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ABSTRACT

Generative techniques continue to evolve at an impressively high rate, driven by the hype about these
technologies. This rapid advancement severely limits the application of deepfake detectors, which,
despite numerous efforts by the scientific community, struggle to achieve sufficiently robust perfor-
mance against the ever-changing content. To address these limitations, in this paper, we propose an
analysis of two continuous learning techniques on a Short and a Long sequence of fake media. Both
sequences include a complex and heterogeneous range of deepfakes (generated images and videos)
from GANs, computer graphics techniques, and unknown sources. Our experiments show that con-
tinual learning could be important in mitigating the need for generalizability. In fact, we show that,
although with some limitations, continual learning methods help to maintain good performance across
the entire training sequence. For these techniques to work in a sufficiently robust way, however, it
is necessary that the tasks in the sequence share similarities. In fact, according to our experiments,
the order and similarity of the tasks can affect the performance of the models over time. To address
this problem, we show that it is possible to group tasks based on their similarity. This small measure
allows for a significant improvement even in longer sequences. This result suggests that continual
techniques can be combined with the most promising detection methods, allowing them to catch up
with the latest generative techniques. In addition to this, we propose an overview of how this learning
approach can be integrated into a deepfake detection pipeline for continuous integration and contin-
uous deployment (CI/CD). This allows you to keep track of different funds, such as social networks,
new generative tools, or third-party datasets, and through the integration of continuous learning, al-
lows constant maintenance of the detectors.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

Generative AI tools like Midjourney1, ChatGPT2, or the
more recent Sora3 are completely revolutionizing the way me-
dia content is created, leading to the mass adoption of tools
that were unimaginable until recently. However, this progress
makes the threat of new-generation disinformation or defama-
tion campaigns increasingly concrete. Unfortunately, forensic
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tools for detecting this content are not advancing at the same
rate. Although it is possible to train highly accurate detectors,
these methodologies still poorly generalize to new generative
methods due to data drift (Paleyes et al. (2022)). Detectors per-
form well on the generative techniques they are trained on but
commonly fail when exposed to content generated with a new
generative model.

Because of these limitations, the practical application of au-
tomatic detectors has been almost nil. When someone wants
to deploy these tools in commercial or mass verification sys-
tems, they must face numerous challenges that go far beyond
the need to generalize from a few known benchmarks (Rossler
et al. (2019); Corvi et al. (2023); Li et al. (2023); Zi et al.
(2020)). Prominent among these is the need to continuously
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train these models on new generative techniques through con-
tinuous learning methods. To address this continuous change,
we analyze continuous learning techniques to evaluate their
limitations when applied to mitigate this problem. Continual
learning, also known as lifelong learning or incremental learn-
ing, is a constant learning approach. Unlike transfer learning
techniques, where a model trained on one task is retrained on
a new task to improve its performance on the latter, continual
learning involves maintaining good model performance on a set
of evolving tasks as these become available without incurring in
catastrophic forgetting (French (1999)). These requirements fit
well with the problem of learning to recognize content gener-
ated by new techniques and the need to continually readjust a
model with respect to data drift produced by the shift in the
distribution of data observed in inference versus those seen in
training.

This work aims to investigate the effectiveness of two con-
tinuous learning techniques with the intention of integrat-
ing them into a real, end-to-end deepfake detection system
that allows for continuous integration and continuous deliv-
ery/deployment (CI/CD). Our goal is therefore to propose a
simple yet effective design for a Machine Learning Model Op-
erations (MLOps Paleyes et al. (2022); Semola et al. (2022))
pipeline that would enable the end-to-end development of con-
tinuously trained and monitored intelligent detectors with a
minimal set of components.

Contributions
Therefore, the main contributions of this preliminary study

are summarized below.

• Analysis of continual learning methods. We study the ef-
fectiveness of two continuous learning methods, Knowl-
edge Distillation KD – (Hinton et al. (2015) and Elastic
Weight Consolidation (EWC – Kirkpatrick et al. (2017),
and show their superiority to transfer learning when con-
tinuous training is needed.

• Sequence. We study how the order of arrival of the tasks
can affect the performance of the model. In particular, we
show how task similarity plays an important role in main-
taining optimal performance.

• Multi-task continual training. We show how aggregating
tasks based on their similarity can significantly improve
the overall performance over the entire sequence. This re-
sult is particularly important and helps us to better outline
the possible developments of these techniques for deep-
fake recognition.

• CI/CD pipeline for deepfake detection. We propose an
overview of an end-to-end system for continuous integra-
tion and continuous delivery/deployment for a deepfake
detection application.

