
Neural Reward Machines
Elena Umilia,*, Francesco Argenzianoa and Roberto Capobiancoa,b

aSapienza University of Rome
bSony AI

Abstract. Non-markovian Reinforcement Learning (RL) tasks are
very hard to solve, because agents must consider the entire history of
state-action pairs to act rationally in the environment. Most works use
symbolic formalisms (as Linear Temporal Logic or automata) to spec-
ify the temporally-extended task. These approaches only work in finite
and discrete state environments or continuous problems for which a
mapping between the raw state and a symbolic interpretation is known
as a symbol grounding (SG) function. Here, we define Neural Re-
ward Machines (NRM), an automata-based neurosymbolic framework
that can be used for both reasoning and learning in non-symbolic
non-markovian RL domains, which is based on the probabilistic re-
laxation of Moore Machines. We combine RL with semisupervised
symbol grounding (SSSG) and we show that NRMs can exploit high-
level symbolic knowledge in non-symbolic environments without
any knowledge of the SG function, outperforming Deep RL methods
which cannot incorporate prior knowledge. Moreover, we advance the
research in SSSG, proposing an algorithm for analysing the ground-
ability of temporal specifications, which is more efficient than baseline
techniques of a factor 103.

1 Introduction

Reinforcement learning (RL) tasks are traditionally modeled as
Markovian Decision Processes (MDPs) [29], where task feedback
depends solely on the last state and action. However, this formula-
tion is inadequate for many decision problems, which are inherently
non-Markovian or temporally extended [1, 21]. Intelligent agents
tackling such tasks must consider the entire history of state-action
pairs to act rationally within the environment. Current research in this
field involves addressing non-Markovianity by expanding the state
space with features that encode the environment history, and then
solving the augmented-state problem with established RL algorithms.
The primary challenge lies in constructing these features. For non-
symbolic-state problems, a popular approach combines RL algorithms
with Recurrent Neural Networks (RNNs) [13, 17], which automati-
cally extract features from data sequences. While this method does not
guarantee extracting Markovian features, it does not recquire any prior
knowledge on the task. In problems with a symbolic finite state space,
most works utilize Linear Temporal Logic (LTL) [27] or LTLf [8] to
specify the temporal task. This specification is then compiled into an
automaton, and the automaton state is combined with the environment
state to render the decision process Markovian. Reward Machines
(RMs) [15] exemplify this approach. RMs can also be employed in
non-symbolic-state environments if the symbol grounding (SG) func-
tion is known [4]. The latter maps the environment’s raw state into

∗ Corresponding Author. Email: umili@diag.uniroma1.it

a boolean interpretation over the symbols used by the specifications
in LTL, making the symbols observable. In summary, RM-like meth-
ods presuppose prior knowledge of: (i) the SG function, and (ii) the
temporal task specification in a logical formalism. Despite previous
work challenging the assumption of knowing the temporal specifica-
tion [11, 38, 28, 10], no work thus far assumes a complete lack of
knowledge regarding the SG function. We highlight that learning this
function for realistic environments with raw and/or high-dimensional
states can be challenging and necessitates a substantial amount of
labeled data.

To achieve this, we propose a neurosymbolic (NeSy) approach to
reward machines, which involves probabilistically relaxing logical
constraints [31]. This approach integrates both logical reasoning and
neural network-based perception into a unified framework, that we
call "Neural Reward Machines" (NRM). We demonstrate the capabil-
ity to relax the requirement of knowing the SG function while still
leveraging available prior knowledge to enhance the performance of
RL algorithms in non-symbolic non-Markovian environments. This
achievement stems from combining RL on reward machines with
semi-supervised symbol grounding (SSSG) [22, 2]. SSSG consists
in connecting some prior logical knowledge with raw data by super-
vising the formula output on the data. SSSG is often challenging,
particularly when logical knowledge is vague or when connected data
doesn’t cover a diverse range of scenarios [32, 23]. In such cases, mul-
tiple solutions may exist — each maintaining consistency between
knowledge and data - where, only one is the intended solution, while
the others are deemed "Reasoning Shortcuts" (RS) [23]. In this paper,
we also advance SSSG research by presenting an algorithm for identi-
fying all RSs of a given temporal specification, assuming a complete
dataset of observations. We call this kind of RSs unremovable, since
they solely depend on the structure of knowledge rather than the data
used for SSSG or the specific symbol-perception task.

To the best of our knowledge, this is the first work exploiting
temporal logical knowledge in single RL tasks under the assumption
of completely unknown SG function, and proposing an algorithm for
actually discovering RSs of temporal specifications.

2 Related works

Non-Markovian Reinforcement Learning with Temporal Specifi-

cations Temporal logic formalisms are widely used in Reinforce-
ment Learning (RL) to specify non-Markovian tasks [21]. The large
majority of works assumes the boolean symbols used in the for-
mulation of the task are perfectly observable in the environment
[5, 9, 11, 38, 28, 10]. For this reason they are applicable only in
symbolic-state environments or when a perfect mapping between
the environment state and a symbolic interpretation is known, also

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240847

3055

called labeled MDP [4]. Many works assume to know an imperfect
SG function for the task [3, 35, 20]. Namely, a function that some-
times makes mistakes in predicting symbols from states or predicts a
set of probabilistic beliefs over the symbol set instead of a boolean
interpretation. These works represent a step towards integration with
non-symbolic domains. However, they do not address the problem
of learning the SG function, but only how to manage to use a pre-
trained imperfect symbol grounder. Only one work in the literature
assumes the same setting of ours [18], namely, that the agent observes
sequences of non-symbolic states and rewards, and is aware of the
LTL formula describing the task but without knowing the meaning
of the symbols in the formula. This work employs a neural network
composed of different modules, each representing a propositional
symbol or a logical or temporal operator, which are interconnected in
a tree-like structure, respecting the syntactic tree of the formula. This
network learns a representation of states, that can be easily transferred
to different LTL tasks in the same environment. However, the key
distinctions between our and their work are: (i) Kuo et al. [18] learn a
subsymbolic uninterpretable representation, while we learn precisely
a mapping between states and symbols; (ii) their method provides
benefits only in a multitask setting and is unable to expedite learning
on a single task, while ours learns and leverages the symbol grounding
in the individual task.

