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Abstract: This paper proposes a reconfiguration algorithm for electricity grids, based on Model
Predictive Control (MPC). Reconfiguration is dynamically performed to reduce losses, and in reaction
to adverse events, such as faults or attacks. Most of the previous works in the literature (including a
previous paper from the authors) focus on the reconfiguration of grids while ensuring they are always
radially operated and connected (i.e., islands are not allowed to form). At present, including the
possibility of performing a dynamic islanding of the network (i.e., where portions of the grid dynami-
cally detach and reconnect to the main grid) is seen as a way to improve the flexibility and resiliency
of the grid, especially in the present context, with the increased penetration of digital technologies
and renewables. Therefore, by extending the previous work, the algorithm proposed in the present
paper also allows for the formation of islands, while still constraining them to radial islands, in line
with the operational practice adopted by most electric companies. The mathematical formulation
of the grid reconfiguration problem is discussed, and simulation results are presented, showing the
effectiveness of the proposed algorithm in dynamically managing the grid reconfiguration.

Keywords: smart grids; grid reconfiguration; fault restoration; cyber–physical systems

1. Introduction

Transmission and distribution grids are increasingly characterized by the presence
of distributed energy resources, such as electric energy storage systems (ESS), renewable
energy plants, and plug-in electric vehicles. This paradigm shift from passive and central-
ized energy systems of the past presents numerous challenges in terms of the increased
complexity of operations. Among other factors, the variability in the power production
from renewable plants and the intermittency of PEVs demand require the continuous
control and optimization of the grid. Among the available means of control, grid reconfigu-
ration is acknowledged as one of the degrees of freedom available to balance the grid load,
reduce grid losses, and quickly restore the service after disruptions to the grid [1]. While
reconfiguration was performed offline in passive grids, it can now be performed more
often during the day to dynamically optimize the grid following its evolving boundary
conditions. In this paper, we describe a reconfiguration algorithm based on model predic-
tive control (MPC), whose goal is to dynamically reconfigure the grid in order to minimize
losses when facing adverse events such as faults. The paper extends our previous work [2]
by removing the requirement that the grid be connected at all times. In the present version,
the algorithm also allows for the formation of islands in the grid, which is a natural scenario
in the future, where it is expected that microgrid islands will be able to dynamically connect
and disconnect from the grid.
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1.1. Literature Survey and Contributions

Network reconfiguration algorithms play a crucial role in enhancing the efficiency and
resiliency of modern electric grids. Indeed, changes in the grid topology can reduce power
losses, improve voltage profiles and stability, balance loads, and mitigate the impact of
faults and attacks [3]. Many network reconfiguration approaches have been proposed in the
literature and can be classified in classic optimization-based, (meta) heuristics (including
evolutionary algorithms) and machine-learning-based solutions. With respect to the other
algorithms, the former class of algorithms has the advantages of allowing for an optimal
solution to the reconfiguration problem to be found, as well as explicitly considering
constraints and optimizing the provided optimality criteria. However, this often comes at
the price of high computational costs. On the other hand, (meta)heuristics are characterized
by lower computational costs but do not guarantee the optimality of the reconfigured
topology. Machine Learning (ML), particularly Reinforcement Learning (RL), techniques
represent a promising research line in the context of network reconfiguration for large-
scale systems due to their ability to infer (near) optimal policies. As an example, in [4],
the authors address the dynamic distribution network reconfiguration, proposing a Deep
Reinforcement Learning algorithm. The proposed solution relies on a reduced action space
allowing for the artificial agent to only select configurations that satisfy radiality constraints.
The objective function aims to minimize the costs associated with the active energy loss
and the manipulation of switching devices. In [5], the authors propose an RL algorithm
that is able to learn the network reconfiguration control policy based on historical data. The
same approach was adopted in [6], in which the authors train an off-policy RL agent using
historical data. Said data are further increased by means of data augmentation techniques,
allowing for the training to be implemented on a larger data set. Although these techniques
avoid relying on exact models of the distribution network, they have some drawbacks.
Indeed, it should be noted that the training phase required by the (D)RL approaches may
require significant computational effort. In this respect, in [7] the authors compared several
DRL algorithms with classic optimization-based heuristics and genetic algorithms. The
results showed how DRL techniques are characterized by significantly lower computational
times (especially when the dimensions of the considered scenario increase) but require
long training phases. Another issue with ML-based approaches is represented by the fact
that they do not explicitly consider constraints. In this respect, there are some works that
tackle this issue, proposing safe learning techniques. In [8], for example, the authors adopt
the Deep Deterministic Policy Gradient (DDPG) algorithm to learn the control policies.
Safety is implemented by means of a layer allowing for the prediction of changes in the
constrained states, preventing the violation of operational constraints. However, as was
also pointed out by the authors, in the context of network reconfiguration problems, RL-
based techniques should be used wisely. Indeed, it is shown that the control performances
of MPC techniques are in line with those of the proposed DRL algorithm. Since DRL
algorithms require a significant effort in the tuning of hyperparameters and the shaping
of the reward functions, the added complexity may not be worthwhile compared to the
small improvement in performance. Furthermore, distribution networks may be composed
of devices operating in a continuous and/or discrete way. This means that different DRL
techniques should be adopted in different scenarios, since not all algorithms can deal with
continuous and/or discrete state and action spaces. Finally, it should be also noted that RL
algorithms are trained on specific instances: if such training scenarios are not representative
of new, unforeseen scenarios, the learned policy may be not effective.

