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A B S T R A C T

Accurate segmentation of the liver and tumors from CT volumes is crucial for hepatocellular carcinoma diag-
nosis and pre-operative resection planning. Despite advances in deep learning-based methods for abdominal
CT images, fully-automated segmentation remains challenging due to class imbalance and structural variations,
often requiring cascaded approaches that incur significant computational costs. In this paper, we present
the Dual-Encoder Double Concatenation Network (DEDC-Net) for simultaneous segmentation of the liver and
its tumors. DEDC-Net leverages both residual and skip connections to enhance feature reuse and optimize
performance in liver and tumor segmentation tasks. Extensive qualitative and quantitative experiments on
the LiTS dataset demonstrate that DEDC-Net outperforms existing state-of-the-art liver segmentation methods.
An ablation study was conducted to evaluate different encoder backbones — specifically VGG19 and ResNet
— and the impact of incorporating an attention mechanism. Our results indicate that DEDC-Net, without any
additional attention gates, achieves a superior mean Dice Score (DS) of 0.898 for liver segmentation. Moreover,
integrating residual connections into one encoder yielded the highest DS for tumor segmentation tasks. The
robustness of our proposed network was further validated on two additional, unseen CT datasets: IDCARDb-01
and COMET. Our model demonstrated superior lesion segmentation capabilities, particularly on IRCADb-01,
achieving a DS of 0.629. The code implementation is publicly available at this website.
1. Introduction

According to the Global Cancer Observatory [1], liver cancer is the
sixth most frequently diagnosed cancer and the third leading cause
of cancer death worldwide. Early diagnosis and treatment can signifi-
cantly reduce mortality rates. Computer-assisted systems for diagnosis,
surgery planning, and navigation have been instrumental in aiding radi-
ologists and surgeons, thereby improving the efficiency and accuracy of
surgical interventions [2]. Segmentation is crucial in the pre-operative
planning workflow, as it assigns unique labels to different anatomical
and pathological structures in medical images [2,3]. While many deep-
learning methods have been proposed for medical image segmentation,
fully-automated segmentation of the liver and its lesions still presents a
significant challenge [4,5]. Automated liver and tumor segmentation is
a complex process, hampered by numerous obstacles. The initial step
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in any liver resection procedure is the segmentation of the liver [6].
However, due to the liver’s soft-tissue nature and its location in close
proximity to adjacent organs such as the spleen, stomach, and gall
bladder, identifying its boundaries can be challenging. Additionally, the
presence of air or gas in the gastrointestinal tract can hinder the visual-
ization of these organs on CT scans. Furthermore, the appearance and
form of the liver can be altered by injuries and other pathologies, lead-
ing to changes in its thickness, signal intensity, and overall architecture.
Lesion segmentation further complicates the process due to low contrast
in CT images, varying tumor shapes, and significant class imbalance,
where lesions are much smaller than the liver. These challenges can
affect the accuracy of automated segmentation processes and require
careful consideration during liver resection procedures. State-of-the-art
segmentation approaches, such as UNet [7] and its variants, often fail
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with imbalanced data because high-resolution information lost in the
contracting path cannot be fully recovered in the expansion path. In
contrast, Y-shaped networks with two encoders and one decoder have
gained popularity for their flexibility in capturing deeper and more
diverse features. To address these challenges, we propose a novel dual-
encoder architecture that leverages the complementary strengths of two
different encoders, enhancing feature representation and robustness.
The dual-encoder structure allows the network to learn from two per-
spectives: one encoder (VGG-19) focuses on capturing detailed spatial
features, while the other (ResNet) emphasizes deeper contextual infor-
mation through residual connections. The proposed approach leverages
contextual volumetric information in 3D medical imaging and employs
skip connections to combine deep coarse semantic information with
fine-grained details, enhancing the model’s generalization capability.
Additionally, we explore the benefits of incorporating an Attention Gate
(AG) mechanism to refine the segmentation by emphasizing relevant
contextual information from CT scans. The key contributions of our
work are outlined as follows:

1. We propose a novel end-to-end architecture, with dual-branch
encoders and one decoder for automated liver and tumour seg-
mentations in CT scans. This model effectively employs a double
concatenation of feature maps from lower to higher resolution
levels, significantly enhancing spatial information capture.

2. To extract diverse features and create a streamlined end-to-
end network, our method adopts a heterogeneous architecture.
It consists of two distinct encoders: one leveraging the robust
feature extraction capabilities of VGG-19, and the other utilizing
residual connections to facilitate a more efficient, deeper model.
This dual-encoder system is integrated with a single decoder,
maintaining the encoder–decoder structure and skip connections
characteristic of the original UNet.

3. We have demonstrated that the proposed Y-shaped network
achieves high segmentation accuracy for both liver and lesions
without the need for an additional attention mechanism. This
highlights the inherent effectiveness and robustness of our net-
work architecture in capturing and segmenting relevant features
accurately.

4. We conduct an extensive re-implementation of existing state-
of-the-art (SOTA) methods on the LiTS2017, and validate the
robustness of our proposed network on 3DIRCADb and OSLO-
COMET datasets. Our experimental results confirm the superior-
ity of our approach across multiple metrics.

2. Related work

Medical image segmentation from 3D volumetric images, such as
computed tomography (CT) scans and magnetic resonance imaging
(MRI), has been a key focus in medical image processing for decades
due to its ability to preserve the 3D structure and spatial information
of internal body structures. Deep learning, in particular, has shown
significant advancements and superior performance in this area [8], as
it can learn hierarchical feature representations at multiple levels of
abstraction.