Semisupervised Symbol Grounding Much prior work approaches
the SG problem by assuming as inputs: (i) some prior symbolic logical
knowledge, and (ii) a set of raw data that are annotated with the
output of the knowledge (for example data are divided in positive
and negative sample accordingly to the formula)[37, 2, 22, 32, 7, 14,
30]. This practice is known as semi-supervised symbol-grounding
(SSSG). SSSG is tackled mainly with two families of methods. The
first approach [37, 2, 22, 32] consists in embedding a continuous
relaxation of the available knowledge in a larger neural networks
system, and training the system so to align the outputs of the relaxation
with the high-level labels. The second approach [7, 14, 30] instead
maintains a crisp boolean representation of the logical knowledge and
uses a process of logic abduction to correct the current SG function,
that is periodically retrained with the corrections. Much work in
this area does not take into account temporal aspects, and only few
works focus on learning symbol grounding using temporal logics.
In particular, [32] employs an extension of Logic Tensor Networks
(LTNs) to represent DFAs, which exploits for classifying sequences
of images. Our approach can be categorized in the first family of
mentioned methods. Differently from [32], which employs LTNs and
apply to classification domains, we use probabilistic Moore Machines
and our main application is to RL. Furthermore our framework is more
versatile than [32], as the temporal component can be both imposed
and learned through the network.

Groundability and Reasoning Shortcuts In [23], the authors de-
fine reasoning shortcuts and outline a method for counting determinis-
tic optima, assuming knowledge of: the logical knowledge, the support
dataset, and the SG function. This method is inapplicable in our sce-
nario since we assume the SG unknown. Conversely, [32] introduces
the concept of "ungroundability" as a property solely dependent on the
logical knowledge and not on the data or the SG function. However,
it gives only theoretical definitions and does not provide a method to
actually discovering the RSs that cause the ungroundability. In this pa-
per, we bridge these two concepts and we introduce the Unremovable
Reasoning Shortcuts (URS), as the RSs identifiable when considering
all possible observations. Beyond offering a theoretical definition,
we develop an algorithm for actually calculating URS for a temporal

property, which is missing in the litterature.

3 Background

3.1 Moore Machines

A Moore machine M is a tuple (P,Q,O, q0, δt, δo), where P is a
finite alphabet of input propositional symbols, Q is a finite set of
states, O is a finite set of output symbols, q0 ∈ Q is the initial state,
δt : Q × P → Q is the transition function, and δo : Q → O is the
output function. Let P ∗ be the set of all finite strings over P , and ε the
empty string. The transition function over strings δ∗t : Q× P ∗ → Q
is defined recursively as

δ∗t (q, ε) = q
δ∗t (q, p+ x) = δ∗t (δt(q, p), x)

(1)

Where p ∈ P is a symbol, x ∈ P ∗ is a string, and p + x is the
concatenation of p and x. Consequently, the output function over
strings δ∗o : Q× P ∗ → O is defined as

δ∗o(q, x) = δo(δ
∗
t (q, x)) (2)

We also define the string of output δ∗∗o : Q× P ∗ → O∗ as

δ∗∗o (q, x) = [δ∗o(q, x|1), δ∗o(q, x|2), ..., δ∗o(q, x|T)] (3)

Where T is the length of string x, and x|i is the string x up to index
i. Let xp = [p(1), p(2), ..., p(T)] be the input string, where p(t) is the
t-th character in the string, we denote as xq = [q(0), q(1), ...q(T)]
and as xo = [o(1), o(2), ...o(T)] respectively the sequence of states
and output symbols produced by the automaton while processing
the string, namely q(0) = q0 and q(t) = δt(q

(t−1), x(t)) and o(t) =
δo(q

(t)) for all t > 0.

3.2 Non-Markovian Reward Decision Processes and
Reward Machines

In Reinforcement Learning (RL) [29] the agent-environment interac-
tion is generally modeled as a Markov Decision Process (MDP). An
MDP is a tuple (S,A, t, r, γ), where S is the set of environment states,
A is the set of agent’s actions, t : S×A×S → [0, 1] is the transition
function, r : S ×A → R is the reward function, and γ ∈ [0, 1] is the
discount factor expressing the preference for immediate over future
reward

In this classical setting, transitions and rewards are assumed to be
Markovian – i.e., they are functions of the current state only. Although
this formulation is general enough to model most decision problems,
it has been observed that many natural tasks are non-Markovian [21].
A decision process can be non-markovian because markovianity does
not hold on the reward function r : (S × A)∗ → R, or the transi-
tion function t : (S × A)∗ × S → [0, 1], or both. In this work we
focus on Non-Markovian Reward Decision Processes (NMRDP) [12].
Learning an optimal policy in such settings is hard, since the current
environment outcome depends on the entire history of state-action
pairs the agent has explored from the beginning of the episode; there-
fore, regular RL algorithms are not applicable. Rather than developing
new RL algorithms to tackle NMRDP, the research has focused mainly
on how to construct Markovian state representations of NMRDP. An
approach of this kind are the so called Reward Machines (RMs).

RMs are an automata-based representation of non-Markovian re-
ward functions [15]. Given a finite set of propositions P representing
abstract properties or events observable in the environment, RMs

E. Umili et al. / Neural Reward Machines3056

specify temporally extended rewards over these propositions while
exposing the compositional reward structure to the learning agent.
Formally, in this work we assume the reward can be represented as
a Reward Machine RM = (P,Q,R, q0, δt, δr, L), where P is the
automaton alphabet, Q is the set of automaton states, R is a finite set
of continuous reward values, q0 is the initial state, δt : Q× P → Q
is the transition function, δr : Q → R is the reward function, and
L : S → P is the labeling (or symbol grounding) function, which
recognizes symbols in the environment states.

Let xs = [s(1), s(2), ..., s(t)] be a sequence of states the agent has
observed in the environment up to the current time instant t, we define
the labeling function over sequences L∗ : S∗ → P ∗ as

L∗(xs) = [L(s(1)), L(s(2)), ..., L(s(t))] (4)

We denote with δ∗t and δ∗r the transition and reward function over
strings, which are defined recursively, analogously to Equations 1 and
2. Given xs, the RM produces an history-dependent reward value
at time t, r(t) = δ∗r (q0, L

∗(xs)) and an automaton state at time t,
q(t) = δ∗t (q0, L

∗(xs)). The reward value can be used to guide the
agent toward the satisfaction of the task expressed by the automaton,
while the automaton state can be used to construct a Markovian
state representation. In fact it was proven that the augmented state
(s(t), q(t)) is a Markovian state for the task expressed by the RM [9].

