The Urban Book Series

Eugenio Arbizzani · Eliana Cangelli · Carola Clemente · Fabrizio Cumo · Francesca Giofrè · Anna Maria Giovenale · Massimo Palme · Spartaco Paris *Editors*

Technological Imagination in the Green and Digital Transition

The Urban Book Series

Editorial Board

Margarita Angelidou, Aristotle University of Thessaloniki, Thessaloniki, Greece

Fatemeh Farnaz Arefian, The Bartlett Development Planning Unit, UCL, Silk Cities, London, UK

Michael Batty, Centre for Advanced Spatial Analysis, UCL, London, UK

Simin Davoudi, Planning & Landscape Department GURU, Newcastle University, Newcastle, UK

Geoffrey DeVerteuil, School of Planning and Geography, Cardiff University, Cardiff, UK

Jesús M. González Pérez, Department of Geography, University of the Balearic Islands, Palma (Mallorca), Spain

Daniel B. Hess, Department of Urban and Regional Planning, University at Buffalo, State University, Buffalo, NY, USA

Paul Jones, School of Architecture, Design and Planning, University of Sydney, Sydney, NSW, Australia

Andrew Karvonen, Division of Urban and Regional Studies, KTH Royal Institute of Technology, Stockholm, Stockholms Län, Sweden

Andrew Kirby, New College, Arizona State University, Phoenix, AZ, USA

Karl Kropf, Department of Planning, Headington Campus, Oxford Brookes University, Oxford, UK

Karen Lucas, Institute for Transport Studies, University of Leeds, Leeds, UK

Marco Maretto, DICATeA, Department of Civil and Environmental Engineering, University of Parma, Parma, Italy

Ali Modarres, Tacoma Urban Studies, University of Washington Tacoma, Tacoma, WA, USA

Fabian Neuhaus, Faculty of Environmental Design, University of Calgary, Calgary, AB, Canada

Steffen Nijhuis, Architecture and the Built Environment, Delft University of Technology, Delft, The Netherlands

Vitor Manuel Aráujo de Oliveira D, Porto University, Porto, Portugal

Christopher Silver, College of Design, University of Florida, Gainesville, FL, USA

Giuseppe Strappa, Facoltà di Architettura, Sapienza University of Rome, Rome, Roma, Italy

Igor Vojnovic, Department of Geography, Michigan State University, East Lansing, MI, USA

Claudia Yamu, Department of Built Environment, Oslo Metropolitan University, Oslo, Norway

Qunshan Zhao, School of Social and Political Sciences, University of Glasgow, Glasgow, UK

The Urban Book Series is a resource for urban studies and geography research worldwide. It provides a unique and innovative resource for the latest developments in the field, nurturing a comprehensive and encompassing publication venue for urban studies, urban geography, planning and regional development.

The series publishes peer-reviewed volumes related to urbanization, sustainability, urban environments, sustainable urbanism, governance, globalization, urban and sustainable development, spatial and area studies, urban management, transport systems, urban infrastructure, urban dynamics, green cities and urban landscapes. It also invites research which documents urbanization processes and urban dynamics on a national, regional and local level, welcoming case studies, as well as comparative and applied research.

The series will appeal to urbanists, geographers, planners, engineers, architects, policy makers, and to all of those interested in a wide-ranging overview of contemporary urban studies and innovations in the field. It accepts monographs, edited volumes and textbooks.

Indexed by Scopus.

Eugenio Arbizzani · Eliana Cangelli · Carola Clemente · Fabrizio Cumo · Francesca Giofrè · Anna Maria Giovenale · Massimo Palme · Spartaco Paris Editors

Technological Imagination in the Green and Digital Transition

Editors Eugenio Arbizzani Dipartimento di Architettura e Progetto Sapienza University of Rome Rome, Italy

Carola Clemente Dipartimento di Architettura e Progetto Sapienza University of Rome Rome, Italy

Francesca Giofrè Dipartimento di Architettura e Progetto Sapienza University of Rome Rome, Italy

Massimo Palme Departamento de Arquitectura Universidad Técnica Federico Santa Maria Antofagasta, Chile Eliana Cangelli Dipartimento di Architettura e Progetto Sapienza University of Rome Rome, Italy

Fabrizio Cumo Dipartimento Pianificazione, Design, Tecnologia dell'Architettura Sapienza University of Rome Rome, Italy

Anna Maria Giovenale Dipartimento di Architettura e Progetto Sapienza University of Rome Rome, Italy

Spartaco Paris Dipartimento di Ingegneria Strutturale e Geotecnica Sapienza University of Rome Rome, Italy

ISSN 2365-757X ISSN 2365-7588 (electronic) The Urban Book Series ISBN 978-3-031-29514-0 ISBN 978-3-031-29515-7 (eBook) https://doi.org/10.1007/978-3-031-29515-7

 \bigcirc The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication. **Open Access** This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Committee

Sapienza University of Rome

DIAP—Department of Architecture and Design LAB.ITECH—Laboratory of Architecture, Building Innovation and Technology, Environment and Climate Changes, Health Fondazione Roma Sapienza

