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A B S T R A C T

We consider the Hopfield neural network as a model of associative memory and we define its neuronal interaction matrix 𝑱 as a function of a set 
of 𝐾 × 𝑀 binary vectors {𝝃𝜇,𝐴}𝐴=1,...,𝑀

𝜇=1,...,𝐾
representing a sample of the reality that we want to retrieve. In particular, any item 𝝃𝜇,𝐴 is meant as a 

corrupted version of an unknown ground pattern 𝜻𝜇 , that is the target of our retrieval process. We consider and compare two definitions for 𝑱 , 
referred to as supervised and unsupervised, according to whether the class 𝜇, each example belongs to, is unveiled or not, also, these definitions 
recover the paradigmatic Hebb’s rule under suitable limits. The spectral properties of the resulting matrices are studied and used to inspect the 
retrieval capabilities of the related models as a function of their control parameters.
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1. Introduction

Since its introduction, in the eighties, the Hopfield neural network has attracted a big deal of attention from a broad community 
of scientists at the interface of physics, mathematics and computer science [1,2]. In fact, the Hopfield network is recognized as 
a paradigmatic model for associative memory: if properly designed, it can store and retrieve a set of 𝐾 information patterns 𝝃 =
{𝝃𝜇}𝐾

𝜇=1, with 𝝃𝜇 ∈ {−1, +1}𝑁 . More precisely, the model consists of a set of 𝑁 binary neurons, whose configuration is denoted as 
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𝝈 ∈ {−1, +1}𝑁 , interacting pairwise and symmetrically by an interaction strength encoded by the coupling matrix 𝑱 ∈ ℝ𝑁×𝑁 , and 
evolving in time in such a way that any neuron 𝜎𝑖 gets progressively aligned with the local field (𝑱𝝈𝑇 )𝑖 acting on it and stemming 
from the neighboring neurons. The key point for the functioning of the model as an associative memory is therefore to design 𝑱 in 
such a way that stored patterns are associated to attractors in the configuration space. The standard choice is inspired by Hebb’s 
principle [3] and reads as 𝑱 = 𝝃𝑇 𝝃∕𝑁 , which, in the case of Rademacher patterns and in the large-size limit, ensures a storage 
capacity of approximately 0.14𝑁 patterns, see e.g. [4].

In this context, determining the structure of the attraction basins is a paramount goal in order to understand the information 
processing principles lying behind the associative memory functionalities and possibly to highlight qualitatively-different working 
regimes of the model corresponding to different parameter settings. Such analysis can be naturally framed by means of the statistical 
mechanics of spin glasses, as pioneered by Amit, Gutfreund and Sompolinsky [5,6]. On the mathematical side, several results have 
been derived for the Hopfield model, by exploiting different techniques – ranging from large deviation analysis [7,8] to Guerra’s 
interpolation [9–11] – and leading to bounds on the storage capacity [12–19]. The analytical investigations underlying these results 
have significantly benefited from the simple expression of the Hebbian interaction matrix. On the other hand, the cost for this 
simplicity is a limited capacity of the network: in the limit of large size 𝑁 , a symmetric neural network can store up to 𝑁 patterns 
[20], that is much higher than the aforementioned 0.14𝑁 . In fact, as the number of stored patterns is relatively large, the related 
attraction basins tend to overlap, giving rise to frustration and, consequently, to a plethora of spurious attractors, whose retrieval 
is interpreted as an error of the network. Thus, several algorithms have been developed to optimize the model coupling matrix, 
enhancing the attractive power of stored patterns and increasing the critical storage capacity [21–29]; in general, the core idea of 
these algorithms is to modify the structure of the Hebbian matrix 𝑱 , in order to disentangle the attraction basins of the patterns and 
then downsizing the harmful effect associated to the presence of spurious attractors. Among these algorithms, we recall the so-called 
dreaming kernel [30–32], which shall constitute the starting point for our work.

Beyond these variations on Hebb’s theme, more recently, much attention has been devoted to a scenario in which the information 
supplied and used to build the interaction matrix does not correspond to ground-truth patterns, but rather to examples of theirs, 
namely to samples of the reality that we want to retrieve [33–35]. This modified setting allows us to develop models in which the 
attractiveness of the ground patterns, that are not directly accessible and therefore are not stored in the coupling matrix, emerges 
as a consequence of the coalescence of attraction basins associated to examples related to the same ground pattern. This kind of 
phenomenon is responsible for the generalization capabilities of the model. The ways examples can be combined into the coupling 
matrix mimic the two training protocols: i. in the supervised setting, we know a priori the organization of the examples in, say, 
𝑃 classes, so that – assuming noise in the examples is uncorrelated – the empirical mean, say �̄�𝜇

for the 𝜇-th class, is a good 
approximation of the reality; in this way, we can promote this mean as a representative of the given 𝜇-th class, and store this, namely 
use the set {�̄�𝜇}𝜇=1,...,𝑃 to build 𝑱 ; ii. in the unsupervised setting, in which there is no a priori distinction between examples belonging 
to different classes, the only possible way to store information in 𝑱 is to treat all of them as distinct information patterns.

As a matter of fact, crucial properties of these Hopfield-like models are entirely encoded in the structure of the (random) coupling 
matrix, and, in particular, in its spectral properties, see for example [36–38] for recent investigations. Moreover, the strong relation 
between random-matrix theory tools and spin-glass models constitutes a long-standing research topic, see for instance [39–42], and 
also [43–53] for applications in machine learning and information theory. In this paper, we consider a set of Rademacher ground 
patterns and we obtain a sample of examples by randomly flipping a certain fraction of their entries. With these samples, we build 
the dreaming kernel, distinguishing between a supervised and an unsupervised version and for both we derive the exact eigenvalue 
distribution in the limit of a large size 𝑁 . By relying on such a knowledge, we inspect the generalization capabilities of the model, 
as a function of its parameters.

The path that we pursue is the following: first, we present the model and the related definitions (Sec. 2), next, we state the main 
analytical results (Sec. 3), and we apply them to investigate the information-processing capabilities of the model (Sec. 4); finally, we 
summarize and discuss our findings (Sec. 5). The proofs and the technical details are collected in the Appendices.

2. The framework: models, methods and quantities

Given a set of patterns 𝝃𝜇 ∈ {−1, +1}𝑁 , with 𝜇 = 1, ..., 𝐾 , the reference coupling matrix for the following analysis is given by

𝐽
𝝃

𝑖𝑗
(𝑡) = 1

𝑁

𝐾∑
𝜇,𝜈=1

𝜉
𝜇

𝑖

( 1 + 𝑡

𝟏+ 𝑡𝑪

)
𝜇𝜈

𝜉 𝜈
𝑗

, (2.1)

where 𝑡 ∈ ℝ+ and 𝑪 is the pattern correlation matrix (vide infra). The matrix 𝑱𝝃 was introduced in [30] and can be derived from 
Hebb’s one by implementing consolidation and remotion mechanisms inspired by those occurring in mammal’s brain during sleep. 
Thus, the resulting model is referred to as “dreaming Hopfield model” and 𝑡, which tunes the extent of such mechanisms, as “dreaming 
time”, see also the recent related works [36,54–57]. Notably, the matrix 𝑱𝝃 includes paradigmatic cases: by setting 𝑡 = 0 we recover 
the Hebbian coupling and, in the limit 𝑡 →∞, we recover Kohonen’s projection matrix [58]; the latter is known to reach the storage-

capacity upper-bound, that is, a number 𝐾 = 𝑁 of patterns can be successfully stored and retrieved. Moreover, the coupling matrix 
(2.1) turns out to emerge as the solution of the minimization of a 𝐿2-regularized loss-function where a cost is shaped whenever the 
2

configuration corresponding to one of the stored patterns is not stable and where the regularization parameter is mapped into the 
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dreaming time [37]. In fact, the dreaming time controls the overlap between different attraction basins: the higher 𝑡, the lower the 
attractive power of spurious configurations [30–32].

Before proceeding, it is worth introducing the following notation 𝑥 ∼ Rad(𝑝), with 𝑝 ∈ [−1, +1], that, in the following, shall define 
a binary random variable 𝑥, drawn from the distribution (𝑥) = 1−𝑝

2 𝛿𝑥,−1 +
1+𝑝

2 𝛿𝑥,+1, in such a way that, when 𝑝 = 0, 𝑥 is a standard 
Rademacher variable, while, when 𝑝 ≠ 0, 𝑥 is a biased binary random variable with expectation 𝑝. We are now ready to describe the 
three settings that we are inspecting in the next sections:

a) In the basic storing setting, we have 𝐾 = 𝑃 patterns1 {𝝃𝜇}𝑃
𝜇=1, each made of 𝑁 Rademacher entries: 𝜉

𝜇

𝑖
∼ Rad(0) for any 

𝜇 = 1, … , 𝑃 and 𝑖 = 1, … , 𝑁 . The correlation matrix in (2.1) reads as 𝐶𝜇𝜈 =
1

𝑁

∑
𝑖 𝜉

𝜇

𝑖
𝜉 𝜈

𝑖
.

b) In the supervised setting, we have 𝑃 ground patterns {𝜻𝜇}𝑃
𝜇=1, each made of 𝑁 entries and, from these, we generate 𝐾 = 𝑃 × 𝑀

examples, denoted as {𝝃𝜇,𝐴}𝐴=1,...,𝑀

𝜇=1,...,𝑃
, by randomly flipping the entries of the related ground-pattern. Specifically, we choose 

Rademacher ground-patterns, that is 𝜁
𝜇

𝑖
∼ Rad(0), and uncorrelated noise for examples, that is,

𝜉
𝜇,𝐴

𝑖
= 𝜒

𝜇,𝐴

𝑖
𝜁

𝜇

𝑖
, with 𝜒

𝜇,𝐴

𝑖
∼ Rad(𝑟), 𝑟 ∈ [0,1], (2.2)

for any 𝜇 = 1, … , 𝑃 , 𝑖 = 1, … , 𝑁 , and 𝐴 = 1, … , 𝑀 . In this supervised setting, since the class of each example is unveiled, we 
can calculate the empirical mean of examples in each class as

𝜉
𝜇

𝑖
∶= 1

𝑀

𝑀∑
𝐴=1

𝜉
𝜇,𝐴

𝑖
= 1

𝑀

𝑀∑
𝐴=1

𝜒
𝜇,𝐴

𝑖
𝜁

𝜇

𝑖
=∶ �̄�

𝜇

𝑖
𝜁

𝜇

𝑖
.