Fully Convolutional Neural Networks (FCNNs) have been highly
effective in medical image segmentation, excelling in delineating not
only the liver but also many other organs and structures [9,10]. The
choice between 2D and 3D FCNNs depends on the task specifics and
available computational resources. Unlike typical Convolutional Neu-
ral Networks (CNNs) that incorporate fully connected layers at the
end of the architecture, FCNNs consist solely of convolutional and,
optionally, pooling layers. This design eliminates the high parame-
ter count associated with fully connected layers, enabling FCNNs to
learn spatial hierarchies of features through backpropagation [11].
Hu et al. [12] developed a deep 3D CNN that predicts a probability
2

map as a subject-specific prior, assigning each voxel the likelihood
of being liver tissue. Among FCN-based architectures, UNet stands
out as a baseline standard for medical image segmentation, available
in both 2D [7] and 3D versions [13]. UNet uses skip connections
to combine information from bottom and top layers, addressing the
challenge of recovering original data during upsampling and mitigating
information loss. A notable cascade 2D FCNN architecture, involving
two UNets, was proposed by Christ et al. They train and cascade
two FCNs: the first segments the liver, and the second uses the pre-
dicted liver ROI to segment lesions. The authors also employ dense 3D
conditional random fields for refining segmentation results, account-
ing for spatial coherence and appearance [4]. Furthermore, Milletari
et al. [14] introduced a symmetric end-to-end 3D FCNN with residual
connections and a novel loss function to better handle class imbalance
than the classic weighted cross-entropy loss. Subsequently, the Hybrid
Densely Connected UNet (H-DenseUNet) was proposed, integrating 3D
DenseUNet with 2D DenseUNet using auto-context for liver and tumor
segmentation [15].

To simplify the complexity of cascaded approaches, Xu et al. in-
troduced ResUNet for liver segmentation. This model enhances the
UNet by adding residual units and batch normalization layers to both
the upsampling and downsampling parts, resulting in a deeper net-
work that achieves quick convergence [16]. Zhou et al. proposed
UNet++, a more flexible architecture with nested skip connections de-
signed to bridge the semantic gap between encoder and decoder feature
maps, improving gradient flow [17]. UNet3+ [18] advanced dense skip
connections by employing full-scale skip connections, though it can
struggle with segmenting small objects when training data is limited.
UNet# [19] combined dense-scale and full-scale connections between
the encoder and decoder subnets, enhancing the network’s ability to
explore full-scale information.

To enhance the performance of UNet, many researchers have fo-
cused on the encoder–decoder architecture, introducing novel mech-
anisms to improve segmentation outcomes. Among these, the atten-
tion mechanism is particularly notable. Inspired by cognitive atten-
tion, it selectively processes relevant stimuli [20]. Initially applied
to natural language processing tasks, attention mechanisms have re-
cently shown great promise in computer vision and medical segmen-
tation tasks, integrating various types of attention mechanisms into
the encoder–decoder structure. Research has shown that incorporating
attention gates into deep learning architectures improves network per-
formance [21–23]. Inspired by this, Oktay et al. [21] introduced an
attention gate (AG) model to focus on structures of different shapes
and sizes, filtering out unnecessary information and enhancing the
network’s ability to focus on relevant features. Schlemper et al. [24]
utilized a self-gated soft attention mechanism that generates an end-
to-end trainable gating signal, contextualizing local information for
more accurate predictions. The Attention Hybrid Connection Network
(AHCNet) [25] combines a cascaded 3D FCNN with densely connected
long and short skip connections, and hard and soft attention, to segment
liver and tumors. This work introduced a joint Dice loss function to han-
dle class imbalance and a focal loss to reduce false positives, concluding
that hybrid connections and attention mechanisms improve training
speed and accuracy. RA-UNet leverages the strengths of UNet, residual
learning, and the attention residual mechanism to focus on relevant
image parts and suppress irrelevant ones [26]. Recently, the Residual
Multi-scale Attention UNet (RMAU-Net) [27] was introduced for liver
and tumor segmentation, combining residual attention learning and
squeeze-excitation blocks with UNet. This model has shown promising
results in segmenting both liver and tumors in CT volumes.

However, the U-shaped networks mentioned above often struggle
with achieving accurate results near organ or tumor boundaries. To
address this, a new family of networks, Y-shaped networks, has shown
promising results in various medical image segmentation tasks [28–30].
These networks utilize a dual-branch encoder structure to simultane-
ously consider both global and local context, reducing the impact of

organ/tumor location and shape variability.
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Our objective is to investigate whether integrating residual connec-
tions within the encoder of a Y-shaped architecture, along with skip
connections between the encoder and decoder, can improve perfor-
mance. Additionally, we explore the hypothesis that the core archi-
tecture of the encoder network may not be as crucial as the presence
of skip connections, suggesting effective segmentation can be achieved
even without a sophisticated encoder. This exploration seeks to under-
stand the impact of these architectural components on segmentation
accuracy, aiming for advancements in medical imaging analysis.

3. Method

In this section, we present an overview of the core components of
our proposed DEDC-Net, a Dual-Encoder Double Concatenation Net-
work for liver and tumor segmentations. The network architecture
consists of two encoders (VGG19 [31] and ResNet [32]) and one
decoder similar to 3D UNet [7] that are connected through skip con-
nections. The input to the network is a computed tomography (CT)
volume 𝑥 ∈ R𝐷×𝐻×𝑊 ×1, and its corresponding multi-class segmentation
abel 𝑦 ∈ Z𝐷×𝐻×𝑊 ×𝐶 , where 𝐷,𝐻,𝑊 represent the dimensions of the
oxels and 𝐶 is the number of classes (0-background, 1-liver, 2-tumor,
espectively). The output of the network is a predicted segmentation
ap �̂�. Furthermore, we also present a brief description of the attention
echanism, as we conducted experiments integrating the attention gate

omponents proposed in [21] into our 3DY-Net architecture and other
ompetitive networks.