International Scientific Committee

David Allison, Clemson University, South Carolina, USA Ruzica Bozovic-Stamenovic, National University of Singapore, China Federico Butera, Polytechnic University of Milan, Italy Orazio Carpenzano, Sapienza University of Rome, Italy Ljiljana Dukanović, University of Belgrade, Serbia Peter Droege, University of Liechtenstein, Liechtenstein Boyan Georgiev, UAGEC-Department of Tecnology, Bulgaria Anna Maria Giovenale, Sapienza University of Rome, Italy Mario Losasso, University of Naples Federico II, Italy Robinson Manguro, Kirinyaga University, Kenya Saverio Mecca, University of Florence, Italy Mario Morcellini, Sapienza University of Rome, Italy Iva Muraj, Faculty of Architecture, University of Zagreb, Croatia Silvia Naldini, Delft University of Technology, Netherland Roberto Pagani, Polytechnic University of Turin, Italy Massimo Palme, Federico Santa Maria Technical University, Valparaiso, Chile Mario Raul Ramirez de Leon, University of San Carlos Guatemala, USAC, Guatemala Fabrizio Schiaffonati, Polytechnic University of Milan, Italy Markus Schwai, Norwegian University of Science and Technology, Norway Begoña Serrano Lanzarote, Polytechnic University of Valencia, Spain

Wei Xing Shi, Tongji University, China Belinda Tato, Harvard Graduate School of Design, USA

Scientific Coordination Committee

Eugenio Arbizzani, Sapienza University of Rome Rosalba Belibani, Sapienza University of Rome Eliana Cangelli, Sapienza University of Rome Carola Clemente, Sapienza University of Rome Fabrizio Cumo, Sapienza University of Rome Alfonso Giancotti, Sapienza University of Rome Francesca Giofré, Sapienza University of Rome Spartaco Paris, Sapienza University of Rome

Organizing Committee

Anna Mangiatordi, Sapienza University of Rome Elisa Pennacchia, Sapienza University of Rome Virginia Adele Tiburcio, Sapienza University of Rome

Editorial coordination

Eugenio Arbizzani, Sapienza University of Rome Anna Mangiatordi, Sapienza University of Rome Mariangela Zagaria, Sapienza University of Rome

Acknowledgments

Thanks to:

The Magnificent Rector of the Sapienza University of Rome, Prof. Antonella Polimeni, and to the President of Foundation of the Sapienza University, Professor Eugenio Gaudio;

Dr. Antonio Parenti, Head of the European Commission's Representation in Italy, to Prof. Mario Losasso, President of the Italian Society of Architectural Technology, and to Prof. Orazio Carpenzano, Dean of Faculty of Architecture of the Sapienza University of Roma;

All the patrons of the conference: the Ministry of Ecological Transition; the European Commission; the Italian Society of Architectural Technology; the European Association for Architectural Education; Eurosolar; Healthy Urban Environment;

The Sponsors: CEFMECTP, the Joint Body for Construction Training and Safety of the City and Province of Rome; the Construction Pension Fund of the City and Province of Rome;

The Scientific Committee, all the reviewers and the Organizing Committee.

Contents

1	From a Liquid Society, Through Technological Imagination, to Beyond the Knowledge Society Anna Maria Giovenale	1
2	Opening Lecture: Digital Spaces and the Material Culture Pietro Montani	11
Part	t I Session Innovation	
3	Innovation for the Digitization Process of the AECO Sector Fabrizio Cumo	21
4	The Digital Revolution and the Art of Co-creation Maurizio Talamo	27
5	Toward a New Humanism of Technological Innovation in Design of the Built Environment Spartaco Paris	37
6	A BIM-Based Approach to Energy Analysis of Existing Buildings in the Italian Context	47
7	Short-Term Wind Speed Forecasting Model Using Hybrid Neural Networks and Wavelet Packet Decomposition Adel Lakzadeh, Mohammad Hassani, Azim Heydari, Farshid Keynia, Daniele Groppi, and Davide Astiaso Garcia	57
8	COGNIBUILD: Cognitive Digital Twin Framework for Advanced Building Management and Predictive Maintenance Sofia Agostinelli	69

9	Design of CCHP System with the Help of Combined Chiller System, Solar Energy, and Gas Microturbine Samaneh Safaei, Farshid Keynia, Sam Haghdady, Azim Heydari, and Mario Lamagna	79
10	Digital Construction and Management thePublic's InfrastructuresGiuseppe Orsini and Giuseppe Piras	93
11	An Innovative Multi-objective Optimization Digital Workflow for Social Housing Deep Energy Renovation Design Process Adriana Ciardiello, Jacopo Dell'Olmo, Federica Rosso, Lorenzo Mario Pastore, Marco Ferrero, and Ferdinando Salata	111
12	Digital Information Management in the Built Environment: Data-Driven Approaches for Building Process Optimization Francesco Muzi, Riccardo Marzo, and Francesco Nardi	123
13	Immersive Facility Management—A MethodologicalApproach Based on BIM and Mixed Reality for Trainingand Maintenance OperationsSofia Agostinelli and Benedetto Nastasi	133
14	A Digital Information Model for Coastal Maintenance and Waterfront Recovery Francesca Ciampa	145
15	Sustainable Workplace: Space Planning Model to Optimize Environmental Impact Alice Paola Pomè, Chiara Tagliaro, and Andrea Ciaramella	157
16	Digital Twin Models Supporting Cognitive Buildings for Ambient Assisted Living Alessandra Corneli, Leonardo Binni, Berardo Naticchia, and Massimo Vaccarini	167
17	Less Automation More Information: A Learning Tool for a Post-occupancy Operation and Evaluation Chiara Tonelli, Barbara Cardone, Roberto D'Autilia, and Giuliana Nardi	179
18	A Prosumer Approach for Feeding the Digital Twin. Testing the MUST Application in the Old Harbour Waterfront of Genoa Serena Viola, Antonio Novellino, Alberto Zinno, and Marco Di Ludovico	193