Then, the coupling matrix is defined as

𝐽 𝑠
𝑖𝑗
(𝑡) = 1

𝑁

𝑁∑
𝑖,𝑗=1

𝑃∑
𝜇,𝜈=1

𝜁
𝜇

𝑖
�̄�

𝜇

𝑖

( 1 + 𝑡

𝟏+ 𝑡𝑪 s

)
𝜇𝜈

�̄� 𝜈
𝑗

𝜁 𝜈
𝑗

,

where

𝐶 𝑠
𝜇𝜈

= 1
𝑁

𝑁∑
𝑖=1

𝜁
𝜇

𝑖
�̄�

𝜇

𝑖
�̄� 𝜈

𝑖
𝜁 𝜈

𝑖

is the correlation matrix of the empirical means of the examples.

c) In the unsupervised setting, the examples {𝝃𝜇,𝐴}𝐴=1,...,𝑀

𝜇=1,...,𝑃
are generated precisely as in the previous setting b), but, in this case, 

there is no preassigned label distinguishing between classes. As a consequence, we store all the examples as information patterns, 
i.e. in (2.1) we replace 𝜉

𝜇

𝑖
with 𝜉

𝜇,𝐴

𝑖
and the sum over 𝜇 is replaced with the sum over (𝜇, 𝐴), namely the sum is performed over 

all the 𝑃 × 𝑀 examples. The coupling matrix is

𝐽 𝑢
𝑖𝑗
(𝑡) = 1

𝑁 𝑀

𝑃∑
𝜇,𝜈=1

𝑀∑
𝐴,𝐵=1

𝜉
𝜇,𝐴

𝑖

( 1 + 𝑡

𝟏+ 𝑡𝑪𝑢

)
(𝜇𝐴),(𝜈 𝐵)

𝜉
𝜈 ,𝐵

𝑖
,

where

𝐶 𝑢
(𝜇𝐴),(𝜈 𝐵) =

1
𝑁 𝑀

𝑁∑
𝑖=1

𝜉
𝜇,𝐴

𝑖
𝜉

𝜈 ,𝐵

𝑖
,

is the dataset correlation matrix.

Remark 1. The parameter 𝑟, underlying the statistics of the random variable 𝜒 appearing in Eq. (2.2), is related to the fraction 
of pixels that are expected to be flipped in any example, say 𝝃𝜇,𝐴, with respect to the ground 𝜻𝜇 . In particular, when 𝑟 = 0, each 
example is, in the average over the entry-flipping probability, orthogonal to the related archetype, while, when 𝑟 = 1, each example 
is a perfect copy of the related archetype. Thus, 𝑟 and 𝑀 can be interpreted as, respectively, a measure of the quality and of the 
quantity of the available dataset.

3. Algebraic properties of the coupling matrices

The retrieval capabilities of the models described in the previous section can be addressed by relying on the eigenvalue distribu-

tions of the related coupling matrices.2 Also, by comparing their spectra we can assess to what extent the models encoded by 𝑱 𝑠 and 

1 In the basic storing setting, we use 𝑃 to denote the number of orthogonal patterns for homogeneity with the other scenarios, where 𝑃 is the number of classes; 
in any case, in the thermodynamic limit, we pose 𝛼 = 𝑃∕𝑁 .

2 A derivation of these coupling matrices from statistical inference can be found in [59] for the standard Hebbian model and in [60] for the dreaming Hopfield 
3

model.
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𝑱 𝑢 differ from the model built on ground patterns and therefore the effectiveness of their definitions. This motivates the aim of this 
section, that is, determining the spectral properties for the random matrices under consideration.

Definition 1 (Thermodynamic limit). The thermodynamic limit (TDL) is defined as 𝑁 , 𝑃 →∞ with 𝑃 = 𝑃 (𝑁) and lim𝑁→∞ 𝑃∕𝑁 = 𝛼, 
with 0 < 𝛼 ≤ 1. When dealing with ground patterns (i.e., setting 𝑎), this coincides with the so-called high-storage regime of the 
Hopfield model.

In the following, unless it is explicitly specified, we will denote the coupling matrix as 𝑱 (𝑡), regardless of the setting under 
consideration. In fact, by denoting with 𝑿 the matrix made of the information vectors (ground patterns or examples) on the rows – 
in the random pattern and supervised cases, it is a 𝑃 × 𝑁 matrix with entries resp. 𝑋𝜇𝑖 = 𝜉

𝜇

𝑖
and 𝑋𝜇𝑖 =

1
𝑀

∑
𝐴 𝜒

𝜇,𝐴

𝑖
𝜁

𝜇

𝑖
, while in the 

unsupervised case it is a 𝑀 𝑃 × 𝑁 matrix with entries 𝑋(𝜇,𝐴),𝑖 = 𝜒
𝜇,𝐴

𝑖
𝜁

𝜇

𝑖
where the double index (𝜇, 𝐴) labels each example in the 

dataset – any of the coupling matrices introduced above can be written as

𝑱 (𝑡) = 1
𝐷𝑁

𝑿𝑇
( 1 + 𝑡

𝟏+ 𝑡𝑪

)
𝑿, (3.1)

with 𝑪 = 1
𝐷𝑁

𝑿𝑿𝑇 and 𝐷𝑁 is a normalization factor that reads as 𝐷𝑁 = 𝑁 for the basic storing and the supervised case, or 
𝐷𝑁 = 𝑁 𝑀 for the unsupervised case.

Lemma 1. The following results hold:

1. The coupling matrix 𝑱 (𝑡) satisfies the differential equation

�̇� (𝑡) = 1
1 + 𝑡

[𝑱 (𝑡) − 𝑱 (𝑡)2]. (3.2)

2. Given the eigenvalues 𝜆0
𝛼

of the coupling matrix 𝑱 0 ∶= 𝑱 (0), then the eigenvalues 𝜆𝛼(𝑡) of 𝑱 (𝑡) are in bijective correspondence with 𝜆0
𝛼

through the relation

𝜆𝛼(𝑡) = 1 + 𝑡

1 + 𝑡𝜆0
𝛼

𝜆0
𝛼

. (3.3)

3. The eigenspaces of 𝑱 0 are stable under dreaming flow, that is, if {𝑣1
𝛼

, … , 𝑣𝑚
𝛼
} are the eigenvectors of 𝑱 0 associated to an 𝑚-degenerate 

eigenvalue 𝜆0
𝛼
, then 𝑆 𝑝𝑎𝑛({𝑣1

𝛼
, … , 𝑣𝑚

𝛼
}) is the eigenspace of 𝑱 (𝑡) associated to the eigenvalue 𝜆𝛼(𝑡).

The proof of this lemma is detailed in App. A.

Remark 2. Lemma 1 states that the dreaming interaction matrix 𝑱 (𝑡) defined in (2.1) results from the evolution (3.2), regardless of 
the underlying setting. In other words, whether 𝑱 (𝑡) stems from a basic storing or by the combination of corrupted examples (either 
labeled or not), that is, whether 𝑱 (𝑡) is meant for storing or for generalization, it still results from the process represented by (3.2)

which encodes for a consolidation (positive term in the square brackets in Eq. (3.2)) and a remotion (negative term) mechanism.

Having established these basic properties of the coupling matrices in all the three settings under consideration at finite 𝑁 , 𝑃

and 𝑀 , we are now able to study their relevant spectral properties in the thermodynamic limit. In that limit, for the supervised and 
unsupervised settings, we also pose 𝑀 → ∞, regardless of 𝑁 ; this condition is also referred to as the big-data regime. The main 
results of the section are summarized in the following

Theorem 1. In the thermodynamic limit 𝑁 →∞ and, for the supervised and unsupervised settings, in the infinite sample-size limit 𝑀 →∞, 
the following results hold:

1. The empirical spectral distribution 𝜇0
𝑁

= 1
𝑁

∑
𝛼 𝛿

𝜆0𝛼
of 𝑱 0 (with 𝛿𝜆 being the Dirac delta measure at 𝜆) converges in weak topology 

𝜇0
𝑁
→ 𝜇0, where

𝑑 𝜇0(𝜆) = (1 − 𝛼)𝛿(𝜆 − �̂�0)𝑑 𝜆 + 𝛼𝑑 𝜇MP(𝜆), (3.4)

with the measure 𝑑 𝜇MP(𝜆) being a shifted Marchenko-Pastur distribution MP(𝛼, 𝜎2), i.e.

𝑑 𝜇MP(𝜆) = 1
2𝜋𝜎2

√
(𝜆0

+ − 𝜆)(𝜆 − 𝜆0
−)

𝛼(𝜆 − �̂�0)
𝑑 𝜆, (3.5)

√

4

and 𝜆0
± = 𝜎2(1 ± 𝛼)2 + �̂�0. The parameters 𝜎2 and �̂�0 depend on the setting under consideration;
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Fig. 1. Limiting spectral distributions of the couplings matrix. The figure shows the probability distribution 𝑃 (𝜆) = 𝑑 𝜇

𝑑 𝜆
(3.7) in the three settings under consid-

eration: basic storing (first row), supervised (second row) and unsupervised (third row) cases. In the first row, we plotted the spectral distribution for various values 
of 𝛼 and 𝑡, while in the supervised and unsupervised setting we fixed 𝛼 = 0.1 and vary 𝑡 and 𝑟. The vertical arrows (whose heights are arbitrary) refer to the location 
of the 𝛿-peak: in the basic storing and supervised cases, the location is at 𝜆 = 0 (as �̂�0 = 0), while in the unsupervised case it depends on 𝛼, 𝑡 and 𝑟, as predicted by 
Theorem 1.

2. The empirical spectral distribution 𝜇𝑡
𝑁
= 1

𝑁

∑
𝛼 𝛿𝜆𝛼 (𝑡) of the coupling matrix 𝑱 (𝑡) converges in weak topology 𝜇𝑡

𝑁
→ 𝜇𝑡, where

𝑑 𝜇𝑡(𝜆) = 𝑑 𝜇0
[

𝜆

1 + 𝑡(1 − 𝜆)

]
, (3.6)

i.e.