The rest of this paper is organized as follows. Section 2 offers
an overview of the state of the art. In Section 3, we introduce
the methodology used in this study. In Section 4, we present
the experiments we conducted. Finally, in Section 5, we draw

the final considerations and illustrate the future developments
of this work.

2. Background and related works

2.1. Machine Learning Operations (MLOps)

MLOps is a set of scientific principles, tools, and techniques
for designing and constructing complex computer systems that
combine the scientific ideas, instruments, and methods of tradi-
tional Software Engineering (DevOps, Leite et al. (2019)) with
Machine Learning. It covers every phase, including gathering
data, creating the model, and integrating it into the software
production system. This is an actual engineering field that de-
serves detailed study; however, for this reason, in the following
paragraphs, we will provide a very brief introduction.

MLOps results from the realization that the quality, trans-
parency, and agility of the entire intelligent software are re-
duced when the ML model development process is isolated
from the ML operations process that produces it4. A typical
machine learning-based software includes four key elements:
(1) the data, (2) the machine learning model, (3) the code,
and (4) performance assessment, and each of these elements
contributes to creating four main phases. The data engineer-
ing phase involves the study of gathering and preparing data.
machine learning model engineering is a process that begins
with model evaluation, training, and serving. Code engineer-
ing works on best practices to integrate the model into the final
product. Finally, performance monitoring deals with perfor-
mance assessment, reproducibility, and monitoring in produc-
tion to find deviations.

The quality and applicability of machine learning models in
production are affected by three main issues. First, the quality
of input data (quantity, completeness, and semantics) impacts
the performance of machine learning models. The second is
model decay, which is the gradual deterioration of the perfor-
mance of the machine learning models. In reality, real-world
data is not stationary and is often absent from model training.
In this paper, we focus on this specific aspect. Third, accord-
ing to quality metrics (location). Models pre-trained on known
training data may not perform correctly when applied to new
inputs. This aspect is essential for deepfakes, where new tools
and generative techniques can undermine the quality of the de-
tectors. Readers more interested in this topic can learn more
about the challenges and commercially available MLOps tools
in Hewage and Meedeniya and Kreuzberger et al. (2023).

2.2. Deepfake detection

Despite the difficulties in keeping up with the advance-
ment of generative techniques, numerous studies have been
proposed on detecting generated images and videos (Amerini
et al. (2021); Verdoliva (2020)). In this section, we provide an
overview of the most recent advances. However, it is essential
to note that many can be combined with the continuous learning
techniques analyzed in this paper. In fact, this type of learning

4https://ml-ops.org/
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Fig. 1: Proposed CI/CD pipeline for deepfake detection. The data coming from different sources like new generative tools, social media, or existing databases are
analyzed by forensic experts to ensure the system’s continual retraining. Next, these data are used for continual learning and monitoring. The data drift distribution
module raises an alert whenever it detects new input data distributions. The continual learning methods analyzed in this paper are part of the MLOps CI/CD pipeline
block in the figure.

approach could be used not as an alternative to these methods
but to make these techniques maintainable over time.

First of all, several studies have found that there are some
key ingredients for more robust detection (Wang et al. (2020);
Gragnaniello et al. (2021)). Among them, image compression
and resizing can severely mitigate model performance (Papa
et al. (2023)). Therefore, to cope with these problems, it is
usually recommended to avoid resizes, as they entail image re-
sampling and interpolation, which may erase the subtle high-
frequency traces left by the generation process and train models
with different forms of augmentation. Moreover, working on
local patches also appears to be important (Chai et al. (2020)),
as well as analyzing both local and global features (Ju et al.
(2022)). Ciamarra et al. (2024) examine the effects that deep-
fake production may have had on the properties of the entire
scene at the time of acquisition. Specifically, the deepfake gen-
eration process may alter all of these intrinsic relations. When
an image (video) is taken, the scene’s overall geometry (such
as surfaces) and the acquisition method (such as illumination)
establish a clear environment that is directly represented by the
image pixel values. A descriptor that may be used to train a
CNN for deepfake detection can be obtained by analyzing the
features of the surfaces shown in the image.

A recent study from Aghasanli et al. (2023) showed that
foundational models like ViT can effectively distinguish be-
tween authentic and counterfeit images, even when inter-
pretability through prototypes is important. Additionally, the
study demonstrated that classifiers with fine-tuned features con-
sistently outperform those utilizing pre-trained weights when
applied to cross-dataset domains. Another study by Le and

Woo (2023) considers quality factors to train robust detectors.
The authors used an intra-model collaborative learning method
to minimize the geometrical differences of images in various
qualities at different intermediate layers. This idea, combined
with an adversarial weight perturbation module, can be used to
improve the robustness of the model against input image com-
pression. Similarly, several studies (Corvi et al., 2023; Sha
et al., 2023; Ojha et al., 2023) use CLIP as a feature extrac-
tor. Cocchi et al. (2023) propose an analysis of the robustness
of this model to image augmentations, transformations, and
other pre-processing steps, while Amoroso et al. (2023) eval-
uate the effects of different image feature extractors, presenting
results on CLIP and OpenCLIP. Many recent studies also focus
on combining different modes, such as audio and video (Raza
and Malik (2023); Zhang et al. (2024)) or video and depth (Ma-
iano et al. (2022)), as well as open-set recognition (Wang et al.
(2023)).

