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Boson Sampling is a task that is conjectured to be computationally hard for a classical computer, but which can be efficiently solved
by linear-optical interferometers with Fock state inputs. Significant advances have been reported in the last few years, with
demonstrations of small- and medium-scale devices, as well as implementations of variants such as Gaussian Boson Sampling.
Besides the relevance of this class of computational models in the quest for unambiguous experimental demonstrations of
quantum advantage, recent results have also proposed the first applications for hybrid quantum computing. Here, we introduce the
adoption of non-linear photon-photon interactions in the Boson Sampling framework, and analyze the enhancement in complexity
via an explicit linear-optical simulation scheme. By extending the computational expressivity of Boson Sampling, the introduction of
non-linearities promises to disclose novel functionalities for this class of quantum devices. Hence, our results are expected to lead
to new applications of near-term, restricted photonic quantum computers.
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INTRODUCTION

Quantum technologies promise to provide speed-up in several
fields, ranging from intrinsically secure long-distance quantum
communication' to a novel generation of high-precision sensors?,
and enhanced computational and simulation capabilities®. Among
the currently developed experimental platforms, in the last few
years, photonic technologies have recently experienced a techno-
logical boost in all fundamental components, namely photon
sources, manipulation, and detection®.

Recent studies have focused on identifying suitable dedicated
classically-hard tasks, with the aim of leveraging the necessary
technological resources and system size to reach the quantum
advantage regime>®. Such a regime corresponds to the scenario
where a quantum device solves a given task faster than any
classical counterpart. Within this context, a computational
problem named Boson Sampling” has been defined as a
promising approach. This problem, which consists of sampling
from the output distribution of a system of n non-interacting
bosons undergoing linear evolution, is a classically-hard task (in n)
while it can be naturally solved by a linear-optical photonic
system. Such sampling problem has also subsequently inspired
other classes of sampling problems®® suitable to be solved with
different quantum hardware>1%11,

Starting from the original proposal’, several experimental
implementations of Boson Sampling instances'?23 and of recently
proposed variants?*2® have been reported®. In particular, hybrid
algorithms based on Gaussian Boson Sampling have been
proposed for various tasks: quantum simulation?”%-33, optimization
problems®*, point processes®> graph theory*®—%, and quantum
optical neural networks®. Very recently, impressive experimental
implementations of Gaussian Boson Sampling have been
reported®*°, Besides the technological advances reported in the
last few years, several studies have also focused on studying and
improving the classical simulation of Boson Sampling*'~*¢, and on
defining the limits for simulability in the presence of imperfections,
in particular losses and partial photon distinguishability*’=>. All
these studies aimed at establishing a classical benchmarking
framework for Boson Sampling, and currently place the threshold

for quantum advantage in such a system to n ~50 photons in a
network composed of m~n?=2500 optical modes. Recent
improvements in photon sources>>™®° enabled the first Boson
Sampling experiments with a number of detected photons up to
n = 14?3, However, reaching the quantum advantage regime with a
photonic platform solving the original formulation of the task” still
requires a technological leap to enhance single-photon generation
rates and indistinguishability, and to reduce losses in the current
platforms for linear-optical networks.

Here, we introduce the adoption of non-linear interactions at
the few-photon level within the Boson Sampling framework as a
route to increase the complexity and reduce the threshold for the
quantum advantage regime. This possibility is encouraged by recent
advances showing the first experimental demonstrations of non-
linear photonic processes with ultra-cold atoms®'-%° and solid-state
devices®®%”. We will first describe the introduction of non-linearities
within the otherwise linear evolution. Then, we will provide an
upper bound on the complexity of the enhanced devices via a
simulation scheme based on auxiliary, linear-optical gadgets. We will
discuss both the asymptotic and finite cases, leveraging results from
the well-established linear Boson Sampling framework’.