xxii

Contents

19	Untapping the Potential of the Digital Towards the Green Imperative: The Interdisciplinary BeXLab Experience Gisella Calcagno, Antonella Trombadore, Giacomo Pierucci, and Lucia Montoni	203
20	Digital—Twin for an Innovative Waterfront ManagementStrategy. Pilot Project DSH2030Maria Giovanna Pacifico, Maria Rita Pinto,and Antonio Novellino	217
21	BIM and BPMN 2.0 Integration for Interoperability Challenge in Construction Industry Hosam Al-Siah and Antonio Fioravanti	227
22	Digital Twin Approach for Maintenance Management Massimo Lauria and Maria Azzalin	237
23	Digital Infrastructure for Student Accommodation in European University Cities: The "HOME" Project Oscar Eugenio Bellini, Matteo Gambaro, Maria Teresa Gullace, Marianna Arcieri, Carla Álvarez Benito, Sabri Ben Rommane, Steven Boon, and Maria F. Figueira	247
Par	t II Session Technology	
24	Technologies for the Construction of Buildings and Citiesof the Near FutureEugenio Arbizzani	263
25	The Living Lab for Autonomous Driving as AppliedResearch of MaaS Models in the Smart City: The CaseStudy of MASA—Modena Automotive Smart AreaFrancesco Leali and Francesco Pasquale	273
26	Expanding the Wave of Smartness: Smart Buildings, Another Frontier of the Digital Revolution Valentina Frighi	285
27	Sharing Innovation. The Acceptability of Off-siteIndustrialized Systems for HousingGianluca Pozzi, Giulia Vignati, and Elisabetta Ginelli	295
28	3D Printing for Housing. Recurring Architectural Themes Giulio Paparella and Maura Percoco	309
29	Photovoltaic Breakthrough in Architecture: Integration and Innovation Best Practice	321

30	Reworking Studio Design Education Driven by 3D Printing Technologies	335
	Jelena Milošević, Aleksandra Nenadović, Maša Žujović, Marko Gavrilović, and Milijana Živković	555
31	The New Technological Paradigm in the Post-digitalEra. Three Convergent Paths Between Creative Actionand Computational ToolsRoberto Bianchi	345
32	Technological Innovation for Circularity and SustainabilityThroughout Building Life Cycle: Policy, Initiatives,and Stakeholders' PerspectiveSerena Giorgi	357
33	Fair Play: Why Reliable Data for Low-Tech Constructionand Non-conventional Materials Are NeededRedina Mazelli, Martina Bocci, Arthur Bohn,Edwin Zea Escamilla, Guillaume Habert, and Andrea Bocco	367
Par	t III Session Environment	
34	Technological Innovation for the Next Ecosystem Transition: From a High-Tech to Low-Tech Intensity—High Efficiency Environment Carola Clemente	383
35	Technological Imagination to Stay Within PlanetaryBoundariesMassimo Palme	391
36	Quality-Based Design for Environmentally ConsciousArchitectureHelena Coch Roura and Pablo Garrido Torres	399
37	Digital Transformation Projects for the Future Digicircular Society Irene Fiesoli	403
38	The Regulatory Apparatus at the Service of Sustainable Planning of the Built Environment: The Case of Law 338/2000 Claudio Piferi	417
39	From Nature to Architecture for Low Tech Solutions: Biomimetic Principles for Climate-Adaptive Building Envelope Francesco Sommese and Gigliola Ausiello	429
40	Soft Technologies for the Circular Transition: Practical Experimentation of the Product "Material Passport" Tecla Caroli	439

xxiv

Contents

41	Imagining a Carbon Neutral UniversityAntonella Violano and Monica Cannaviello	449
42	Life Cycle Assessment at the Early Stage of Building Design Anna Dalla Valle	461
43	Design Scenarios for a Circular Vision of Post-disasterTemporary SettlementsMaria Vittoria Arnetoli and Roberto Bologna	471
44	Towards Climate Neutrality: Progressing Key Actionsfor Positive Energy Districts ImplementationRosa Romano, Maria Beatrice Andreucci,and Emanuela Giancola	483
45	Remanufacturing Towards Circularity in the ConstructionSector: The Role of Digital TechnologiesNazly Atta	493
46	Territorial Energy Potential for Energy Communityand Climate Mitigation Actions: Experimentation on PilotCases in RomePaola Marrone and Ilaria Montella	505
47	Integrated Design Approach to Build a Safe and SustainableDual Intended Use Center in Praslin Island, SeychellesVincenzo Gattulli, Elisabetta Palumbo, and Carlo Vannini	523
Par	t IV Session Climate Changes	
48	Climate Change: New Ways to Inhabit the Earth Eliana Cangelli	537
49	The Climate Report Informing the Response to ClimateChange in Urban DevelopmentAnna Pirani	547
50	The Urban Riverfront Greenway: A Linear Attractorfor Sustainable Urban DevelopmentLuciana Mastrolonardo	557
51	The Buildings Reuse for a Music District Aimed at a Sustainable Urban Development Donatella Radogna	567
52	Environmental Design for a Sustainable District and Civic Hub Elena Mussinelli, Andrea Tartaglia, and Giovanni Castaldo	577