𝑑 𝜇𝑡(𝜆) = (1 − 𝛼)𝛿

[
𝜆 − (1 + 𝑡)�̂�0

1 + 𝑡�̂�0

]
𝑑 𝜆 + 𝛼𝑑 𝜇𝑡

bulk
, (3.7)

where the bulk distribution is

𝑑 𝜇𝑡
bulk

(𝜆) = 1 + 𝑡

2𝜋𝜎2

√
(1 + 𝑡𝜆0

−)(1 + 𝑡𝜆0
+)

[1 + 𝑡(1 − 𝜆)]2

√
(𝜆+ − 𝜆)(𝜆 − 𝜆−)

𝛼[(1 + 𝑡�̂�0)𝜆 − (1 + 𝑡)�̂�0]
𝑑 𝜆, (3.8)

with 𝜆± = (1+𝑡)𝜆0±
1+𝑡𝜆0±

, and 𝜎2 and �̂�0 are the same parameters of the previous point depending on the setting under consideration.

The proof of this theorem is provided in App. B.

Remark 3. Theorem 1 fully characterizes the spectral properties of the coupling matrix in all the three settings. Below, we discuss 
point by point its content, and refer to Fig. 1 for a visual representation of the spectral distributions for various values of the tunable 
parameters 𝑡, 𝑟 and 𝛼.

• Point 1. of the theorem states that, at 𝑡 = 0 (that is where the Hebbian structure 𝑱 0 ∝𝑿𝑇 𝑿 is recovered), the spectral distribution 
consists in a delta-peak located at �̂�0 and a shifted Marchenko-Pastur bulk with mass, respectively, 1 − 𝛼 and 𝛼. The parameters 
of the distribution depend on the setting (see App. B); in particular, for ground patterns and supervised settings, the location of 
the delta peak is at �̂�0 = 0, while in the unsupervised setting �̂�0 = 𝛼(1 − 𝑟2). This is consequence of the fact that, unlike the other 
5

cases, in the unsupervised setting the coupling matrix is full-rank in the large dataset limit, thus all the eigenvalues are positive;
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• When 𝑡 > 0, point 2. of the theorem states that the spectral distribution is accordingly deformed under the dreaming flow (3.3). 
In this case, the shifted Marchenko-Pastur bulk will move and progressively concentrates around the limiting eigenvalue 𝜆 = 1. 
On the other side, the delta-peak will always be located in 𝜆 = 0 for the ground patterns and supervised settings, while in the 
unsupervised one, as 𝑡 is increased, it will move as well towards 𝜆 = 1, so that at 𝑡 →∞ the whole spectrum concentrates around 
the limiting eigenvalue, and the coupling matrix converges to the identity.

Before going further, we stress that the unsupervised setting is a rather peculiar scenario if compared to basic storing and 
supervised cases, as it is characterized by two different regimes. If 𝑀 𝑃 ≥ 𝑁 , the coupling matrix is full-rank, and eigenvalues are 
all strictly positive (this is the regime in which Theorem 1 is derived, as we are interested in the large dataset limit). If 𝑀 𝑃 < 𝑁 , 
the coupling matrix is low-rank, with a fraction 1 − 𝑀 𝑃∕𝑁 of vanishing eigenvalues; in this regime, the positive component of the 
spectrum exhibits a different distribution, with the 𝐾 largest eigenvalues, well-separated from the continuous bulk at low 𝑡, and 
the bulk ultimately collapsing to 𝜆 = 1 in the 𝑡 →∞ limit. In that case, the emerging generalization performance exhibits specific 
features and we refer to [37] for an extensive discussion.

When dealing with examples of unavailable, ground patterns, either in a supervised or unsupervised setting, it is natural to 
question whether our empirical models accounts for a good representation of the reality, namely whether 𝑱 𝑠 and 𝑱 𝑢 are close to 
𝑱𝜻 where we directly store the ground-truths as information patterns. In order to assess the validity of our models, we consider the 
squared error between the empirical coupling matrices and the one built with the ground-truths, as the parameter 𝛼, 𝑟 and 𝑡 are 
tuned.

Definition 2. The Squared Error (SE) between empirical and ground-truth coupling matrices is defined as

𝑠,𝑢

𝑀
(𝛼, 𝑟, 𝑡) = 1

𝑁
‖𝑱𝜻 (𝑡) − 𝑱 𝑠,𝑢(𝑡)‖2

𝐹
(3.9)

where the superscripts 𝑠, 𝑢 label the supervised or unsupervised setting, 𝑱𝜻 (𝑡) is the coupling matrix built with the ground-truths, 
and ‖⋅‖𝐹 is the Frobenius norm between matrices. We denote 𝑠,𝑢(𝛼, 𝑟, 𝑡) = lim𝑀→∞ 𝑠,𝑢

𝑀
(𝛼, 𝑟, 𝑡).

Proposition 1. In the thermodynamic limit, and for 𝑀 →∞, the SE can be expressed as

𝑠,𝑢(𝛼, 𝑟, 𝑡) = ∫
[

𝜆 − 𝑓
𝑠,𝑢

𝑟,𝑡
(𝜆)

]2
𝑑 𝜇𝑡

𝜁
(𝜆), (3.10)

where 𝜇𝑡
𝜁

is the limiting spectral distribution of 𝑱𝜻 , and

1. in the supervised setting:

𝑓 𝑠
𝑟,𝑡
(𝜆) = 𝜆𝑟2(𝑡 + 1)

𝜆
(

𝑟2 − 1
)

𝑡 + 𝑡 + 1
;

2. in the unsupervised setting:

𝑓 𝑢
𝑟,𝑡
(𝜆) =

(𝑡 + 1)
{

𝜆𝑟2 + 𝛼
(

𝑟2 − 1
)
[(𝜆 − 1)𝑡 − 1]

}
𝜆
(

𝑟2 − 1
)

𝑡(𝛼𝑡 + 1) −
[

𝛼
(

𝑟2 − 1
)
(𝑡 + 1)𝑡

]
+ 𝑡 + 1

.

Again, we refer to the Appendices and, specifically, to App. C for the complete proof.

The exact SE 𝑠,𝑢(𝛼, 𝑟, 𝑡), obtained by evaluating (3.10), is plotted versus 𝑟 in Fig. 2 where several values of 𝛼 and 𝑡 are considered. 
Also, these theoretical results, valid in the limit 𝑀 →∞, are compared with the numerical evaluation of 𝑠,𝑢

𝑀
(𝛼, 𝑟, 𝑡), as reported in 

(3.9), at finite sample size 𝑀 . In general, there is a strong agreement between the numerical results and the theoretical predictions, 
and the accuracy of theoretical results gets better by increasing the dataset size 𝑀 . Also, as expected, the empirical versions of the 
coupling matrix do converge to the basic storing setting as 𝑟 approaches 1. However, the interesting point is to analyze the role of the 
dreaming parameter 𝑡. In the supervised setting, increasing the dreaming time results in a fast convergence of the coupling matrix 
towards the basic storing setting (see e.g. the case 𝑡 = 10 in the first row of Fig. 2). The reason lies in the fact that, as 𝑡 gets larger, the 
coupling matrix approaches the projector model [23] and, at the leading order, the empirical means �̄�𝜇 ∼ 𝑟𝜻𝜇 , while the empirical 
correlation matrix 𝑪𝑠 = 1

𝑁
�̄��̄�

𝑇 ∼ 𝑟2

𝑁
𝜻𝜻𝑇 . Then, in the 𝑡 →∞ limit, 𝑱 𝑠 → 1

𝑁
�̄�

𝑇
𝐶−1

𝑠
�̄� ∼ 1

𝑁
𝜻𝑇 𝑪−1

𝜻
𝜻 for any 𝑟 > 0, while at 𝑡 = 0 one has 

𝑱 𝑠 → 𝑟2𝑱 0,𝜻 . Therefore, increasing 𝑡, the supervised coupling matrix gets more and more insensitive to the quality of the examples, 
and 𝑱 𝑠 approaches the basic storing setting 𝑱𝜻 with the ground patterns.

In the unsupervised setting, the dreaming mechanism works in the same way but this time the patterns that are stored are the 
single examples rather than their empirical mean. Thus, as 𝑡 gets larger, provided that the overall number of examples is not too 
large, each single example can be a fixed point. This way, increasing 𝑡 too much would prevent the convergence of 𝑱 𝑢 to 𝑱𝜻 , unless 
the examples are perfect realizations of the ground-truths, i.e. 𝑟 = 1.

Another way to see the qualitative difference between supervised and unsupervised cases is by noticing the emergence of a 
6

different interplay between 𝑀 and 𝑟. In a nutshell, and focusing on the Hebbian case for simplicity (the general case with 𝑡 > 0 can 
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Fig. 2. Squared error for supervised and unsupervised settings. The figure shows the comparison between numerical results for the SE (3.9) at finite 𝑀 and the 
theoretical prediction for 𝑀 →∞ in the thermodynamic limit as a function of 𝑟 for various values of 𝛼 and 𝑡 (Proposition 1). The first row refers to the supervised 
setting, while the second line shows the results for the unsupervised case. For fixed 𝑡, each plot exhibits the results for 𝛼 = 0.1 (solid line), 𝛼 = 0.2 (dashed line) and 
𝛼 = 0.3 (dotted line), while the markers refer to 𝑀 = 50, 100, 200. The network size is fixed to 𝑁 = 1000 in all cases.

be recovered by leveraging the results of Lemma 1), in the supervised case, the variance of the random variable �̄�𝜇
over all possible 

realizations of ground-truths and related examples is 𝔼(𝜉
𝜇

𝑖
)2 = 𝑟2(1 + 𝜌) with 𝜌 = 1−𝑟2

𝑀 𝑟2
, in such a way that finite-𝑀 corrections in 

the distribution (3.8) are simply captured by replacing 𝜎2 = 𝑟2 (holding in the 𝑀 →∞ limit) with 𝜎2 = 𝑟2(1 + 𝜌); conversely, in the 
unsupervised case, 𝑛-point correlation functions of the 𝜒 variables contribute to the moments of the coupling matrix, and the spectral 
distribution is accordingly deformed in a non-trivial way.