Example: Image-Based Minecraft-Like Environment Consider
the environment shown in Figure 1(a) consisting in a grid world
containing different items: a pickaxe, a gem, a door and a lava-cell.
The task to be accomplished in the environment is reaching at least
once the pickaxe, the lava and the door cells, in any order. We can
represent the task with the Moore Machine depicted in Figure 1(b),
defined in terms of five symbols: one for each different item, plus a
symbol indicating the absence of items. Therefore P = {’pickaxe‘,
’gem‘, ’door‘, ’lava‘, ’empty-cell‘}. Each symbol is considered set to
True when the agent is in the item-cell and false otherwise. The agent
must learn how to navigate the grid in order to satisfy the task. At
each step it receives as state s ∈ S an image showing the agent in the
grid, similar to that depicted in the figure. This state representation is
not Markovian because from the current image the agent can recover
only if it is located on a item now and not which items it has visited
in the past.

4 Neural Reward Machines

In this section, we formalize Neural Reward Machines, elaborate on
their implementation using neural networks, and explore the reasoning
and learning tasks achievable with NRMs. Subsequently, we will
specifically delve into the integration of semi-supervised symbol
grounding and RL through NRMs. Finally, we present our algorithm
for identifying Unremovable Reasoning Shortcuts for a temporal
property.

4.1 Definition and Notations

We define a Neural Reward Machine as a tuple NRM =
(S, P,Q,R, q0, δtp, δrp, sg), where S is the set of environment states,
possibly infinite and continuous, the machine can process; P is a finite
set of symbols; Q is a finite set of states, R is a finite set of rewards; q0
is the initial state; δtp : Q×P ×Q → [0, 1] is the machine transition
probability function; δrp : Q×R → [0, 1] is the reward probability
function and sg : S×P → [0, 1] is the symbol grounding probability
function.

Like an RM, an NRM produces a temporal state and a reward from
a sequence of environment states. However, unlike an RM, the input
sequences do not necessarily need to be symbolic; they can be of
any type. The symbol grounding function maintains the link with
the symbolic representation, assigning to a data instance s ∈ S a
probability value for each symbol in the alphabet P . Given a time
sequence of environment observations xs = [s(1), s(2), ..., s(T)] the
symbol grounding function grounds probabilistically each state in
the set of symbols P producing a sequence of symbol probability
vectors xpp = [p

(1)
p , p

(2)
p , ..., p

(T)
p], where the k-th component of p(t)p

is equal to sg(s(t), pk). Note that probabilities are present both in the
machine and the grounding: in our setting, the Reward Machine is a
probabilistic Moore Machine taking as input a probabilistic symbols.
We represent the stochastic Moore machine in matrix representation,
as:(i) the initial state probability vector q(0)p ∈ [0, 1]|Q|, containing
at index i a 1 if q0 = i and a 0 otherwise ; (ii) a transition matrix
Mt ∈ [0, 1]|P |×|Q|×|Q| containing at index (p, q, q′) the value of
δtp(q, p, q

′); (iii) a reward matrix Mr ∈ [0, 1]|Q|×|R| representing the
reward function and containing at index (q, r) the value of δrp(q, r).
The sequence of probabilistic symbols returned by the grounder is
processed by the probabilistic Moore Machine, which produces a
sequence of state probability vectors xqp = [q

(1)
p , q

(2)
p , ...q

(T)
p] and a

sequence of reward probability vectors xrp = [r
(1)
p , r

(2)
p , ...r

(T)
p].

p
(t)
p = sg(s(t))

q
(t)
p =

i=|P |∑
i=1

p
(t)
p [i](q

(t−1)
p Mt[i])

r
(t)
p = q

(t)
p Mr

(5)

Where we denote with V [i] (v[i]), the component i of matrix (vector)
V (v). We show the model in Figure 1(c). Summarizing, given a time
sequence of environment states xs, the model in Equation 5 can be ap-
plied recursively on xs producing: a time sequence of input symbols
xpp , one of machine states xqp , and a one of reward values xrp . Sub-
script p denotes that sequences are probabilistically grounded, namely,
each point in the sequence is a probability vector. While we denote
with xp, xq, xr , without subscript p, the symbolic time sequences.
Namely xp = [p(1), p(2), ..., p(T)], xq = [q(1), q(2), ..., q(T)], and,
xr = [r(1), r(2), ..., r(T)], with each point in the sequence being a
symbol in the finite set P , Q and R respectively. Symbolic sequences
can also be obtained from the probabilistic ones choosing the most
probable symbol at each time step. Namely p(t) = pi ∈ P , with
i = argmaxi(p

(t)
p [i]); q(t) = qj ∈ Q, with j = argmaxj(q

(t)
p [j]);

r(t) = rk ∈ R, with k = argmaxk(r
(t)
p [k]). We next build our

neural framework by using continuous parametric models based on
this structure.

4.2 Implementation

In this section, we discuss the implementation of the formalism de-
scribed above using Neural Networks (NN). Notably, we employ
probabilistic relaxations and matrix representations of functions to
facilitate this integration. Neural Networks are inherently continuous
as they learn through a gradient-based optimization process, therefore
they can face challenges in learning a ‘crispy’ boolean logical model
like a Moore Machine. In our case, we aim for each function in the
NRM definition—namely, sg, δtp, and δrp—to be both initialized
with prior knowledge and learned from data.

For the SG function, it can take any form, with the only constraint
being that it must return a probability vector. Therefore, it can be

E. Umili et al. / Neural Reward Machines 3057

(a) (b) (c)

Figure 1. a) An example of non-Markovian navigation environment inspired by the Minecraft videogame. b) Moore Machine for the task: the agent has to visit
the pickaxe (P), the lava (L) and the door (D) cells in any order. c) Implementation of NRM with neural networks.
implemented with any NN featuring softmax activation on the output
layer. Conversely, learning the Moore Machine with backpropaga-
tion is more challenging. Our approach is based on the intuition that
Probabilistic Moore Machines (PMM) are closely related to Recur-
rent Neural Networks (RNN), as they calculate the next state and
output using multiplications between continuous vectors and matri-
ces, similar to RNNs. Even though (deterministic) machines can be
represented in matrix form with only one-hot row vectors. Follow-
ing this idea, we define the recurrent module as a parametric PMM
whose representation can be driven to be close to one-hot during train-
ing, enabling logical induction through backpropagation. We achieve
this effect using an activation function that smoothly approximates
discrete output, as seen in prior work [16, 36, 19]. In particular, we
use a modified version of the classical softmax activation function:
softmaxτ (x, τ) = softmax(x/τ), where 0 < τ ≤ 1 is a tempera-
ture value controlling the activation steepness. When τ is close to 0,
the τ -softmax returns outputs close to one-hot vectors; when τ is 1,
the function is the standard softmax.