53	Earth Observation Technologies for Mitigating Urban Climate Changes Federico Cinquepalmi and Giuseppe Piras	589
54	A Systematic Catalogue of Design Solutions for the Regeneration of Urban Environment Contrasting the Climate Change Impact Roberto Bologna and Giulio Hasanaj	601
55	Digital Twins for Climate-Neutral and Resilient Cities. Stateof the Art and Future Development as Tools to SupportUrban Decision-MakingGuglielmo Ricciardi and Guido Callegari	617
56	The Urban Potential of Multifamily Housing RenovationLaura Daglio	627
57	A "Stepping Stone" Approach to Exploiting Urban Density Raffaela De Martino, Rossella Franchino, and Caterina Frettoloso	639
58	Metropolitan Farms: Long Term Agri-Food Systems for Sustainable Urban Landscapes Giancarlo Paganin, Filippo Orsini, Marco Migliore, Konstantinos Venis, and Matteo Poli	649
59	Resilient Design for Outdoor Sports Infrastructure Silvia Battaglia, Marta Cognigni, and Maria Pilar Vettori	659
60	Sustainable Reuse Indicators for Ecclesiastic Built HeritageRegenerationMaria Rita Pinto, Martina Bosone, and Francesca Ciampa	669
61	A Green Technological Rehabilitation of the Built Environment. From Public Residential Estates to Eco-Districts Lidia Errante	683
62	Adaptive Building Technologies for Building EnvelopesUnder Climate Change ConditionsMartino Milardi	695
63	The Importance of Testing Activities for a "New"Generation of Building EnvelopeMartino Milardi, Evelyn Grillo, and Mariateresa Mandaglio	703
64	Data Visualization and Web-Based Mapping for SGDs and Adaptation to Climate Change in the Urban Environment Maria Canepa, Adriano Magliocco, and Nicola Pisani	715
65	Fog Water Harvesting Through Smart Façade for a ClimateResilient Built EnvironmentMaria Giovanna Di Bitonto, Alara Kutlu, and Alessandra Zanelli	725

Contents

66	Building Façade Retrofit: A Comparison Between CurrentMethodologies and Innovative Membranes Strategiesfor Overcoming the Existing Retrofit ConstraintsGiulia Procaccini and Carol Monticelli	735
67	Technologies and Solutions for Collaborative Processesin Mutating CitiesDaniele Fanzini, Irina Rotaru, and Nour Zreika	745
68	New Perspectives for the Building Heritage in DepopulatedAreas: A Methodological Approach for EvaluatingSustainable Reuse and Upcycling StrategiesAntonello Monsù Scolaro, Stefania De Medici,Salvatore Giuffrida, Maria Rosa Trovato, Cheren Cappello,Ludovica Nasca, and Fuat Emre Kaya	757
69	Climate Adaptation in Urban Regeneration: A Cross-Scale Digital Design Workflow Michele Morganti and Diletta Ricci	769
70	Adaptive "Velari" Alberto Raimondi and Laura Rosini	783
71	Temporary Climate Change Adaptation: 5 Measuresfor Outdoor Spaces of the Mid-Adriatic CityTimothy Daniel Brownlee	801
72	A Serious Game Proposal for Exploring and Designing Urban Sustainability Manuela Romano and Alessandro Rogora	811
73	Energy Efficiency Improvement in Industrial Brownfield Heritage Buildings: Case Study of "Beko" Jelena Pavlović, Ana Šabanović, and Nataša Ćuković-Ignjatović	821
74	Industrial Heritage of Belgrade: Brownfield Sites Revitalization Status, Potentials and Opportunities Missed Jelena Pavlović, Ana Šabanović, and Nataša Ćuković-Ignjatović	831
75	Challenges and Potentials of Green Roof Retrofit: A Case Study Nikola Miletić, Bojana Zeković, Nataša Ćuković Ignjatović, and Dušan Ignjatović	843
76	Designing with Nature Climate-Resilient Cities: A Lesson from Copenhagen Maicol Negrello	853

Contents

77	New Urban Centralities: Universities as a Paradigm for a Sustainable City Camilla Maitan and Emilio Faroldi	863
Par	t V Session Health	
78	Environment for Healthy Living Francesca Giofrè	875
79	New Paradigms for Indoor Healthy Living Alberto De Capua	883
80	Healthy and Empowering Life in Schoolyards. The Case of Dante Alighieri School in Milan Valentina Dessì, Maria Fianchini, Franca Zuccoli, Raffaella Colombo, and Noemi Morrone	893
81	Design for Emergency: Inclusive Housing Solution Francesca Giglio and Sara Sansotta	907
82	Environmental Sensing and Simulation for Healthy Districts: A Comparison Between Field Measurements and CFD Model Matteo Giovanardi, Matteo Trane, and Riccardo Pollo	921
83	A Synthesis Paradigm as a Way of Bringing Back to Life the Artistic Monuments Inspired by the Motives of the People's Liberation Struggle and Revolution of Yugoslavia	935
84	Social Sustainability and Inclusive Environments in Neighbourhood Sustainability Assessment Tools Rosaria Revellini	947
85	Inclusive Neighborhoods in a Healthy City: WalkabilityAssessment and Guidance in RomeMohamed Eledeisy	959
86	Tools and Strategies for Health Promotion in UrbanContext: Technology and Innovation for Enhancing ParishEcclesiastical Heritage Through Sport and InclusionFrancesca Daprà, Davide Allegri, and Erica Isa Mosca	969
87	Nursing Homes During COVID-19Pandemic—A Systematic Literature Review for COVID-19Proof Architecture Design StrategiesSilvia Mangili, Tianzhi Sun, and Alexander Achille Johnson	981

xxviii

Contents

88	A New Generation of Territorial Healthcare Infrastructures After COVID-19. The Transition to Community Homes		
	and Community Hospitals into the Framework of the ItalianRecovery Plan	991	
89	Wood Snoezelen. Multisensory Wooden Environments for the Care and Rehabilitation of People with Severe and Very Severe Cognitive Disabilities	1003	
90	The Proximity of Urban Green Spaces as Urban HealthStrategy to Promote Active, Inclusive and Salutogenic CitiesMaddalena Buffoli and Andrea Rebecchi	1017	
91	Environmental Attributes for Healthcare Professional's Well-Being Zakia Hammouni and Walter Wittich	1029	

