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Abstract

Digital Twins (DTs) are considered key components in smart manufacturing.

They bridge the virtual and real world with the goal to model, understand,

predict, and optimize their corresponding real assets. Such powerful features

can be exploited in order to optimize the manufacturing process. In this paper,

we propose an approach, based on Markov Decision Processes (MDPs) and in-

spired by Web service composition, to automatically propose an assignment of

devices to manufacturing tasks. This assignment, or policy, takes into account

the uncertainty typical of the manufacturing scenario, thus overcoming limita-

tions of approaches based on classical planning. In addition, obtained policies

are proven to be optimal with respect to cost and quality, and are continuously

updated in order to adapt to an always evolving scenario. The proposed ap-

proach is showcased in an industrial application scenario, and is implemented

as a freely available tool.
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1. Introduction

The term Industry 4.0 which denotes the fourth industrial revolution, was

first introduced in Germany in 2011 at the Hanover fair, where it was used

for denoting the transformation process in the global chains of value creation

[1]. At present Industry 4.0 is a result of the emergence and distribution of new5

technologies — digital technologies and Internet technologies — which allow the

development of fully automatized production processes, in which only physical

objects that interact without human participation take part [2]. Smart Man-

ufacturing is nowadays a term highly used in conjunction with the concept of

Industry 4.0. Smart Manufacturing aims at improving the manufacturing pro-10

cesses in order to increase productivity and quality, to ease workers’ lives, and

to define new business opportunities. This is enabled by leveraging innovative

techniques like Artificial Intelligence (AI), big data analytics, Machine Learn-

ing (ML), and Business Decision Support Systems (BDSS). The employment of

these techniques has made it possible to create new possibilities of interoper-15

ability, modularity, distributed scenario processing, and integration in real time

with other industrial processes.

Essentially in the same period, the concept of Digital Twin (DT) was in-

troduced as a key technology used in the industrial context. A lot of different

definitions for digital twin can be found in literature, mainly caused by vari-20

ous application areas. The first clear definition was given by NASA in 2012 [3].

They define digital twin as “an integrated multi-physics, multi-scale, probabilis-

tic simulation of a vehicle or system that uses the best available physical models,

sensor updates, fleet history, etc., to mirror the life of its flying twin”. Authors

in [4], after a thorough literature review, propose a consolidated and generalized25

definition for a Digital Twin as “a virtual representation of a physical system

(and its associated environment and processes) that is updated through the

exchange of information between the physical and virtual systems”.

The application of DT in the manufacturing sector impacts the way the

products are designed, manufactured and maintained. On a high level, the DT30
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can evaluate the production decisions, access the product performance, com-

mand and reconfigure machines remotely, handle the troubleshoot equipment

remotely and connect systems/processes to improve monitoring and optimize

their control [5]. DTs can also be applied for process control, process monitor-

ing, predictive maintenance, operator training, product development, decision35

support, real-time analytics and behaviour simulation [6].

A single manufacturing process may include hundreds of different actors

(production equipment of the factory), i.e., and their digital counterpart (i.e.,

digital twins) , that may suddenly fail or provide bad performance. Such ac-

tors might suddenly fail or provide bad performance. In reality, due to their40

continuous use, actors could wear out and therefore have not only a greater

probability of breakage but also higher costs to complete their job. Notice that

the importance of having the digital counterpart for each machine/actor permits

to monitor the correct functioning of the production equipment of the factory.

At any moment in time, in order to provide resilience, the manufacturing pro-45

cess should be able to automatically adapt to new conditions, considering new

actors (with lower cost and low probability of breaking) for the fulfillment of

the manufacturing goals. This task cannot be performed manually when actors

span multiple organizations possibly separated from both the geographical and

organizational points of view. For this reason , it is crucial to have a plan for the50

manufacturing process able to manage several actors, taking into the account

their possible failures and costs.

In that regard, very little research effort has been put in defining automatic

techniques to orchestrate manufacturing actors towards a final goal. Authors

in [7] argued that an important step towards the development of new automated55

techniques in smart manufacturing is modeling DTs in terms of the provided

services. This would allow to partly reuse the results obtained in the area of

Web services, such as the automatic composition and orchestration of software

artifacts.

The inherent limitation of such approaches, though, is the assumption that60

the available services, i.e., the services that can be used to realize the target
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service, behave deterministically. This assumption is unrealistic in the case

of DTs for smart manufacturing, because in practice the underlying physical

system modeled as a set of services might show a stochastic behaviour due to

the complexity of the domain, or due to an inherent uncertainty on the dynamics65

of such a system. In these cases, the deterministic service model is not expressive

enough to capture crucial facets of the system under consideration.

In this paper, we adopt service composition techniques to orchestrate digital

twins in order to generate a plan for a manufacturing process reducing the costs

while preserving the quality of the final outcome. In particular, we propose a70

generalization of service composition techniques in a stochastic setting, in which

the services, corresponding to DTs and underlying manufacturing actors (both

machines and humans) have an unpredictable behavior and are subject to wear.

We find an optimal solution by solving an appropriate probabilistic planning

problem (solving a Markov decision process - MDP), taking into account the75

probability of breaking and the cost of employing specific actors. To this aim,

we leverage the capability of DTs to assess the status and the wearing of the

underlying physical entity [8, 9]. In this way, we are able to autonomously, i.e.,

without human intervention, obtain a production planning which is adaptive,

as it changes every time that the manufacturing of a new product or batch is80

started, and context-aware, as it is dependent from the current status of involved

actors.