Other studies focus on reconstructing fake artifacts intro-
duced by generative models by considering second-order statis-
tics in the spatial and frequency domains (Wang et al. (2020)).
Corvi et al. (2023) showed that similar to GANs, diffusion mod-
els also give rise to visible artifacts in the Fourier domain and
exhibit anomalous regular patterns in autocorrelation. In fact,
synthetic and real images exhibit significant differences in the
mid-high frequency signal content, observable in their radial
and angular spectral power distributions.

Among the various detection strategies, watermarks have
also been proposed (Fei et al. (2023); Wu et al. (2020)).
Through the addition of special information within the image
being generated, these watermarks can be used to verify the
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generative model used to create content. For example, Zhao
et al. (2023) proposed an encoder-decoder network to embed
watermarks as anti-deepfake labels into the facial identity fea-
tures. The injected label is entangled with the facial identity
feature, so it will be sensitive to face swap translations and ro-
bust to conventional image modifications like resizing and com-
pression. Fernandez et al. (2022) examined the robustness of
watermarks when the image is subjected to transformations. A
similar study has also been on detection methods specifically
designed for facial manipulation. However, these solutions are
limited in that they require a model to integrate the watermark
into the content during the generation phase (Lu and Ebrahimi,
2024).

Our method, instead, falls into a different line of studies tar-
geted at designing continual learning methods for deepfake de-
tection. This learning approach has only been partially explored
for this task. The study by Marra et al. (2019) was one of the
first to propose a multi-task incremental learning method for
GAN-generated images based on iCaRL (Rebuffi et al. (2017)).
A similar approach was applied to videos in Khan and Dai
(2021), while Pan et al. (2023) have recently proposed to learn
semantically consistent representations across domains based
on supervised contrastive learning and a carefully designed re-
play set. In contrast, Kim et al. (2021) combined a knowledge
distillation method with a representation learning loss. How-
ever, these methods have been tested on datasets not explicitly
designed for this type of learning approach, which very often
consists of a limited number of generative techniques. To over-
come this limitation, Li et al. (2023) recently introduced a new
collection of deepfakes from known and unknown generative
models. The proposed CDDB dataset includes multiple evalua-
tions on detecting an easy, hard, and long sequence of deepfakes
with appropriate measures. For these reasons, in this paper, we
focus our studies on this dataset by measuring the performance
of the continual learning methods examined in this paper on this
dataset. A recent study from Epstein et al. (2023) takes a sim-
ilar direction by applying online learning to several generative
tools available today.

Different from other studies, we analyze this specific learn-
ing method to integrate it into a CI/CD system appropriately
designed for this task in the future.

3. Method

The practical application of deepfake detectors has been
severely limited by the need to develop robust detectors with re-
spect to new generative techniques. To overcome this problem,
we propose an analysis of two continual learning strategies and
an overview of a simple CI/CD pipeline that can complement
this preliminary study. This pipeline (depicted in Figure 1) has
the advantage of being constantly updated with respect to the
latest detectors, which can be adapted for continuous learning
as described below.

3.1. Learning strategies

To evaluate the effectiveness of continual learning in the
deepfake recognition task, we examine two learning methods.

These techniques were chosen based on their demonstrated ef-
fectiveness in other tasks (De Lange et al. (2022)).

Knowledge Distillation (KD)
Distillation techniques were introduced by Hinton et al.

(2015) in order to transfer knowledge from a neural network
T (the teacher) to a neural network S (the student). The key
idea behind knowledge distillation is that soft probabilities pre-
dicted by a network of trained ”teachers” contain much more
information about a data point than a simple class label. For
example, if multiple classes are assigned high probabilities for
an image, this could mean that the image must be close to a
decision boundary between those classes. Forcing a student to
mimic these probabilities should then cause the student network
to absorb some of this knowledge that the teacher discovered
above and beyond the information in training labels alone. To
implement the KD strategy, we modify the cross-entropy loss
LS by adding a regularization term (LD) as follows.