RESULTS

Boson Sampling

Boson Sampling” is a computational task that corresponds to
sampling from the output distribution of n indistinguishable, non-
interacting photons after evolution through an m-mode linear
network [see Fig. 1a]. Given an interferometer described by a
unitary matrix U, the transition amplitude from input |S) to output
state |T) can be written as:

per(Usr)

=m . 1
HZ}-:1 S,'!tj! (1)

where per(A) =37 ¢ -, aj () is the matrix permanent, {s}({t})
are the occupation numbers of states |S)(|T)), and Usris the nxn
matrix obtained by selecting rows and columns of U according to
the (s, ..., sm) and (ty, ..., t,,) respectively. Calculation of permanents
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Fig. 1 Non-linear Boson Sampling. a Scheme for a Boson Sampling apparatus according to the original formulation’, where n input photons
impinge in a linear network described by unitary matrix U. b Scheme for non-linear Boson Sampling, which includes a non-linear evolution

step N between two Haar-random linear steps W and V.

of matrices with complex entries is in the #P-hard computational
complexity class®®. In Eq. (1), @(U) is the unitary transformation
acting on the Hilbert space H,, of n photons in m modes, that
corresponds to the linear evolution U in the optical modes. Due to
the linearity of the evolution, (U) is an homomorphism®°. This
means that, if a given evolution is the sequence of two linear
networks W and V, the overall evolution can be written in terms of
permanent of submatrices of U= VW.

In ref. 7 it was shown that sampling (even approximately) from
the output distribution of such a system is classically hard if (i) the
input state |S) = |s1, ... sm) has at most one photon per mode, (ii)
U is drawn randomly from the uniform Haar measure, and (iii) the
number of modes m and photons n satisfy m > n°®.

Non-linear Boson Sampling

Let us now consider the scheme of Fig. 1b. An input state |S) =
1, ... sm) of n indistinguishable photons undergoes an m-mode
evolution divided into three steps. While steps 1 and 3 are linear
evolutions V and W drawn from the Haar ensemble, the
intermediate step 2 now consists of a non-linear evolution N. This
N transforms a state |R) = |ry, ... r) as |R) X acon, N7 Q)
where |Q) = |q, ... G,,) and O, , is the set of tuples corresponding
to n photons in m modes. In this equation, function N7~
represents the transition amplitude Ay(|R) — |Q)) determined by
the non-linear evolution. We assume N7~ has an efficient
classical description, e.g., it is given by the composition of a small
number of few-mode non-linear transformations, or by a Hamilto-
nian with a simple form in terms of the field operators.

Let us now write the overall transformation of the input state
|S) = |s1, ... Sm) according to the three-step evolution W — N -V,
which includes linear transformations W, V of the form given by
Eq. (1), and the non-linear N7 im:

) Z Z Pe"(Ws,R)NZ'f.'.':Zn'"Per(VO,T).

Awny(]S) — |T)) = —
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The detailed derivation is reported in Supplementary Note 1.
This amplitude is written as a Feynman path sum over all
possible basis states just before and after the non-linear
evolution step. If the permanent distribution was peaked, it
might be possible to obtain a good approximation to Eq. (2) by
summing over only the dominant terms. Haar-random matrices,
however, display an anti-concentrated, relatively flat distribu-
tion’. In Supplementary Note 2 and Supplementary Fig. 1, we
provide numerical evidence for this, showing that to account for
(90, 95, and 99%) of the total probability mass function, we need
to calculate the probabilities associated with respective fractions
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~(0.5, 0.6, 0.8) of all possible outcomes; moreover, this behavior
is nearly independent of n and m.

Of course, there may be computational shortcuts to evaluating
Eqg. (2), other than the explicit sum over paths. For example, if we
replace the non-linear term N with a linear term, the amplitude
can be evaluated as a single permanent. This motivates us to
investigate different ways to assess the complexity of non-linear
Boson Sampling.