The rest of the paper is structured as it follows. Section 2 compares our

approach to other planning approaches in the literature. Section 3 introduces

the conceptual architecture of the proposed approach, introducing key compo-85

nents and actors and explaining their roles. Section 4 formalizes the problem in

terms of Markov Decision Processes (MDPs) and proposesing a solution find-

ing an optimal production plan. Section 5 shows the application of the formal

framework to an industrial case study. Section 6 describes how the approach has

been implemented and the results obtained on the case study. Finally Section 790

concludes the paper with final remarks and future works.
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2. Related works

Here, each available service is modeled as a finite-state machine (FSM), in

which at each state, the service offers a certain set of actions and each action

changes the state of the service in some way. A new service, the target, is gen-95

erated from the set of existing services, specified as FSM too. The goal is to

build a scheduler, called the orchestrator that will use actions provided by exist-

ing services to implement requests of the target. This solution does not fit the

requirements of smart manufacturing, as services (i.e., manufacturing machines

and human workers) do not exhibit a deterministic behavior. The approach100

proposed by [10], while providing a stochastic model for service composition,

does not solve this problem. In fact, the authors employ MDP to provide sub-

optimal solution, capturing only the non-deterministic behaviors of the target

but not of the available services. In this paper, we solved this issue by proposing

an algorithm computing an optimal composition of stochastic DTs in order to105

execute a specific manufacturing process.

Our framework can be contextualized in the broader research area that ap-

plies automated planning techniques to the world of smart manufacturing and,

in general, of Cyber-Physical Systems and business processes [11]. In this area,

we can distinguish between classical planning, which deals with deterministic110

scenarios, and so called decision-theoretic planning [12], which deals with non-

determinism and stochastic behavior. MDPs can be classified indeed as an ap-

proach to decision-theoretic planning. There are several applications of MDPs

to DTs. For example authors in [13] develop an optimal planning and control

policy of the surveillance system considering pro-active targets, heterogeneous115

sensory data, and dynamic environmental factors. They use MDP to represent

dynamic changes in environmental effects in the surveillance area. The work

[14] proposes a DT framework for crane dynamic scheduling problem, modeled

as an MDP with the corresponding double deep Q-network (DDQN) to interact

with the logic simulation environment. The trained DDQN is embedded into the120

DT framework, and connected with the physical workshop. The authors in [15]
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describe the utilization of the hidden Markov models to construct a digital twin

of the surface roughness of a ground surface. Here, the surface heights given

in the form of a time series are used to construct a Markov chain. Then, they

used a Monte Carlo simulation process that simulates the states in accordance125

with the constructed Markov chain. In all these works, as in our case, the MDP

is used for devising optimal planning of the problem. The crucial novelty of

our approach lies in ensuring adaptiveness to change, in fact our system evolves

continuously and continuously is able to find an optimal planning. In detail,

each digital twin that depicts a machine in the manufacturing process updates130

its values at each execution, i.e., the probability to break and the cost increases.

Moreover, in this context it is useful to make a distinction between au-

tomated planning and automated scheduling applied to smart manufacturing.

Automated planning is the application of artificial intelligence technologies to

the problem of generating a correct and efficient sequence of actions [11] (in135

this paper the term action is a synonym of task). On the other hand, schedul-

ing [16] is applied to the related problem of efficiently, or sometimes optimally,

allocating time and other resources to an already-known sequence of actions

(plan).

An example of application of classical planning to smart manufacturing is140

provided in [17]. Here, authors employ automated planning in order to cope

with exceptional and unanticipated events. In particular, planning is employed

to fix a process instance, restoring the conditions to continue with the standard,

manually defined process. Our approach is different both because of the prob-

abilistic behavior of DTs and because we reason on the entire manufacturing145

process and not only on fixing it.

Examples of classical planning applied to the entire manufacturing process

are provided by [18, 19, 20]. Here, again, the solutions provided are determin-

istic, without taking into account the uncertainty typical of manufacturing.

Non-deterministic planning is employed by authors in [21], where a set of150

degrading planning domains are defined. The planner tries to find a solution

in the most restrictive, optimal domain. If during execution, assumptions of a
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plan are not verified, due for example to failures, more and more sub-optimal

domains are employed. The approach focuses on the entire process and non-

determinism of manufacturing actors is modeled, but it does not consider the155

numerical information that can be provided by the DT about the wear level and

probability of failure of the underlying physical actor, as in our approach.

In general, all the approaches based on classical planning and non-deterministic

planning requires the definition of a planning domain. Even though our ap-

proach relies on models, expressed as MDPs, of the DTs and of the manufac-160

turing process, such models are much less time consuming to be produced. On

the other hand, a proper planning domain allows to specify complex conditions,

for example, on the data involved in the process.

3. Conceptual architecture

In order to explain the proposed approach, Figure 1 shows a conceptual165

architecture, complying with the general one provided in [7], where the main

components are the supervisor, the orchestrator and the DTs of involved actors,

the latter ones including manufacturing machines, human operators/workers

and external suppliers.

The term DT was originally intended to denote a digital model, that faith-170

fully reproduces a physical entity, and allows to perform physical simulations

(e.g., mechanical solicitations). In the last years, the term has been used to

more generically denote a digital interface allowing not only for simulations but

also for an all-round control of the physical entity during run time [22, 23].