Chapter 69 Climate Adaptation in Urban Regeneration: A Cross-Scale Digital Design Workflow

Michele Morganti and Diletta Ricci

Abstract Urban vulnerability has many facets. Among these, urban texture and plot pattern, building massing and density, greatly affect the microclimate. Thence, redefining urban regeneration design criteria for climate neutrality is crucial, including environmental factors in the design process at different scales. In the light of climate change, despite this urgent call, adaptive design approaches useful to assess trade-offs between urban regeneration scenarios and microclimate quality are lacking. This paper introduces a novel digital design workflow that integrates climate quality and associated indicators in urban and building design, adopting a cross-scale approach. The main goal is to increase the resilience of the built environment in the foresight of future scenarios, by promoting climate-sensitive design solutions. Environmental performances were analysed using digital tools and implemented in a design workflow, allowing urban microclimate analysis. Performance metrics were calculated using Urban Weather Generator and Energy Plus. With the former tool a climate performance comparative study has been run in different scenarios, by varying morphological parameters and computing the intensity of the Urban Heat Island. While, Energy Plus was used to simulate the impact of building form and UHI on building energy demand, highlighting the interdependence of different design scales and addressing optimal building performance. The results provide additional levels of knowledge, both in terms of analysis and design scenario evaluation: urban metrics and climate impacts, building form and envelope design, adaptation solutions. This workflow is tested and a scenario suitability for the Mediterranean city is shown, exploiting the research-by-design transformations of 22@ Innovation District of Barcelona. The paper highlights the correlation between microclimate

M. Morganti (🖂) · D. Ricci

D. Ricci e-mail: d.ricci@tudelft.nl

Present Address: D. Ricci Delft University of Technology, Delft, Netherlands

SOS Urban Lab, DICEA Department, Sapienza University of Rome, Rome, Italy e-mail: michele.morganti@uniroma1.it

and design solutions and lays the foundations for a climate/design cross-talk to help policymakers and practitioners achieve urban climate adaptation goals.

Keywords Adaptive design · Urban microclimate · Climate change · Urban vulnerability

69.1 Introduction

Dense cities expose people to different kinds of climate vulnerabilities: extreme events, concentration of inhabitants in risk-prone areas, inadequate buildings and many others.

This is why research attention on spatial configuration and physical features of cities has recently risen in various disciplines, including geography, urban ecology, urban and environmental design, building design, urban climatology and building physics (Erell 2012). As a reaction to the demanding need to mitigate climate change and the ecological impact of the built environment, in order to adapt to inevitable consequences and promote health and well-being, research efforts have focused on the unintended interaction among cities' physical characteristics, microclimate and energy balance with a diagnostic or design perspective (Lenzholer 2015; Stewart and Oke 2012). This led to a number of relevant changes in the design discourse and structure—both in term of process and method—and contributed to highlight the key elements for the decisions about the main enforcement actions to be included in urban regeneration design process (Morganti and Rogora 2021).

However, this subject is still fragmented: studies hardly reach comprehensive outcomes due to the complexity of the above-mentioned interaction in the built environment and to the lack of skilled scholars and professionals. By consequence, practical application in urban regeneration process remains limited.

The present study proposes and discusses a novel digital design workflow (Fig. 69.1) that integrates urban climate quality and associated indicators in urban and architectural design, adopting a cross-scale approach. The novelty of the study lies in permitting architects to analyse environmental performance and to take evidence-based urban and building design choices. The main goal is to help architects and urban designers to easily control climate and energy parameters, impacts and associated urban vulnerability trough well-known digital tools.

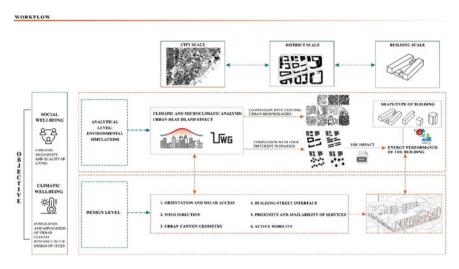
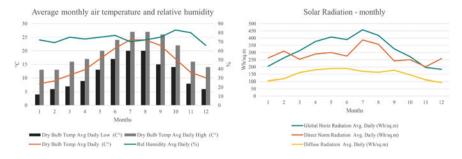


Fig. 69.1 Visual representation of the workflow

69.2 Materials and Method

69.2.1 Analytical and Design Approach


The design process has been supported by the workflow in Fig. 69.2. It is articulated by running both the analytical process of environmental simulations and the design process. The analyses were executed through digital tools. The main objective was to validate the current state of the art about the impact of certain specific parameters on the urban microclimate performance, crossing different scales: the neighbourhood, the district, the island and the building. The impact of urban morphology at neighbourhood level on urban microclimate and UHI was investigated, by focusing on the influence of building typology and form to heating and cooling demand in the Mediterranean climate.