The NRM implementation with parametric models is represented
as follows:

p
(t)
p = sg(s(t); θsg)

q
(t)
p =

i=|P |∑
i=1

p
(t)
p [i](q

(t−1)
p (softmaxτ (Mt, τ))[i])

r
(t)
p = q

(t)
p softmaxτ (Mr, τ)

(6)

where the symbol grounding function sg is now a parametric func-
tion with learnable parameters θsg , and Mt and Mr are matrices of
parameters. We process Mt and Mr with softmaxτ before using
them in order to ensure they tend to represent a (deterministic) Moore
Machine as the temperature decreases. The discretization of param-
eters in Mt and Mr through temperature decreasing is unnecessary
and can be omitted if the machine is initialized with a known Moore
Machine. It is only required when learning the machine from data. A
scheme of the proposed implementation is shown in Figure 1(c). The
model in equation 6 can be seen as three parametric functions (NNs)
producing the three sequences of probability vectors as output, when
given a sequence of states xs as inputs, namely: xpp = G(xs|θsg),
xqp = Q(xs|θsg,Mt), and xrp = R(xs|θsg,Mt,Mr).

4.3 Reasoning and Learning with NRM

As anticipated the framework is designed to allow both reasoning and
learning and both initialization with background knowledge and train-

ing with data of each module of the machine. Specifically, different
configurations of prior knowledge on the NRM parameters (θsg , Mt,
and Mr) and of the possibility to observe rewards in the environment
or not result in different possible uses of NRMs, that we describe
here.

Pure Reasoning By feeding the machine with a time sequence
of states xs observed in the environment, we can calculate the se-
quence of probabilities on the machine states, xqp = Q(xs|θsg,Mt),
and reward values, xrp = R(xs|θsg,Mt,Mr) which can be used in
the same manner as RMs do: for designing non-Markovian reward
functions, for augmenting the environment state, for Counterfactual
Experience or hierarchical RL [15]. This process requires prior knowl-
edge of all the NRM parameters θsg , Mt, and Mr and does not require
any reward feedback from the environment.

Pure Learning In case we do not know any of the NRM parameters
but we can observe in the environment sequences of states xs and
ground truth sequences of rewards xr we can exploit the latter to learn
the NRM modules entirely from data. It is obtained by minimizing
the cross-entropy loss (or other classification loss functions) between
the rewards probabilities predicted by the NRM and the ground-truth
rewards.

L(xs, xr) = cross-entropy(R(xs|θsg,Mt,Mr), xr) (7)

Learning and Reasoning Integration If only some of the NRM
modules are known, and sequences of states and rewards are observ-
able in the environment, we can train the missing modules to align
with both prior knowledge and data. This entails initializing the known
modules with the available knowledge and training the remaining pa-
rameters using loss function in Equation 7. Various configurations
are feasible in this scenario. Here, we specifically focus on symbol

grounding: learning θsg while assuming Mt and Mr are known.
Another reasoning-learning configuration, which we are currently
exploring, is that of automata learning, where θsg is known while
Mt and Mr are unknown, which we let for future research.

4.4 Exploiting NRMs for non-Markovian RL

In this paper, we assume that an agent has to learn to perform a
temporally extended task by optimizing a non-Markovian reward
signal. As is standard in RL, the agent interacts with the environment
by taking an action and it receives a new state of the environment
and a new reward in response. Additionally, we assume that the agent

E. Umili et al. / Neural Reward Machines3058

has a purely symbolic knowledge of the task it is executing. For
example, in a scenario like the Minecraft game depicted in Figure
1(a), the task for the agent could be "reach the door, the pickaxe,
and the lava in any possible order." In this case, the agent would
have access to the Moore Machine shown in Figure 1(b). However,
it lacks knowledge on how to recognize a pickaxe, a gem, or a door
within its environment. In this setting, traditional RMs are inapplicable
because of the missing symbol grounding function, while purely
deep-learning-based approaches have no way to exploit the symbolic
knowledge and will rely only on rewards. With our framework we
exploit both symbolic knowledge and data from the environment by
interleaving RL and semi-supervised symbol grounding of the NRM.
In particular, we initialize the parameters Mt and Mr with the task
prior knowledge, and the parameters of the grounder θsg with random
weights. We record each episode of interaction, as a sequence of states
xs and a sequence of rewards xr . We calculate the machine state
sequence xqp with the NRM as Q(xs|θsg,Mt,Mr), and we augment
each environment state with the predicted machine state (reasoning

step). The interaction is leaded by a RL algorithm running on the
augmented state (s(t), q

(t)
p). Since the symbol grounder is initially

randomized, the predicted machine state initially deviates from the
ground truth, and the state representation is not perfect. However,
at regular intervals, we update the symbol grounder by training on
sequences xt and xr collected in the environment so to minimize
the loss in Equation 7 (learning step). As the agent observes more
scenarios in the environment, the symbol grounding function of the
model gradually becomes more similar to the unknown ground truth,
and so does the distribution of machine states. In case the perfect SG
function is learned the NRM becomes equivalent to a RM.

Reward Values as Supervision Since the reward values serve as
supervision for the NRM, we have observed that overly sparse rewards
are not very effective for symbol grounding. For instance, consider
the automaton shown in Figure 1(b), with 8 states, of which only
one is final (state 2). If we employ a sparse signal, rewarding the
agent solely upon task completion, this entails assigning a positive
reward to state 2 and 0 reward to all the other states. Subsequently,
all the unsuccessful episodes would provide no feedback to the sym-
bol grounder. Moreover, in case the agent accomplishes the task, the
grounder would glean feedback solely to discern that the last obser-
vation leading to winning reward ought to be associated with one
of the three symbols bringing from a non rewarding state to state 2:
lava (L), door (D), or pickaxe (P). However, it would lack the means
to distinguish among these three symbols in the last observation, or
discern which symbols the agent has encountered in the previous
observations. We, therefore, assume a potential-based reward shaping
[26], where the potential function varies based on the distance on
the automaton from the nearest final state. This partitions the states
of the machine in figure according to 4 reward values, r1, r2, r3 and
r4. Reward shaping is very commonly applied in RM applications
to facilitate policy learning through RL [15]. Note that this type of
reward generally does not provide distinct feedback for each single
state of the machine. Consequently, while the resulting grounding
process is feasible, it is by no means straightforward.

4.5 Groundability Analysis of Temporal Specifications

In our approch RL and Symbol Grounding are closely intertwined
and mutually influence each other. SG relies on RL as we collect data
through RL exploration for SG training. Simultaneously, RL relies on
SG, as it utilizes an estimated representation of the automaton’s state,
which becomes more accurate as SG accurately predicts symbols.