Following this intuition, a DT exposes an Application Programming Interface175

(API) consisting, in general, of three parts [7]: synchronous, query and asyn-

chronous. The synchronous interface allows to give instructions to the physical

entity. These instructions include actions to be executed by the physical entity

that changes its status. The query interface allows to ask information to the

physical entity about its state and related information; noteworthy, these latter180

ones can be obtained by applying diagnostic and prognostic functions results
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Figure 1: The proposed architecture.

of machine learning. The asynchronous interface generates events available to

subscribers. A fourth interface, called simulation interface, is provided to access

the simulation functionalities provided by the DT.

In addition, each DT is equipped with a specification of the provided func-185

tionalities. This specification may take a form that depends on the specific

framework employed to implement the DT (see for example Section 6).

For the sake of space, Figure 1 depicts a single machine #i and a single

operator #j, but the reader should imagine a factory as including a multitude

of them. In addition, each action (task) of a manufacturing process can be190

performed by different machines or humans. The choice of the specific actor

to be employed for a specific action is driven by different factors, including the

cost and the potential quality loss due to wear or obsolescence. As an example,

humans are usually more expensive than machines for a specific action in terms

of economic and time cost, but a worn machine could negatively impact the195

quality of the final product.

The orchestrator, as discussed in [7] (there, authors use the more generic

name of mediator), is a software program intended to guarantee that the manu-
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facturing process fulfills the goals imposed by a human supervisor. In addition,

the orchestrator is selects services to be employed maximizing a set of Key Per-200

formance Indicators (KPIs). In this paper, the goal consists of a description of

a manufacturing process, which we aim to execute while reducing the total cost,

where the concept of cost embodies both the economic cost and quality loss due

to the specific choices made by the orchestrator.

The orchestrator is called every time that the production of a new product205

or a batch of products is started. At this point, the orchestrator:

1. Gathers the specifications of all the available DTs.

2. According to these specifications, the orchestrator employs the query in-

terface of each DT to obtain the current status of the machine. The status

is continuously kept updated by the DT and may include the probability210

of breaking and the wear level of the correspondent device.

3. Computes the optimal solution given the current status and capabilities

of each available actor, as reported by the respective DTs. A solution, or

plan, consists of a sequence of manufacturing actions, consistent with the

description provided by the supervisor, and of an assignment of a specific215

actor (machine or human) to each action.

4. Automatically executes the manufacturing process following the obtained

plan, by leveraging the synchronous interface of each involved twin. In ad-

dition, it monitors the execution, by taking countermeasures when needed

(e.g., when a specific machine breaks).220

After a product or batch is completed, the orchestrator starts over, waiting

for a new production start event.

Noticeably, every time that a new production starts and the orchestrator is

invoked, the decision this latter will make will be influenced by the production

history, as the DT behind each service involved in the production will update225

information about costs and likelihood of a breaking event.

Noteworthy, the definition of orchestrator provided in this section is very

generic and it is open to several different implementation strategies. In this
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paper, in particular, we will implement the orchestrator as a tool that finds

an optimal policy to a Markov Decision Process (MDP) which is constructed230

by combining in an innovative way the different MDPs modeling available ac-

tors/services.

4. Composing DTs

In this section, we formalize the orchestrator defined in Section 3 and we

introduce an algorithm with formal optimality guarantees to compute the man-235

ufacturing plan.

As DTs and corresponding physical actors can be modeled in terms of their

service interface, their composition to obtain a manufacturing goal can be per-

formed similarly to what has been done for Web service composition in the

area of classical information systems. The problem of service composition, i.e.,240

the ability to generate new, more useful services from existing ones, has been

considered in the literature for over a decade [24, 25, 26]. The goal is, given a

specification of the behavior of a (complex) target service, to build a controller,

known as an orchestrator, that uses existing (composing) services to satisfy the

requirements of the target service. In our case, the target service is the manufac-245

turing process, whereas the composing services are the DTs wrapping physical

actors.

In particular, we took inspiration from the approach known as the “Roman

model” [27, 28]. In the Roman model, each available Web service is modeled as

a finite-state machine (FSM), in which at each state, the service offers a certain250

set of actions, where each action changes the state of the service in some way.

The designer is interested in generating a new service (specified using an FSM

too), referred to as the target service, from the set of existing services.

The first limitation of such an approach, when applied to the world of smart

manufacturing, is that whereas Web services behavior is predictable, i.e., the255

execution of an action in a specific state deterministically takes the service from

one state to another, the execution of an action from an industrial actor (either
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machine or human) can have unpredictable effects (e.g., the machine breaks),

which must be taken into account while computing a solution. In addition, the

behaviour of a physical actor in manufacturing may degrade over time due to260

wearing.

Moreover, it is not always possible to synthesize a service that fully conforms

to the requirement specification. This zero-one situation, where we can either

synthesize a perfect solution or fail, is often restrictive. Rather than returning

no answer, we may want the notion of the “best-possible” solution. A solution265

to this last issue has been proposed in [10], where the authors discuss and

elaborate upon a probabilistic model for the service composition problem, first

presented in [29]. In this model, an optimal solution can be found by solving an

appropriate probabilistic planning problem (e.g., a Markov Decision Process)

derived from the services and requirement specifications. Still, the proposed270

solution is applicable only to deterministic and non-degrading services such as

Web services.