.1. DEDC-Net architecture

This study introduces a novel architecture for volumetric segmen-
ation with a Y-shaped structure. The proposed network, DEDC-Net,
uilds upon previous Y-shaped neural networks used for tasks such as
olyp detection [33], retinal OCT segmentation [28], and breast biopsy
mage diagnosis [34]. The key innovation of our work is the integration
nd double concatenation of features from the two encoders at each
tage of the decoder, as shown in Fig. 1. To our knowledge, this is the
irst application of a Y-shaped network for volumetric segmentation of
he liver and its lesions.
ncoders: We experimented with two encoder configurations: a mod-

fied 3D VGG19 [31] and a modified 3D ResNet [32], both excluding
he three fully connected layers. For the first encoder branch, we used
GG-19, known for its 19 deep layers. The initial two layers consist
f two 3 × 3 × 3 convolutions with stride and padding of 1, each
ollowed by a rectified linear unit (ReLU) and a 2 × 2 × 2 max
ooling operation with strides of 2. The subsequent three layers follow
similar pattern but include four convolutions each. For the second

ranch, we chose a modified ResNet [32], incorporating five layers
ith residual connections to mitigate the vanishing gradient problem.
his configuration includes 27 convolutional blocks, with the first layer
sing 7 × 7 × 7 filters and the rest using 3 × 3 × 3 filters. Only two
ooling layers are employed—one at the beginning and one at the end.
ecoder: Our network’s decoder is similar to the original 3D UNet [13]
ne. U-Net-shaped models are classical fully-convolutional neural net-
orks for classification, segmentation, and detection in medical imag-

ng, consisting of a contracting and an expanding path. The decoder has
our convolutional blocks, and the feature maps are upsampled by using
3 × 3 × 3 transposed convolution operation with strides of 2 in each
imension, followed by three 3 × 3 × 3 convolutions, each followed by
SELU [35]. Finally, a 1 × 1 × 1 convolution operation generates the

inal segmentation map.
Detailed descriptions of the double concatenations between the

ncoders and the decoder are provided in the following subsection to
nsure a comprehensive understanding of the network’s design.

.2. Double concatenation formulation for dual-encoder volumetric segmen-
ation network

In our proposed network architecture for volumetric segmentation
3

f liver and tumors in medical images, we employ a dual-encoder setup b
onsisting of one 3D VGG encoder and one 3D ResNet encoder, followed
y a single decoder. The integration of outputs from both encoders into
he decoder is achieved through a novel double concatenation process,
hich ensures the effective combination of feature maps. This process

s described as follows:
Let 𝐸𝑉 𝐺𝐺 and 𝐸𝑅𝑒𝑠𝑁𝑒𝑡 represent the feature maps from the 3D

GG encoder and the 3D ResNet encoder, respectively. The double
oncatenation process is executed in the following stages:

nitial concatenation. The initial feature maps from both encoders are
oncatenated to form a combined feature map 𝐶center:

center = Concat(𝐸𝑉 𝐺𝐺,0, 𝐸𝑅𝑒𝑠𝑁𝑒𝑡,0)

his combined feature map is then processed through a series of
onvolutional blocks:

center = ConvBlock𝑐0(ConvBlock𝑐1(𝐶center))

oncatenation at each decoder stage. For each subsequent stage 𝑖 in the
ecoder, the feature maps from each encoder are concatenated with the
psampled feature maps from the previous decoder layer 𝑓𝑖:

𝑖 = Upsample𝑖(𝐶center)

𝑉 𝐺𝐺,𝑖 = Concat(𝐸𝑉 𝐺𝐺,𝑖, 𝑓𝑖)

𝑅𝑒𝑠𝑁𝑒𝑡,𝑖 = Concat(𝐸𝑅𝑒𝑠𝑁𝑒𝑡,𝑖, 𝑓𝑖)

inal concatenation. The outputs of these initial concatenations are
hen concatenated again to create the final feature map 𝐶final :

final,𝑖 = Concat(𝐶𝑉 𝐺𝐺,𝑖, 𝐶𝑅𝑒𝑠𝑁𝑒𝑡,𝑖)

he final concatenated feature map is passed through additional con-
olutional blocks and then serves as the input for the next layer of the
ecoder, resulting in 𝐷𝑖:

𝑖 = ConvBlock𝑖,0(ConvBlock𝑖,1(ConvBlock𝑖,2(𝐶final,𝑖)))

This double concatenation approach effectively leverages the com-
lementary strengths of the 3D VGG and 3D ResNet encoders to en-
ance feature representation.

.3. Attention gate component

In our networks, the AGs are incorporated into the decoder stage
f the architecture through each skip connection. As shown in Fig. 2,
gating signal vector 𝑔 is collected from a coarser scale as it encodes

lobal information from a large spatial context. Let be 𝐹 𝑙
𝑥𝑖

the input
eature maps of a layer 𝑙 and 𝐹 𝑙−1

𝑔𝑖
the feature map of the gating vector

𝑖 used for each voxel 𝑖, collected from a coarser scale and with encoded
lobal information from a large spatial context. The AG module extracts
3D attention coefficients 𝛼𝑖, which can be mathematically represented
s:

𝑖 = 𝜎2[𝛷(𝜎1(𝑊𝑥𝐹
𝑙
𝑥𝑖
+𝑊𝑔𝐹𝑔𝑖 ))]; (1)

here 𝜎1(𝑥) is an element-wise nonlinearity (i.e. rectified linear-unit
eLU), 𝜎2(𝑥) is a normalization function (i.e Sigmoid function), 𝑊𝑥,
𝑔 are convolutional operations and 𝛷 is the upsampling function. In

his way, the output of AGs is the element-wise multiplication 𝐹 𝑙
𝑥𝑖

of
nput feature maps 𝐹 𝑙

𝑥𝑜𝑢𝑡𝑖
and attention coefficients 𝛼𝑖:

𝑙
𝑥𝑜𝑢𝑡𝑖

= 𝛼𝑖 × 𝐹 𝑙
𝑥𝑖

(2)

Specifically, in DEDC-Net, the attention gate is added before each
psampling operation of each block and receives feature maps from the
urrent and the corresponding downsampling block, as shown in Fig. 3

.4. Multi-class loss function

Our networks are trained with a combination of Soft Dice Loss and
ross-Entropy loss. The detailed description of both loss functions can
e found here [36]. Let 𝑌 be the reference foreground segmentation
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Fig. 1. Architecture of the Dual-Encoder Double Concatenation Network (DEDC-Net) for volumetric liver and tumor segmentation. The network consists of dual-encoder branches:
one 3D VGG encoder (top) and one 3D ResNet encoder (bottom), followed by a single decoder. The feature maps from both encoders are concatenated at each stage using a
double concatenation approach.

Fig. 2. Visual representation of the 3D Attention Gate (AG) mechanism, which selectively focuses on important features within a three-dimensional space.