Motivated by these considerations, the solution proposed in this work to tackle the
network reconfiguration problem is based on MPC, which is an optimization-based tech-
nique retaining the advantages of optimal control-based approaches. As discussed in
Section 4, the proposed MPC approach guarantees low computational costs, making it
suitable for real-time applications. MPC is a closed-loop optimization technique, which
has been widely adopted, especially in the industrial sector. Surprisingly, in the context
of network reconfiguration, MPC has not been extensively adopted [1] although there
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are some interesting works in the literature. In [9], for example, the author considers a
distribution network composed of several distribution feeders and tackles the problem of
network reconfiguration with the goal of minimizing the operating costs. The proposed
solution, based on a Stochastic MPC, proves to be able to reduce energy losses and to induce
a certain degree of robustness in the network with respect to the variable power generation
peculiar of Renewable Energy Sources (RESs) and prediction errors. A Stochastic MPC was
also proposed in [10], in which the authors tackle the problem of scheduling operations and
reconfigure switches in a distribution network. The proposed solution aims to minimize
the total operating costs and embed technical constraints (e.g., ESSs’ limits, power flow
equations, bus and lines capacities), minimize topology constraints, and also establish a
demand–response model. The authors also discuss the trade-off between computational
costs and performances (i.e., cost reductions), which depends on the dimension of the
considered time horizon. In [11] the authors adopt a similar methodology to simultane-
ously address the network reconfiguration and Plug-in Electric Vehicles’ (PEVs’) charging
management problems. The proposed stochastic MPC aims to minimize the operating
costs of the distribution network (including the costs associated with changes in the net-
work configuration) and of the PEVs’ charging. In [12], the authors address an interesting
generalization of the network reconfiguration problem, simultaneously considering the
distribution network, grid actuators and buildings. The authors propose a centralized
MPC to optimize the power flow of the distribution network while guaranteeing thermal
comfort in the buildings. An interesting work in the context of MPC algorithms applied to
reconfiguration problems is [13], in which the authors consider networked cyber–physical
systems. Although the application domain and the considered control problem are not in
line wih the subject of this work, the proposed distributed MPC implementation could be
interesting for future development. Topology changes in large networked systems are also
addressed in [14], in which the authors propose a distributed MPC that is able to guarantee
the feasibility of the control actions taken by the local controllers.

The main contribution of this paper is the investigation of grid reconfiguration, also
considering the possibility of the dynamical formation of islands in the grid. To achieve this,
the formulation of the previous work [2] was extended with new radiality constraints that
also allow for the formation of islands. Also, the power flow equations are integrated by
following the conic programming approach presented in [15,16], which is slightly modified
here by the addition of simple constraints (14) and (15), which state the symmetric and
anti-symmetric properties of two variables appearing in the power flow equations. Their
addition helps the solver to find the correct solution.

Regarding radiality, different radiality constraints have been proposed in the literature.
In [17], in which 0 denotes the closed state for a switch and 1 the open one, radiality is
imposed by forcing the sum of the state of all the switches to one along every loop in the
network. In this way, one switch in every loop is open, and thus the network is radial.
In [18], in which one substation is considered, the list of all possible paths from every
node to the substation is computed. Then, radiality is enforced by constraining every
node so that only one such path is active, and also by forcing that, if a path is active, all
the paths contained in that path are also active (recall that a path is defined in [18] as a
sequence of links connecting a given node to the substation). In [19], Romero-Ramos et
al. propose using a simple equation that constrains the sum of the status of all the links
(which is equal to one if the link is closed) to be equal to the number of non-substation
buses in the network. This equation is later used in [12]. The authors of [19] explain that
this simple equation fails to impose radiality when there are non-injection buses in the
network (since they can remain disconnected, and loops can then form). To solve this issue,
they include constraints to force the existence of at least one active path between every
zero-injection bus and a non-zero-injection bus. A similar strategy is adopted in [10], in
which additional constraints are included to force every node to have one parent node. An
alternative method for checking the radiality of a strongly connected grid (i.e., with no
islands) is presented in [20], based on a calculation of the determinant of the connection
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matrix. This method is used, for example, in [11]. In this paper, we write the radiality
constraints so that they also work in the islanded case, i.e., they allow for the formation of
radial islands in the grid. To the best of our knowledge, the other work considering the
formation of dynamic islands is [21], which proposes different and more complex equations
than the ones presented here.