4. Spectral tools at work: an application to retrieval

The Hopfield model and its variations are nothing but spin-glasses with a Hebbian-like prescription for the interactions, and 
the structure of the quenched disorder encoded in the coupling matrix is known to govern the thermodynamic behavior of the 
statistical-mechanical model, see for instance [40,53,61–64]. Thus, it is reasonable to expect that the properties of Hopfield-like 
models ultimately stem from the spectral details of the interaction matrix 𝑱 . In this section, we aim to provide details about the 
functioning of these models by applying the results derived so far. Let us start from the (deterministic) parallel dynamics for the 
neuronal configuration, which reads as

𝝈(𝑛+1) = sign [𝑱 (𝑡) ⋅ 𝝈(𝑛)]. (4.1)

We stress that, here, the evolution time is represented by the integer 𝑛, while 𝑡 is the dreaming time that is retained fixed: synaptic 
weights are quenched during the neural dynamics. We are primarily interested in the stability of specific configurations, that is, in 
the probability that the system in a configuration 𝝈(0) at time 𝑛 will be in the same configuration at time 𝑛 + 1. In order to analyze 
the stability of a given initial configuration 𝝈(0), we consider the 1-step update of the neural network:

𝜎
(1)
𝑖

= sign
[ 𝑁∑

𝑗=1
𝐽𝑖𝑗 (𝑡)𝜎

(0)
𝑗

]
, (4.2)

and say that the configuration 𝝈(0) is stable at the neuron-index 𝑖 if 𝜎
(1)
𝑖

= 𝜎
(0)
𝑖

. Although a 1-step horizon may appear rather limited, 
as we will see, it is enough to understand important properties about the evolution of the models under consideration. Also, we 
incidentally notice that this is a standard time span in machine-learning training algorithms like CD-1 [65] and that checking the 
stability in the 1-step dynamics can be recast in checking the stability by signal-to-noise-techniques [35].

By multiplying both sides of Eq. (4.2) by 𝜎
(0)
𝑖

and by exploiting the binary nature of 𝜎
(0)
𝑖

, we get

𝜎
(1)
𝑖

𝜎
(0)
𝑖

= sign
[ 𝑁∑

𝑗=1
𝐽𝑖𝑗 (𝑡)𝜎

(0)
𝑗

𝜎
(0)
𝑖

]
, (4.3)

and notice that, if the argument of the sign function is positive (negative), 𝜎
(0)
𝑖

is stable (unstable). In fact, 1
2 [𝑁 −

∑
𝑖 𝜎

(1)
𝑖

𝜎
(0)
𝑖
]

represents the overall number of neurons that change their state in the first step of the dynamics, namely the Hamming distance 
7

𝑑𝐻 (𝝈(0), 𝝈(1)) between 𝝈(0) and 𝝈(1). Thus, we introduce the following (see also [4,36,62])
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Definition 3. Given a configuration 𝝈, the stability of its 𝑖-th neuron is

Δ𝑖(𝝈) =
𝑁∑

𝑗=1
𝐽𝑖𝑗 (𝑡)𝜎𝑗 𝜎𝑖 . (4.4)

Besides the notion of stability, the width of the attraction basins plays a crucial role as for retrieval (when dealing with ground 
patterns) or generalization (when dealing with examples) capabilities [37]. In order to get access to these properties, we focus 
on a target configuration 𝒙 (i.e., 𝒙 = 𝝃𝜇 in the basic storing setting or 𝒙 = 𝜻𝜇 in the (un)supervised setting) and on an initial 
configuration 𝝈(0) lying on the boundary of the Hamming ball 𝑅(𝒙) centered in 𝒙 and with radius 𝑅. These boundaries can be 
realized by perturbing 𝒙 as 𝑥𝑖 → 𝑥′

𝑖
= 𝜂𝑖 𝑥𝑖, with 𝜂𝑖 ∼ Rad(𝑝), in such a way that, 𝑑𝐻 (𝒙′, 𝒙) = 1

2
∑

𝑖(1 − 𝜂𝑖) ≈
𝑁 ≫1

𝑁

2 (1 − 𝑝) = 𝑅. Then, 

being 𝝈(0) = 𝒙′ = 𝜼 ⊙ 𝒙 and multiplying both sides of (4.2) by 𝑥𝑖, we obtain 𝜎
(1)
𝑖

𝑥𝑖 = sign
[∑𝑁

𝑗=1 𝐽𝑖𝑗 (𝑡)𝑥𝑗 𝜂𝑗 𝑥𝑖

]
: a positive argument of 

the sign function means that, in a single step, the state of the 𝑖-th neuron either remains equal to the target 𝑥𝑖 or changes from −𝑥𝑖

to 𝑥𝑖. This motivates the following

Definition 4. Given two configurations 𝒙 and 𝒙′ = 𝜼 ⊙ 𝒙, the attractiveness of the 𝑖-th neuron in 𝒙 w.r.t. 𝒙′ is the random variable

Δ𝑖(𝒙,𝜼) =
𝑁∑

𝑗=1
𝐽𝑖𝑗 (𝑡)𝑥𝑗 𝜂𝑗 𝑥𝑖 , (4.5)

where 𝜂𝑖 ∼
𝑖.𝑖.𝑑 .

Rad(𝑝). Trivially, when 𝑝 = 1, Δ𝑖(𝒙, 𝜼) recovers the stability Δ𝑖(𝒙) of 𝑥𝑖.

Recalling that 𝒙′ is taken as the initial configuration and 𝒙 is a target configuration, we can restate these concepts by introducing 
the configuration overlaps

𝑚(0)(𝒙,𝜼) = 1
𝑁

𝑁∑
𝑖=1

𝑥𝑖 𝜎
(0)
𝑖

= 1
𝑁

𝑁∑
𝑖=1

𝜂𝑖 (4.6)

𝑚(1)(𝒙,𝜼) = 1
𝑁

𝑁∑
𝑖=1

𝑥𝑖 𝜎
(1)
𝑖

= 1
𝑁

𝑁∑
𝑖=1

sign[Δ𝑖(𝒙,𝜼)], (4.7)

and say that 𝒙 is attracting 𝝈(0) if 𝑚(1) > 𝑚(0). When 𝒙 coincides with a pattern, the overlaps above are also known as Mattis 
magnetizations (related to that pattern) evaluated at time steps 𝑛 = 0, 1.

The above-defined stability and attractiveness (which we denote in general as Δ𝑖, as the meaning shall be clear from the context) 
are simple tools, but general enough to be handled in any scenario we are interested in. In order to further simplify the computations 
and obtain closed-form expressions for the 1-step Mattis magnetization, we will carry out our computations under the following

Working assumption (Gaussian approximation). Within the Gaussian approximation (GA), we assume that the quantities Δ𝑖 are

• i.i.d. random variables;

• Gaussian distributed.

Clearly, this is not valid in general, however, in all the settings under examination, this assumption leads to a good approximation 
of the numerical results (see also App. D).

Within the GA and in the thermodynamic limit, the 1-step Mattis magnetization w.r.t. the reference configuration 𝒙 is given by

𝑚(1)(𝒙,𝜼) = 1
𝑁

𝑁∑
𝑖=1

sign
[
Δ𝑖(𝒙,𝜼)

]
→

𝑇 𝐷𝐿−𝐺𝐴
2 Prob[Δ ≥ 0] − 1 = erf

[ 𝜇1√
2(𝜇2 − 𝜇2

1)

]
= 𝑚(1)(𝒙, 𝑝), (4.8)

where the argument of the error function is the usual signal-to-noise ratio [4], with 𝜇1 and 𝜇2 the first and (non-centered) second 
moments of the attractiveness, that is, following the GA, Δ𝑖 ∼ (𝜇1, 𝜇2 − 𝜇2

1); as we will show in the following, 𝜇1,2 can be expressed 
in terms of integrals over the Marchenko-Pastur law. To avoid confusion, from now on we will denote with 𝜇𝑡

𝜉
the limiting spectral 

measure of the basic-storing coupling matrix 𝑱𝝃 , while with 𝜇𝑡
𝑠

and 𝜇𝑡
𝑢

resp. those of 𝑱 𝑠 and 𝑱 𝑢.

Let us first focus on the basic storing case. In this setting, we are both interested in the stability and attractiveness of the patterns. 
Then, the following proposition holds:
8

Proposition 2. In the basic storing setting, within the GA and in the thermodynamic limit:
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Fig. 3. Stability and attractiveness of patterns in the basic storing setting. The figure shows a comparison between the theoretical predictions of stability (upper 
left plot) and attractiveness (other plots). In the former, the 1-step magnetization 𝑚(1) starting from one of the patterns (𝑝 = 1) is given as a function of 𝛼, while 
for the attractiveness we fixed 𝛼 = 0.1, 0.2, 0.3 and 𝑡 = 0, 10 (resp. Hebbian and large dreaming time limit) and consider 𝑚(1) as a function of the noise level 𝑝 of the 
starting configuration. In these plots, the dashed line is the identity function 𝑚(1) (𝝃, 𝑝) = 𝑚(0)(𝝃, 𝑝) = 𝑝. In the numerical simulations, we averaged over 100 different 
realizations of the patterns, for systems with fixed size 𝑁 = 5000. In these plots, 𝑚1 stands for 𝑚(1) .

1. The first and second moments of the pattern stability are, respectively,

𝜇1 =
1
𝛼 ∫

𝜆2

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝜉
(𝜆), (4.9)

𝜇2 =
1
𝛼 ∫

𝜆3

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝜉
(𝜆). (4.10)

2. The first and second moments of the pattern attractiveness are, respectively,

𝜇1 =
𝑝

𝛼 ∫
𝜆2

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝜉
(𝜆), (4.11)

𝜇2 = (1 − 𝑝2)∫ 𝜆2𝑑 𝜇𝑡
𝜉
(𝜆) + 𝑝2

𝛼 ∫
𝜆3

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝜉
(𝜆). (4.12)

The proof of this proposition is provided in App. D along with details on the validity of the GA.