Single-mode non-linear phase shift gate

Let us proceed by studying a specific example of non-linear
evolution N consisting of a single non-linear phase gate
introduced in mode x. Non-linear phase gates are among the
simplest photon number preserving non-linear gates, implemen-
ted in various systems®'-%%, and for which strict bounds on the
success probability are known”°. The unitary operator describing
this gate can be written as Uy = exp(—zﬁitﬁ). Its action on a
generic m-mode state |R) leads to a function A of the form
NI — exp(—ur2gp) [, 8r,q,- Inserting this choice of non-
linear evolution into the general expression (2), we obtain:

per(Wsg)per(Vrr)

AP (1S) = 1) = > exp(—urlg) .
REDm \/1‘[;11 s;! (er; rj!) 2 " o
3)

Eq. (3) can be rearranged in the following form (see Supplemen-
tary Note 3):

per(Ust)
VITZ, st !

per(Wsg)[exp(—ri¢) — exp(—urxp)|per(Var)
2
re>1 \/H:L SII(H,‘,L rj!) H;L t!

APy (IS) = IT)) =

(4)

Here, U is a unitary transformation composed of the sequence W, F,
and V, where F replaces the non-linear phase in layer N with a linear
phase shift described by the operator exp(—uix¢). Equation (4)
clearly shows that the departure from linear evolution is due only to
bunching terms with more than a single photon in mode x (see
Supplementary Note 4 and Supplementary Figs. 2-5).

Linear-optical simulation using auxiliary photons

A linear-optical scheme for the simulation of non-linear Boson
Sampling can be obtained starting from the results due to Scheel
et al. These results, reported in ref. ', describe how auxiliary
photons and modes can be used, together with linear optics, to
induce effective non-linear gates. In particular, given a single mode
state in the photon number basis |@;,) = >_cili), it is possible to
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apply a polynomial of degree k in the photon number operator
Pi(n) to |g;,) by injecting the state in mode 1 of a suitably chosen
(k + 1)-mode linear-optical gadget described by unitary Uesr, where
the auxiliary modes j=2, ..., k+ 1 are injected with a single-
photon state |1);. The desired output state [Woy) = Pk(N)|¢;n) is
obtained upon conditional detection of a single photon on each of
the auxiliary modes. If the input state has a maximum number of /
photons |x;,) = ¢o|0) + ... + ¢|l), a polynomial of degree /'in 7 is
sufficient to obtain the general evolution from |x;,) 10 [Xou) =
Col0)y + ... +¢j|ly with arbitrary coefficients {cg, ... ,cj}. The
effective evolution induced by this method must be some
degree-/ polynomial in n, though it remains an open question
whether any degree-/ polynomial can be implemented using only /
auxiliary photons. This can be shown to hold for / = 2. Suppose we
have some input |x;,) = col0) + ¢1]1) +¢2|2). All ¢; must be
phases. Phase ¢, can be fixed by an overall global phase, and
the phase ¢; can be fixed by applying a (linear) phase shifter. As
shown in Supplementary Note 5, there is a gadget that implements
any chosen value of ¢,. Combining these facts, it follows that any
non-linear phase acting on states with, at most, two photons can
be simulated by using two auxiliary photons. The success

probability of the operation is equal to Prg, = |per(U2;f1““ HPT,

where U% is the kx k submatrix of Ues obtained by removing
row 1 and column 1 from the full matrix.

Finding the effective linear-optical simulation unitary Ues has
been done previously only for a few types of gates and small
k’1774, as the computational effort seems to scale exponentially
with k. Nevertheless, even limited non-linear gate simulations can
be quite versatile, as it is known that almost any non-linear gate
can be combined with linear optics to generate arbitrary non-
linear gates’>—for details, see Supplementary Note 5.

In Fig. 2, we describe the linear-optical, post-selection-based
gadget that can be used to simulate single-mode non-linear
gates. We see that the k-mode linear-optical gadget (with k< n)
replaces the single-mode non-linear gate. In the gadget, mode x
and the k single photons undergo the effective unitary U This
linear-optical simulation approximates the non-linear Boson
Sampling evolution upon detection of k photons at the auxiliary
output modes.