The relevant features of the key papers discussed above are outlined in Table 1.

Table 1. Summary of reviewed articles.

Ref. Control Problem and Objectives Methodology Dynamic Islanding

[2]
Loss reduction and resilience
increase in medium-voltage
electricity grids

Economic MPC No No

[4]
Minimization of active energy
losses and oswitching
manipulation costs

DRL (Deep Q-Network) Yes No

[5]
Minimization of operational costs
and differences with
already-adopted strategies

Batch-constrained RL
(Soft Actor-Critic) Yes No

[6] Minimization of network losses
and operational costs DRL (Deep Q-Network) Yes No

[7] Minimization of network losses

DRL (Deep Q- Learning,
Dueling Deep Q-Learning,
Deep Q-Learning with
prioritized experience
replay, Soft Actor-Critic,
Proximal Policy
Optimization)

No No

[8] Voltage Control in Active
Distribution Networks

Safe DRL (Deep
Deterministic Policy
Gradient Algorithm)

No No

[9] Minimization of daily
operation costs Stochastic MPC Yes No

[10] Minimization of operation costs Stochastic MPC Yes No

[11] Minimization of daily
operation costs Stochastic MPC Yes No

[12] Maximization of energy savings
and thermal comfort MPC Yes No

[13]

Tracking operating points’
changes and maximization of
network structural flexibility and
error-tolerance

Distributed MPC Yes No

[14]
Minimization of system costs and
stabilization after
topology changes

Distributed MPC Yes No

[17] Minimization of line losses Linear Programming No No

[18] Minimization of system’s active
power losses

Genetic Algorithm and
Mixed-Integer Linear
Programming

No No

[19]
Minimization of the total active
power injected in the network by
a given set of substations

Mixed-Integer
Quadratically
Constrained
Programming

No No

[21] Maximization of restored active
loads during faults

Mixed-Integer Linear
Programming No Yes

Present
paper

Minimization of losses; reaction
to adverse events MPC Yes Yes
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1.2. Paper Structure

The remainder of the paper is organized as follows. The next section presents the ref-
erence scenario of the study, and the MPC control logic. Section 3 presents the formulation
of the proposed MPC reconfiguration algorithm, detailing the problem constraints and the
objective function. Section 4 presents the simulations performed to validate the approach,
considering a grid equipped with ESS and renewable plants. Finally, Section 5 reports the
conclusions and the proposed future works.

2. Reference Scenario and Proposed MPC Approach

The reference scenario focuses on the control of an electricity grid whose topology
can be dynamically changed to improve the performance of the network (e.g., to minimize
losses), and also to face adverse events such as faults.

The reference scenario is depicted in Figure 1. The reconfiguration of the grid is
controlled with a centralized MPC algorithm. MPC is widely adopted in any industry,
thanks mainly to its ability to handle constrained control, and the possibility it offers to
optimize relevant key performance indicators through the design of the objective function.
For a throughput discussion of the MPC control technique, the reader is referred to one of
the main reference books in the field, e.g., [22]. A brief description of the MPC control logic
is described in Algorithm 1, and discussed in the following. The control is in discrete time; T
denotes the sampling time. At the beginning of the generic time step k, the MPC algorithm
acquires all the information about the current state of the grid (including the energy level of
the storage and the current configuration). Then, an optimal reconfiguration optimization
problem (also known as “the MPC iteration”) is built and solved. The optimization problem
is composed of an objective function, which captures the need to minimize energy losses,
and several constraints, to ensure that the reconfiguration actions that are computed are
admissible, and that all the variables (voltage magnitudes, angles, etc.) remain within the
safety limits. The formulation of such an optimization problem, in terms of the objective
function and the constraints, is presented in the next Section. At every time step, the solution
of the optimization problem contains the optimal commands to send to the grid, which
include the status of every switch and the power injection/consumption of the storage.

SCADA/EMS

MPC RECONF. ALGO.

NOTIFICATION OF 
EVENTS/RISKS

RECONFIGURATION;
ESS SETPOINT

CURRENT STATE (EVENTS, MEASUREMENTS, ETC.)

GRID

MIN. LOSSES/RISK

Figure 1. Reference scenario.

Algorithm 1 MPC charging sessions’ control algorithm

1: for i = k, k + 1, ... do
2: Acquire the current status of the grid (i.e., the current topology and the energy level

of the storage devices).
3: Build and solve an optimization control problem aiming to minimize network losses

and the overall network risk level (the MPC iteration is presented in Section 3).
4: Actuate the new computed topology (if this differs from the one at the previous

time), and send the power setpoint to the ESS.
5: end for

The nomenclature used in the paper is listed in Table 2.
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Table 2. Nomenclature used in the paper.