Once the first two moments are estimated, we can predict the 1-step Mattis magnetization according to Eq. (4.8). In particular, 
at 𝑡 = 0, the results reported Eqs. (4.11)-(4.12) lead to 𝜇1 = 1 + 𝛼 and 𝜇2 = 𝛼2 + 3𝛼 + 1, so that

𝑚(1)(𝝃,1) = erf
(1 + 𝛼√

2𝛼

)
,

which recovers the well-known expression for the expected magnetization in the Hopfield model [4].3 At 𝑡 ≫ 1, we get 𝜇1 = 1 −
𝛼

(𝛼−1)𝑡2
+(𝑡−3) and 𝜇2 = 1 − 3𝛼

(𝛼−1)𝑡2
+(𝑡−3), whence

𝑚(1)(𝝃,1) =
𝑡≫1

erf
(√1 − 𝛼𝑡√

2𝛼
+(𝑡0)

)
≈ 1 − 1

𝑡

exp(− 1−𝛼

2𝛼
𝑡2)√

𝜋
1−𝛼

2𝛼

.

Similar results can also be obtained for 𝑚(1)(𝝃, 𝑝). These theoretical predictions and the relative comparison with numerical results 
are shown in Fig. 3 for different values of the tunable parameters 𝛼, 𝑝, 𝑡. As expected, the stability of a pattern is impaired by 𝛼, 
but dreaming can mitigate this effect (see the upper left panel in Fig. 3). Dreaming can also enhance the attractiveness of a pattern, 
yielding a large overlap 𝑚(1)(𝝃, 𝑝) ≈ 1 for a relatively large range of noise values 𝑝 (see the upper right and lower panels in Fig. 3).

3 The factor 1 + 𝛼 at the numerator in the error function is due to the fact that we are also including self-interactions. If 𝐽𝑖𝑖 = 0, instead, we would have erf(1∕
√
2𝛼)
9

[66].
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Fig. 4. Attractiveness of ground-truths in the supervised and unsupervised settings. The plot shows a comparison between the theoretical (following the results 
in Proposition 3) and the numerical estimates of 𝑚(1)(𝜻 , 𝑟) for the supervised (first row) and unsupervised (second row) settings. Numerical results are averaged over 
100 different realization of 𝑀 = 1000 examples by varying 𝛼 and 𝑟, and 100 different realization of the initial conditions. In this case, initial conditions are testing 
examples, i.e. examples with the same statistics as the training points, but which are not stored as fixed points. The system size is fixed to 𝑁 = 1000. In the plots, 𝑚1
stands for 𝑚(1) .

In the supervised and unsupervised settings, rather than in the attracting power of stored (training) examples, we are interested 
in the generalization capabilities of the model, that is in the attractiveness of the ground-truths underlying the training dataset. 
Specifically, in these settings we consider a starting test configuration �̄� = 𝝌 ⊙ 𝜻𝜇 for some 𝜇 = 1, … , 𝑃 , being 𝜒𝑖 ∼ Rad(𝑟) for any 𝑖, 
namely, we consider a starting configuration that lays at an expected distance 𝑅 = 𝑁(1 − 𝑟)∕2 from the target and that displays the 
same statistics of the stored examples; of course, training and testing items are independently drawn. Then, we are interested in the 
probability that, after a 1-step update, the neural configuration is aligned with the ground-truth 𝜻𝜇 and the related attractiveness 
reads as

Δ𝑖(𝜻𝜇 ,𝝌) =
𝑁∑

𝑗=1
𝐽𝑖𝑗 (𝑡)𝜁

𝜇

𝑖
�̄�𝑗 =

𝑁∑
𝑗=1

𝐽𝑖𝑗 (𝑡)𝜒𝑗 𝜁
𝜇

𝑗
𝜁

𝜇

𝑖
. (4.13)

Then, the following proposition holds.

Proposition 3. Under the GA and in the thermodynamic limit, the first and second moments of the attractiveness (4.13) read

1. In the supervised setting:

𝜇1 =
1

𝛼𝑟 ∫
𝜆2

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝑠
(𝜆), (4.14)

𝜇2 = (1 − 𝑟2)∫ 𝜆2𝑑 𝜇𝑡
𝑠
(𝜆) + 1

𝛼 ∫
𝜆3

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝑠
(𝜆); (4.15)

2. In the unsupervised setting:

𝜇1 =
1

𝛼𝑟 ∫
𝜆2

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝑢
(𝜆) − 1 − 𝑟2

𝑟 ∫ 𝜆𝑑 𝜇𝑡
𝑢
(𝜆), (4.16)

𝜇2 =
1
𝛼 ∫

𝜆3

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝑢
(𝜆). (4.17)

The proof of this proposition can be found in App. E.

These results can now be plugged into Eq. (4.8) to obtain an analytical estimate of 𝑚(1)(𝜻 , 𝑟); in Fig. 4 we show a comparison 
between such theoretical predictions, and numerical simulations.

In particular, in the supervised scenario we highlight a positive role of dreaming for any load 𝛼, while in the unsupervised scenario 
the effects of dreaming do not have an obvious outcome. In fact, at relatively low load, a large 𝑡 is detrimental for retrieving ground 
patterns; on the other hand, when 𝛼 is relatively large, increasing 𝑡 can be slightly beneficial, at least as long as the dataset is not too 
corrupted. Finally, we emphasize that, in Figs. 3-4, the deviation of the numerical results w.r.t. the theoretical predictions has to be 
10

ascribed to the break-down of the GA as the initial condition is progressively moved away from the target pattern.
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Fig. 5. Schematic representation of attractors in the basic storing setting. The figure shows a pictorial representation of fixed points in the Hopfield model (left) 
and dreaming model (right) at large dreaming time 𝑡 ≫ 1. For large 𝛼 (above the critical storage capacity 𝛼𝑐 ≈ 0.14 for the Hopfield model), fixed points are the balls 
centered in the pattern with Hamming radius 𝑅(𝑝∗) = 𝑁

2
(1 − 𝑝∗), while in the dreaming model for large 𝑡 patterns are fixed points.

5. Discussion of the results

To conclude this work, we comment on the (1-step) retrieval and generalization capabilities of the Hebbian-like models in the 
settings under examination.

First, let us consider the attractiveness of patterns in the basic storing setting, so we refer to Fig. 3. Looking at the upper right plot 
(𝛼 = 0.1, just below the critical storage capacity of the Hopfield model 𝛼𝑐 ≈ 0.14), we see that, in both cases 𝑡 = 0 (Hopfield model) 
and 𝑡 = 10 (essentially the projector case), stored patterns exhibit a strong attractiveness w.r.t. noisy initial conditions. In particular, 
for all values of 𝑝, 𝑚(1)(𝝃, 𝑝) ≥ 𝑚(0)(𝝃, 𝑝), the only difference between the two extreme values of the dreaming time consists in the 
range of 𝑝 where the 1-step update leads to 𝑚(1) ≈ 1: when 𝑡 ≫ 1, retrieval is by far more robust versus noise in the initial condition. 
However, as 𝛼 is increased above the Hopfield model critical storage capacity (see e.g. 𝛼 = 0.2 and 𝛼 = 0.3), the situation is different. 
Indeed, in the 𝑡 = 0 case, a non-trivial solution of the equation 𝑚(1)(𝝃, 𝑝) = 𝑝 appears (this is more evident in the 𝛼 = 0.3 case), 
corresponding to a specific value of the noise in the initial condition, say 𝑝∗, for which the network update does not lead to a higher 
magnetization: the network is stacked on the boundary of the ball 𝑅(𝝃𝜇) centered in the pattern 𝝃𝜇 with radius 𝑅(𝑝∗) = 𝑁

2 (1 − 𝑝∗). 
Further, for 𝑝 > 𝑝∗, after the network update, the final Mattis magnetization is lower than 𝑝, meaning that the system is getting 
farther from the pattern, while for 𝑝 < 𝑝∗, the magnetization 𝑚(1) increases. Although this is a 1-step result, it evidences that, in the 
high-load Hopfield model, the patterns are no longer stable configurations under neural dynamics, while the fixed points are on the 
boundary of balls with a non-zero radius (𝑅(𝑝∗) in the 1-step case), see the left picture in Fig. 5 for a schematic representation. This 
is in agreement with the results reported in [67]. Increasing the dreaming time 𝑡 can fix this behavior: even at large 𝛼, the dreaming 
model displays 𝑚(1)(𝝃, 𝑝) > 𝑝, and a relatively wide range of 𝑝 for which 𝑚(1) ≈ 1. Thus, in the basic storing setting, the dreaming 
model always exhibits better retrieval capabilities than the standard Hopfield model, and, for large 𝑡, patterns are attractive, see the 
right picture in Fig. 5.

The supervised setting shares the same features of the basic storing case, as the empirical, class-wise means are – for dataset 
with multiplicative, uncorrelated noise – a good prototype of the corresponding ground-truths. In this case, the dreaming mechanism 
allows the coupling matrix to get more and more insensitive to the quality of the examples as 𝑡 is increased, as we already noticed in 
Fig. 2. Thus, the above discussion for the basic storing setting holds in this case too, as can be checked by the first row in Fig. 4.

Conversely, in the unsupervised setting, the situation is quite different. First, as can be seen in the second row of Fig. 4, the 
theoretical predictions exhibit large deviations w.r.t. the numerical results; specifically, the results derived by spectral tools always 
overestimate the numerical results. This signals a statistical dependence among the terms contributing to the attractiveness (4.5), 
so that the GA gets weaker. Despite this deviation, our results capture the qualitative behavior of the setting. In particular, for a 
relatively-high noise-level in the training and testing sets (i.e., for small 𝑟), the Hopfield model performs better than the dreaming 
model. This is due to the fact that, at low 𝑡, the attraction basins associated to training points corresponding to the same class are 
wide enough to merge, in such a way that their center of mass, (approximately) corresponding to the ground-truth, results to be an 
attracting point [37]. Yet, by increasing 𝑡, the attraction basins of the single training items shrink, so that they no longer overlap 
(especially if 𝑟 is low) and, consequently, the system can only retrieve training examples (in fact, at low 𝑟, the 1-step magnetization 
settles on the identity line 𝑚(1)(𝜻 , 𝑟) = 𝑟), hence loosing its generalization capabilities. Increasing 𝛼, the Hopfield model undergoes 
the same behavior as in the supervised setting: ground-truths are no longer fixed points, no matter how accurate the training points 
are, that is, even for 𝑟 = 1; on the other hand, implementing dreaming mechanisms can lead to appreciable results, as long as the 
sample quality is very high, that is 𝑟 ≈ 1, otherwise we still tend to retrieve training examples.