The solution proposed in this paper relies on the concept of Markov Decision

Process (MDP). An MDP M = ⟨Σ, A, P,R, λ⟩ is a discrete-time stochastic

control process containing (i) a set Σ of states, (ii) a set A of actions, (iii)275

a transition function P : Σ × A → Prob(Σ) that returns for every state s and

action a a distribution over the next state, (iv) a reward function R : Σ×A → R

that specifies the reward (resp. the cost), a real value received (resp. paid) by

the agent when transitioning from state σ to state σ′ by applying action a, and

(v) a discount factor λ ∈ (0, 1). A solution to an MDP is a function, called a280

policy, assigning an action to each state, possibly with a dependency on past

states and actions. The value of a policy ρ at state σ, denoted vρ(σ), is the

expected sum of rewards when starting at state σ and selecting actions based

on ρ. This expected sum of rewards could possibly be discounted by a factor

λ, with 0 ≤ λ < 1. Typically, the MDP is assumed to start in an initial state285

σ0, so policy optimality is evaluated w.r.t. vρ(σ0). Every MDP has an optimal

policy ρ∗. In discounted cumulative settings, there exists an optimal policy

ρ : Σ → A that is Markovian, i.e., that depends only on the current state, and
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deterministic [30]. Among the techniques for finding an optimal policy of an

MDP, there are value iteration and policy iteration [31].290

4.1. Modeling DTs as stochastic services

In order to overcome the limitations of the Roman model when applied to

smart manufacturing, we model each DT and the underlying physical actor as

a stochastic service. A stochastic service is a tuple S̃ = ⟨Σs, σs0, Fs, A, Ps, Rs⟩,

where Σs is the finite set of service states, σs0 ∈ Σ is the initial state, Fs ⊆ Σs295

is the set of the service’s final state, A is the finite set of services’ actions,

Ps : Σs ×A → Prob(Σs) is the transition function, and Rs : Σs ×A → R is the

reward function.

The stochastic service is the stochastic variant of the service defined in the

classical Roman model, and it can be seen as an MDP itself. Such a solution300

allows for the flexibility required to model a physical machine operating in

manufacturing environments. As an example, specific states can be defined to

model unavailability conditions (e.g., a broken machine) and the probability of

ending in such states. In addition, rewards can be used to model the degradation

of service quality in time. Repair costs to recover from unavailability states305

can also be modeled to take into account in the solution the possibility to fix

broken devices if they guarantee an high quality. All of these parameters can be

computed and continuously refreshed by the DTs by using models trained by

the equipment manufacturers. A case study demonstrating these aspects will

be presented in Section 5.310

We also define, to simplify the discussion in the next sections, the stochastic

system service as the community of stochastic services C̃ = {S̃1, . . . , S̃n}. It is

a stochastic service itself defined as Z̃ = ⟨Σz, σz0, Fz, A, Pz, Rz⟩ where:

• Σz = Σ1 × · · · × Σn,

• σz0 = (σ10, . . . , σn0),315

• Fz = {(σ1, . . . , σn) | σi ∈ Fi, 1 ≤ i ≤ n},
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• Az = A × {1, . . . n} is the set of pairs (a, i) formed by a shared action a

and the index i of the service that executes it,

• Pz(σ
′ | σ, (a, i)) = P (σ′

i | σi, a), for σ = (σ1 . . . σn), σ
′ = (σ′

1 . . . σ
′
n) and

a ∈ Ai(σi), with σi ∈ Σi and σj = σ′
j for j ̸= i,320

• Rz(σ, (a, i)) = Ri(σi, a) for σ ∈ Σz, a ∈ Ai(σi).

Intuitively, the stochastic system service represents, in a single MDP, all

the stochastic services, i.e., all the DTs and underlying physical actors. As a

consequence, its status includes the current status of all the composing services.

A specific action performed on the system service changes only one component325

of the current state, corresponding to the service selected to execute that action.

4.2. Modeling the manufacturing process

In order to model the manufacturing process we use the concept of target

service introduced by the Roman model. The term denotes a complex service

that can be obtained by composing simpler services. In our case, the manufac-330

turing process must be obtained by composing the functions of available DTs.

In particular, we will use the definition of target service as adapted by [10] to

the stochastic setting.

A target service is defined as a tuple T = ⟨Σt, σt0, Ft, A, δt, Pt, Rt⟩, where Σt

is the finite set of service states, σt0 ∈ Σ is the initial state, Ft ⊆ Σ is the set of335

the service’s final state, A is the finite set of services’ actions, δt : Σ×A → Σ is

the service’s deterministic and partial transition function, Pt : Σt → π(A)∪∅ is

the action distribution function, Rt : Σt ×A → R is the reward function.

Noticeably, the target service itself, as the stochastic services modeling the

DTs, is a particular case of MDP. In the vast majority of cases, manufacturing340

processes (differently from manufacturing actors) are deterministic. The em-

ployment of such definition, is only to be intended as functional to our formal

framework, with Pt ∈ {0, 1} and Rt constant.
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4.3. The composition problem

We define the set of joint histories of the target and the system service as345

Ht,z = Σt ×Σz × (A×Σt ×Σz)
∗. A joint history ht,z = σt,0σz,0a1σt,1σz,1a2 . . .

is an element of Ht,z. The projection of ht,z over the target (system) actions is

πt(ht,z) = ht (πz(ht,z) = hz). An orchestrator γ : Σt × Σz × A → {1, . . . , n}, is

a mapping from a state of the target-system service and user action (σt, σz, a) ∈

Σt×Σz×A to the index j ∈ {1, . . . , n} of the service that must handle it. Since350

the being stochastic comes also from the services, the orchestrator does affect

the probability of an history ht,z. Moreover, in general, there are several system

histories associated with a given target history.