N -> single-mode non-linearity

Fig. 2 Linear optics simulation of non-linear Boson Sampling.
Scheme for linear optics simulation of non-linear Boson Sampling
with a single-mode nonlinearity N on mode x between two Haar-
random linear unitaries W and V. Mode x after linear transformation
W is injected in the first port of a (k + 1)-mode linear-optical gadget
described by unitary Ues;, whose other input ports are injected with
k single photon states (k < n). Detection of one photon in each of the
k auxiliary modes of the gadget heralds a successful simulation of
the single-mode non-linearity in mode x of the original interferom-
eter (see inset).
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Bounding complexity via classical simulation algorithms

An upper bound on the complexity of non-linear Boson Sampling
can be obtained by devising a specific classical simulation
algorithm. We define such an algorithm starting from the linear-
optical gadget described above. We discuss below the specific
case of a single-mode non-linear phase.

Using the state-of-the-art weak classical simulation algorithm of
Clifford and Clifford*?, we can simulate the enlarged (n+ k, m -+ k)
linear-optical system, post-selecting only those events where a single
photon is measured in each of the auxiliary modes (m+ 1, ..., m+ k)
(see Methods, Supplementary Note 5 and Supplementary Figs. 7-13
for more details). This results in a classical simulation algorithm for the
non-linear Boson Sampling experiment.

Let us now discuss some issues that arise when using this
scheme to simulate non-linear Boson Sampling in either the
asymptotic regime of large numbers of photons/modes, or in the
finite setting.

Non-linearities in the asymptotic setting

Assuming uniformly drawn, Haar-random interferometer unitaries,
it has been shown that the appropriate scaling between the
original number of modes m and the number of photons n will
result in asymptotic suppression of multi-photon collisions. More
precisely: if m=0(n"Y="), then (j+ 1)-fold collisions are sup-
pressed, when n, m go to infinity’®. In particular, this will be true
for the photon occupation numbers at the non-linear gates. So, by
choosing m = O(n**+"), at most k photons will asymptotically be
present at each non-linear gate, which means the linear-optical
simulation (or classical simulation based on it) can be done with
only k auxiliary photons per non-linear gate. As we will soon show,
such a simulation for small k, eg., k=2, 3, 4 can be readily
obtained. These simulations using k=2 are sufficient for an
asymptotically perfect simulation for the usual Boson Sampling
regime of m=0(n?. In other words, in this setting, there is a
precise correspondence between one single-mode non-linear
phase gate and two extra auxiliary photons. More generally, the
scaling of m with n dictates how many auxiliary photons are
needed for an asymptotically perfect simulation of a non-linear
phase gate N.

Non-linearities in the finite setting

The setting with finite n, m is experimentally relevant, and in this
case, there will be no strict suppression of multi-photon collisions
at the nonlinear gates. Setting k=n results in an exact classical
simulation of non-linear Boson Sampling. When k < n, we will have
only an approximate simulation. As an example, when m ~ n?
numerical results suggest that a number of auxiliary photons
equal to k=2, 3 should provide a sufficiently accurate simulation
given the large effective suppression of bunching at the output of
Haar-random unitaries (see Supplementary Note 5).

There are two main features that increase the simulation
complexity. First, finding an effective unitary Ut that uses k
photons for a linear-optical simulation seems to require the
computation of permanents of kxk matrices’”’ (see also
Supplementary Note 5), which results in a classical runtime that
increases exponentially with k. The other cost incurred is the post-
selection overhead. From all the simulated events on the enlarged
linear-optical set-up with (n+ k) photons, we only use events
where the k auxiliary photons were detected at the linear-optical
simulation gadget. This will happen with a probability
Prsucc = |per(U(e)’f;"“‘1)|2 = p. There is some evidence that the
maximum value of p tends to decrease as k increases’®. This post-
selection overhead arises when using the fast algorithm by
Clifford and Clifford*? to classically draw samples from the linear-
optical equivalent scheme. This overhead can be reduced by
considering an adaption of the first algorithm reported in ref. 42,
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Fig. 3 Simulation in the finite setting. Analysis of total variation distance (TVD) between the non-linear process and its linear-optical
simulation, and bunching probability at the non-linear phase shift site for n = 4 photons. The TVD is calculated between the exact probability
distribution [Eqg. (4)], and the post-selected linear-optical simulation using k < n auxiliary photons. In these plots, the exact distribution is
calculated using the linear-optical simulation scheme with n auxiliary photons. P, ., is the probability of having more than k photons at the

