmonic peaks as a function of the initial state of strain—case B
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Fig. 13 Details of the secondary harmonic peaks as a function of the initial state of strain—case C

measured response is specific to the direction of the
wavefront in relation to the direction of the principal
directions of the preexisting stress (Fig. 9). Although
this is in general a limitation, there are cases in engi-
neering when the principal directions of the stress are
known with reasonable approximation (i.e. truss mem-
bers, rails, pressure vessels).

4 Nonlinear SPC-I analysis method

The SPC-I analysis method [40] is based on the anal-
ysis of the peaks of the secondary harmonics due to
internal resonance and wave interaction. In the previ-
ous sections it was shown that geometric and material
nonlinearities give rise to secondary harmonics whose
amplitude depends on the initial prestrain. A sample
SPC plot is shown in Fig. 15b. It is generated by mov-
ing a threshold line, shownby the horizontal continuous

line in Fig. 15a. The threshold line is moved vertically
between the lower and upper threshold limits, shown
by two dashed lines. All peaks that are above the mov-
ing threshold line are counted and plotted against the
moving threshold value. It should be noted that both the
number of peaks and their strengths affect the SPC plot
which is a measure of the degree of material nonlinear-
ity. Thus, the SPC plot (number of peaks as a function
of the threshold value) gives a visual representation of
the material nonlinearity [58].

The SPC-I is an index value which is the average of
SPC values for all threshold positions. This index indi-
cates the degree of material nonlinearity. The higher
the material nonlinearity, the greater is this number. In
this work, after verifying the occurrence and sensitiv-
ity of secondary harmonics to the prestress, we adopt
the SPC-I technique for monitoring prestress-induced
nonlinear response in the plate structure.
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Fig. 14 Relative nonlinear coefficient �β for the different cases of prestrain as a function of α for a1 = 400mm

4.1 SPC-I analysis results for prestressed plate

In this section, SPC-I technique is applied to the anal-
ysis for both S0 wave mixing and S1 self resonance
conditions. The three states of stress shown in Fig. 9
with different tensile strain values are considered. We
focus the analysis on tensile strains to avoid practical
situations which, in thin plates, could be tied to insta-
bility.

4.1.1 SPC-I for wave-mixing conditions

To get clearer results, we select the spectral plots which
correspond to the case when the distance is 2000mm
from the leading edge of the excitation boundary. As
mentioned above, in the SPC-I analysis the number and
intensity of peaks above certain threshold is recorded.
For case A (the geometry is shown in Fig. 9a), differ-
ent peaks detected by our software are marked in the
logarithmic spectral plots of Fig. 16 for different states
of tensile prestrain. When the elastic wave propagates

through materials with higher nonlinearity, then, in the
spectral plot the number and the strength of the peaks
increases. Case B and C can be analyzed in the same
manner, but the spectral plots are not shown for the sake
of brevity.

Analysis of Fig. 16 shows that additional peaks are
generated around the main envelope, and the sideband
peak amplitudes are much less than that of the main
amplitude. A threshold value of 20% of the maximum
peak for each logarithmic spectral plot was used as
the lower threshold limit, and 40% of the maximum
peak for each logarithmic spectral plot was used as
the upper threshold limit. Only the peaks above this
moving threshold line were counted. The SPC plots
(the number of peaks) above the threshold value as it
varies from 20 to 40% of the maximum peak value are
shown in Fig. 17 for casesA,B andC for different strain
levels.

The SPC-I value is the average of all SPC val-
ues (peak counts above the threshold position) for all
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Fig. 15 Illustration of SPC. a Sideband peak counting. b Exam-
ple of SPC plot

threshold values. SPC-I variations are shown in Fig. 18.
These results clearly show that, in all cases, SPC-I
increases with the stress level which is consistent with
the variation of the amplitudes of harmonics. It should
be noted that although SPC-I is very sensitive to the
pre-stress level, for S0 wave mixing it is found to be
not so sensitive to the direction of the principal stresses
relative to the wave propagation direction. For this rea-
son the three figures in Fig. 18 look very similar.

4.1.2 SPC-I for second harmonic generation
conditions

In a previous paper [6], we studied the second harmonic
generation of S1–S2 Lamb mode pair and introduced
the relative nonlinear parameter to quantify the degree
of nonlinearity in the response, as a function of the
initial state of prestress. The results showed a linear
increase with increasing of tensile stress in cases A
and C, and a linear increase in magnitude but opposite
phase in case B. Among them, case B has lowest slope
while case C is tied to the largest variation (Fig. 19).