LKD(θ) = αLD + βLS (1)

Here, α and β are scalar coefficients that control the balanc-
ing between the current and past tasks. The distillation loss
LD uses the output of the teacher model to facilitate knowledge
transfer from previous tasks to the new student model. As the
teacher is non-trainable, its predictions are solely based on prior
knowledge, producing soft labels for the training process of the
student model. This term is computed as:

LD =
∑
xi∈X

σ (T (xi, ŷi), τ) logσ (S(xi, yi), τ) (2)

where ŷ represents the output of T , σ denotes the softmax func-
tion with temperature τ and S represent the student network.

Elastic Weight Consolidation (EWC)
EWC remembers old tasks by selectively slowing down

learning on weights that are important for these tasks. As shown
in Kirkpatrick et al. (2017), learning from a task A to a task B,
there exist many configurations of θ leading to the same perfor-
mance. In fact, the over-parametrization of the model makes it
more likely the existence of a solution θ∗B for task B that is close
to task A. Therefore, previous tasks’ performances are kept by
constraining, with a quadratic penalty, the parameters to stay in
a region centered in θ∗A of low error for task A. Formally, the
function L that we minimize in EWC is:

LEWC(θ) = LB(θ) +
∑

i

λ

2
Fi(θi − θ∗A,i)

2 (3)

where F is the Fisher information matrix, λ sets how important
the old task is compared to the new one and i labels each param-
eter. When moving to a third task (i.e., task C), EWC will try to
keep the network parameters close to the learned parameters of
both task A and B. This can be enforced either with two sepa-
rate penalties, or as one by noting that the sum of two quadratic
penalties is itself a quadratic penalty.
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3.2. Training procedure
The training procedure for both learning methods described

in the previous section is summarized in Algorithm 1. Given
a stream of AI-generated contents D = {D1, . . . ,Dn}, n ≥ 1, at
each training iteration t we train a model gt(xt, θt) on the ac-
tual Dt ∈ D. After the first training iteration on the first avail-
able batch of samples D1 ∈ D, the model is trained on all next
batches {D2, . . . ,Dn} ∈ D for all n > 1. Differently from trans-
fer learning, however, the model is forced to minimize the loss
function for both new and old examples without requiring train-
ing over the past data samples, therefore learning an optimal set
of parameters θt for all observed inputs (xi, yi), i ∈ {0, . . . , t}.

Algorithm 1 Training procedure for continual learning meth-
ods.
Require: D = {D1, . . . ,Dn}, n ≥ 1
Dt = D.pop()
gt(xt, θt)← train(Dt)
while !D.isEmpy() do
Dt = D.pop()
if strategy == KD then
T ← gt(xt, θt).copy()
S ← train (T ,Dt) ▷ Train using the LKD loss in Eq.

1.
gt(xt, θt)← S

else if strategy == EWC then
gt(xt, θt)← train(Dt) ▷ Train using the LEWC loss in

Eq. 3.
end if

end while

3.3. Lightweight CI/CD for deepfake detection
We conclude this section by providing an overview of how

the proposed methodology could be integrated into a continu-
ous integration and continuous delivery pipeline. The Figure 1
shows the complete pipeline. The upper part of the figure shows
all the phases of an MLOps CI/CD system. The lower part
shows the complete pipeline into which the continuous learn-
ing methods analyzed in this paper can be integrated.

The pipeline consists of three main modules. In the first mod-
ule, data from generative tools, social media or databases are
organized and analyzed if necessary by forensic experts or jour-
nalists. This module enables the preparation of model training
data. In the next module, the model continuously learns from
incoming data. This module also allows you to keep several
copies of the model in case you need to restore a previous ver-
sion. Finally, in the last part, a continous delivery and mon-
itoring module takes care of serving the newly trained model
to check for any data drift. If a new distribution of input data
is identified (e.g., content generated with a new technique), it is
immediately saved and flagged so that the model can be verified
and possibly retrained on the new data.

4. Experiments

In this section, we discuss the analyses conducted to evaluate
the effectiveness of the continual learning methods introduced

in Section 3.1. We begin by introducing the dataset and selected
architectures in Section 4.1, and then, in Section 4.2 we ana-
lyze the performance of the two continuous learning strategies
by comparing them with transfer learning. The code base will
be made available at https://github.com/francescotss/
MLOpsDeepfakeDetection.

4.1. Experimental setting

Dataset
We use the CDDB (Li et al. (2023)) dataset for all our exper-

iments. The dataset offers three different evaluation scenarios:
an easy task sequence, a hard task sequence, and a long one.
The dataset contains media generated with 5 different types of
GAN-based generative models (StyleGAN, BigGAN, Cycle-
GAN, GauGAN, and StarGAN), 5 non-GAN models (Glow,
CRN, IMLE, SAN, and FaceForensics++), and two datasets
whose origin is unknown (WhichFaceIsReal and WildDeep-
fake).