Fig. 3. Integration of the Attention gate (AG): 𝐸𝑙
𝑉 𝐺𝐺 and 𝐸𝑙

𝑅𝑒𝑠𝑁𝑒𝑡 represent feature maps from the two encoder paths, and the 𝐹 𝑙−1
𝑔 the feature map of the gating vector from the

previous convolutional layer. For details on the core components, please refer to the decoder path illustrated in Fig. 1.
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(ground truth) with voxel values {�̂�}𝑛 = 1,… , 𝑁 , and P the predicted
probabilistic map for the foreground label over N image elements
{𝑝𝑛}𝑛 = 1,… , 𝑁 , with the background class probability being 1-P.
The 𝜖 provides numerical stability to prevent division by zero, and
{𝑐𝑛}𝑛 = 1,… , 𝐶 indicates the class label. The Soft Dice Loss is defined
as:

𝐷𝐿 = 1 −
∑𝑁

𝑛=1
∑𝐶

𝑐=1 𝑝
𝑐
𝑛�̂�

𝑐
𝑛 + 𝜖

∑𝑁
𝑛=1

∑𝐶
𝑐=1 𝑝𝑐𝑛 + �̂�𝑐𝑛 + 𝜖

(3)

nd the Cross-Entropy Loss is as follows:

𝐶𝐸 = − 1
𝑁

𝑁
∑

𝑛=1

𝐶
∑

𝑐=1
𝑟𝑛 lg(𝑝𝑐𝑛) + (1 − �̂�𝑐𝑛)𝑙𝑜𝑔(1 − 𝑝𝑛) (4)

Then, the combined loss function [37] is expressed as:

𝑇 = 𝐷𝐿 + 𝐶𝐸 ; (5)

3.5. Evaluation metrics

To quantitatively assess segmentation performance, we employ var-
ious metrics:

1. Average Symmetric Surface Distance (ASSD) measures the aver-
age distance between points on the segmented and ground truth
surfaces:

ASSD(𝑃𝑟, 𝐺𝑇 ) =

1
|𝑆(𝑃𝑟)| + |𝑆(𝐺𝑇 )|

(

∑

𝑠𝑃𝑟∈𝑆(𝑃𝑟)
𝑑(𝑠𝑃𝑟, 𝑆(𝐺𝑇 )) +

∑

𝑠𝐺𝑇 ∈𝑆(𝐺𝑇 )
𝑑(𝑠𝐺𝑇 , 𝑆(𝑃𝑟))

)

(6)

where 𝑆(𝑃𝑟) and 𝑆(𝐺𝑇 ) represent the surfaces of predicted and
ground truth objects, |𝑆(𝑃𝑟)| and |𝑆(𝐺𝑇 )| denote their cardi-
nalities, and 𝑑(𝑠𝑃𝑟, 𝑆(𝐺𝑇 )) and 𝑑(𝑠𝐺𝑇 , 𝑆(𝑃𝑟)) are distances from
points on the surfaces.

2. Volume Similarity (VS) quantifies the similarity between seg-
mented and ground truth volumes:

VS(𝑃𝑟, 𝐺𝑇 ) = 1 −
||𝑃𝑟| − |𝐺𝑇 ||
|𝑃𝑟| + |𝐺𝑇 |

(7)

where |𝑃𝑟| and |𝐺𝑇 | are volumes of segmented and ground truth
objects, respectively.

3. SN (Sensitivity) measures the ratio of true positive predictions
to all positive instances:

SN = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(8)

4. Specificity (SP) calculates the ratio of true negative predictions
to all negative instances:

SP = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(9)

5. Precision (PR) computes the ratio of true positive predictions to
all positive predictions:

PR = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(10)

6. Dice Score (DS) measures the overlap between predicted and
ground truth segmentation masks:

DS =
2 × |𝑃𝑟 ∩ 𝐺𝑇 |
|𝑃𝑟| + |𝐺𝑇 |

(11)

4. Experiments setup

4.1. Datasets

4.1.1. LiTS
The LiTS dataset, originating from the Liver Tumor Segmentation

Challenge hosted by ISBI 2017 and MICCAI 2017, stands as the pre-
eminent publicly available dataset for conducting studies on liver and
5

tumor segmentation. Comprising 201 contrast-enhanced abdominal CT
scans, the dataset includes 131 scans annotated for training purposes
and 70 designated for testing, sourced from six distinct clinical sites uti-
lizing various scanners and protocols. This dataset is characterized by
its wide variation in spatial resolution and field of view, with in-plane
resolutions ranging between 0.60 mm to 0.98 mm and slice spacings
from 0.45 mm to 5.0 mm. Each scan features axial slices of uniform size
(512 × 512 pixels), though the count of slices along the 𝑧-axis varies
significantly, ranging from 42 to 1026. The large amount of CT volumes
and segmentations make the LiTS dataset a valuable resource for deep
learning applications in liver and tumor segmentation.

4.1.2. 3D-IRCADb-01
The 3D Image Reconstruction for Comparison of Algorithm

Database (3D-IRCADb) is commonly used in medical imaging research.
It is publicly available and widely utilized by researchers in this field.
These images contain patient data that has been anonymized, along
with manually delineated regions of interest by medical professionals.
The 3D-IRCADb-01 subset consists of enhanced CT scans from 20 indi-
viduals, with an equal distribution between women and men. Among
the female cohort, 75% of them have liver tumors. The dataset has a
resolution of 512 × 512 pixels, with the 𝑧-axis containing 91 to 260
slices.

4.1.3. OSLO-COMET
The clinical dataset used in the paper is the subset of 15 abdominal

CT scans with liver and colorectal metastasis from the ethnically ap-
proved Oslo-CoMet Study (COMET) [38]. The CT imaging was acquired
at a resolution of 512 × 512 pixels, with each volume comprising 94 to
427 slices. The selection criteria for this subset were rigorously defined
by the position and size of liver lesions, specifically targeting lesions
with diameters ranging from 3 mm to 10 mm.