A target history ht is realizable by an orchestrator γ if for all joint histories

ht,z such that ht = πt(ht,z), the orchestrator is well-defined, i.e. it can perform355

all the actions requested by the target for every possible (stochastic) evolution

of the system service. The orchestrator γ is said to realize a target service T if

it realizes all histories of T .

Let Pγ(h) =
∏∞

i=0 Pt

(
σt,i, ai+1

)
Pz

(
σz,i+1 | σz,i, ⟨ai+1, γ(σt,i, σz,i, ai+1)⟩)

)
be the probability of a (joint) history h = σt0σz0⟨a1, j1⟩σt1σz1⟨a2, j2⟩ . . . under360

orchestrator γ. Intuitively, at every step, we take into account the probability,

determined by Pt, that the user does action ai+1 in the target state σt,i, in

conjunction with the probability, determined by Pz, that the system service

does the transition σz,i
(ai+1,j)−−−−−→ σ′

z,i+1, where j is the choice of the orchestrator

at step i under orchestrator γ, i.e. j = γ(σt,i, σz,i, ai+1).365

The value of a joint history under orchestrator γ is the sum of discounted re-

wards, both from the target and the system services: vγ(h) =
∞∑
i=0

λi

(
Rt

(
σt,i, ai+1

)
+

Rz

(
σz,i, ⟨ai+1, γ(σt,i, σz,i, ai+1)⟩)

))
. Intuitively, we take into account both the

reward that comes from the execution of action ai+1 in the target service, but

also the reward associated with the execution of that action in service j chosen

by orchestrator γ. Now we can define the expected value of an orchestrator to

be:

v(γ) = Eht,z∼Pγ

[
vγ(ht,z) · realizable(γ, πt(ht,z))

]
(1)
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where realizable(γ, πt(ht,z)) is 1 if ht = πt(ht,z) is realizable in γ (i.e. all the

possible target histories are processed correctly), and 0 otherwise. That is, v(γ)

is the expected value of histories realizable in γ. Finally, we define an optimal

orchestrator to be γ = argmaxγ′ v(γ′).

We have the following theorem:370

Theorem 1. Assuming that (1) the target is realizable, and (2) every target-

system history has strictly positive value, if the orchestrator γ is optimal, then

γ realizes the target.

Proof. The claim in its contrapositive form is that any orchestrator that does

not realize some history is non-optimal. By assumption (2), if the set of target375

histories realizable using orchestrator γ contains the set realizable using orches-

trator γ′, then v(γ) ≥ v(γ′). Moreover, if the set of histories realizable by γ

but not by γ′ has positive probability, then v(γ) > v(γ′). If a target history ht

is not realizable by γ′, there exists a point in ht where γ′ does not assign the

required action to a service that can supply it. Thus, any history that extends380

the corresponding prefix of ht is not realizable, and the set of such histories

has non-zero probability. Since we assume all histories have positive value, the

optimal orchestrator would always prefer realizing all possible target histories

(which, by assumption (1), are all the ones to realize), possibly optimizing for

the rewards coming from the services’ actions, and therefore realize the target.385

Note that by definition of v(γ) all the joint histories ht,z whose associated tar-

get history ht = πt(ht,z) is not realizable in γ do not contribute to the value

of an orchestrator (even the ones where γ is well-defined), thanks to the factor

realizable(γ, ht).

Note that, in our setting, we can only guarantee that the optimality of an390

orchestrator γ implies that γ is a realization of the target service, but not vice

versa (e.g. see the sufficient condition of Theorem 1 of [10]); this is because our

definition of realizability does not take into account the rewards coming from

the system service, and therefore an orchestrator that realizes the target might

choose sub-optimal services despite being a target realization. Moreover, note395
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that any detour from a solution that realizes all the (infinite) target histories,

that prefers rewards coming from the services at the cost of not realizing some

target history ht, is penalized, since by definition the missed realization of such

history is considered of value 0. Nonetheless, as discussed in the following

section, we are able to provide an optimal solution to the problem.400

Additionally, assumption (2) is without loss of generality. Indeed, one can

shift all the rewards with an additive constant c, both from the target service Rt

and from the system service Rz, such that they become all positive. Having only

positive rewards is a sufficient condition for having histories with strictly positive

value. Therefore, in case the minimum target (system) service reward Rt,min405

(Rz,min, respectively) is smaller than zero, we can use c = |Rt,min| + |Rz,min|.

Crucially, this reward transformation is policy invariant, which means that the

set of the optimal policies remains the same. Hence, the value function for some

policy ρ with the original rewards is the same as that with the new rewards,

except for a constant addend.410

4.4. The solution technique

The solution technique is based on finding an optimal policy for the compo-

sition MDP. The composition MDP is a function of the system service and the

target service as follows: M̃(Z̃, T̃ ) = ⟨SM̃, AM̃, TM̃, RM̃⟩, where:

• SM̃ = ΣZ̃ × ΣT̃ ×A ∪ {sM̃0, ssink},415

• AM̃ = {aM̃0, 1, . . . , n},

• TM̃(sM̃0, aM̃0, (σz0, σt0, a)) = Pt(σt0, a),

• TM̃((σz, σt, a), i, (σ
′
z, σ

′
t, a

′)) = Pt(σ
′
t, a

′) · Pz(σ
′
z | σz, ⟨a, i⟩), if Pz(σ

′
z |

σz, ⟨a, i⟩) > 0 and σt
a−→ σ′

t and 0 otherwise,

• TM̃((σz, σt, a), i, ssink) = 1−
∑

σ′
z,σ

′
t,a

′
TM̃((σz, σt, a), i, (σ

′
z, σ

′
t, a

′))420

• TM̃(ssink, i, ssink) = 1, for all i,
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• RM̃((σz, σt, a), i) = Rt(σt, a) + Rz(σz, ⟨a, i⟩), if (a, i) ∈ A(σz) and 0 oth-

erwise,

• R(ssink, i) = 0 for all i.