nonlinearity site x. a Parametric plot showing a correlation between the mean values TVD and P .., averaged over 100 different evolutions W
and V for fixed ¢ = 11/2. Each point corresponds to a different value of m, in the range [5, 7, ..., 45]. b-e Correlation between TVD and Py, for

fixed number of modes m. Here, each point corresponds to different evolutions W and V for fixed ¢ = n1/2. In all plots: blue points correspond

to k=1, orange points to k=2, and green points to k=3.

Such an algorithm, with a slower runtime, can be modified to
condition the first k events to occur in a specific set of modes.
Finally, in Supplementary Note 6, we provide evidence that this
post-selection overhead can be converted to a constant factor by
adapting the classical Metropolised Independent Sampling
approach®' via an appropriate choice of the candidate mockup
distribution. This suggests that it is possible to define classical
algorithms that, leveraging on the post-selected linear-optical
scheme, can sample by calculating a (constant) number of
permanents of matrices with size (n + k), with a simulation cost
of O((n + k)2"+%).

We have performed classical simulations of non-linear Boson
Sampling with a single non-linear phase in the finite setting,
using the classical algorithm based on linear-optical simulation.
The results are shown in Fig. 3 and in Supplementary Fig. 13. As
expected, having k = n results in exact sampling from the non-
linear process, and in fact (once the appropriate gadget Ug has
been determined), is numerically found to be more computa-
tionally effective than directly using Eq. (2). For fixed n, k, note
that the simulation error decreases with increasing m, since
bunching events become rarer. These results suggest that the
crucial parameter for the simulation complexity is the scaling
between n and m. The regime when m=0(n) is particularly
interesting, as there is a trade-off between a faster classical
simulation algorithm?S, and the increased complexity required to
find the linear-optical gadget unitary U for larger k.

If the number of auxiliary photons k<n, the simulation
scheme based on linear-optical gadgets will be only approx-
imate, due to non-linear dynamics of more than k photons. The
key open point in this scenario is to quantify the simulation error
incurred. In Fig. 3, we provide a numerical study on how the
simulation error depends on n, m, k, as quantified by the total
variation distance (TVD) between the exact non-linear evolution
and its simulation using k < n auxiliary photons. We observe a
strong correlation between the TVD and the probability of
bunching at the non-linearity site x. An open interesting
research question is to obtain a quantitative description of
this dependence between TVD and bunching, for instance, by
using bounds on bunching in the uniformly random, Haar
ensemble of unitaries.

npj Quantum Information (2023) 3

DISCUSSION

We have proposed the adoption of non-linear gates within the
framework of Boson Sampling as a way to increase the
computational complexity of the model. We have shown how to
define a hardware-based linear-optical simulation for non-linear
Boson Sampling. Furthermore, we upper-bounded the complexity
of non-linear Boson Sampling by tailoring a classical simulation
algorithm using parallelism to linear optics and post-selection. For
large numbers m of modes and n of photons, suppressed
bunching allows asymptotically perfect simulation at the cost of
two extra photons per non-linear phase gate introduced, if we
assume m = O(n?). For finite m, n, and single-mode non-linear
phase gates, we identify the probability of bunching, governed by
the scaling of m as a function of n, as the key factor affecting the
complexity of our proposed simulation scheme.