In conclusion, the spectral results derived in this paper have been applied to investigate the retrieval properties of Hopfield-like 
models, and, even in the worse scenario (where our working assumptions break down), we were able to give a qualitative picture of 
11

the processes taking place in associative neural networks while relaxing to fixed points for the neural dynamics.
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Appendix A. Proof of Lemma 1

1. Differentiating (3.1) w.r.t. the dreaming time, we have

�̇� = 1
𝐷𝑁

𝑿𝑇 𝑑

𝑑 𝑡

( 1 + 𝑡

𝟏+ 𝑡𝑪

)
𝑿 = 1

𝐷𝑁

𝑿
( 1
𝟏+ 𝑡𝑪

− (1 + 𝑡) 1
𝟏+ 𝑡𝑪

𝑪
1

𝟏+ 𝑡𝑪

)
𝑿𝑇 =

= 1
1 + 𝑡

( 1
𝐷𝑁

𝑿
1 + 𝑡

𝟏+ 𝑡𝑪
𝑿𝑇 − 1

𝐷𝑁

𝑿
1 + 𝑡

𝟏+ 𝑡𝑪

𝑿𝑿𝑇

𝐷𝑁

1 + 𝑡

𝟏+ 𝑡𝑪
𝑿𝑇

)
=

= 1
1 + 𝑡

(𝑱 (𝑡) − 𝑱 (𝑡)2).

2. Let us start from the eigenvalue problem 𝑱𝒗𝛼 = 𝜆𝛼𝒗𝛼 , and differentiate w.r.t. the dreaming time:

̇(𝑱𝒗𝛼) = �̇� 𝒗𝛼 + 𝑱 �̇�𝛼 = 1
1 + 𝑡

(𝑱 − 𝑱 2)𝒗𝛼 + 𝑱 �̇�𝛼 = 1
1 + 𝑡

(𝜆𝛼 − 𝜆2
𝛼
)𝒗𝛼 + 𝑱 �̇�𝛼 .

On the other hand, we have

̇(𝑱𝒗𝛼) = �̇�𝛼𝒗𝛼 + 𝜆𝛼 �̇�𝛼 .

Combining the previous equations, we have

�̇�𝛼𝒗𝛼 + 𝜆𝛼 �̇�𝛼 = 1
1 + 𝑡

(𝜆𝛼 − 𝜆2
𝛼
)𝒗𝛼 + 𝑱 �̇�𝛼 .

Moving the terms proportional to 𝒗𝛼 in the l.h.s. and moving those involving �̇�𝛼 in the r.h.s., we have

(
�̇�𝛼 − 1

1 + 𝑡
𝜆𝛼 + 1

1 + 𝑡
𝜆2

𝛼

)
𝒗𝛼 = (𝑱 − 𝜆𝛼)�̇�𝛼 .

Multiplying on the left by 𝒗𝑇
𝛼

, which is a left eigenvector of 𝑱 , the r.h.s. is zero, and – due to the fact that 𝒗𝛼 ≠ 0, we have

�̇�𝛼 − 1
1 + 𝑡

𝜆𝛼 + 1
1 + 𝑡

𝜆2
𝛼
= 0. (A.1)

The solution of the differential equation is

𝜆𝛼(𝑡) = 1 + 𝑡

1 + 𝑡𝜆0
𝛼

𝜆0
𝛼

,

where 𝜆0
𝛼

is the generic eigenvalue of the Hebbian coupling matrix 𝑱 0 = 1
𝐷𝑁

𝑿𝑇 𝑿.

3. Let us first consider the random pattern case. In this setting, the Hebbian coupling matrix 𝑱0 = 1
𝑁

∑𝑃

𝜇=1 𝜉
𝜇

𝑖
𝜉

𝜇

𝑗
is a positive 

semidefinite random matrix with rank 𝑃 ≤ 𝑁 , so it has 𝑃 positive eigenvalues. From the theory of Wishart matrices [68,69], it 
is known that positive eigenvalues are distinct with probability 1, so 𝜆0

1 > ⋯ > 𝜆0
𝑃

, and the eigenvalue 𝜆0 = 0 has degeneracy 
𝑁 − 𝑃 . Since the application 𝜆0

𝛼
→ 𝜆𝛼(𝑡) given by Eq. (3.3) is injective, the algebraic multiplicity of eigenvalues in the spectrum 

is preserved for all 𝑡 > 0 finite (at 𝑡 →∞, all positive eigenvalues concentrate around 𝜆 = 1). Let us now consider eigenvectors of 
𝑱 (𝑡) with positive eigenvalue. Starting from

�̇�𝛼𝒗𝛼 + 𝜆𝛼 �̇�𝛼 = 1
1 + 𝑡

(𝜆𝛼 − 𝜆2
𝛼
)𝒗𝛼 + 𝑱 �̇�𝛼 ,

given in the previous point, and using the differential equation (A.1), we get

(𝑱 − 𝜆𝛼)�̇�𝛼 = 0,

so that �̇�𝛼 is also eigenvector of 𝑱 with the same eigenvalue of 𝒗𝛼 . Since for positive eigenvalues, the associated eigenspace is 
12

one-dimensional, it follows that �̇�𝛼 = 𝑐(𝑡)𝒗𝛼 , whose solution is
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𝒗𝛼(𝑡) = 𝒗𝛼(0) ⋅ exp

𝑡

∫ 𝑑 𝑡′𝑐(𝑡′). (A.2)

Then, the only effect of dreaming time is the rescaling of the eigenvectors norm. If we take 𝒗𝛼(𝑡) to be the normalized eigenvectors 
with positive eigenvalues, it follows that 𝒗𝛼(𝑡) = 𝒗𝛼(0), i.e. they do not depend on 𝑡. For the eigenvalue 𝜆 = 0, its eigenspace is 
𝑁 − 𝑃 -dimensional. Denoting 𝒗(1)0 (𝑡), … , 𝒗(𝑁−𝑃 )

0 (𝑡) at finite dreaming time 𝑡 ≥ 0 the associate eigenvectors, we can write

𝒗
(𝑛)
0 (𝑡) =

𝑁−𝑃∑
𝑚=1

𝑈𝑛,𝑚(𝑡)𝒗(𝑚)
0 (0), 𝑛 = 1,… , 𝑁 − 𝑃 ,

which is nothing but a change of basis in the 𝜆 = 0 eigenspace. Since we are free to map eigenspaces in themselves without 
altering the structure of coupling matrix, we can choose 𝑼 (𝑡) = 𝟏 for all 𝑡 > 0.

For the supervised setting the situation is analogous, the only difference being the different structure of the information 
vectors, whose relevant details are directly encoded in the 𝑡 = 0 limit of the coupling matrix 𝑱 0. For the unsupervised setting, the 
situation is different. First of all, it is clear that the rank of the matrix will be min(𝑁 , 𝑃 𝑀) ≡ 𝑁min(1, 𝛼𝑀). However, we are 
mostly interested in the case where the number of examples per class is sufficiently high, i.e. 𝑀 ≫ 1 regardless of the value of 
𝛼: in this case, the rank of the coupling matrix 𝑱 0 would be 𝑁 , then the matrix is full-rank, and all of the eigenvalues would be 
positive and distinct (for the same reasons of the random pattern case). Thus, positivity and non-degeneracy of the eigenvalues, 
relation (3.3) and stability of eigenvectors w.r.t. dreaming mechanism trivially follows also in this case. □

Appendix B. Proof of Theorem 1

1. Let us start again with the basic storing case, where 𝑿 = 𝝃. As we already said, in this setting the eigenvalue 𝜆 = 0 has degeneracy 
𝑁 −𝑃 , thus the limiting spectral distribution would have a delta around 0 with mass 1 −𝛼. We now focus on positive eigenvalues 
and start again with the eigenvalue problem 𝑱 0𝒗𝛼 = 1

𝑁
𝝃𝑇 𝝃𝒗𝛼 = 𝜆0

𝛼
𝒗𝛼 . Multiplying on the left by 𝝃, we have

1
𝑁

𝝃𝝃𝑇 𝝃𝒗𝛼 =𝑪𝝃𝒗𝛼 = 𝜆0
𝛼
𝝃𝒗𝛼 .

Thus, positive eigenvalues of the coupling matrix 𝑱 0 are exactly the eigenvalues of the usual correlation matrix, and the corre-

sponding eigenvector is

𝒆𝛼 = 1√
𝜆0

𝛼
𝑁

𝝃𝒗𝛼 , (B.1)

where the prefactor is needed to ensure the normalization ‖𝒆𝛼‖= 1. By universality arguments holding for centered patterns with 
finite variance [70], positive eigenvalues of the correlation matrix will be Marchenko-Pastur-distributed with MP(𝛼) = MP(𝛼, 1), 
since 𝔼(𝜉

𝜇

𝑖
)2 = 1. Since positive eigenvalues have mass 𝛼, it trivially follows that the empirical spectral distribution 𝜇0

𝑁
(𝜆) will 

converge in weak topology to 𝜇0, in such a way that

𝑑 𝜇0(𝜆) = (1 − 𝛼)𝛿(𝜆)𝑑 𝜆 + 𝛼𝑑 𝜇MP(𝜆), (B.2)

with

𝑑 𝜇MP(𝜆) = 1
2𝜋

√
(𝜆0

+ − 𝜆)(𝜆 − 𝜆0
−)

𝛼𝜆
𝑑 𝜆,

and 𝜆0
± = (1 ±

√
𝛼)2. Thus, in the random pattern case, �̂�0 = 0 and 𝜎2 = 1.