At the same time, regardless of the specific application, all types of
semisupervised SG are affected by some reasoning shortcuts, espe-
cially when the knowledge is somewhat ‘trivial’ - including formulas
that are either trivially false or trivially true across most instances - or
contains specific symmetries [32].

Therefore, in this section, we delve into the issue of ungroundabil-
ity. We first review the definitions of ungroundability and reasoning
shortcuts and we then device our own algorithm to find all the RS of
a given temporal specification depending solely on the specifics, that
we call for this reason ’unremovable‘.

Reasoning Shortcuts Given the problem of grounding symbols
of the alphabet P of a certain logical knowledge φ exploiting the
knowledge and a dataset D of couples (data, output of the formula), a
RS is a renaming of symbols, α : P → P , different from the identity,
∃p ∈ P |α(p) �= p, which maintains perfect alignment of φ ◦ α with
the data in D. In [23] they estimate the number of reasoning shortcuts
by assuming prior knowledge of the groundtruth SG function sg∗, the
logical knowledge φ and the support dataset D.

#RS(φ,D, sg∗) =
∑
α∈A

1

{ ∧
d∈D

(φ ◦ α)(sg∗(d)) = φ(sg∗(d))

}

(8)
Where A is the set of all possible mappings α. Only the α mapping

each symbol to itself is indeed the correct solution, therefore the
knowledge is said to admit RSs on D if #RS(φ,D, sg∗) > 1

Ungroundability The following definition of ungroundability is
given in [32]: a symbol pi ∈ P is ungroundable through a formula
φ if there exists a mapping α : P → P that maps pi to pj with
pi �= pj such that φ ≡ (φ ◦α). Where ≡ denotes logical equivalence.
Notice that ungroundability is a property of a symbol in the formula,
and does not depend on the particular supporting dataset used in the
application, nor it needs the knowledge of sg∗ to be verified. However,
[32] does not define a method to actually find the mappings α which
maintain logical equivalence between φ and φ ◦ α for a specific φ.
Nonetheless, these mappings could be identified using a naive brute-
force method. This involves examining the semantic equivalence
between φ and φ◦α for every possible mapping α ∈ A and returning
the mapping that yields a positive check. Given that the number of
possible mappings is |A| = |P ||P | and equivalence checking has an
exponential cost, the brute-force approach is very time consuming
and can become impracticable for long formulas defined over large
alphabets. Here, we introduce a smarter algorithm for identifying
knowledge-preserving mappings. This algorithm leverages certain
stopping criteria, which we will delineate later, to enhance speed by
a factor of 103. We term the mappings discovered by this algorithm
as Unremovable Reasoning Shortcuts (URS), referring to the RS that
are pathological of the logical knowledge, which would be never
eliminated, even considering an ideal support dataset including all the
possible observations of the domain.

Unremovable Reasoning Shortcuts (URS) To calculate URSs we
focus on the complete support D∗. Notice that, since the support is
complete, we can directly create synthetically the complete symbolic
dataset D∗

sym, and count the number of RS on that without know-
ing the ground truth symbol grounding function sg∗. We define the
number of reasoning shortcuts under complete support assumption as

#RS∗(φ) =
∑
α∈A

1

⎧⎨
⎩

∧
dsym∈D∗

sym

(φ ◦ α)(dsym) = φ(dsym)

⎫⎬
⎭

(9)

E. Umili et al. / Neural Reward Machines 3059

Finding URS of a Temporal Property From now on, we assume
that the logical knowlegde φ is a Moore Machine, or equivalently a
Deterministic Finite Automaton (DFA) (DFAs indeed can be consid-
ered MMs with a binary output alphabet), an LTLf, or LDLf formula
(which can be automatically translated into DFAs [8]). It is worth to
notice that temporal formalisms (as LTLf, MMs, etc) do not admit a
finite complete symbolic support D∗

sym, because strings in any sup-
port can always be extended at will in the time dimension. Therefore
we cannot verify Equation 9 directly. We present in Algorithm 1 our
algorithm for finding URS, which is basically an efficient way to ver-
ify Equation 9 on a finite symbolic support that can still be considered
complete for φ. We find this kind of support applying the following
theorems.

Theorem 1. Let D∗
sym(L) denote the set of all strings over

P with maximum length equal to L. If L1 ≤ L2, then
#RS∗(φ,D∗

sym(L2)) ≤ #RS∗(φ,D∗
sym(L1)).

Corollary 2. The number of RS calculated on any complete support
with finite horizon L is an upper bound for the number of URS.
#RS∗(φ) ≤ #RS∗(φ,D∗

sym(L)) ∀L < ∞.

Theorem 3. Let A ⊆ Q be the set of absorbing states of φ. 1. If:
(i) a string x has reached an absorbing state, δ∗t (q0, x) ∈ A. (ii)
for a certain mapping α, also x ◦ α has reached an absorbing state,
δ∗t (q0, x◦α) ∈ A. (iii) α is a working map for x, namely δ∗∗o (q0, x) =
δ∗∗o (q0, x◦α). Then α is a working map also for all the strings having
x as prefix, namely δ∗∗o (q0, x+ y) = δ∗∗o (q0, (x+ y) ◦ α)∀y ∈ P ∗.

Theorem 4. Given that: (i) α is a working map, for the string x+ z,
with x, z ∈ P ∗, δ∗∗o (q0, x+ z) = δ∗∗o (q0, (x+ z) ◦ α); (ii) ∃p ∈ P
such that both x and x + p reach the same state and x ◦ α and
(x + p) ◦ α reach the same state, δ∗t (q0, x) = δ∗t (q0, x + p) =
q ∧ δ∗t (q0, x) = δ∗t (q0, x + p). Then α works for the string
x+ y+ z, δ∗∗o (q0, x+ y+ z) = δ∗∗o (q0, (x+ y+ z) ◦ α), ∀y ∈ p∗
2.

We report the proofs of Theorems 1, 2, 3, and 4 in [33]. Algorithm 1
keeps a dataset D[α] for each candidate URS α. The set of candidates
URS is initialized with A. D[α] is initialized with all the possible
strings on P with length one for each α. At each iteration we verify if
α is a working for dataset D[α] (namely if Equation 9 with D[α] in
place of D∗

sym and α in place of A gives 1). If it is working it remains
a candidate otherwise is discarded. Then we try to extend the datasets
of surviving maps of one step. This follows Theorem 1, which says
that if a map does not work for a shorter complete dataset has no
chance to work in the longer one. Following theorems 3 and 4, we
extend a string x in D[α] with the symbol p ∈ P only if: (i) not both
x and x ◦ α bring to an absorbing state (Theroem 3) and (ii) not both
state(x) = state(x+p) and state(x ◦α) = state((x+ p) ◦α) (theorem 4).
We iterate until at least one dataset has grown with respect to the past
iteration. Finally we return the α remained in the set of candidates as
URSs.