Symbol Explanation

aij Status of the switch at line (i, j) (aij = 1 if line is connected, zero otherwise).
bij Series susceptance in the π-model of line ij.
α, β, δ Weights in the objective function.
θi Voltage phase angle at bus i.
θij Difference between the phase angle at bus j and the phase angle at bus i.
E Set of links in the electricity grid.
FN Objective function.
G Graph modelling the electricity grid.
gij Series conductance in the π-model of line ij.
h Time index.
i, j Bus indices.
k Current time.
N MPC control horizon.
Ni Set of buses directly connected to bus i.
Pi, Qi Active and reactive power injection into the grid at bus i.
Pij, Qij Active and reactive power flowing from bus i to bus j.
PSB

i Power generated by the generator at substation SB.
Pload

i Power load demand.
CESS

i ESS capacity [kWh] at bus i.
PESS, QESS Active/reactive power of the ESS at bus i.
Rij Auxiliary variable.
S Subset of V .
SOCi SOC of the ESS at bus i.
SOCre f

i Reference SOC level of the ESS at bus i.
Tij Auxiliary variable.
T MPC sampling time.
ui Auxiliary variable.
uij

i Auxiliary variable.
V Set of buses in the electricity grid.
Vi Voltage level at bus i.

The electricity grid is modelled as a graph G := {V , E}, with a set of nodes (or vertices)
V and a set of links E . UseNi to denote the set of nodes that, in G, are physically connected
to node i, i.e.,N i := {j : (i, j) ∈ E}. Links in E can generally be connected and disconnected
by acting on breakers and switches. We model this control action through the inclusion of a
Boolean variable aij associated with the generic link (i, j). For convention, the variable is
equal to one if the link is connected and equal to zero if the link is disconnected (it is, of
course, aij = aji at all times). For the links that are not equipped with breakers or switches,
the value of aij is constrained to one for all the times. Then, at any generic time, depending
on the status of the switches, the current network topology of the grid might differ from G.

For this reason, we refer to G as the physical topology, to distinguish this from the
specific topology to which the grid might be configured at a generic time k, which is denoted
with Gk := {Vk, Ek}. Similarly to N i, let N i

k := {j : (i, j) ∈ Ek} denote the set of nodes that
is directly connected to node i at time k. In general G is a highly meshed network, while we
want to ensure that the reconfiguration algorithm proposed in this paper makes sure that
Gk does not contain cycles. In particular, Gk might be a disconnected network (i.e., it might
contain islands), but any island must be operated radially, which is a standard requirement
for the operation of distribution grids.

In the next section, the optimization control problem built and solved in line 3 of
Algorithm 1 is described. This optimization problem belongs to the category of mixed-
quadratic-integer problems, since it has quadratic terms in the objective function, and it
has both continuous and integer (Boolean in this case) variables. Standard solvers exist to
solve such problems.

3. Proposed MPC Reconfiguration Algorithm

In the following, we detail the mathematical formulation in terms of the objective
function and constraints of the optimization problem that is solved at each instant k by the
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MPC controller (step 3 in Algorithm 1) over the time interval [k, k + N− 1], the well-known
control horizon. Hereafter, thestandard notation for the power system is used: Pi is the
bus power injection (positive) or withdrawal (negative), Pij and Qij denote the active and
reactive line power flows of the line connecting buses i and j, Vi is the bus voltage, θi is the
bus voltage angle, and θij represents the difference between voltage angles at buses i and j.
Power injection and withdrawal at each bus are named PSB

i , PDG
i , PESS

i and Pload
i .

3.1. Objective Function

The objective function is designed to minimize the system power losses and the
switching actions, and to keep the ESSs state of charge close to a convenient reference value,
to guarantee they always have a margin of intervention. The index h ∈ [k, k + N − 1] is
used to indicate a generic time instant within the control horizon. The objective function is
given by:

FN(k, xk, uk) =
k+N−1

∑
h=k

{
α(h) ∑

i∈V
Pi(h)

+ δ(h) ∑
i∈VESS

[SOCi(h)− SOCre f
i ]2

+ β(h) ∑
i,j∈V ,j>i

[
aij(h)(1− aij(h− 1)) + aij(h− 1)(1− aij(h))

]}
.

(1)

The subscript N in FN(k, xk, uk) indicates that the optimal control problem is defined over
N prediction time intervals, xk denotes the state of the controlled variable at instant k, and
uk is the set of control variables, i.e., the ESS power injection and the switching actions
aij. Parameters α, δ, β are the objective function weights. The first term is the sum of the
power injected/withdrawn at every bus in the grid. This represents the total power loss
in the network, which has to be minimized. The second term is a tracking term aiming to
maintain the average state of charge of the ESS at close to the reference value. This should
avoid the ESSs being either fully charged or fully depleted at any point in time (a situation
that should be avoided since, in that case, they could not be either charged or discharged).
The third term is used to control the number of feeders connections/disconnections, to
avoid new configurations being calculated too often.