For the supervised case, the situation is similar. Indeed, also in this case the spectral distribution will have a delta peak at 
𝜆 = 0 with mass 1 − 𝛼. For the bulk distribution, the relation between positive eigenvalues of the coupling matrix 𝑱 0 and the 
correlation matrix (which is now computed with the empirical means of examples in each class), still holds provided that we 
replace 𝜉

𝜇

𝑖
→ 𝜉

𝜇

𝑖
= 1

𝑀

∑
𝐴 𝜉

𝜇,𝐴

𝑖
. By strong law of large numbers, 𝜉

𝜇

𝑖

𝑎.𝑠.
→ 𝔼𝝌 𝜉

𝜇

𝑖
= 𝑟𝜁

𝜇

𝑖
; this means that 𝐽 0

𝑖𝑗

𝑎.𝑠.
→ 1

𝑁

∑
𝜇 𝔼𝝌 𝜉

𝜇

𝑖
𝔼𝝌 𝜉

𝜇

𝑗
=

1
𝑁

∑
𝜇(𝑟𝜁

𝜇

𝑖
)(𝑟𝜁

𝜇

𝑗
) = 𝑟2𝐽

0,𝜻

𝑖𝑗
, where 𝐽

0,𝜻

𝑖𝑗
is the Hebbian matrix in the random pattern case built with the ground-truths features, i.e.

𝐽
0,𝜻

𝑖𝑗
= 1

𝑁

∑
𝜇

𝜁
𝜇

𝑖
𝜁

𝜇

𝑗
.

Now, notice that 𝔼𝜻 (𝜁
𝜇

𝑖
) = 0 and 𝔼𝜻 (𝜁

𝜇

𝑖
)2 = 1 in the 𝑀 →∞ limit, eigenvalues of the correlation matrix

𝑪 = 1
𝐷𝑁

𝑿𝑿𝑇 ,

are distributed according to the Marchenko-Pastur law MP(𝛼, 𝑟2). Thus, in the supervised case, the empirical spectral distribution 
13

of the coupling matrix 𝑱 0 will converge in weak topology to 𝜇0, with measure
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𝑑 𝜇0(𝜆) = (1 − 𝛼)𝛿(𝜆)𝑑 𝜆 + 𝛼𝑑 𝜇MP(𝜆), (B.3)

with

𝑑 𝜇MP(𝜆) = 1
2𝜋𝑟2

√
(𝜆0

+ − 𝜆)(𝜆 − 𝜆0
−)

𝛼𝜆
𝑑 𝜆, (B.4)

and 𝜆0
± = 𝑟2(1 ±

√
𝛼)2; thus, in the supervised setting, �̂�0 = 0 and 𝜎2 = 𝑟2.

In the unsupervised case, by strong law of large number, for 𝑖 ≠ 𝑗 we have 𝐽 0
𝑖𝑗

𝑎.𝑠.
→ 𝔼𝝌 𝐽 0

𝑖𝑗
as 𝑀 →∞, while 𝐽 0

𝑖𝑖
= 𝛼. Thus, in 

this case we can safely replace the coupling matrix 𝑱 0 with its noise-independent version:

𝑱 0 𝑎.𝑠.
→ 𝛼(1 − 𝑟2)𝟏+ 𝑟2𝑱 0,𝜻 , (B.5)

where 𝐽
0,𝜻

𝑖𝑗
is again the Hebbian matrix in the random pattern case built with the ground-truths features. Translating Eq. (B.5)

for the eigenvalues of 𝑱 0, we see that the quantity

𝜆0 − 𝛼(1 − 𝑟2)
𝑟2

has the same distribution of the eigenvalues of the random pattern case. Then, it follows that, as 𝑀 → ∞ and in the ther-

modynamic limit, the empirical spectral distribution 𝜇0
𝑁

of the unsupervised coupling matrix converges in weak topology 𝜇0, 
with

𝑑 𝜇0(𝜆) = (1 − 𝛼)𝛿(𝜆 − 𝛼(1 − 𝑟2))𝑑 𝜆 + 𝛼𝑑 𝜇MP(𝜆),

with

𝑑 𝜇MP(𝜆) = 1
2𝜋𝑟2

√
(𝜆0

+ − 𝜆)(𝜆 − 𝜆0
−)

𝛼(𝜆 − 𝛼(1 − 𝑟2))
𝑑 𝜆,

with 𝜆0
± = 𝑟2(1 ±

√
𝛼)2 + 𝛼(1 − 𝑟2). Thus, in the unsupervised case, we have �̂�0 = 𝛼(1 − 𝑟2) and 𝜎2 = 𝑟2.

2. The proof works by reverting Eq. (3.3), expressing 𝜆0
𝛼

as a function of 𝜆𝛼(𝑡). Thus, in the thermodynamic limit (and eventually 
for 𝑀 →∞), the empirical spectral distribution 𝜇𝑡

𝑁
will converge in weak topology to 𝜇𝑡, with the latter determined by the fact 

that the quantity

𝜆

1 + 𝑡(1 − 𝜆)
,

will be equal in distribution to 𝜆0, regardless of the setting under consideration. □

Appendix C. Proof of Proposition 1

First of all, let us notice that, since in the 𝑀 → ∞ limit, 𝑱 0 𝑎.𝑠.
→ 𝑟2𝑱 0,𝜻 in the supervised setting and 𝑱 0 𝑎.𝑠.

→ 𝛼(1 − 𝑟2)𝟏 + 𝑟2𝑱 0,𝜻

in the unsupervised one, and the fact that eigenvectors can be chosen so that they do not depend on 𝑡, 𝑱 and 𝑱𝜻 (the latter being 
the dreaming coupling matrix in the random pattern case built with the ground-truths) have common eigenvectors a.s., so they can 
be simultaneously diagonalized with the transformation 𝑱 → 𝑼𝑫𝑼−1 with the same matrix 𝑼 . Because of these simple relations 
between the (un)supervised coupling matrix and the corresponding ground-truth version, a functional relation between eigenvalues 
can be derived. For example, the generic eigenvalue 𝜆𝑠(𝑡) of the supervised coupling matrix is related to the corresponding eigenvalue 
of 𝑱 0 through Eq. (3.3). In the 𝑀 →∞ limit, 𝜆𝑠

0 → 𝑟2𝜆0, where 𝜆0 is the corresponding eigenvalue of 𝑱 0,𝜻 , thus

𝜆𝑠(𝑡) =
(1 + 𝑡)𝜆𝑠

0
1 + 𝑡𝜆𝑠

0
=

(1 + 𝑡)𝑟2𝜆0

1 + 𝑡𝑟2𝜆0
.

Finally, one can re-express 𝜆0 in terms of 𝜆(𝑡) being the eigenvalue of 𝑱𝜻 (𝑡) the coupling matrix of the ground-truths by reverting Eq. 
(3.3), giving us

𝜆𝑠(𝑡) = 𝜆(𝑡)𝑟2(𝑡 + 1)
𝜆(𝑡)

(
𝑟2 − 1

)
𝑡 + 𝑡 + 1

= 𝑓 𝑠
𝑟,𝑡
(𝜆(𝑡)).

Clearly, with the same procedure, one finds that the functional relation for the eigenvalues of the unsupervised coupling matrix is 
𝜆𝑢(𝑡) = 𝑓 𝑢

𝑟,𝑡
(𝜆(𝑡)). With these results, we find for the SE the expression

𝑠,𝑢(𝛼, 𝑟, 𝑡) = 1
𝑁

Tr(𝑱𝜻 − 𝑱 𝑠,𝑢(𝑡))2 = 1
𝑁

∑
𝛼

(𝜆𝛼(𝑡) − 𝑓
𝑠,𝑢

𝑟,𝑡
(𝜆𝛼(𝑡)))2 → ∫ (𝜆 − 𝑓

𝑠,𝑢
𝑟,𝑡

(𝜆))2𝑑 𝜇𝑡
𝜁
(𝜆), (C.1)
14

where → stands for convergence in probability in the thermodynamic limit. □
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Remark 4. Because of the structure of the limiting spectral distribution of the dreaming coupling matrix 𝑑 𝜇𝑡, the SE can be rewritten 
as

𝑠(𝛼, 𝑟, 𝑡) = 𝛼 ∫ (𝜆 − 𝑓 𝑠
𝑟,𝑡
(𝜆))2𝑑 𝜇𝑡

bulk
(𝜆),

for the supervised setting, and

𝑢(𝛼, 𝑟, 𝑡) = (1 − 𝛼)
[𝛼

(
𝑟2 − 1

)
(𝑡 + 1)

𝛼
(

𝑟2 − 1
)

𝑡 − 1

]2
+ 𝛼 ∫ (𝜆 − 𝑓 𝑢

𝑟,𝑡
(𝜆))2𝑑 𝜇𝑡

bulk
(𝜆).

In the last expression, the constant contribution comes from the presence of the delta peak located at non-vanishing eigenvalue for 
the coupling matrix in the unsupervised setting.

Appendix D. Proof of Proposition 2 and details on the GA

The proof works by explicit computation of the empirical moments. Let us start with the pattern stability. Under the GA assump-

tion in the thermodynamic limit, and since patterns are equivalent (so that we can take the average also average the index 𝜇), we 
can estimate

𝜇1 =
1

𝑁 𝑃

∑
𝑖𝜇

Δ𝑖(𝝃𝜇), (D.1)

𝜇2 =
1

𝑁 𝑃

∑
𝑖𝜇

Δ𝑖(𝝃𝜇)2. (D.2)

For the first quantity, we have

𝜇1 =
1

𝑁 𝑃

∑
𝑖𝜇

𝐽𝑖𝑗 (𝑡)𝜉
𝜇

𝑖
𝜉

𝜇

𝑗
= 1

𝛼𝑁

∑
𝑖𝑗

𝐽𝑖𝑗 (𝑡)𝐽𝑖𝑗 (0) =
1

𝛼𝑁
Tr𝑱 (𝑡)𝑱 (0). (D.3)

Now, 𝑱 (𝑡) and 𝑱 0 are simultaneously diagonalizable, thus

𝜇1 =
1

𝛼𝑁

∑
𝛼

𝜆𝛼(𝑡)𝜆0
𝛼

→
𝑇 𝐷𝐿

1
𝛼 ∫

𝜆2

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝜉
(𝜆), (D.4)

where we expressed 𝜆0
𝛼

as a function of 𝜆𝛼(𝑡) by reverting Eq. (3.3). Analogously, for the second moment

𝜇2 =
1

𝑁 𝑃

∑
𝑖𝜇𝑗 𝑘

𝐽𝑖𝑗 (𝑡)𝐽𝑖𝑘(𝑡)𝜉
𝜇

𝑗
𝜉

𝜇

𝑘
= 1

𝛼𝑁

∑
𝑖𝑗 𝑘

𝐽𝑖𝑗 (𝑡)𝐽𝑖𝑘(𝑡)𝐽𝑗 𝑘(0) =

= 1
𝛼𝑁

Tr𝑱 (𝑡)2𝑱 (0) →
𝑇 𝐷𝐿

1
𝛼 ∫

𝜆3

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝜉
(𝜆).