For this study, we report the results on the easy and long
sequences. We refer to these two sequences as Easy and Long,
respectively.

• The Easy set (composed of GauGAN, BigGAN, Cycle-
GAN, IMLE, FaceForensic++, CRN, and WildDeepfake)
is used to study the basic behavior of evaluated methods
when they address similar generative techniques.

• The Long set (composed of GauGAN, BigGAN, Cy-
cleGAN, IMLE, FaceForensic++, CRN, WildDeepfake,
Glow, StarGAN, StyleGAN, WhichFaceIsReal, and SAN)
is designed to encourage methods to better handle long
sequences of deepfake detection tasks, where the catas-
trophic forgetting might become more serious.

For both sequences, we use the official training, validation,
and test splits proposed by Li et al. (2023). Additionally,
we also extend the original easy and long sets with two extra
classes generated from the Stable Diffusion 1.5 dataset gener-
ated from Papa et al. (2023) and DeepFloyd-IF images extracted
from Elsa D35 to the Long set. Each new class consists of 3000,
1000, and 2000 images for training, validation, and testing, re-
spectively. We call these two modified sets the Easy+ set and
the Long+ set.

The original dataset also reports a Hard set, i.e. a set in
which the same classes are rearranged to make the sequence
particularly complex for a continuous learning model. We do
not report the tables with the detailed experiments on this se-
quence because, with the modifications made on the Easy+ and
Long+ sets, we are already analyzing the model’s performance
when classes very different from those seen previously in the
sequence come into play. In any case, we will briefly comment
the performances of this set on Section 4.3.

5Source: https://huggingface.co/datasets/elsaEU/ELSA_D3/

viewer
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Fig. 2: Zero-shot performance of the models when trained on GauGAN and tested on the Long+ set. All models fail to generalize and register a significant drawdown
when tested on new fake samples created from new generative methods. Furthermore, we can see that when exposed to families of models similar to the one seen
in training, the models perform slightly better. This could be because the image generation process influences the detector’s performance.

Architecture
For our analysis, we selected four different state-of-the-art

that have demonstrated to achieve good results on this task
(Gragnaniello et al. (2021); Papa et al. (2023)): Resnet-50,
Resnet-18, Mobilenet-V2, and Xception.

4.2. Analysis

We now turn to analyze the performance of continuous learn-
ing methods with selected backbones. We start by illustrating
the results on the short set and then extend the considerations
to the longer (i.e., the long set). We trained each model using
early stopping with a patience of 35 up to 250 epochs. We used
the Stochastic Gradient Descent (SGD) optimizer to modify the
models’ weights, with an initial learning rate of 0.005 and a
momentum of 0.1. The learning rate is controlled by a cosine
annealing scheduler with a minimum value of 10−5. For pre-
processing, we applied a random cropped on each image with a
resolution of 128 × 128.

Zero shot
We begin by analyzing the results of all models trained on the

GauGAN task and evaluating the whole long set for a complete
benchmark over a heterogeneous set of generative models. As
shown in Figure 2, all the models almost always fail to detect
tasks outside their training data, indicating a clear lack of gen-
eralizability. These evaluations confirm that a model trained
on a particular generative technique struggles to detect other
types of fake images. In fact, we can see that the model man-
ages to achieve more or less satisfactory performances on media
generated with GANs (in particular BigGAN, CycleGAN, and
StarGAN), which evidently have characteristics more similar to
those seen in the training phase, but it ultimately fails the tasks
more complex ones like FaceForensics++, WildDeepfake, Sta-
ble Diffusion 1.5 or DeepFloyd-IF.