3.2. Power Flow Constraints

The following constraints are added to the above objective function for h ∈ [k, k + N− 1].
Starting from the well-known nonlinear power flow equations (e.g., [15]), the active and
reactive power flows from node i to node j are:

Pij(h) = aij(h)[GijV2
i (h)− GijVi(h)Vj(h) cos(θij(h))− BijVi(h)Vj(h) sin(θij(h))] (2)

Qij(h) = aij(h)[−BijV2
i (h) + BijVi(h)Vj(h) cos(θij(h))− GijVi(h)Vj(h) sin(θij(h))] (3)

where θij(h) = θi(h) − θj(h). Elements Gij and Bij are the line series conductance and
susceptance, i.e., the real and the imaginary parts of the (i, j) line series admittance Yij.
Lines’ shunt elements are neglected (a reasonable assumption in distribution networks [23]).
Equations (2) and (3) are defined for line (i, j) such that aij = 1. To exactly linearize the
equations, additional auxiliary variables and constraints are introduced. Specifically, let
us introduce variables ui(h) for i ∈ V and Rij(h) and Tij(h) for each line (i, j), defined as
follows [16]:

ui(h) = Vi(h)2/
√

2

Rij(h) = Vi(h)Vj(h) cos θij

Tij(h) = Vi(h)Vj(h) sin θij.

(4)
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The variables Rij and Tij are defined for each line (i, j), and ui and uj are defined at network
nodes i and j. Variables Rij are non-negative, since they are intended to model the product
of voltage times and the cosine of the angle θij (see (4)):

Rij ≥ 0. (5)

Following [16], to model the configuration variables within the power flow equations, it is
necessary to introduce two additional control variables, uij

i and uij
j , for each distinct line

(i, j), and the following constraints were used:

0 ≤ uij
i (h) ≤

V2
i max√

2
aij(h) (6)

0 ≤ uij
j (h) ≤

V2
j max√

2
aij(h) (7)

0 ≤ ui(h)− uij
i (h) ≤

V2
i max√

2
(1− aij(h)) (8)

0 ≤ uj(h)− uij
j (h) ≤

V2
j max√

2
(1− aij(h)). (9)

Variables uij
i (h) and uij

j (h) are zero when the line (i, j) is disconnected (i.e., aij = 0; see
Equations (6) and (7)), and equal ui(h) and uj(h), respectively, when the line is connected
(i.e., aij = 1; see Equations (8) and (9)). The relationship between the variables introduced
above is given as follows (see (33) in [16]):

2uij
i (h)u

ij
j (h) ≥ Rij(h)2 + Tij(h)2. (10)

With the new variables shown above, after some manipulation (details in [16]), the power
flow Equations (2) and (3) assume the linearized form in terms of these new variables:

Pij(h) =
√

2Gij(h)u
ij
i (h)− GijRij(h)− BijTij(h), (11)

Qij(h) = −
√

2Bij(h)u
ij
i (h) + BijRij(h)− GijTij(h). (12)

Note that, from the above equations, when a line is disconnected it is Pij(h) = 0 and
Qij(h) = 0, as expected.

For each node, in terms of the new variables, the voltage limits are:

V2
i min√

2
≤ ui(h) ≤

V2
i max√

2
. (13)

The following relations are introduced, which come from (4) and are important to ensure
that the transformation is consistent

Rij(h) = Rji(h) (14)

Tij(h) = −Tji(h). (15)

For each substation, we set [15]

ui = Vi/
√

2, ui ≥ 0 i = 1, 2, 3, (16)

where Vi is set at 1 pu.
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The ESS are modeled by the following equations:

PESS,min
i ≤ PESS

i (h) ≤ PESS,max
i (17)

QESS,min
i ≤ QESS

i (h) ≤ QESS,max
i (18)

SOCmin
i ≤ SOCi(h) ≤ SOCmax

i ∀i ∈ VESS (19)

SOCi(h + 1) = SOCi(h)− T · PESS
i (h) (20)

where PESS
i and QESS

i represent the active and reactive power of ESS connected at bus i.
SOCi is the measured ESS energy that is stored, T is the discretization time step, and the
initial conditions at each instant of k are

SOCi(k) = SOCk
i ∀i (21)

where SOCk
i is the measured ESS energy stored at instant k. The power-balance equations

for all the nodes i ∈ V are:

Pi(h) = PSB
i (h) + PESS

i (h)− Pload
i (h) + PDG

i (h)

= ∑
j∈Ni

Pij(h) + GiiVi(h)2, (22)

Qi(h) = QSB
i (h) + QESS

i (h)−Qload
i (h) + QDG

i (h)

= ∑
j∈Ni

Qij(h)− BiiVi(h)2, (23)

where PSB
i (h) is the power injected by the HV/MV substations, PDG

i (h) is the power
injected by all the distributed generations at the respective node, and Ni are the neighbour
nodes of node i. Finally, to prevent non-injection buses from remaining isolated, the
following constraint is introduced

∑
i∈V

aij(h) ≥ 1 ∀j, (24)

which means that each node has to be connected with at least one other node. The control
variables are aij(h) and PESS

i (h).