The non-linear Boson Sampling model we propose is inherently
more expressive than linear Boson Sampling. In light of the recent
developments regarding the first application of Boson Sampling
and its variants for hybrid quantum computational models, we
expect that having access to increased functionalities enabled by
non-linearities can be turned into a useful advantage for tasks
solvable with linear Boson Sampling, as well as propose altogether
new tasks solvable by noisy, intermediate-scale quantum (NISQ)
devices. Looking at the longer term, it is known that a constant
number of initial layers of non-linear gates suffice to create a
photonic cluster state and enable universal photonic quantum
computation. Our results are an initial step towards understanding
the increase in complexity as we start this transition from the
linear to the non-linear regime in photonic quantum computation.
Some promising architectures for scalable photonic quantum
computation”’” rely exactly on measurement-induced non-linear-
ities of the type we investigate here.

Finally, an important question that we leave open is the effect
of imperfections—such as losses and partial distinguishability—on
this model. Modelling these effects is likely to be more intricate in
non-linear Boson Sampling than in the standard Boson Sampling
proposal. Losses, in particular, are usually assumed to occur at the
input or output of the interferometer (at least as long as they can
be assumed to affect all modes equally), but that assumption is

Published in partnership with The University of New South Wales



less benign when non-linear elements are involved. Some versions
of it would be easy to recover for the particular case of U, we
consider here, but not in the more general case of many non-
linear and linear interspersed elements.

METHODS
Classical simulation algorithms for non-linear Boson Sampling

The scheme of Fig. 2 employs a set of ancillary photons and
modes, and an auxiliary transformation U that depends on the
nonlinear transformation. This scheme defines both a linear-
optical simulation algorithm, which can be implemented by
building the corresponding experimental apparatus and thus
running the device, and an approach for the classical simulation.
We describe here this approach for the classical simulation (more
details can be found in Supplementary Notes 5, 6).

Algorithm 1. The second algorithm reported in ref. *2, which
provides a classical simulation of linear Boson Sampling with a cost of
O(n2" + poly(m, n)) and O(m) additional space, can be employed for
the approximate simulation of non-linear Boson Sampling. In
particular, given a level of approximation provided by the number
k of ancillary photons and modes, one can (i) calculate the effective
(m + k) x (m + k) transformation comprising the sequence of W, U,
and V, (i) sample an event via the second algorithm of ref. 42, and (i)
check whether the sample corresponds to a valid outcome
considering the post-selection requirements from the linear gadget.
If the sample is not valid, iterate point (i) until a correct outcome is
drawn. As discussed above, this implies that the algorithm has a
success probability given by Pr,c.

Algorithm 2. The first algorithm reported in ref. ? for linear
Boson Sampling, having a cost of O(mn3"), can be adapted to a
conditional scenario. More specifically, if one needs to retain only
events where photons on modes (ry, ..., r) are detected, this is
obtained by forcing the sampling process to start directly from
taking the required vector of output modes as the starting point.
Then, the remaining modes are sampled by using the procedure
of the first algorithm of ref. 4. The requirement to discard part of
the events to avoid multiple occurrences in the conditional modes
introduces a failure probability pg,; for this sampling process. In
Supplementary Note 6A, we analyzed the scaling of the failure
probability pe,;.

Algorithm 3.  The metropolised independent sampling algorithm,
applied in ref. *! in the Boson Sampling context, can be adapted to
the conditional scenario required for classical simulation of non-
linear Boson Sampling exploiting the scheme of Fig. 2. The main
idea behind the metropolised independent sampling approach is
to construct a Markov chain process. At each step, a candidate
sample, generated via a given mockup distribution, is accepted
with a certain probability that depends on the probability mass
function of Boson Sampling and of the mockup. Adaptation to the
conditional scenario can be performed by choosing as a mockup a
conditional uniform sampler, that generates samples from the
uniform distribution with the correct outcome in the required
modes for post-selection. In Supplementary Note 6B, we analyze
the scaling of the relevant parameters for this approach.
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