5 Experiments

In this section, we report the experiments validat-
ing our framework. Our code is available on github:
https://github.com/KRLGroup/NeuralRewardMachines.

1 A state q ∈ Q is called absorbing if δ(q, p) = q ∀p ∈ P
2 with p∗ being the set of strings obtained repeating the symbol p an arbitrary

number of times.

Algorithm 1 Find_unremovable_reasoning_shortcuts(φ)
URScandidates ← A
for α in URScandidates do

D[α] ← φ.P
while URScandidate not empty do

for α in URScandidate do

D_next_α ← {}
if α is working on D[α] then

for x in D[α] do

if not φ(x).q.abs or not φ(α(x)).q.abs then

for p in φ.P do

x′ ← x+ p
if φ(x).q �= φ(x’).q or φ(α(x)).q �=

φ(α(x’)).q then

D_next_α ← D_next_α + x’
if D_next_α is empty then

URScandidate ← URScandidate - α
else

D[α] ← D_next_α
return URScandidates

Application We test NRMs on two types of environment inspired
by the Minecraft videogame, similar to those considered by [6] and
[20] and decribed in the example of Section 3.2, in which we assume
the SG function is unknown.

States Based on this application we construct two environments that
showcase different levels of difficulty in terms of symbol grounding:
(i) The map environment, in which the state is the 2D vector contain-
ing the x and y current agent location, (ii) The image environment,
in which the state is an image of 64x64x3 pixels showing the agent in
the grid, like the one shown in Figure 1(a).

Rewards We express the non-Markovian reward as an LTLf for-
mula, that is then transformed into a DFA and, ultimately, into a
Moore Machine. In the last process, each state q is assigned a reward
value, which is maximum if q is a final states and gradually decreases
as the distance from q to the final state increases (as detailed in Sec-
tion 4.4 and shown in Figure 1(b)). Reward values are scaled so to
give maximum cumulative reward always equal to 100. We focus on
patterns of formulas that are popular in non-Markovian RL [15, 34],
that we call here using the categorization given in [24]. Visit formulas:
we denote as Visit(p1, p2, ... , pn) the LTLf formula F p1 ∧ F p2 ∧ ...
∧ F pn, expressing that the agent has to make true at least once each
pi in the formula in any possible order. Sequenced Visit: we denote
with Seq_Visit(p1, p2, ... , pn) the LTLf formula F(p1∧ F(p2 ∧ . . .∧
F(pn))), expressing that we want the symbol pi+1 made true at least
once after the symbol pi has become True. Global Avoidance: we
denote with Glob_Avoid(p1, p2, ... , pn) the formula G (¬p1) ∧ G
(¬p2) ∧ ... ∧ G (¬pn), expressing that the agent must always avoid to
make True the symbols p1, p2, ... , pn. F and G are temporal operators
called respectively ‘eventually’ and ‘globally’, we refer the reader to
[27] for the formal semantics of these operators that we explain here
only intuitively. Based on these patterns of formulas we construct
tasks of increasing difficulty that we aggregate in two classes. The
first class is a set of tasks obtained as a conjunction of visit and
sequenced visit formulas. The second class contains conjunctions of
visit, sequenced visit and global avoidance formulas. We report in
[33] the formulas considered.

Comparisons Given the absence of alternative methods in the liter-
ature for leveraging ungrounded prior knowledge in non-Markovian

E. Umili et al. / Neural Reward Machines3060

https://github.com/KRLGroup/NeuralRewardMachines

(a) (b) (c) (d)

Figure 2. Results in the map environment when using a) tasks of the first class, and b) in the second class. Results in the image environment when training on c)
the first task class d) the second task class.

Task #RS* Alg. 1 exec. time (s) Brute force exec. time (s)

Class 1 27.3± 17.8 0.6± 0.4 434.6± 195.6
Class 2 6± 2 0.2± 0.0 399.7± 24.5

Table 1. Groundability analysis of formulas selected as RL tasks
RL, we compare NRM with the two most popular baselines in this do-
main: RNNs and RMs. However, it is important to note that the three
methods assume different levels of knowledge. Specifically, RM’s
performance serves as an upper bound for NRMs, as in the optimal
scenario, where NRMs precisely learn the ground-truth SG function
(which RMs possess from the outset), they become equivalent to RMs.
We use Advantage Actor-Critic (A2C) [25] as RL algorithm for all
the methods. Hence we denote the methods (and which information
they can exploit for learning): RNN+A2C (rewards) the baseline
based on RNNs, NRM+A2C (rewards+symbolic task) our method,
and RM+A2C (rewards+symbolic task+grounding) the upper bound
obtained with RMs.

RL Results In Figure 2, we show the training rewards obtained
by the three methods on both the map environment for the first task
class (a) and the second task class (b), and the image environment for
the first (c) and second (d) task classes. For each task and method,
we perform 5 runs with different random seeds. The figure clearly
shows that the performance of NRMs falls between that of RNNs
and RMs, closely resembling the latter across various experimental
configurations, despite assuming less prior knowledge than RMs.
This demonstrates that NRMs can effectively leverage the incomplete
prior knowledge they possess. Specifically, NRMs converge almost
to the same rewards as RMs, especially in the map environment.
Generally, RNNs perform much worse than the other methods, often
quickly converging to a local maximum of the reward, especially
in challenging temporal tasks (class 2). All methods share the same
hyperparameter settings for A2C and the neural networks used for the
policy, the value, and the feature extraction (only used in the image
environment), which we detail in [33] along with information on the
network used as the grounder in the two environments.

Groundability Analysis Finally, we report the number of URS
identified running the Algorithm 1 on the selected tasks, along with
the execution time of our algorithm and that of a brute-force version
that simply iterates over each possible map α and checks whether
φ ≡ (φ ◦ α). Results are reported in Table 1. The number of URS
found confirms our intuition that, as the tasks’ difficulty increases, the
number of URS decreases, resulting in a reduction in groundability
difficulty. This difficulty had never been investigated before and it is
hard to estimate. We start exploring it using the URS tool, showing
that the two task classes have significantly different average #RS∗.
However, note that the number of URSs for the chosen tasks is always
relatively low (27 out of a maximum of |P ||P | = 3125 for 5 symbols),
which indicates the tasks chosen are meaningful for be used for SSSG
even if they were not originally designed for that. Finally, we found

that our algorithm is very efficient, and it executes a thousand of times
faster than the brute force implementation.