69.2.2 Case Study

A regeneration project of an urban area of 22@ Innovation district of Poblenou in Barcelona has been used as case study to test the novel digital design workflow (Fig. 69.2). The project area is about 8 hectares and currently characterized by a limited number of low-energy efficiency housings, scattered across industrial buildings. The reference scenario is tested by exploiting the research-by-design transformations of the above-mentioned project area. Four different scenarios are presented to compare in detail at both neighbourhood and building scale.

Fig. 69.2 Current state (top) and masterplan (bottom) of the project area

Fig. 69.3 Climatic conditions of Barcelona (based on Barcelona 081,810 IWEC EPW file). Average monthly air temperature and relative humidity values (left); monthly average daily Solar Radiation values (right)

69.2.3 Climate and Microclimate Evaluation

These sections describe how climate and microclimate were studied and the metrics used to compare different scenarios. The study mainly covers the summer period, during which the urban fabric's morphological characteristics influence the urban heat island most significantly. A preliminary analysis was carried out on the Mediterranean climate of Barcelona, characterised by hot, dry summers (Csa Koppen-Geiger climate classification), shown in Fig. 69.3. The analysed climate data from Barcelona El Prat airport will later be considered as rural station data for the urban heat island analysis. The typical climate presents relatively high average outdoor temperatures throughout the year (average annual temperature 16°), and a rather high average annual relative humidity of 73%, due to the proximity of the sea.

69.2.4 UHI District Scale

The effect that the regenerative design of the case study's urban area has on the urban heat island was assessed using Urban Weather Generator (Bueno et al. 2012). The UWG algorithm evaluates the difference in temperatures between a rural context and the urban canopy layer; the UWG calculation tool has already been validated for Barcelona's climate in previous researches (Salvati et al., 2019). The 'rural' EPW climate weather file, which provides the meteorological inputs, was taken from EnergyPlus weather data (Barcelona 081810 IWEC), and includes climate data from Barcelona El Prat airport (Elev. 4 m, 41.33 °N, 2.1 °E). The 3D model of the project was used to provide the morphological input parameters (Fig. 69.4). Table 69.1 lists the input variables that were customised, while others, such as the traffic-sensitive heat flux, kept their default values.

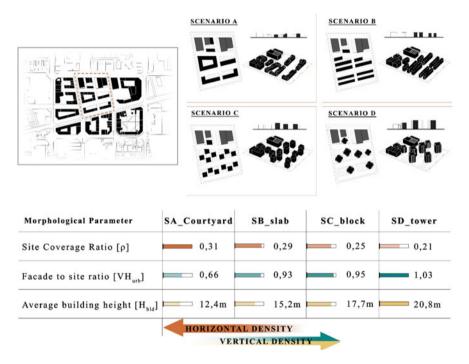

Fig. 69.4 Analysed scenario—district scale

Table 69.1	Customized input UWG parameters
-------------------	---------------------------------

Variable	UWG parameter	Definition	Value
Urban morphology	Site coverage ratio $[\rho_{urb}]$	Ratio of building footprint to the site area [–]	0.35
Façade to site ratio [VH _{ur}		Ratio of the vertical external surface area to the site area [–]	
	Average building height [H _{bld}]	Average building height normalized by building footprint [m]	12.8
Vegetation cover	Urban area veg. coverage	Ratio of vegetation coverage in the urban area to the site area [%]	0.26
Surface albedo Road albedo		Ratio of reflected radiation from surface to incident radiation upon it [–]	0.15

69.2.5 UHI Island Scale—Comparative Analysis

The UHI effect has been evaluated to compare four different scenarios of an island in the project area. The three alternative scenarios, against which the SA_Courtyard has been cross-referenced, were created, by varying the morphology of the urban fabric, and by fixing the built-up cubature at about 112.000 m³ (as in the reference block), as shown in Fig. 69.5. The single island was assumed to repeat homogeneously over an area of 1 km \times 1 km, and we focused on the impact that the variation of morphological parameters alone (Site coverage, Façade to site ratio, Average building height) can have on the UHI in the Mediterranean context. (Salvati et al., 2019) This comparison was central to validate how different urban forms display different climatic performances, and to prove that some morphological parameters have a more negative effect on the UHI than others.

Fig. 69.5 Framework of the city block (top left); visual representation of four different alternative urban fabric (top right); values of the morphological parameters used for calculating the UHI (bottom)

69.2.6 Energy Demand—Building Scale

Moving to the building scale, a courtyard residential building from the reference model was studied and designed in further detail. A comparative analysis of the energy demand for heating and cooling was carried out using EnergyPlus software. Three alternative building types for the courtyard one, based on existing building plans (linear block, low-rise block, high-rise tower) has been computed (Fig. 69.6), highlighting the interdependence of different design scales and addressing optimal building performances. The typologies have been put in their urban context of the four scenarios used for the UHI assessment, by inserting, as input climate data for each scenario modified running UWG from the rural one of Barcelona El Prat airport. The study has a comparative purpose, and it does not constitute an absolute assessment of energy demand, since some factors that have been kept by default or not taken into account. Table 69.2 shows the input values: in modelling the scenarios, the shape (compactness) and window-to-wall ratio parameters were varied, while keeping constant the envelope performance, the activity and the HVAC templates set to the standard values for residential buildings by the Código Técnico de la Edificación (Ministerio de Fomento 2017).