4.2. Implementation details

We train, validate and test our network on the widely-used LiTS
dataset of MICCAI 2017 Liver Tumor Segmentation Challenge [39]
and evaluate the robustness of achieved results on 3D-IRCADb-01
and COMET datasets. The division of the LiTS dataset into training,
validation, and testing subsets is executed randomly, with the selection
based only on the available training set. This approach is necessitated
due to the absence of publicly accessible labels for the test set. Conse-
quently, the dataset allocation consists of 101 scans for training, 15
for validation, and 15 for testing purposes. For our experiments, all
images are resized to 256 × 256 × 64 due to the GPU limitation.
Moreover, since the focus of this task is the liver and lesions, the
Hounsfield unit (HU) values were windowed in the range [−175], [250]
to exclude artifacts and irrelevant organs and tissues. For intensifying
the network generalization, data augmentation is done ‘‘on-the-fly’’
during training, including a series of geometric transformations, such as
random flipping, shifting, scaling, and resampling. The implementation
of our network is based on PyTorch 1.12.0 [40]. The network is trained
for 500 epochs on an NVIDIA GeForce RTX 3090 graphic memory with
a batch size of 1. The best validation accuracy for all models was used
to determine the number of training epochs. The normal distribution
initializer [41] is employed for initializing the weights since its robust-
ness in considering the rectifier nonlinearities. For training our deep
neural network, the learning rate adaptive optimizer ADAM [42], was
used. ADAM optimizer dominates the field of deep learning due to its
fast convergence. We set the initial learning rate to 0.0001, decaying
the learning rate with a cosine annealing for each batch as proposed
in [43]. For the network robustness evaluation, we took the network
with the best performance on the test LITS subset and trained it on the
full dataset for another 100 epochs. Then the inference results were
inspected with the reference to evaluation metrics.
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Table 1
Quantitative comparison of different methods on the LiTS dataset (15 test volumes). Red indicates the best scores for liver segmentation, while blue indicates the best scores for
lesion segmentation.

Network Class ASSD VS SN SP PR DS

3DUNet 0.583 ± 0.373 0.928 ± 0.031 0.936 ± 0.094 0.995 ± 0.002 0.847 ± 0.051 0.885 ± 0.049a

3DUNet+AG 0.823 ± 26.930 0.919 ± 0.270 0.922 ± 0.123 0.994 ± 0.002 0.837 ± 0.041 0.871 ± 0.059
3DVNet 1.443 ± 1.815 0.908 ± 0.064 0.880 ± 0.145 0.996 ± 0.002 0.845 ± 0.059 0.852 ± 0.083
3DVNet+AG 2.967 ± 4.014 0.649 ± .0164 0.816 ± 0.251 0.996 ± 0.003 0.855 ± 0.083 0.806 ± 0.166b

3DResUNet 1.271 ± 1.180 0.917 ± 0.049 0.926 ± 0.072 0.993 ± 0.004 0.795 ± 0.066 0.853 ± 0.50
UNETR 1.415 ± 1.556 0.917 ± 0.052 0.937 ± 0.032 0.993 ± 0.032 0.797 ± 0.074 0.859 ± 0.046
SwinTr 1.421 ± 1.931 0.956 ± 0.045 0.921 ± 0.047 0.956 ± 0.003 0.849 ± 0.074 0.857 ± 0.050
DEDC-Net (Ours)

Liver

0.873 ± 0.915 0.918 ± 0.038 0.935 ± 0.085 0.993 ± 0.003 0.806 ± 0.063 0.898 ± 0.031

3DUNet 25.676 ± 36.177 0.645 ± 0.297 0.400 ± 0.386 0.999 ± 0.002 0.390 ± 0.321 0.384 ± 0.350
3DUNet+AG 24.249 ± 35.612 0.635 ± 0.319 0.430 ± 0.357 0.996 ± 0.001 0.400 ± 0.285 0.380 ± 0.296
3DVNet 13.297 ± 19.022 0.564 ± 0.339 0.370 ± 0.336 0.999 ± 0.001 0.500 ± 0.376 0.351 ± 0.302
3DVNet+AG 22.127 ± 22.433 0.484 ± 0.294 0.360 ± 0.335 0.998 ± 0.003 0.360 ± 0.345 0.268 ± 0.262b

3DResUNet 10.535 ± 10.499 0.44 ± 0.330 0.337 ± 0.348 0.999 ± 0.001 0.45 ± 0.367 0.325 ± 0.280a

UNETR 20.454 ± 19.377 0.538 ± 0.313 0.287 ± 0.262 0.999 ± 0.001 0.314 ± 0.323 0.267 ± 0.258b

SwinTr 22.343 ± 19.113 0.538 ± 0.347 0.343 ± 0.319 0.998 ± 0.001 0.261 ± 0.282 0.252 ± 0.256b

DEDC-Net (Ours)

Lesions

12.168 ± 12.666 0.673 ± 0.282 0.570 ± 0.323 0.998 ± 0.003 0.464 ± 0.310 0.461 ± 0.274

a Denotes p < 0.05.
b Denotes p < 0.01.
Fig. 4. Visual assessment of the competing networks for liver and tumors segmentation on the volume 072 of LiTS dataset: the first two rows represent the axial view of CT
images of a patient from the test set. The third row illustrates the corresponding 3D models generated from segmentations. GT: ground truth. Red: liver segmentation. Green:
tumor segmentation.
5. Experimental results

5.1. Comparison of models

To validate the effectiveness of the proposed DECD-Net, we com-
pared it with leading segmentation models commonly used in medical
image segmentation. We utilized the 3D versions of various networks,
including 3DUNet [13], 3D VNet [44] with and without the AGs [21,
45], and the 3D version of ResUNet [46], which integrates a residual
network with UNet, theoretically providing deep network layers and
robust feature extraction capabilities. Additionally, we compared our
network with the latest state-of-the-art models, such as SwinTr [47],
which replaces the convolutional layers in UNet with Swin trans-
former layers, relying entirely on transformer models, and UNETR [48],
that employs transformers to capture global information of UNet and
has demonstrated high performance in various organ segmentation
tasks from CT scans. Employing the same dataset and split selection
approach, our objective was to assess segmentation performance.