3.3. Radiality Constraints

The radiality constraints are modified with respect to our previous work [2]. They are
needed to correctly guide the reconfiguration algorithm, to make sure that the proposed
configurations do not contain loops, which is not desired in current network operation
practice by the system operators. In this work, we still enforce radiality, but we make it
possible for the algorithms to let islands form when convenient, e.g., to deal with a fault.

To ensure that every island in the network Gk is radial, the following constraints
are added:

∑
i∈S ,j∈S

ai,j ≤ |S| − 1, ∀S ∈ V (25)

where S is any subset of V of cardinality greater than 2. In fact, it is intuitive that a
connected graph with |S| nodes only has loops if there are |S| edges in the graph. As
discussed in [24], writing the above constraint only for V is not sufficient, as this allows
for the formation of islands with loops (see, e.g., Figure 4 in [24]). However, by including
the above constraint ∀S ∈ V (i.e., for every subset in V), we make sure that every island
(which can be viewed as a subset of nodes of V) has no loops. One potential drawback of
the use of (25) is that the number of constraints that need to be added grows exponentially
with the size of the network. Specifically, the number of constraints to be added is equal to
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the number of subsets of nodes of G with a cardinality greater than 2 (indeed, notice that
there cannot be loops in subsets with only two nodes):

|V|

∑
i=3

(
|V|

i

)
=
|V|

∑
i=3

|V|!
(|V| − i)!i!

. (26)

In practice, however, the number of constraints (25) to be added is much lower than (26),
since it is not necessary to consider subsets S that are disconnected in the physical topology,
or that are connected in the physical topology by a lower number of links than |S| − 1
(since it is not possible to form loops in this case).

In conclusion, constraint (25) is added only for the subsets S satisfying the follow-
ing condition:

∑
(i,j)∈E :i,j∈S ,i≥j

1 > |S| − 1, (27)

which means that it is only added for the subsets of nodes that are connected (in the
physical topology) by a number of links greater than |S| − 1.

4. Simulations

We simulate one day of network operation to show how the combined use of ESSs and
reconfiguration actions can efficiently manage the grid in nominal and adverse conditions,
simulating faults/(cyber)attacks.

4.1. Simulation Setup

Simulations were performed in Julia 1.8.5 [25]. The MPC iterations were solved with
the solver Gurobi [26]. The PC was equipped with Intel i7-8565U @1.8 GHz and 16 GB
RAM, running Windows 11.

The chosen grid was the 16-bus, three-feeder distribution network, and network data
were chosen from [27], to which we added both generation and ESS devices and also some
branches to increase the network configuration capability (see Figure 2).

Figure 2. 16-bus distribution network [2]. During simulations, all branches were considered configurable.

Specifically, the bus types were as specified in Table 3 and network electric parameters
are summarized in Table 4.
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Table 3. Bus types.

Bus Types Bus Numbers

Substations 1, 2, 3.
Hosting ESS 3, 7, 9.
Loads buses 5, 6, 7, 8, 9, 10, 11, 13, 14, 16.
Hosting DG 4, 12, 15.

Table 4. Conductance and susceptance in per-unit notation.

Link G B

L1 0.225 0.3
L5 0.24 0.33
L4 0.27 0.54
L7 0.12 0.12
L2 0.33 0.33
L9 0.24 0.33

L10 0.33 0.33
L13 0.33 0.33
L11 0.24 0.33
L3 0.33 0.33

L15 0.27 0.36
L14 0.24 0.33
L16 0.24 0.33
L6 0.12 0.12

L12 0.12 0.12
L8 0.27 0.36

L17 0.12 0.12
L18 0.12 0.12
L19 0.12 0.12
L20 0.27 0.36

As explained in [16], the substation voltages were fixed at 1.0 pu and the minimum
allowed load voltage was 0.95 pu. The sampling time was set to T = 15 minutes and
the MPC prediction horizon was set to N = 3. The weights of the Equation (1) were
chosen empirically to be equal to α = 10, δ = 10−3 and β = 10−3. Note the orders of
magnitude of difference between α and the other weights; the reason for this is to achieve a
more controlled focus on power loss reduction. The parameter δ was chosen to be small
enough to guarantee the successful activation of ESSs; in fact, increasing δ means that
the controller tries to keep the ESS stored energy close the reference value, consequently
discouraging its activation. The value of β was chosen to guarantee a good performance
while limiting the number of configurations. The MV busbars of the HV/MV substations
are characterized by the small and constant power consumption of 10 kW, characterizing the
device consumption necessary for the operation of the network. The distributed simulated
power generation hosted by the buses is represented in Figure 3 with a peak of 750 kW
during the hottest hours of the day, and shifted over time to simulate a real and different
geographical position.