Noteworthy, even if the composition MDP is obtained by combining the425

system service and the target service, it has completely different characteristics.

Here, the next action to perform is part of the state of the MDP, whereas the

“action” is the selection of a specific service to execute that action (AM̃ =

{aM̃0, 1, . . . , n}). This means that by solving the composition MDP, we find an

assignment of manufacturing actors to actions (manufacturing tasks) as well as430

a sequence of actions.

This definition is pretty similar to the construction proposed in [10], with

the difference that now, in the transition function, we need to take into account

also the probability of transitioning to the system successor state σ′
z from σz

doing the system action ⟨a, i⟩, i.e. Pz(σ
′
z | σz, ⟨a, i⟩). Moreover, in the reward435

function, we need to take into account also the reward observed from doing

system action ⟨a, i⟩ in σz, and sum it to the reward signal coming from the

target. The state ssink is an absorbing state, that transitions only to itself and

that generates only rewards of value 0, and it is needed to make the transition

function of the MDP well-defined. If a trajectory reaches that state, it means440

it represents an unrealizable (joint) history.

Theorem 2. Let γρ, defined as γρ(σt, σz, a) = ρ(⟨σz, σt, a⟩), be the orchestrator

associated to a policy ρ. Assume that for all policies ρ and target histories ht, we

have that realizable(γρ, ht) = 1. If ρ is an optimal policy, then the orchestrator

γρ is an optimal orchestrator.445

Proof. Observe that for realizable joint histories ht,z, for some ρ and γρ, there

is an obvious one-to-one relationship between ht,z and non-failing trajectories

τ of the composition MDP (to be more precise, we first have to drop sM̃0 and

aM̃0 from τ). By construction, for any joint history ht,z and policy ρ, we have

that vγρ(ht,z) = 1
λGt, where Gt is the total return of a trajectory τ obtained450
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following policy ρ; the discount factor at the denominator is because the MDP

requires an initial auxiliary action aM0 that we have to take into account to get

the equality.

Then, we can show that the value of an orchestrator is proportional to the

value of the initial state of the MDP by following policy ρ, i.e. v(γρ) ∝ vρ:

v(γρ) = Eht,z∼Pγρ

[
vγρ

(ht,z) · realizable(γρ, πt(ht,z))
]

(2)

= Eht,z∼Pγρ

[
vγρ(ht,z)

]
(3)

= Eτ∼TM̃,ρ

[ 1
λ
Gt

]
(4)

=
1

λ
vρ (5)

∝ vρ

where step 2 is by definition (see Equation 1), step 3 by assumption on the

value of the predicate realizable, step 4 by the equivalence between joint history455

and trajectory of the composition MDP, and by construction of TM̃, and step

5 by linearity of expectation and by definition of value of a policy.

Given the above, we have that the thesis holds because argmaxγ v(γ) =

argmaxρ vρ.

To summarize, given the specifications of the set of stochastic services and460

the target service, the orchestrator first computes the composition MDP, then

finds an optimal policy for it, and then deploys the policy in an orchestration

setting and dispatch the request to the chosen service according to the computed

policy.

5. Case study465

In order to show the suitability of the proposed approach, in this section we

present the real-world application scenario of a ceramics manufacturing com-

pany.2 Figure 2 depicts a snippet of the process to be automated and monitored

2Notice that this case study has not been deployed yet in a real factory but it is represen-

tative of a real manufacturing company the authors are collaborating with.
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s0 s1 s2 . . . sn

provisioning moulding check moulding
check second baking

shipping

Figure 2: The state machine of the target. Some steps are omitted.

expressed as a target service.

The process is a deterministic sequence of actions (as discussed in Sec-470

tion 4.2). The complete sequence is the following: (1) provisioning, (2)

moulding, (3) drying, (4) first baking, (5) enamelling, (6) painting, (7)

second baking, and (8) shipping. Some of the actions are followed by the

corresponding checking actions, which verify the correctness of the output (e.g.,

the check moulding action checks the outcome of moulding).475

Each action in the manufacturing process can be executed by different ma-

chines or human workers. In particular it is possible that the same action is

provided by different models of the same machine, and that these machines

can be replaced by human operators. The DTs corresponding to these actors

must be modeled as stochastic services as shown in Section 4.1. Each actor is480

associated with a unique identifier i, which allows to specify the parameters of

the associated MDPs. As an example, in the following Opi is the action imple-

mented by actor i. We classify services into three categories, according to their

complexity and provided actions.

Simplest services like those exposed by actors with no possibility to break485

and not provide any checking functionality. Actors in this category are external

suppliers, which are seen as black boxes providing an action with a specific

cost. The prototype of such services is provided in Figure 3. Such services

have a single state and a self-loop deterministic (with probability 1.0) transition

triggered by the Opi action. In our case study, for simple services, we have490
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Available Opi, 1.0, ci

Figure 3: A prototype of the service’s MDP we consider to model simplest services.

Available Done

Opi, 1.0, ci

CheckOpi, 1.0, 0

Figure 4: A prototype of the service MDP that we consider to model services performed by a

human worker.

Opi ∈ {provisioning, shipping}. The transition is associated with a cost ci

to perform the action.