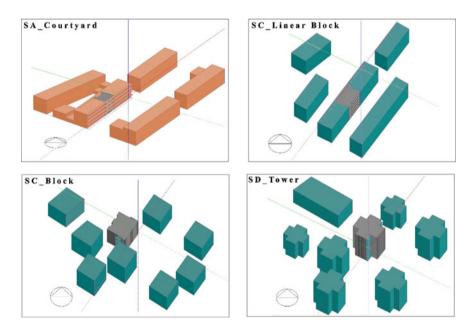
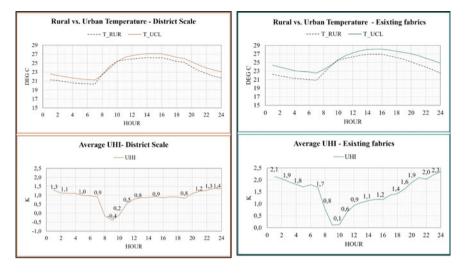


Fig. 69.6 Visual representation of the four scenarios modelled in DesignBuilder

	Variable parameters		Fixed parameters	
Test cases	Compactness Index	Window-to-wall ratio (%)	U-CLT structural wall (W/m ² K)	U-ventilated roof (W/m ² K)
SA_COURTYARD	0.66	30.27	0.28	0.25
SB_SLAB	0.72	31.28		
SC_BLOCK	0.74	21.82]	
SD_TOWER	0.64	42.86		


Table 69.2 Building scale analysis input parameter

69.3 Results and Discussion

The new urban layout has been planned with mixed uses, large amounts of public open spaces and permeable surfaces. This ensures outdoor and indoor comfort and the availability of spaces that inhabitants can use as climate shelters to cope with the increasingly uncomfortable and risky conditions caused by climate change (Taleghani, 2018). The block becomes very permeable to pedestrians and large bicycles. Besides, pedestrian paths are designed to encourage active mobility and the strategic location of services, so as to have attractive, safe and always active streets in the neighbourhood.

69.3.1 UHI—District Scale

The average values of summer and winter UHI, for the transformed project area, are quite low, respectively, 0.9 for the average summer UHI (month of July) and 1.0 average winter UHI (month of January). The summer UHI has been further investigated, since for the Mediterranean climate the UHI in the warm months, as demonstrated in other studies (Natanian and Auer 2020), has more evident effects, including on the energy performance of the building. In July, the hottest month in the city of Barcelona, a maximum average UHI value of 1.4 is reached at midnight. These values were benchmarked by running UWG with input parameters given by the average values of 10 existing urban fabrics taken from the study by (Salvati et al., 2019). The baseline model has well higher average summer and winter UHI values than the new urban settlement, 2.2 summer UHI and 1.5 winter UHI, respectively, as shown in Fig. 69.7.

Fig. 69.7 UWG output graphs July UHI analysis: transformed urban area at district scale (top) and baseline model of existing urban fabrics (bottom)

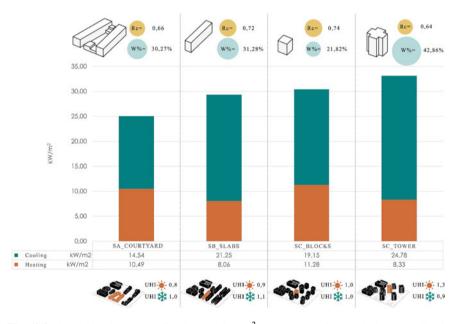
69.3.2 UHI—Island Scale

With the input parameters of Fig. 69.5, we obtain the summer and winter average UHI values reported in Table 69.3. The values refer to low ranges of UHI having all low compactness index fabrics, it is noticeable how, in particular for summer, UHI confirms what has been already proved in other studies: the increase of vertical density (more façade surfaces) in Mediterranean climate contexts, due to the phenomenon of multiple reflections of radiation between surfaces in Urban Canyons, impacts on UHI via the causation of temperatures higher than those in other scenarios, where vertical density is lower.

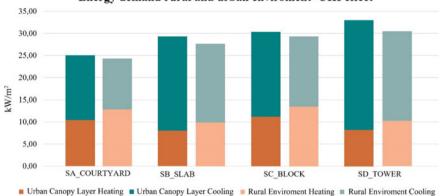
To verify this trend, the UHI values of the four scenarios were also compared to those provided by the graphical tools created for different mean heights in the study by Salvati et al. 2019. In these diagrams, the UHI values are only reported based on the variation of the morphological facings (ρ_{urb} , VH_{urb} , H_{bld}). In the UHI values provided by the diagrams, there is a more direct and linear correspondence between

Scenarios	UHI winter UWG	UHI summer UWG	UHI winter graphic	UHI summer graphic
SA_PROJECT	1.00	0.8	0.8	0.8
SB_SLAB	0.9	1.1	1.2	0.8
SC_BLOCK	1.0	1.0	1.5	0.8
SD_TOWER	0.9	1.3	1.6	1.0

 Table 69.3
 Average UHI values in the four different scenarios


the increase of vertical density and summer UHI, and the same output as in the UWG simulation is not available, as the diagrams were created neglecting the parameters of vegetation and tree coverage, albedo of the surfaces. In both evaluations, the less dense urban plot with tower buildings is the one with the highest UHI values, as it has more façade area. On the other side, the project case study with courtyard building typology has the lowest values in both seasons.