The simulated bus loads have a steps shape and differ from each other only in terms
of magnitude (see Figure 4). The reason for choosing these types of functions is to stress the
system with sudden changes in load. This is particularly useful when testing non-nominal
conditions and can verify the robustness of the mathematical model and prove if and how
the system is able to respond to adverse events.

All measures are represented per unit to avoid numerical issues, and to convert the
electrical values of the network into per-unit measurements, we considered the base power
Pbase of 62 MW and the base voltage Vbase of 24 kV as the nominal power and voltage of the
equipment, respectively.

At each bus, the maximum and minimum voltage values were set to Vmax = 24 kV
and Vmin = 22.8 kV (i.e., 95% of Vmax). The transmission power constraints of substa-
tions were chosen as follows: PSB

max = 62 MW, PSB
min = −62 MW and QSB

max = 60 MVA,
QSB

min = −60 MVA for active and reactive power, respectively. Power bus constraints were
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Pbus
max = 10 MW, Pbus

min = −10 MW and Qbus
max = 10 MVA, Qbus

min = −10 MVA. The line power
constraints were Pl

max = 10 MW, Pl
min = −10 MW and Ql

max = 10 MVA, Ql
min = −10 MVA.

Figure 3. Power generation from the distributed energy resources throughout a day. Maximum peak
of 750 kW.

Figure 4. Load variations throughout a day.

The ESS energy reference was set to be equal to 80% of total ESS capacity. All the ESSs
had a maximum capacity of 2 MWh.

All branches were assumed to be configurable, i.e., equipped with switches. Note that,
in real cases, this assumption could be relaxed because the network could contain some
fixed and non-configurable branches.

The Equation (25) was implemented using a customised version of the Depth-First
Search (DFS) algorithm whose computational time, in the worst case, is linear and corre-
sponds to the size of the graph O(|V|+ |E |), where |V| is the number of vertices and |E | is
the number of edges. It is also linear in terms of space regarding the number of vertices
O(|V|) in the worst case.

4.2. Simulation of Normal Conditions

In this section, the simulations under normal conditions are presented, i.e., when no
faults occur. Figure 5 depicts the computed configurations in nominal conditions. The
starting configuration (graph topology) was set with all opened branches. In the first
iteration, the algorithm chooses to close some branches, depicted at time 0:00. During the
simulation time of 24 h, four reconfigurations are computed.
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Figure 5. Starting configuration with all opened branches. At the first iteration (namely 0:00), the
topology is calculated.

The power flow of all lines is depicted in Figure 6, where a generic line Lk refers to
the connection between bus i and bus j, with i < j, e.g., L16, serving as the line connecting
buses 15 and 16. Figure 7 shows the power flow of line 16 in detail. In this case, both flows
described by the power flow equations are shown, from bus i to bus j and vice versa.

Figure 6. Power flow in normal conditions. Each line represents Pij, i.e., the power flow from bus i to bus
j, with i < j. For example, line 13 (L13) connects bus 9 (B9) and bus 11 (B11), and its power flow is P9,11.

Figure 7. Power flow of line 16 (L16) in normal conditions. The power flow is plotted considering the
line from bus 15 (B15) to bus 16 (B16), i.e., P15,16, and vice versa (P16,15).
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The behaviors of the power and energy stored by ESSs are shown in Figures 8 and 9,
respectively. ESSs at buses 7 and 9 are always an active part of the network. First of all,
they are located in a sensible part of the network. ESS 7 has to feed the tree of the network,
which is disconnected from any DG, it has to feed a large tree, and it is also located away
from the primary substation. After 12:00 and 18:00, its role is to power the largest tree in
the network. ESS 3 is never activated, as expected, because it is directly connected to the
HV/MV substation.

Figure 8. ESS power in normal conditions. Lower bound at −1000 kW; maximum value of ≈220 kW
reached by ESS 7.

Figure 9. ESS energy in normal conditions. Reference value is 80% of the maximum capacity,
i.e., 1600 kWh.

Simulations were also carried out by setting β = 0 and obtaining 79 reconfigurations.

4.3. Simulation of Adverse Event

This section presents the case in which, at some point, time faults/(cyber-)attacks
occur, causing the algorithm to calculate a new configuration to counteract the lack of faulty
lines or adverse events in general. For this purpose, the fault in the lines is presented in
Table 5, where a faulty line is disconnected from the network and its recovery is assumed to
take no less than 24 h, i.e., the fault is permanent for the entire duration of the simulation.