Compared to other networks outlined in Table 1, our proposed
DEDC-Net shows competitive performance across various metrics for
liver and tumor segmentations. Specifically, DEDC-Net achieved the
highest scores in segmentation DS, SN, SP, and VS. For tumor seg-
mentation, our network outperformed the 3DUNet by nearly 20% in
terms of the Dice score. While it did not lead in metrics such as ASSD
and PR, the results were still comparable to other leading networks.
Lesion segmentation results were relatively low. However, this may be
attributed to GPU memory limitations and the need for down-sampling
volumes for further processing.
6

To visualize the results, we present segmentation outcomes for
two test cases with significant differences in DS performance: volumes
72 and 130. Figs. 4 and 5 show qualitative results comparing the
performance of the competitive models. In Volume 72 (Fig. 4), our
proposed network achieved a DS of 0.938 for liver segmentation and
0.789 for lesion segmentation. Visual inspection revealed that only
DEDC-Net and 3DUNet+AG detected a small tumor in the left lobe of
the liver. Notably, 3DUNet tended to over-segment lesions, while our
network demonstrated slight under-segmentation.

In Volume 130, the DS was lower, with 0.894 for liver segmentation
and 0.560 for tumor segmentation. None of the networks successfully
detected and fully segmented the large tumor in the left lobe of the
liver, and identifying multiple small tumors in the right lobe remained
challenging for all models. Fig. 5 illustrates that DEDC-Net slightly
outperformed other networks in liver parenchyma segmentation, al-
though there was a significant false positive tumor detected in the right
lobe. Our network was the only one to segment the large tumor with
better performance, but none of the networks successfully detected or
segmented the small tumors in the right lobe.

To demonstrate that DEDC-Net improves segmentation accuracy
due to its Y-shaped design and double concatenation, rather than
adding more parameters, we list the number of parameters for each
model in Table 2. Our proposed network has 6.6M more parameters
than the 3D-UNet but significantly fewer than the latest state-of-the-art
networks like SwinTr or UNETR. Despite having the highest number
of parameters (91.1M), UNETR presents one of the lowest scores in
lesion segmentation. This results in more efficient training, better gen-
eralization, reduced computational cost, quicker inference, and easier
optimization for our network.
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Fig. 5. Visual comparison of the competing networks for liver and tumors segmentation on the volume 130 of LiTS dataset: the first two rows represent the axial view of CT
images of a patient from the test set. The third row illustrates the corresponding 3D models generated from segmentations. GT: ground truth. Red: liver segmentation. Green:
tumor segmentation.
Table 2
Parameter counts for various models used in the State-of-the-Art (SOTA) analysis.
This comparison includes our proposed model, DEDC-Net, alongside other competing
networks.

Method Parameters (M)

3DUNet 19.07
3DUNet+AG 29.11
VNet 45.60
3DVNet+AG 45.58
3DResUNet 65.40
UNETR 91.10
SwinTr 51.93
DEDC-Net (Ours) 25.68

5.2. Ablation analysis

In the first section, we present ablation studies to evaluate the
effectiveness of each component within our proposed framework. The
variables in the ablation study include the choice of encoder network
(VGGNet or ResNet) and the method of using skip connections. The
skip connections can be of the Encoder-Decoder type (ED), where
the feature map is first concatenated between encoders and decoders,
and then concatenated among themselves as described in Section 3.2.
Alternatively, the Encoder-Encoder type (EE) is used, where the feature
maps from each encoder are first concatenated among themselves and
then integrated into the decoder layers of equal resolution, inspired by
the approach proposed in [33]. Another area of investigation was the
integration of the attention mechanism (AG). Our evaluation focuses
on the average ASSD, VS, SN, SP, PR, and Dice metrics across the LiTS
test dataset (15 CT volumes).

From the ablation study (Table 3), we can observe the impact of
long-range skip connections and the choice of encoder network in
our model. Using skip connections directly between the encoder and
decoder (ED) generally produces better segmentation results than first
using skip connections between both encoders and then concatenating
the map to the decoder (EE type). This ED approach yields the highest
scores in terms of volumetric similarity, sensitivity, and Dice score for
both liver and tumor segmentation.

Integrating the attention mechanism into the framework did not
improve segmentation scores. In fact, frameworks without the attention
gate (AG) demonstrated higher ASSD, VS, SN, SP, and Dice scores for
both liver and tumor segmentation.

Regarding the choice of the network for the feature encoder, ResNet
showed improvements in precision scores, while VGGNet enhanced
volumetric similarity in both liver and tumor segmentation.

In summary, the combination of two different encoders, such as
VGGNet and ResNet, using the ED type of skip connection without
the AG, resulted in the best DS for both liver parenchyma and lesion
segmentation. This configuration achieved a DS of 0.897 ± 0.030 for
the liver and 0.461 ± 0.247 for the lesions.
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5.3. Assessment of network generalizability

The proposed DEDC-Net was trained using the complete LITS
dataset, where ground truth segmentations were available (130 vol-
umes). Below, we present the results obtained from applying these
trained models to the COMET and 3D-IRCADb-01 datasets, as summa-
rized in Table 4.

The segmentation performance results of our proposed network on
the unseen 3D-IRCADb-01 and COMET datasets demonstrate promising
outcomes in liver and lesion segmentation.

On the 3D-IRCADb-01 dataset, our network achieved a Dice score
of 0.629 for tumor segmentation, with an average ASSD of 0.648 and
a volumetric similarity of 0.910.

In the COMET dataset, our network showcased robust performance
in liver segmentation, consistent with earlier results presented in this
paper. The average Dice score for the liver segmentation achieved by
network is 0.854, while for lesion segmentation is 0.435. Despite the
challenging nature of the task, the segmentation results indicate the
network’s capability to accurately localize liver parenchyma and detect
tumors.

6. Discussion

Automatic liver and tumour segmentation plays a critical role in
clinical planning. It can reduce the amount of time clinicians dedicate
to this task while aiding in the diagnosis process. In this study, we
present DEDC-Net, a dual-branch encoder–decoder architecture with
double concatenation, designed for segmenting the liver and its lesions
in CT images. Our network has a Y-shaped, similar to the Y-Net
described in [28]. Nevertheless, the architecture proposed in [28]
had been specifically designed to segment retinal layers and fluid
pockets in ocular optical coherence tomography (OCT) images. This is
accomplished by incorporating a second encoder branch that extracts
spectral domain features in addition to the spatial encoder used in
previous works. In our proposed network, two encoders can indepen-
dently analyze input data and extract pertinent features, which are
then propagated to a single decoder, which generates a 3D multi-class
segmentation map, without the need to convert 2D medical images in
3D models.