Services that represent human workers have two states and no possibility

to break. The prototype of such services is provided in Figure 4. The service

starts in the Available state from the Opi action is available. Executing495

Opi the service deterministically (with probability 1.0) ends in the Done state,

with a certain cost ci < 0. In the Done state the CheckOpi action is available,

assumed to be executed by the target right afterOp to make the service available

again after it has completed an action. Noticeably CheckOpi, has cost 0.0 as

there is no possibility for the service to break (being a human worker) once500

it has performed the action correctly it can simply return available again and

move on to performing the next action without being repaired with a certain

cost.

Figure 5 shows the prototype of a complex service that has the possibility

to break. The service is initially in the Available state. The execution of the505

action Opi takes with probability bi to the Broken state, and with probability

1 − bi to the Done state. In both cases, the cost of performing Opi is ci < 0.

The probability bi models the chances of the machine to break while performing

Opi. The action CheckOpi is assumed to be executed by the target right after

Opi in order to make the service available again, and additionally, to force the510

repairing in case the service is in the Broken state. In this latter case, ci,R < 0,
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Available

Done

Broken

Opi, 1− bi, ci

Opi, bi, ci

CheckOpi, 1.0, 0

CheckOpi, 1.0, ci,R

Figure 5: A prototype of the service’s MDP we consider to model complex services (i.e.

services that can break).

is the repair cost for the service i.

Figure 6 depicts the initial (for the sake of space) portion of the composition

MDP (see Section 4.4). The system starts dispatching the provisioning request

to a simple service (forced choice); then, to process the request moulding, the515

orchestrator can choose between services b1 and b2, taking into account the

costs cb1 , cb2 and the probability of breaking bb1 , bb2 . The execution continues

after checking the action on the service previously chosen (a forced orchestration

choice, by construction).

The goal of the orchestrator is to first find a plan such that the overall520

expected sum of rewards is maximized (or, equivalently, that the expected sum

of costs is minimized), even if the orchestration is not guaranteed to succeed

in all the cases. The plan assigns an actor to each action taking into account

breaking probabilities and action and repair costs provided by the DTs. It is

not straightforward indeed to determine a-priori which service a certain action525

must be assigned to. For example, it might be the case that despite the action

cost of a machine is low, its breaking probability might be high, and considering

the repair cost it might let us to prefer a human worker for that action.
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sdummy ⟨σz, s0, provisioning⟩

⟨σz, s0,moulding⟩

done

broken

done

broken

⟨σz, s2, drying⟩

. . .

adummy, 0, 1.0

a,−ca, 1.0

b1,−cb1 , 1− bb1

b1,−cb1 , bb1

b2,−cb2 , 1− bb2

b2,−cb2 , bb2

b1, 0, 1.0

b1,−cb1,R, 1.0

b2, 0, 1.0

b2,−cb2,R, 1.0

b1

b2

Figure 6: The initial part of an example of composition MDP for the use case.

22



6. Implementation

An implementation of the proposed case study, together with a reusable530

implementation of the solution techniques are freely available3. The communi-

cation between the orchestrator and the devices (available services and target)

is managed by a server, a sort of platform for IoT devices that supports queries

to find them, and requests for remote task execution. This server is representa-

tive of a category of middleware supporting the deployment, management and535

interconnection between DTs. This category also includes Amazon Digital Twin

Builder, Microsoft Azure IoT, and Bosch IoT Suite. Figure 7 depicts the soft-

ware architecture of our case study. The server allows devices (both available

services and target service) to connect to the server via WebSocket, while the

orchestrator can interact with the server via HTTP requests. The services can540

connect to the server in order to register themselves and then wait for requests

of action execution or maintenance tasks. The orchestrator can interact with

the server in the following ways: query the server to retrieve both the specifica-

tion and the current state of the available services and the current active target

service, request an action from the target, request the execution of an action to545

be performed by a service, and request maintenance of the services.

We implemented each actor, the target process (service), and the orchestra-

tor as separate Python processes. The different processes do not communicate

directly one each other. Their behaviour specification is recorded by the server

at registration time, while the features of the current state are updated during550

the execution of the process. The description of the services is provided as a

JSON document containing:

• an id that uniquely identifies the device;

• a set of attributes containing the static properties of a DT. In our case,

these include the MDPs of the actors, with nominal transition costs and555

3See https://github.com/luusi/digital-twins-composition-in-smart-manufacturin

g-via-markov-decision-processes
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Figure 7: Software architecture.

probabilities;

• a set of features modeling the dynamic properties of a DT. In our case

we use features to model probabilities and costs, which change over time

because of the usage of the DT.

An example of a complex DT device is reported in Figure 8.560

The orchestrator works as a client for the server and as previously mentioned,

communicates with it through the HTTP protocol. The Server dispatches then

messages from the orchestrator and the DTs and vice versa.

Figure 9 depicts the message exchange between the orchestrator and a spe-

cific service/DTi. Here, the communication with the server is implied. Before565

the actual execution starts, the orchestrator collects DT descriptions, composes
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{
"id": "complex_service",
"attributes": {
"type": "service",
"transitions": {
"available": {
"OP": [
{
"done":

1-broken_probability,
"broken":

broken_probability
},
operation_cost

]
},
"broken": {
"CHECKOP": [
{
"available": 1

},
repair_cost

]
},
"done": {
"CHECK_OP": [
{
"available": 1

},
0

]
}

},
"initial_state": "available",
"final_states": [
"available"

]
},
... continue to the right ...