In this paper, we carry out the SPC-I analysis as
a supplement to the previous study. For cases A, B
and C, the lower threshold limits are set as 20% of

the maximum peak, and the upper threshold limits are
set as 40% of the maximum peak for each logarithmic
spectral plot as shown in Fig. 19. The SPC plots are
shown in Fig. 20 for cases A, B and C for different
strain levels when moving threshold lines are varying
between lower and upper threshold limits mentioned
above. The response is taken 200mm away from the
left end. The SPC-I results are shown in Fig. 21. They
report the results of analyses carried out for a frequency
thickness product equal to 3.55 Mhz*mm with tension
prestrain values varying from 0.001 to 0.004.

It can be seen that in all cases, SPC-I increases with
tensile stress, which corresponds to a higher degree
of nonlinearity with larger strain value. At the same
time, from Fig. 21, case B presents the lowest vari-
ation and case C the highest sensitivity to prestrain,
which coincide well with our previous results in [6].
It is also observed that, when self-resonant waves are
employed, a remarkable sensitivity to the state of pre-
stress is achieved, which is different from what was
found in wave mixing.

5 Summary and discussion

In this paper, we investigated the frequency mixing of
primary wave modes in prestressed plates by using a
finite element model. We employed a model account-
ing for both geometric and material nonlinearities and
considered either wave mixing of two S0 wave modes
and S1–S2 self-resonant modes. It was shown that
the generation of mixed secondary frequencies from
two primary S0 modes is achievable. Besides frequen-
cies at natural multiples of the primary frequencies,
the wave mixing generates additional harmonics at
the sum ( fa + fb) and difference ( fa − fb) frequen-
cies, increasing the number of independent harmonics
which can be utilized for material nonlinearity mea-
surements. Despite the fact that when using a couple of
S0modes resonance conditions are not strictly satisfied,
the amplitude of all of these secondary waves increases
while they propagate in space. This increase is quan-
tified by the slope of the linear increase, that is, the
nonlinear parameter β, which was employed to quan-
tify the material nonlinearities. Moreover, the use of S0
modes at low frequencies is favorable in experimental
practice thanks to their relatively low wave speed.

Different initial states of prestresswere investigated,
including waves propagating in the same direction as
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Fig. 16 Wave mixing—case A: peaks in the normalized logarithmic spectral plots are marked by the computer software—four plots
correspond to strain levels a 0.001, b 0.002, c 0.003 and d 0.004

Fig. 17 SPC plots with threshold varying from 20 to 40% of the maximum amplitudes of each logarithmic spectral plot in a case A, b
case B, c case C
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Fig. 18 SPC-I variation with pre-strain level of a case A, b case B, c case C

Fig. 19 Self-resonance—case A: peaks in the normalized logarithmic spectral plots are marked by the computer software—four plots
correspond to strain levels a 0.001, b 0.002, c 0.003 and d 0.004
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Fig. 20 SPC plots with threshold varying from 20 to 40% of the maximum amplitudes of each spectral plot of a case A, b case B, c
case C

Fig. 21 SPC-I variation with pre-strain level of a case A, b case B, c case C

the nonzero component of a uniaxial prestress (A),
orthogonal to it (B) and plane states of prestress with
principal stresses acting in orthogonal directions in the
planeof theplate (C).The strengthof the secondaryhar-
monics increases with the increasing of tensile stress
in cases A and C, and slightly decreases in case B.

In conclusion, the sideband peak count-index tech-
nique was used to monitor prestress. This technique
takes advantage of the number and strength of peaks
of the secondary harmonics. In numerical applica-
tions SPC-I showed remarkable sensitivity to stress
and proved to be a very promising tool for monitor-
ing the amount of stress in plates, both when using
S0 mixing waves and when using S1–S2 self-resonant
waves. However, self-resonant waves S1–S2 proved to
be much more sensitive to the principal directions of
the stress than S0 self-resonant waves, which could
indicate a preference toward the first kind of excitation
when the orientation of the principal directions of the
stress are known.

The use of S1–S2 modes and S0 mode has their
advantages and disadvantages. Not only S1–S2 proved

to be more sensitive to the state prestress, they also
expressed higher sensitivity in experimental applica-
tions formicro-scale surface damage detection [35] and
fatigue damage evaluation [36]. However, their use in
practice is challenging for the need of using high fre-
quencies and for some amount of dispersion that can
arise. The same applies to the other limited number of
mode pairs that meet the internal resonance conditions,
such as A2-S4 and S2-S4 [19], and which were con-
sidered in the literature as mode pairs for inspection.
Some limitations of thesemodepairs can be resolvedby
using the S0 modes at low frequencies, which approxi-
mately satisfy phase-velocity matching. However, this
low-frequency range is narrow, and the sensitivity to
stress is lower.
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