69.3.3 Energy Demand


Figure 69.8 shows the results of the analysis of the heating and cooling demand of the buildings of the various case studies, compared with the respective compactness coefficients calculated as

$$Rc = Se \frac{Se}{Sg} 4836 \frac{Vt^{\frac{2}{3}}}{Sg}$$
(69.1)

which refers to the equivalent surface of a sphere with the same volume as the building (Serra and Coch 1995) and the window-to-wall ratio. Since the intention was to focus mainly on the effect of building morphology urban fabric on the building's energy performance, the presence of any shading devices on the windows was not taken

Fig. 69.8 Annual heating and cooling demand (kW/m^2) , compactness index, window-to-wall ratio (%), and the average values of summer and winter UHI for the four different scenarios

Energy demand rural and urban enviroment- UHI effect

Fig. 69.9 Comparison between annual cooling and heating demand of the four scenarios with and without the effect of the UHI

into account, as this would have considerably modified the results. The courtyard type clearly has the lowest overall annual demand, which result is obtained despite the high values of heating demand with respect to the other buildings, thanks to the lower cooling demand in the summer months. It is evident that there is a more direct relationship between energy performance and the amount of glazed surfaces than between the former and of the compactness index, as already shown by Premrov et al. 2016. The tower typology has the highest cooling demand due to the heat entering from the large number of windows, considered without shading, which in return in the winter months provide high solar gains and therefore a lower heating demand.

69.3.4 Rural and Urban Energy Demand

By running the four simulations with the climate data of Barcelona airport as well, it is possible to see in the graph in Fig. 69.9 the gap between the rural and the urban context which is influenced by the UHI. It can be seen that the benefits in winter due to the higher external temperatures of the rural contexts are in any case lower than the energy surplus required in the summer months for the cooling system.

69.4 Conclusions

Through the workflow described above, an urban regeneration project was developed in the Mediterranean urban climatic context, which, in parallel, acted as a case study for several climatic and microclimatic analyses, focusing in particular on the effects of the urban heat island phenomenon, calculated with the validated UWG tool. By carrying out comparative analyses with other scenarios, different in morphology from the reference one, the influence trend of some morphological variables on the built environment's energy performance has been verified at district, island and building scale. The results suggested that, during the summer period, urban layout with courtyard buildings of low average height is to be preferred over other types of fabrics, which have higher 'vertical density' and contribute to the increase of temperatures in cities, particularly at night. Turning to the building scale, it has been further verified that regenerative design must have a holistic and cross-scale approach given the interdependence of the effects that these different levels have on climatic well-being.

The importance of this type of study is related to the fact that in the preliminary stages of planning and design, the choices that most affect the quality of the space and environmental and the energy performances of buildings are concentrated. For instance, those about the shape of buildings and of urban layout are increasingly difficult to modify as design advances. The study contributes to foster the integration of scientific knowledge on urban climatology and sustainability of urban systems into the planning and design practices for densification and/or regeneration of existing urban areas. Through the use of available digital tools for climate and microclimate assessments, it allows for an integrated, cross-scale control of the design process. This workflow can be considered reliable for a pre-design phase, while for more detailed analyses, it needs further integrations and other tools. A limitation also lies in the reliance on different digital tools that require parallel 3D model creation on different software, without being able to use a single digital graphic interface during the overall analysis development.

References

- Bruno B, Norford L, Hidalgo J, Pigeon G (2013) The urban weather generator. J Build Perform Simul 6(4):269–281. https://doi.org/10.1080/19401493.2012.718797
- Erell E (2012) The application of urban climate research in the design of cities. In: Advances in building energy research. Vol. 3, pp 95–121. CRC Press. https://doi.org/10.3763/aber.2008.0204
- Ministerio de Fomento (2017) Código Técnico de la Edificación de España Documento Básico HE Ahorro de energía. Madrid: Gobierno de Espana. https://www.codigotecnico.org/images/ stories/pdf/ahorroEnergia/DBHE.pdf
- Morganti M, Rogora A (2021) Cross-scale adaptive design research: a framework for fragile buildings, urban spaces and neighbourhoods. In: Design and construction. Tradition and innovation in the practice of architecture, pp 1158–1168. Monfalcone (Gorizia): EdicomEdizioni
- Naboni E, Havinga LC (2019) Regenerative design in digital practice: a handbook for the built environment. Bolzano, IT: Eurac.
- Natanian J, Auer T (2020) Beyond nearly zero energy urban design: a holistic microclimatic energy and environmental quality evaluation workflow. Sustain Cities Soc. 56. https://doi.org/10.1016/ j.scs.2020.102094
- Lenzholer S (2015) Weather in the city: how design shapes the urban climate. Rotterdam: Nai Uitgevers Pub

- Premrov M, Žegarac Leskovar V, Mihalič K (2016) Influence of the building shape on the energy performance of timber-glass buildings in different climatic conditions. Energy 108:201–211. https://doi.org/10.1016/j.energy.2015.05.027
- Salvati A, Monti P, Coch Roura H, Cecere C (2019) Climatic performance of urban textures: analysis tools for a Mediterranean urban context. Energy Build 185:162–179. https://doi.org/10.1016/j. enbuild.2018.12.024
- Serra Florensa R, Coch Roura H (1995) Arquitectura y energía natural. Universitat Politècnica de Catalunya. Iniciativa Digital Politecnica, Barcelona, ES
- Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteor Soc 93(12):1879–1900. https://doi.org/10.1175/BAMS-D-11-00019.1
- Taleghani M (2018) Outdoor thermal comfort by different heat mitigation strategies-a review. In: renewable and sustainable energy reviews (vol 81, pp 2011–2018). Elsevier Ltd. https://doi.org/ 10.1016/j.rser.2017.06.010

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