"features": {
"transition_function": {

"available": {
"OP": [
{

"done":
1-broken_probability,

"broken":
broken_probability

},
operation_cost

]
},
"broken": {

"CHECKOP": [
{

"available": 1
},
repair_cost

]
},
"done": {

"CHECK_OP": [
{

"available": 1
},
0

]
}

},
"current_state": "available"

}
}

Figure 8: The definition of a complex DT device.

the MDPs, calculates the optimal policy and issues a command to ask to the

target DT to request the action. At this point, the orchestrator listens to the

event originating from the target service, which is a DT itself. Events produced

by the target service, are requests for actions. For each event, the orchestrator570

sends a request to execute the action to the more convenient actor, following

the computed policy. The chosen actor performs the action and updates its

state and its costs and probabilities (i.e., the parameters of the MDP) for the

next repetition of the manufacturing process. Once the actor completes the

execution of the action, the orchestrator updates the current state of the MDP,575

downloads the updated MDP parameters from the actor, updates the optimal

policy, and waits for the new action from the target service.
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Figure 9: Communication between Target, Orchestrator and Services.

We can highlight some important implementation aspects. Every time that

an available actor is used to perform a certain action, it undergoes a slight wear.
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Obviously, this does not happen for the services that cannot break, like services580

with a single state and services provided by human workers. After the service

executes the action its MDP parameters change, in particular the probability

that the service will end in a broken state grows.

Moreover, we know that a machine that is wearing out is less performing, so

the cost of executing an action also increases. In particular, we assume that at585

the beginning of the manufacturing production every machine starts from a low

broken probability (0.05) and a low cost to perform a certain action (-1), as it

is not worn. At each iteration, i.e., at each use of the machine, it will gradually

start to degrade, so we assume that the broken probability increases by 0.05 and

the cost increases by 1. As we discussed in the previous section, we can have590

different services (i.e., actors) that can perform the same action. As an example,

in our case study, the painting action can be executed both by a machine and

by a human. The orchestration is able to execute actions following the optimal

policy that allows the choice of the best service that has a low cost and a minimal

chance of breaking. Since at every call the probability of breaking and the cost595

increase gradually, the optimal policy must be recalculated at every repetition

of the manufacturing process. What the provided implementation shows, is

that despite initially the machine is chosen for the painting action (because has

low-cost respect to the human), at a certain point the human will become more

convenient.600

The interested reader can reproduce the entire experiment by following the

instructions provided with the tool code repository.

Every machine that breaks can be repaired, returning available, at a certain

cost. Beside this aspect, which is taken into account while computing the new

policy, we implemented a scheduled maintenance strategy. In particular, the605

orchestrator periodically sends a maintenance event to each actor, which restores

its quality, i.e., resetting the breaking probability and the action execution cost.

In this way, all the machines that have reached a significant state of wear can be

restored and return to their initial status. This allows to overcome the problem

that once a machine degrades it will no longer be chosen. Through scheduled610
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maintenance, all the machines are checked and repaired periodically, in such a

way as to ensure their optimal functioning.

7. Conclusions

In this work, we have proposed a stochastic service composition, in which

also the services are allowed to have stochastic behaviour and rewards on the615

state transitions. We formally specified the problem and proposed a solution

based on a reduction to MDPs, showing how it is well-suited for a realistic

Industry 4.0 scenario. Despite that, a current limitation of our work is that

it has not been deployed yet in a real industry. We proved that our solution,

under mild assumptions, guarantees that optimal policies for the MDP are also620

orchestrators that realize the target manufacturing process.

Besides the development of this work we considered several future research

directions, aiming to enrich the theoretical framework.

In first place, the manufacturing process is described in this paper as an MDP

itself, which is a stochastic finite state machine. In many cases, it is required to625

describe a manufacturing process from different aspects. As an example, certain

choices can be driven by conditions on data, as in the case of customized (or

mass-customized) products. This can be achieved in our model by providing

different target services, but the inclusion of conditions and guarded transitions

in the process automaton would ease the supervisor’s work.630

Additionally, in certain cases, a manufacturing process can be easily ex-

pressed in terms of precedence relations between manufacturing actions. This

can be achieved by allowing to specify the target process using, for example, tem-

poral logic formalisms such as Linear Temporal Logic on finite traces (LTLf) [32].

Another interesting aspect to be explored is the definition of safety con-635

straints and, in general, Key Performance Indicators (KPI) to be respected

from the process [33].

Exception handling is also a key feature in smart manufacturing. The pro-

posed approach is able to cope with negatively impacting events if they are
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properly managed (e.g., a machine breaking), but it cannot cope with unex-640

pected exceptions (e.g., in our case study, the unavailability of the shipping

service). Techniques could be employed, inspired for example to service discov-

ery [34], to automatically cope with these situations.

All of the aforementioned research directions suggest that, in order to fully

exploit DTs towards resiliency, efficiency and sustainability, a layered definition645

of the manufacturing process should be proposed.

Data integration aspects will be also taken into account. In our work, we

suppose the employment of a common action vocabulary used by the supervisor,

who specifies the manufacturing process, and DTs. This is not always the case,

as different vendors could use different terms for the same actions, thus making650

twin specifications incompatible. Again, literature from Semantic Web services

could represent an initial reference [35].

Moreover, another interesting direction to explore is the integration of learn-

ing techniques in order to achieve greater scalability and resilience.

The theoretical contributions from this paper potentially impact many other655

research areas. In particular, the same methodology can be applied to other

scenarios where agents can be modeled by using MDPs, such as for example

collaborative robots applications and Human-Robot collaboration.
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