Our Y-Net architecture leverages the feature aggregation capability
provided by skip connections. Specifically, DEDC-Net utilizes encoder-
to-decoder skip connections to integrate low- and high-level features
meticulously. Our results demonstrate that the double concatenation
via these skip connections enhances interconnectivity between final
feature maps at each resolution level. This approach enables efficient
feature reuse and addresses class imbalance more effectively than tra-
ditional architectures like 3DUNet and 3DVNet, as well as more recent
ones like UNETR and SwinTr. Indeed, the LiTS dataset is affected by
high-class imbalance, indicating that the tumor class we are attempting
to identify and label appears substantially less frequently than others.



Computers in Biology and Medicine 179 (2024) 108870G. d’Albenzio et al.
Table 3
Ablation analysis of our method for improving tumor segmentation on the LiTS dataset (15 test volumes). AG: Attention Gate, ED: Encoder-Decoder architecture with skip
connections, EE: Encoder-Encoder architecture with double skip connections.

Encoder 1 Encoder 2 AG ED EE Class ASSD VS SN SP PR DS

VGGNet VGGNet –
√

– 0.558 ± 0.318 0.944 ± 0.036 0.933 ± 0.075 0.996 ± 0.001 0.856 ± 0.052 0.889 ± 0.037
VGGNet VGGNet – –

√

0.841 ± 16.867 0.921 ± 0.043 0.921 ± 0.093 0.995 ± 0.002 0.848 ± 0.056 0.878 ± 0.043
VGGNet VGGNet

√ √

– 1.149 ± 1.82 0.889 ± 0.096 0.894 ± 0.168 0.995 ± 0.001 0.837 ± 0.063 0.851 ± 0.092
VGGNet VGGNet

√

–
√

0.629 ± 0.343 0.932 ± 0.035 0.914 ± 0.106 0.995 ± 0.001 0.844 ± 0.048 0.873 ± 0.048
ResNet ResNet –

√

– 1.121 ± 1682 0.910 ± 0.063 0.901 ± 0.147 0.995 ± 0.001 0.853 ± 0.041 0.869 ± 0.092
ResNet ResNet – –

√

0.771 ± 0.574 0.918 ± 0.031 0.923 ± 0.099 0.994 ± 0.001 0.833 ± 0.029 0.873 ± 0.054
ResNet ResNet

√ √

– 0.866 ± 0.54 0.942 ± 0.031 0.948 ± 0.052 0.995 ± 0.002 0.856 ± 0.046 0.898 ± 0.033
ResNet ResNet

√

–
√

0.948 ± 1.167 0.923 ± 0.062 0.91 ± 0.118 0.996 ± 0.002 0.872 ± 0.039 0.886 ± −0.071
VGGNet ResNet (ours) –

√

– 0.873 ± 0.915 0.918 ± 0.038 0.935 ± 0.085 0.993 ± 0.003 0.806 ± 0.063 0.898 ± 0.031
VGGNet ResNet – –

√

1.082 ± 0.884 0.915 ± 0.053 0.935 ± 0.055 0.993 ± 0.003 0.789 ± 0.064 0.854 ± 0.044
VGGNet ResNet

√ √

– 0.894 ± 0.953 0.922 ± 0.048 0.898 ± 0.122 0.994 ± 0.003 0.810 ± 0.065 0.847 ± 0.079
VGGNet ResNet

√

–
√

Liver

0.996 ± 0.941 0.910 ± 0.038 0.888 ± 0.132 0.994 ± 0.004 0.817 ± 0.054 0.845 ± 0.072

VGGNet VGGNet –
√

– 18.485 ± 30.814 0.612 ± 0.360 0.276 ± 0.309 0.999 ± 0.009 0.394 ± 0.356 0.289 ± 0.283
VGGNet VGGNet – –

√

15.012 ± 14.271 0.485 ± 0.280 0.262 ± 0.297 0.999 ± 0.001 0.394 ± 0.356 0.240 ± 0.193
VGGNet VGGNet

√ √

– 23.349 ± 30.037 0.431 ± 0.329 0.240 ± 0.293 0.999 ± 0.001 0.310 ± 0.320 0.202 ± 0.220
VGGNet VGGNet

√

–
√

11.013 ± 13.497 0.438 ± 0.418 0.310 ± 0.329 0.999 ± 0.001 0.540 ± 0.375 0.313 ± 0.308
ResNet ResNet –

√

– 13.445 ± 24.796 0.594 ± 0.335 0.466 ± 0.364 0.999 ± 0.001 0.438 ± 0.332 0.413 ± 0.307
ResNet ResNet – –

√

5.228 ± 14.845 0.534 ± 0.378 0.313 ± 0.342 0.999 ± 0.001 0.471 ± 0.295 0.320 ± 0.296
ResNet ResNet

√ √

– 16.560 ± 21.176 0.591 ± 0.261 0.42 ± 0.352 0.998 ± 0.001 0.353 ± 0.294 0.336 ± 0.269
ResNet ResNet

√

–
√

9.064 ± 8.803 0.641 ± 0.329 0.449 ± 0.345 0.998 ± 0.003 0.433 ± 0.343 0.401 ± 0.30
VGGNet ResNet (ours) –

√

– 12.168 ± 12.666 0.673 ± 0.282 0.570 ± 0.323 0.998 ± 0.003 0.464 ± 0.310 0.461 ± 0.274
VGGNet ResNet – –

√

26.197 ± 34.108 0.647 ± 0.292 0.398 ± 0.355 0.998 ± 0.002 0.335 ± 0.300 0.328 ± 0.277
VGGNet ResNet

√ √

– 12.681 ± 14.445 0.518 ± 0.395 0.372 ± 0.381 0.998 ± 0.002 0.363 ± 0.331 0.305 ± 0.299
VGGNet ResNet

√

–
√

Lesions

28.313 ± 35.704 0.502 ± 0.338 0.236 ± 0.284 0.999 ± 0.002 0.365 ± 0.323 0.235 ± 0.235
Table 4
Segmentation results of our proposed network on two unseen datasets, 3D-IRCARDb and COMET.