6 Conclusions and Future Work

In conclusion, we introduce Neural Reward Machines, a neurosim-
bolic framework providing non-Markovian rewards for non-symbolic-
state environments. NRMs possess great versatility and applicability
across various learning configurations, with a particular focus here
on their capacity for grounding within environments. We address
the challenge of semisupervised symbol grounding through temporal
specifications and propose an algorithm for identifying Unremovable
Reasoning Shortcuts in temporal tasks. We demonstrate the ability of
NRMs to integrate the machine’s prior knowledge and leverage it to
outperform Deep RL methods, achieving nearly equivalent rewards to
RMs, even without possessing full prior knowledge. We leave explo-
ration of other reasoning-learning scenarios, such as the integration
of automata learning with RL, for future research.

Acknowledgements

This work has been partially supported by PNRR MUR project
PE0000013-FAIR.

The work of Francesco Argenziano was carried out when he was
enrolled in the Italian National Doctorate on Artificial Intelligence
run by Sapienza University of Rome.

References

[1] F. Bacchus, C. Boutilier, and A. Grove. Rewarding behaviors. pages
1160–1167, Portland, OR, 1996.

[2] S. Badreddine, A. d’Avila Garcez, L. Serafini, and M. Spranger. Logic
tensor networks. Artificial Intelligence, 303:103649, 2022. ISSN 0004-
3702. doi: https://doi.org/10.1016/j.artint.2021.103649. URL https:
//www.sciencedirect.com/science/article/pii/S0004370221002009.

[3] M. Cai, S. Xiao, B. Li, Z. Li, and Z. Kan. Reinforcement learning based
temporal logic control with maximum probabilistic satisfaction. 2021
IEEE International Conference on Robotics and Automation (ICRA),
pages 806–812, 2020.

[4] M. Cai, M. Hasanbeig, S. Xiao, A. Abate, and Z. Kan. Modular deep
reinforcement learning for continuous motion planning with temporal
logic. IEEE Robotics and Automation Letters, 6(4):7973–7980, 2021.

[5] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A.
McIlraith. Ltl and beyond: Formal languages for reward function specifi-
cation in reinforcement learning. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19, pages
6065–6073. International Joint Conferences on Artificial Intelligence
Organization, 7 2019.

[6] J. Corazza, I. Gavran, and D. Neider. Reinforcement learning with
stochastic reward machines. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(6):6429–6436, Jun. 2022. doi: 10.1609/aaai.
v36i6.20594. URL https://ojs.aaai.org/index.php/AAAI/article/view/
20594.

E. Umili et al. / Neural Reward Machines 3061

https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://ojs.aaai.org/index.php/AAAI/article/view/20594
https://ojs.aaai.org/index.php/AAAI/article/view/20594

[7] W.-Z. Dai, Q. Xu, Y. Yu, and Z.-H. Zhou. Bridging machine learning and
logical reasoning by abductive learning. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf.

[8] G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear
dynamic logic on finite traces. In Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence, IJCAI ’13, page
854–860. AAAI Press, 2013. ISBN 9781577356332.

[9] G. De Giacomo, L. Iocchi, M. Favorito, and F. Patrizi. Foundations
for restraining bolts: Reinforcement learning with ltlf/ldlf restraining
specifications. Proceedings of the International Conference on Au-
tomated Planning and Scheduling, 29(1):128–136, May 2021. URL
https://ojs.aaai.org/index.php/ICAPS/article/view/3549.

[10] D. Furelos-Blanco, M. Law, A. Jonsson, K. Broda, and A. Russo. In-
duction and exploitation of subgoal automata for reinforcement learning.
J. Artif. Int. Res., 70:1031–1116, may 2021. ISSN 1076-9757. doi:
10.1613/jair.1.12372. URL https://doi.org/10.1613/jair.1.12372.

[11] M. Gaon and R. Brafman. Reinforcement learning with non-markovian
rewards. Proceedings of the AAAI Conference on Artificial Intelligence,
34(04):3980–3987, Apr. 2020. doi: 10.1609/aaai.v34i04.5814. URL
https://ojs.aaai.org/index.php/AAAI/article/view/5814.

[12] G. D. Giacomo, L. Iocchi, M. Favorito, and F. Patrizi. Foundations
for restraining bolts: Reinforcement learning with ltlf/ldlf restraining
specifications, 2019.

[13] D. Ha and J. Schmidhuber. Recurrent world models facilitate policy
evolution. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc., 2018.

[14] Y.-X. Huang, W.-Z. Dai, L.-W. Cai, S. H. Muggleton, and Y. Jiang.
Fast abductive learning by similarity-based consistency optimiza-
tion. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan, editors, Advances in Neural Information Pro-
cessing Systems, volume 34, pages 26574–26584. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
df7e148cabfd9b608090fa5ee3348bfe-Paper.pdf.

[15] R. T. Icarte, T. Q. Klassen, R. A. Valenzano, and S. A. McIlraith. Reward
machines: Exploiting reward function structure in reinforcement learning.
J. Artif. Intell. Res., 73:173–208, 2022. doi: 10.1613/JAIR.1.12440.

[16] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with
gumbel-softmax. In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/
forum?id=rkE3y85ee.

[17] S. Kapturowski, G. Ostrovski, W. Dabney, J. Quan, and R. Munos. Re-
current experience replay in distributed reinforcement learning. In Inter-
national Conference on Learning Representations, 2019.

[18] Y. Kuo, B. Katz, and A. Barbu. Encoding formulas as deep networks:
Reinforcement learning for zero-shot execution of LTL formulas. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2020, Las Vegas, NV, USA, October 24, 2020 - January 24, 2021,
pages 5604–5610, 2020. doi: 10.1109/IROS45743.2020.9341325. URL
https://doi.org/10.1109/IROS45743.2020.9341325.

[19] R. Kusters, Y. Kim, M. Collery, C. de Sainte Marie, and S. Gupta. Dif-
ferentiable rule induction with learned relational features. In A. d’Avila
Garcez and E. Jiménez-Ruiz, editors, Proceedings of the 16th Interna-
tional Workshop on Neural-Symbolic Learning and Reasoning as part
of the 2nd International Joint Conference on Learning & Reasoning
(IJCLR 2022), Cumberland Lodge, Windsor Great Park, UK, September
28-30, 2022, volume 3212 of CEUR Workshop Proceedings, pages 30–44.
CEUR-WS.org, 2022. URL http://ceur-ws.org/Vol-3212/paper3.pdf.