Easy and Easy+ set

In Table 1, we report the experiments conducted on this set.
The table reports the performance of each dataset trained on the
entire sequence. For example, Resnet-50 obtains an accuracy of
57.80% on GauGAN after being trained with KD up to the last
available dataset in the sequence (i.e., WildDeepfake). From the
table, we can draw some initial insights. Starting with the back-
bones, the Resnet-50 and Mobilenet-V2 achieve the best results
on average. As for learning techniques, we can see a general
improvement in the performance of continual learning methods
compared to transfer learning. In particular, Knowledge Dis-
tillation achieves the best performance when combined with
Resnet-50. In this specific configuration, the model achieves
excellent performance on IMLE (97.30%) and CRN (94.36%),
and good performance on CycleGAN (79.85%), while the re-
sults on the other datasets range between 51.22% and 64.45%.
The results are not surprisingly high, but to understand why,
it is necessary to reason about the different types of datasets
contained in this sequence. IMLE and CRN both contain me-
dia drawn from computer games, which are indeed more eas-
ily recognized. GauGAN, BigGAN, and CycleGAN are all
datasets generated with Generative Adversarial Networks, so
they have similar characteristics. Finally, FaceForensics++ and
WildDeepfake are both challenging sets containing diverse gen-
erative techniques. These characteristics make the sequence
highly varied and, therefore, complex to be classified uniformly
well. In particular, as we iterated through the various tasks in
the sequence, we noticed that performance can fluctuate sig-
nificantly depending on the order in which these datasets are
used. Compared to state-of-the-art methods, the KD model is
outperformed by iCaRL (Rebuffi et al. (2017)) but works better
than gradient-based methods like NSCIL (Wang et al. (2021)).
However, it is important to highlight that iCaRL requires ex-
amples from previous tasks during training, while knowledge
distillation only sees examples belonging to the current task.
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Method Model Type AverageGauGAN BigGAN CycleGAN IMLE FaceForensics++ CRN WildDeepfake

Transfer learning

ResNet-50 57.80 54.38 58.79 56.89 71.63 59.32 71.02 61.40
ResNet-18 48.70 51.50 44.87 65.02 58.23 66.25 67.32 57.41

Mobilenet-V2 54.30 49.38 54.40 72.03 74.88 78.82 73.31 65.30
Xception 45.90 51.38 45.79 48.87 59.81 46.16 65.26 51.88

Class-incremental Learning NSCIL (Wang et al. (2021)) 48.35 50.25 49.43 56.58 56.56 70.73 57.63 55.65
iCaRL Resnet-32 (Rebuffi et al. (2017)) 76.90 80.00 88.93 99.41 85.03 99.45 76.64 87.05

EWC

ResNet-50 65.30 61.13 62.64 68.11 73.77 71.77 70.24 67.56
ResNet-18 54.15 48.50 58.61 72.50 73.21 69.07 71.36 63.91

Mobilenet-V2 54.75 48.88 63.37 76.96 86.98 89.62 68.03 69.80
Xception 50.00 48.75 50.00 56.85 59.72 58.30 61.06 54.95

KD

ResNet-50 64.45 58.75 79.85 97.30 64.65 94.36 51.22 72.94
ResNet-18 50.50 49.13 52.75 52.27 52.28 53.45 49.87 51.46

Mobilenet-V2 54.40 53.00 54.21 80.28 72.19 86.37 71.36 67.40
Xception 50.75 50.75 50.55 97.73 49.86 96.28 49.57 63.64

Table 1: Transfer learning, EWC, and KD performance on the Easy set. The average column represents the average accuracy of each model across all datasets. Bold
and underlined values represent the highest value and second best for each learning method.

Specifically, given a new task Dt at time t, iCaRL requires the
sequenceD = {D1, . . . ,Dt} to be trained continously.

In Figures 3 and 4, we elaborate more on this behavior. The
figure shows the average accuracy on each dataset recorded by
training the model on the various tasks in the following order:
(1) GauGAN, (2) BigGAN, (3) CycleGAN, (4) IMLE, (5) Face-
Forensics++, (6) CRN, (7) WildDeepfake, (8) Stable Diffusion
1.5, and (9) DeepFloyd-IF. From the figure, we can see that the
performance remains high on average on the first three (GAN-
based) tasks and then undergoes an initial slight decrease with
IMLE and stabilizes with a more substantial decrease from the
fifth task onward. By analyzing this behavior, we can infer that
the big difference between the generative techniques present
in FaceForensic++ and the previous tasks strains the model in
finding a region of optimum that reduces the error on all tasks.
This result is further confirmed with the arrival of WildDeep-
fake, Stable Diffusion 1.5, and DeepFloyd-IF, which turn out to
be the most complex and different tasks in the sequence. The
strong asymmetry of some tasks compared to others seems to
play an important role, leading the model to optimize perfor-
mance towards some families of tasks rather than others.

To confirm this hypothesis, we repeated the experiment by
removing WildDeepfake from the easy set. As we can see from
Figure 5, the performance of the models improves significantly
if we compare the performance of the model trained on the
complete sequence (Figure 5a) compared to the one trained on
the sequence without WildDeepfake (Figure 5b). This tells us
that the symmetry between the different tasks is fundamental to
maintaining overall satisfactory performance on the entire se-
quence.

In Table 2, we measure the robustness of all models trained
with KD to three image transformations as done in Cocchi et al.
(2023): (1) brightness, (2) contrast, and (3) JPEG compression.
As shown in the table, all models register a minor degradation
of their performance, although Resnet-50 confirms being the
best method followed by the Mobilenet-V2.