(D.5)

As for the attractiveness, the computations follow the same lines, provided that we use (4.5) as definition, and under the GA we 
average the moments w.r.t. 𝜼, and noticing that 𝔼𝜼𝜂𝑖 = 𝑝 and 𝔼𝜼𝜂𝑗 𝜂𝑘 = (1 − 𝑝2)𝛿𝑗 𝑘 + 𝑝2. □

Remark 5. Notice that we can recast everything in terms of integrals of usual Marchenko-Pastur distribution with scale parameter 
𝛼 < 1. Indeed, by using spectral decomposition of the coupling matrix we can write the first empirical moment of the stability as

𝜇1 =
1

𝑁 𝑃
𝔼𝝃

∑
𝑖𝑗 𝜇

𝐽𝑖𝑗 𝜉
𝜇

𝑖
𝜉

𝜇

𝑗
= 1

𝑁 𝑃
𝔼𝝃

∑
𝛼𝑖𝑗 𝜇

𝜆𝛼 𝑣𝑖
𝛼

𝑣𝑗
𝛼

𝜉
𝜇

𝑖
𝜉

𝜇

𝑗
= 1

𝑁 𝑃
𝔼𝝃

∑
𝛼𝜇

𝜆𝛼

(∑
𝑖

𝑣𝑖
𝛼

𝜉
𝜇

𝑖

)(∑
𝑗

𝑣𝑗
𝛼

𝜉
𝜇

𝑗

)
=

= 1
𝑁 𝑃

∑
𝛼𝜇

𝜆𝛼(
√

𝜆0
𝛼

𝑁 𝑒𝜇
𝛼
)2 = 1

𝑃

∑
𝛼

𝜆𝛼 𝜆0
𝛼

→
𝑇 𝐷𝐿 ∫

(1 + 𝑡)𝜆2

1 + 𝑡𝜆
𝑑 𝜇MP(𝜆),

(D.6)

where we used 𝒆𝛼 = (𝜆0
𝛼

𝑁)−1∕2𝝃𝒗𝛼 such that 
∑

𝜇(𝑒
𝜇
𝛼 )2 = 1 are the eigenvectors of the correlation matrix, and the fact that 𝜆𝛼 =

(1 + 𝑡)𝜆0
𝛼
∕(1 + 𝑡𝜆0

𝛼
) and that the coupling matrices have only 𝑃 positive eigenvalues. Similarly, for the second moment

𝜇2 →
𝑇 𝐷𝐿 ∫

(1 + 𝑡)2𝜆3

(1 + 𝑡𝜆)2
𝑑 𝜇MP(𝜆). (D.7)

Remark 6. In order to check the validity of the GA, we consider the third centered moment of the attractiveness, which in the 
thermodynamic limit can be approximated as

𝔼𝜼(Δ
𝜇

𝑖
− 𝔼𝜼Δ

𝜇

𝑖
)3 ∼

𝑇 𝐷𝐿

1
𝑁 𝑃

𝔼𝝃

∑
𝑖𝜇𝑗 𝑘𝑙

𝐽𝑖𝑗 𝐽𝑖𝑘 𝐽𝑖𝑙 𝜉
𝜇

𝑖
𝜉

𝜇

𝑗
𝜉

𝜇

𝑘
𝜉

𝜇

𝑙
𝔼𝜼(𝜂𝑗 − 𝑝)(𝜂𝑘 − 𝑝)(𝜂𝑙 − 𝑝). (D.8)
15

Noticing that 𝔼𝜼(𝜂𝑗 − 𝑝)(𝜂𝑘 − 𝑝)(𝜂𝑙 − 𝑝) = 2𝑝(1 − 𝑝2)𝛿𝑗 𝑘 𝛿𝑘𝑙 , it follows that
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𝔼𝜼(Δ
𝜇

𝑖
− 𝔼𝜼Δ

𝜇

𝑖
)3 = 2𝑝(1 − 𝑝2)

𝑁 𝑃
𝔼𝝃

∑
𝑖𝜇𝑗

𝐽 3
𝑖𝑗

𝜉
𝜇

𝑖
𝜉

𝜇

𝑗
. (D.9)

We can thus bound the third centered moment as

|𝔼𝜼(Δ
𝜇

𝑖
− 𝔼𝜼Δ

𝜇

𝑖
)3| ≤ 2𝑝(1 − 𝑝2)

𝑁 𝑃
𝔼𝝃

∑
𝑖𝜇𝑗

|𝐽𝑖𝑗 |3 = 2𝑝(1 − 𝑝2)
𝑁

𝔼𝝃

∑
𝑖𝑗

|𝐽𝑖𝑗 |3 ≤ 2𝑝(1 − 𝑝2)
𝑁

𝔼𝝃

∑
𝑖𝑗

|𝐽𝑖𝑗 |2 =

= 2𝑝(1 − 𝑝2)
𝑁

𝔼𝝃Tr𝑱 2 → 2𝑝(1 − 𝑝2)∫ 𝜆2𝑑 𝜇𝑡
𝜉
(𝜆),

where we used the fact that |𝐽𝑖𝑗 | ≤ 1. Then, a necessary condition for the third centered moment to be close to zero is

2𝛼𝑝(1 − 𝑝2)∫ 𝜆2𝑑 𝜇𝑡
𝜉
(𝜆) ≪ 1.

Appendix E. Proof of Proposition 3

1. In the supervised setting, the empirical first moment of the attractiveness is

𝜇1 =
1

𝑁 𝑃
𝔼𝝌

∑
𝑖𝜇𝑗

𝐽𝑖𝑗 (𝑡)𝜒𝑗 𝜁
𝜇

𝑖
𝜁

𝜇

𝑗
= 𝑟

𝑁 𝑃

∑
𝑖𝜇𝑗

𝐽𝑖𝑗 (𝑡)𝜁
𝜇

𝑖
𝜁

𝜇

𝑗
= 𝑟

𝛼𝑁

∑
𝑖𝑗

𝐽𝑖𝑗 (𝑡)𝐽
0,𝜻

𝑖𝑗
= 𝑟

𝛼𝑁
Tr𝑱 (𝑡)𝑱 0,𝜻 ,

where 𝑱 0,𝜻 is the Hebbian matrix in the archetype-setting with ground-truths 𝜻 . In the 𝑀 →∞ limit, since 𝑱 0 𝑎.𝑠.
→ 𝑟2𝑱 0,𝜻 , we can 

safely write

𝜇1 =
𝑟

𝛼𝑁

∑
𝑖𝑗

𝐽𝑖𝑗 (𝑡) 1
𝑟2

𝐽 0
𝑖𝑗
= 1

𝛼𝑟𝑁
Tr𝑱 (𝑡)𝑱 0 →

1
𝛼𝑟 ∫

𝜆2

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝑠
(𝜆),

in the thermodynamic limit. For the empirical second moment, we have

𝜇2 =
1

𝑁 𝑃
𝔼𝝌

∑
𝑖𝜇𝑗 𝑘

𝐽𝑖𝑗 (𝑡)𝐽𝑖𝑘(𝑡)𝜒𝑗 𝜒𝑘 𝜁
𝜇

𝑗
𝜁

𝜇

𝑘
= 1 − 𝑟2

𝑁

∑
𝑖𝑗

𝐽𝑖𝑗 (𝑡)2 + 𝑟2

𝑁 𝑃

∑
𝑖𝜇𝑗 𝑘

𝐽𝑖𝑗 (𝑡)𝐽𝑖𝑘(𝑡)𝜁
𝜇

𝑗
𝜁

𝜇

𝑘
=

= 1 − 𝑟2

𝑁
Tr𝑱 (𝑡)2 + 𝑟2

𝛼𝑁
Tr𝑱 (𝑡)2𝑱 0,𝜻 = 1 − 𝑟2

𝑁
Tr𝑱 (𝑡)2 + 1

𝛼𝑁
Tr𝑱 (𝑡)2𝑱 0 →

→ (1 − 𝑟2)∫ 𝜆2𝑑 𝜇𝑡
𝑠
(𝜆) + 1

𝛼 ∫
𝜆3

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝑠
(𝜆),

in the thermodynamic limit.

2. In the unsupervised setting, we still have

𝜇1 =
𝑟

𝛼𝑁
Tr𝑱 (𝑡)𝑱 0,𝜻 ,

as in the supervised case. However, in the setting under consideration, in the 𝑀 →∞ limit we have

𝑱 0,𝜻 ≡ 1
𝑟2
(𝑱 0 − 𝛼(1 − 𝑟2)𝟏).

Thus, we have

𝜇1 =
1

𝛼𝑟𝑁
Tr𝑱 (𝑡)𝑱 0 − 1 − 𝑟2

𝑟𝑁
Tr𝑱 (𝑡)→ 1

𝛼𝑟 ∫
𝜆2

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝑢
(𝜆) − 1 − 𝑟2

𝑟 ∫ 𝜆𝑑 𝜇𝑡
𝑢
(𝜆),

in the thermodynamic limit. Analogously, for the empirical second moment we have

𝜇2 =
1 − 𝑟2

𝑁
Tr𝑱 (𝑡)2 + 𝑟2

𝛼𝑁
Tr𝑱 (𝑡)2𝑱 0,𝜻 = 1 − 𝑟2

𝑁
Tr𝑱 (𝑡)2 + 1

𝛼𝑁
Tr𝑱 (𝑡)2𝑱 0 − 1 − 𝑟2

𝑁
Tr𝑱 (𝑡)2 =

= 1
𝛼𝑁

Tr𝑱 (𝑡)2𝑱 0 →
1
𝛼 ∫

𝜆3

1 + 𝑡(1 − 𝜆)
𝑑 𝜇𝑡

𝑢
(𝜆),

in the thermodynamic limit. □
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