Seven reconfigurations occur; some of them are depicted in Figure 10. The configura-
tion computed at the first iteration is not plotted and does not change until 7:30, when a
new configuration is calculated. Notice that the intention is to force the formation of an
island simulating the failure of lines described in Table 5. The island formed at 20:00.
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Table 5. Lines Fault.

Fault Time Line

8:45 L18
14:45 L11
20:00 L4 and L8

Figure 10. Faults occur at 8:45 for L18, 14:45 for L11 and at 20:00 for L4 and L8. The island is formed
at 20:00.

Figures 11 and 12 depict the energy and power of each ESS; the vertical lines highlight
the time steps at which faults occur. Also, in this case, the weights of the objective function
were chosen to encourage the use of ESSs. As expected, ESS 3 was not activated because of
its proximity to the HV/MV substation. ESS 7, at 20:00, comes into play in a more decisive
way because it has to feed the island.

In Figure 13, the power flows of line 16 (L16) are reported and it becomes inactive due
the reconfigurations that occur from 14:45 to just before 20:00, as per Figure 10.

A general overview of the power flows along all the lines is reported in Figure 14.
Note that the only difference from the normal case scenario is that, here, the simulations
were carried out by setting a constant load of 50 kW connected to bus 7. This is because the
island is fed by only an ESS and a DG; therefore, the power available to counteract the load
is limited. In this specific case, a high level of consumption makes the problem unfeasible,
as expected.

To demonstrate the effectiveness of the third term in the objective function, simulations
were also carried out with β = 0, obtaining 63 reconfigurations.

Figure 11. ESSs power during the simulation of an adverse event. Vertical bars indicate line faults.
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Figure 12. ESSs energy during the simulation of an adverse event. Vertical bars indicate line faults.
Reference value is 80% of the maximum capacity, i.e., 1600 kWh.

Figure 13. Power flow of line L16 in fault conditions. The power is plotted considering the line
from bus 15 to bus 16 and vice versa. The power flow is zero when the line is disconnected due the
reconfiguration that occurs from 14:45 to just before 20:00.

Figure 14. Power flow of all lines in fault conditions. Each line represents Pij, i.e., the power flow
from bus i to bus j, with i < j. For example, line 13 (L13) connects bus 9 (B9) and bus 11 (B11).

4.4. Benchmark and Power Losses Considerations

The last consideration regards the power losses, and the simulations of Sections 4.2 and 4.3
are compared with the case in which the network is static, i.e., no reconfiguration occurs.
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To this end, the reference scenario is the one depicted in Figure 2, in which links with
solid lines are considered fixed links and the ones with dotted lines are always considered
open (aij = 0). Losses are simply calculated as the sum of the power injections at each bus.
Figures 15 and 16 show losses in the static scenario, and the total mean loss is 4.9%.

Figure 15. Losses in static scenario.

Figure 16. Ratio of losses/total power absorbed in static scenario. The total mean loss is 4.9%.

Figures 17 and 18 show losses in the normal conditions scenario, and the total mean
loss is 4.6%.

Figure 17. Losses in the normal conditions scenario.
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Figure 18. Ratio of losses/total power absorbed in normal conditions scenario. The total mean loss is
4.6%.

Figures 19 and 20 show losses in the adverse events scenario, and the total mean loss
is 5.01%.

Figure 19. Losses in the adverse events scenario.

Figure 20. Ratio of losses/total power absorbed in adverse events scenario. The total mean loss is
5.01%.

The results clearly show how the present reconfiguration algorithm is better in terms of
loss optimization compared to the benchmark solution given by a completely static network.



Electronics 2023, 12, 4982 19 of 21

4.5. Computational Complexity

Finally, the computing time for each MPC iteration is reported in Figures 21 and 22.

Figure 21. Time elapsed under normal conditions.

Figure 22. Time elapsed under in fault conditions.

5. Conclusions and Future Works

This paper presented a Model Predictive Control (MPC) approach to the dynamic
reconfiguration of electricity grids. The proposed mathematical formulation is extended
from a previous paper by the authors, allowing for the dynamic formation of islands
fed by ESS and local plants, which help the grid to reduce losses, and allow for better
reconfigurarion following faults and adverse events. Also, during islanding, the radial
operation of the entire grid is guaranteed by the inclusion of dedicated radiality constraints
(which also guarantee the radiality of all the islands). Simulations are performed to test
the algorithm in normal and adverse conditions, when faults occur on the lines. The
results show the positive interplay between the ESS action and reconfiguration, which the
algorithm can ensure in order to minimize dynamic losses and react to faults through the
dynamic formation of islands.

Future works will deal with the extension of the algorithm so that it can manage
notifications about the future expected level of risk for all the network components, and
react to cyberattacks that are detected or predicted based, e.g., on network traffic analysis or
other means. In addition, real-time simulations will be performed to accurately model the
dynamics of the network during switching and evaluate the performance of the controller
in a real-time implementation, i.e., also considering the impact of the MPC computation
time compared to the sampling time.
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