Overall, the results suggest a few things. First, we can notice
a greater stability of continuous learning techniques compared
to transfer learning. Furthermore, Knowledge Distillation ap-
pears to be more robust overall than EWC, achieving higher
performance on average than its rival. In all cases, all tech-
niques achieve better results than the zero-shot scenario. How-

ever, the order of the sequence and the similarity of the tasks
seem to play a significant role in overall performance. Finally,
the most robust model seems to be the Resnet-50, followed
closely by the Mobilenet-V2.

Long set
To complete the analysis, we extend the considerations made

up to now to the long sequence. In Figure 7a, we report the av-
erage accuracy values on each task. As for the short sequence,
the heterogeneity of the 12 tasks poses a challenge to the contin-
ual learning methods, preventing them from learning a general
representation applicable to all tasks. In particular, the simi-
lar result between the continual learning methods and transfer
learning suggests that the latter cannot mitigate catastrophic
forgetting. In fact, we can note that the models are able to
achieve good performance on some tasks like IMLE and CRN
(which have similar characteristics) and GAN-based tasks like
GauGAN, BigGAN, StarGAN, and StyleGAN but fail to main-
tain acceptable performance on the other tasks.

Multi-task sequences
Collecting the considerations made so far, in this last test, we

test the methods on a hybrid continuous learning scenario. In-
stead of learning each individual task separately, we combined
the Long sequence tasks into groups of three, which we call
Multi-tasks. Therefore, in this configuration, the sequence is
composed of 4 macro tasks:

• t1 = {GauGAN, BigGAN, CycleGAN};

• t2 = {IMLE, FaceForensics, CRN};

• t3 = {WildDeepfake, Glow, StarGAN};

• t4 = {StyleGAN, WhichFaceIsReal, SAN}.

There is no particular reason behind these four groups. We
selected them following the original order of the long set. In this
experiment, we are, in fact, interested in studying the behavior
of the model in the presence of different task batches.

Figure 7b reports the average accuracy values on each task.
As was reasonable to expect, by increasing the heterogeneity
of the training data for each task, the model records slightly
more robust and uniform performances between the different
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Fig. 3: Knowledge distillation average accuracy at each task t calculated over tasks {1, . . . , t}. of all backbones on the Easy+ set. The order of the tasks is the
following: (1) GauGAN, (2) BigGAN, (3) CycleGAN, (4) IMLE, (5) FaceForensics++, (6) CRN, (7) WildDeepfake, (8) Stable Diffusion 1.5, and (9) DeepFloyd-
IF. The last plot shows the average accuracy across all classes.
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Fig. 4: Elastic Weight Consolidation average accuracy at each task t calculated over tasks {1, . . . , t}. of all backbones on the Easy+ set. The order of the tasks is the
following: (1) GauGAN, (2) BigGAN, (3) CycleGAN, (4) IMLE, (5) FaceForensics++, (6) CRN, (7) WildDeepfake, (8) Stable Diffusion 1.5, and (9) DeepFloyd-IF.
The last plot shows the average accuracy across all classes.
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Model Transformation Type AverageGauGAN BigGAN CycleGAN IMLE FaceForensics++ CRN WildDeepfake

ResNet-50
Brightness 58.85 54.75 70.15 90.45 57.49 86.88 50.14 66.96
Contrast 59.70 56.75 70.70 94.91 59.35 90.21 51.14 68.84

JPEG Compression 69.30 60.75 74.18 83.92 58.51 80.93 51.22 68.40

ResNet-18
Brightness 55.30 56.00 60.26 58.57 61.3 58.18 69.45 59.87
Contrast 54.90 56.50 64.10 57.32 58.98 56.85 71.55 60.03

JPEG Compression 54.55 54.37 58.97 56.53 57.58 53.09 64.21 57.05

Mobilenet-V2
Brightness 54.2 50.88 55.68 76.56 66.14 82.18 68.36 64.86
Contrast 54.35 50.88 55.13 76.92 72.74 84.42 67.28 65.96

JPEG Compression 51.45 51.63 47.25 61.19 56.37 62.80 53.43 54.87

Xception
Brightness 50.35 50.13 49.45 84.27 49.86 85.75 49.61 59.92
Contrast 50.90 51.25 51.47 83.92 50.14 82.97 49.34 60.00

JPEG Compression 52.40 48.88 50.55 78.56 50.88 77.45 48.75 58.21

Table 2: Accuracy performance on the Easy set with Brightness, Contrast, and JPEG Compression transformations applied using KD models. The average column
represents the average performance of each model across all datasets. Bold and underlined values represent the highest value and second best.

KD EWC Transfer learning

(a) Complete Easy set.