Dataset Class ASSD VS SN SP PR DS

3D-IRCARDb Liver 0.648 ± 0.958 0.910 ± 0.058 0.956 ± 0.104 0.989 ± 0.104 0.835 ± 0.083 0.886 ± 0.077
Lesions 4.934 ± 8.806 0.730 ± 0.291 0.580 ± 0.300 0.999 ± 0.001 0.787 ± 0.202 0.629 ± 0.271

COMET Liver 1.553 ± 3.478 0.900 ± 0.113 0.885 ± 0.198 0.995 ± 0.001 0.852 ± 0.031 0.854 ± 0.129
Lesions 14.382 ± 30.499 0.582 ± 0.347 0.429 ± 0.298 0.998 ± 0.004 0.524 ± 0.366 0.435 ± 0.323
Due to their under-representation during training, uncommon classes
could eventually end up being ignored. This is precisely the case for tu-
mor segmentation, where tumor diameters are frequently considerably
smaller than those of the liver.

Furthermore, the LiTS paper highlights an even greater challenge in
accurately segmenting small tumors, amplifying the difficulties faced
in such tasks [49]. The LiTS dataset, which includes cases with tumors
measuring only a few voxels in diameter, poses a substantial obstacle
for segmentation efforts. This challenge is exacerbated by the small
number of surrounding pixels available to define tumor borders, par-
ticularly problematic in low-resolution images of 256 × 256 pixels in
axial slices, as encountered in our research. To empirically evaluate
this issue, we evaluated our proposed networks, on a selected subset
of the OSLO-COMET dataset that included cases with exceptionally
small tumors (diameters ranging from 3 mm to 10 mm). The results
from the OSLO-COMET dataset, specifically for small-sized tumors,
yielded significantly lower performance metrics, as evidenced by the
DS of 0.461. These outcome underscore the inherent difficulties in
detecting and accurately segmenting smaller lesions, attributable to
challenges in visibility, substantial variation in shape, appearance,
location, and the performance metrics’ heightened sensitivity to minor
inaccuracies for small-scale targets. Furthermore, medical imaging’s
inherent susceptibility to noise and artifacts complicates the identi-
fication of these small tumors. Despite these hurdles, DEDC-Net has
demonstrated superior performance in liver segmentation tasks. The
inclusion of residual blocks within our architecture’s multi-encoder
framework plays a pivotal role in extracting detailed features at each
encoder layer, enhancing our model’s efficacy. To demonstrate our
network’s generalization capability in clinical settings, we evaluated
the 3DYNet-ED across multiple datasets, including LiTS, 3D-IRCADb,
and OSLO-COMET. Our findings, which show the model’s superior
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performance in lesion segmentation on the IRCADB-01 dataset with
a Dice Score of 0.629, affirm the model’s robustness and adaptability
across different liver and tumor medical datasets.

The Attention Gate (AG) mechanism [21], integrated into encoder–
decoder architectures, enhances key features passed through skip con-
nections and is widely recognized for its utility in various medical
image segmentation tasks [21,23,50]. However, its performance is
closely tied to the training data distribution, highlighting its data-
driven nature. In the context of the LiTS dataset, incorporating AGs
into traditional architectures like 3DUNet and 3DVNet did not result
in significant improvements in liver and tumor segmentation, aligning
with findings from previous studies [51]. In our ablation analysis,
we observed that integrating AGs into our Encoder-Encoder variant
networks significantly improved segmentation scores, although it did
not achieve the highest scores for liver and tumor segmentation. AGs
filter and prioritize feature activations for the decoder, complement-
ing the residual blocks in our multi-encoder configuration to extract
detailed features at each encoder layer. This synergy between residual
connections and AGs has shown promising results, warranting further
investigation.

3D multi-class segmentation of the liver and its tumors is a challeng-
ing task, not only because of the imbalance in medical datasets but also
due to the computational complexity required to preserve 3D spatial
information [52]. Although our network showed promising outcomes
for liver segmentation, the lesion segmentation results were relatively
low. This may be due to GPU memory limitations necessitating the
down-sampling of volumes to a size of 256 × 256 × 64 for further
processing. This resampling reduces the spatial resolution and detail
available for accurate lesion identification, leading to lower segmenta-
tion performance. This explains the variation in our results compared
to those in the literature, but still allows for a fair comparison with ex-
isting methods. Future research should rigorously evaluate the impact

of various AG mechanisms on our architecture to better handle class
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imbalances in liver and tumor segmentation. Enhancing this aspect is
crucial for improving network reliability in imbalanced class scenarios.
Additionally, we plan to investigate the performance of networks with
two encoders based on different architectures and extend testing to
additional medical image segmentation datasets.

7. Conclusions

In this paper, we introduce DEDC-Net, a dual-branch encoder–
decoder architecture where we use both long- and short-range skip
connections. The model is specifically designed for segmenting liver CT
volumes, enhancing feature reusability. Through both qualitative and
quantitative evaluations, our approaches outperform existing state-of-
the-art liver segmentation methods on the LiTS dataset. An ablation
study examining various encoder backbones (VGG19 and ResNet) and
the integration of attention mechanisms in the decoder stage revealed
that DEDC-Net delivers superior liver segmentation accuracy, achieving

ean DS of 0.898 liver segmentation without the need for additional
ttention gates before the up-sampling operation of each decoder block.
ur research also tackles the challenge of lesion segmentation, which

s crucial for effective treatment planning and diagnosis, alongside
iver segmentation. Despite the complexities of lesion segmentation
ur network reached the highest DS of 0.629 on the unseen dataset
DCARDb-01. Future work will focus on thoroughly evaluating the
mpact of different attention mechanisms to improve our architecture’s
erformance in managing class imbalances in liver and tumor segmen-
ation. This is vital for enhancing network reliability in imbalanced
cenarios. Moreover, exploring the efficiency of various network back-
ones with minimal hyper-parameters and extending tests to more
edical imaging datasets could broaden our segmentation networks’

pplicability and performance in medical imaging.
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