[20] A. C. Li, Z. Chen, P. Vaezipoor, T. Q. Klassen, R. T. Icarte, and S. A.
McIlraith. Noisy symbolic abstractions for deep RL: A case study with
reward machines. CoRR, abs/2211.10902, 2022. doi: 10.48550/arXiv.
2211.10902. URL https://doi.org/10.48550/arXiv.2211.10902.

[21] M. L. Littman, U. Topcu, J. Fu, C. L. I. Jr., M. Wen, and J. Mac-
Glashan. Environment-independent task specifications via GLTL. CoRR,
abs/1704.04341, 2017. URL http://arxiv.org/abs/1704.04341.

[22] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. De Raedt.
Deepproblog: Neural probabilistic logic programming. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/
2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf.

[23] E. Marconato, S. Teso, A. Vergari, and A. Passerini. Not all neuro-
symbolic concepts are created equal: Analysis and mitigation of reason-
ing shortcuts, 2023.

[24] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger.
Specification patterns for robotic missions. IEEE Trans. Software
Eng., 47(10):2208–2224, 2021. doi: 10.1109/TSE.2019.2945329. URL
https://doi.org/10.1109/TSE.2019.2945329.

[25] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. In International conference on machine learning,
pages 1928–1937. PMLR, 2016.

[26] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In Proceed-
ings of the Sixteenth International Conference on Machine Learning
(ICML 1999), Bled, Slovenia, June 27 - 30, 1999, pages 278–287, 1999.

[27] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977, pages 46–57. IEEE Computer Society,
1977. doi: 10.1109/SFCS.1977.32. URL https://doi.org/10.1109/SFCS.
1977.32.

[28] A. Ronca, G. P. Licks, and G. D. Giacomo. Markov abstractions for
PAC reinforcement learning in non-markov decision processes. In
Proceedings of the Thirty-First International Joint Conference on Ar-
tificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022,
pages 3408–3415, 2022. doi: 10.24963/ijcai.2022/473. URL https:
//doi.org/10.24963/ijcai.2022/473.

[29] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

[30] E. Tsamoura, T. Hospedales, and L. Michael. Neural-symbolic inte-
gration: A compositional perspective. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 35(6):5051–5060, May 2021. doi:
10.1609/aaai.v35i6.16639. URL https://ojs.aaai.org/index.php/AAAI/
article/view/16639.

[31] E. Umili, F. Argenziano, A. Barbin, and R. Capobianco. Visual reward
machines. In Proceedings of the 17th International Workshop on Neural-
Symbolic Learning and Reasoning, La Certosa di Pontignano, Siena,
Italy, July 3-5, 2023, pages 255–267, 2023. URL https://ceur-ws.org/
Vol-3432/paper23.pdf.

[32] E. Umili, R. Capobianco, and G. De Giacomo. Grounding LTLf Spec-
ifications in Image Sequences. In Proceedings of the 20th Interna-
tional Conference on Principles of Knowledge Representation and
Reasoning, pages 668–678, 8 2023. doi: 10.24963/kr.2023/65. URL
https://doi.org/10.24963/kr.2023/65.

[33] E. Umili, F. Argenziano, and R. Capobianco. Neural reward machines,
2024. URL https://arxiv.org/abs/2408.08677.

[34] P. Vaezipoor, A. C. Li, R. T. Icarte, and S. A. McIlraith. Ltl2action:
Generalizing LTL instructions for multi-task RL. In Proceedings of the
38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, pages 10497–10508, 2021.

[35] C. K. Verginis, C. Köprülü, S. Chinchali, and U. Topcu. Joint learning
of reward machines and policies in environments with partially known
semantics. CoRR, abs/2204.11833, 2022. doi: 10.48550/arXiv.2204.
11833. URL https://doi.org/10.48550/arXiv.2204.11833.

[36] H. Walke, D. Ritter, C. Trimbach, and M. Littman. Learning finite linear
temporal logic specifications with a specialized neural operator, 2021.
URL https://arxiv.org/abs/2111.04147.

[37] J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. Van den Broeck. A
semantic loss function for deep learning with symbolic knowledge. In
J. Dy and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 5502–5511. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/xu18h.html.

[38] Z. Xu, B. Wu, A. Ojha, D. Neider, and U. Topcu. Active finite reward
automaton inference and reinforcement learning using queries and coun-
terexamples. In Machine Learning and Knowledge Extraction - 5th IFIP
TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain
Conference, CD-MAKE 2021, Virtual Event, August 17-20, 2021, Pro-
ceedings, pages 115–135, 2021.

E. Umili et al. / Neural Reward Machines3062

https://proceedings.neurips.cc/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf
https://ojs.aaai.org/index.php/ICAPS/article/view/3549
https://doi.org/10.1613/jair.1.12372
https://ojs.aaai.org/index.php/AAAI/article/view/5814
https://proceedings.neurips.cc/paper/2021/file/df7e148cabfd9b608090fa5ee3348bfe-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/df7e148cabfd9b608090fa5ee3348bfe-Paper.pdf
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://doi.org/10.1109/IROS45743.2020.9341325
http://ceur-ws.org/Vol-3212/paper3.pdf
https://doi.org/10.48550/arXiv.2211.10902
http://arxiv.org/abs/1704.04341
https://proceedings.neurips.cc/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://doi.org/10.1109/TSE.2019.2945329
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.24963/ijcai.2022/473
https://doi.org/10.24963/ijcai.2022/473
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://ojs.aaai.org/index.php/AAAI/article/view/16639
https://ojs.aaai.org/index.php/AAAI/article/view/16639
https://ceur-ws.org/Vol-3432/paper23.pdf
https://ceur-ws.org/Vol-3432/paper23.pdf
https://doi.org/10.24963/kr.2023/65
https://arxiv.org/abs/2408.08677
https://doi.org/10.48550/arXiv.2204.11833
https://arxiv.org/abs/2111.04147
https://proceedings.mlr.press/v80/xu18h.html

	Introduction
	Related works
	Background
	Moore Machines
	Non-Markovian Reward Decision Processes and Reward Machines

	Neural Reward Machines
	Definition and Notations
	Implementation
	Reasoning and Learning with NRM
	Exploiting NRMs for non-Markovian RL
	Groundability Analysis of Temporal Specifications

	Experiments
	Conclusions and Future Work