KD EWC Transfer learning

(b) Easy set without WildDeepfake.

Fig. 5: The average accuracy of Resnet-50 trained with KD on the full Easy
set (Figure 5a) and without WildDeepfake (Figure 5b). Some datasets seem to
heavily afflict performance in the continuous learning context.

tasks. Moreover, from the figure we can immediately see that,
as suggested in the previous experiment, WildDeepfake puts a
strain on all learning techniques. It becomes clear that includ-
ing images from unknown sources and tasks with a restricted
dataset causes a drastic drop in accuracy. Moreover, regard-
ing the learning techniques, all methods achieved satisfactory
results. In particular, Knowledge Distillation confirms itself
as more robust in most of the sequence but seems to suffer a
slight decline in the last three tasks. This result confirms that
by aggregating tasks on the basis of their similarity, continuous
learning techniques are able to maintain good performance over
time.

Model Metric Type
GauGAN BigGAN CycleGAN IMLE FaceForensics++ CRN WildDeepfake

ResNet-50
Precision 96.90 90.63 97.63 99.42 70.14 99.65 52.29

Recall 28.10 21.75 60.44 93.66 48.03 89.51 21.32
F1-score 43.57 35.08 74.66 96.45 57.02 94.31 30.29

ResNet-18
Precision 58.53 57.28 63.36 72.18 61.21 70.46 72.56

Recall 31.90 44.25 67.77 28.01 75.80 28.58 75.54
F1-score 41.29 49.93 65.49 40.36 67.73 40.67 74.02

Mobilenet-V2
Precision 62.89 55.49 57.14 81.72 75.55 83.23 70.96

Recall 22.20 25.25 57.14 76.60 70.73 90.52 73.82
F1-score 32.82 34.71 57.14 79.08 73.06 86.72 72.36

Xception
Precision 81.25 35.71 81.82 97.58 00.00 97.01 43.69

Recall 01.30 01.25 03.30 97.97 00.00 94.13 03.37
F1-score 02.56 02.42 06.34 97.77 00.00 95.55 06.25

Table 3: Precision, recall, and F1-score on the Easy set using KD models.

4.3. Limitations

The analyzed results give us some interesting information.
First of all, continuous learning techniques show an improve-
ment compared to the zero-shot scenario. However, the sim-
ilarity of the various tasks in sequence and their order of ar-
rival seem to play an important role in maintaining satisfactory
performance throughout the sequence. When trained on the
Hard set, the model struggles to maintain stable performances
(GauGAN 60.00%, BigGAN 54.12%, WildDeepfake 49.49%,
WhichFaceReal 54.25%, San 82.95%), registering an average
60.16% accuracy.

The results presented require further investigation. First of
all, in this study, we limited ourselves to analyzing the behavior
of 5 backbones commonly used in deepfake detection; how-
ever, a comparison of more advanced deepfake detection meth-
ods present in the literature is necessary. Furthermore, the re-
sults obtained in the multi-task configuration suggest that these
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Fig. 6: Validation accuracies for each task in the Easy+ set during the training on Task 9 (DeepFloyd-IF). The training task (9) is highlighted in bold.
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(b) Average accuracy for Resnet-50 trained with the multi-task configuration.

Fig. 7: Average accuracy on the Long set.

techniques could benefit from using a memory (del Rio et al.
(2023)). This aspect will be further analyzed in our future stud-
ies. Finally, in this study, we assumed the different tasks ar-
rived in batches. This is certainly possible, as the release of a
new tool could lead to introducing a significant sample of me-

dia generated with it. However, it remains essential to study the
robustness of these techniques on smaller and more heteroge-
neous sequences.

5. Conclusion

In this paper, we proposed an analysis of two deepfake de-
tection techniques (Knowledge Distillation and Elastic Weight
Consolidation), comparing them with zero-shot scenarios and
transfer learning. The results show that continuous learning
techniques can help make deepfake detection models more ro-
bust and easily updated to new generative methods. However,
our analysis also highlighted some problems. The performance
of these learning strategies seems to depend significantly on the
similarity of the tasks and their order of arrival. To address
this problem, we have shown how it is possible to combine the
different tasks to obtain significantly better performance. Con-
sequently, future developments of this work could analyze the
importance of using memory and the robustness of these learn-
ing techniques to smaller and more heterogeneous sequences.

In addition to this, we also gave an overview of a CI/CD
pipeline for deepfake detection, showing how the models used
in this work can be combined with other modules to obtain a
pipeline that can be used in a real application scenario. In this
regard, in the future we will present a complete version of all
the fundamental modules of this pipeline, starting first from the
data drift detection module. This module, in particular, could
help to significantly improve performance in continuous learn-
ing.
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