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A B S T R A C T   

Long-term spatial studies are crucial for understanding how the Earth’s surface has changed. Before satellite 
imagery, landscapes were monitored using black and white (B&W) aerial photographs. However, surveys were 
infrequent and image analysis was a manual process that was both time-consuming and costly. In this study, we 
created a composite of high spatial resolution (0.5–0.75 m) B&W aerial images from 1939–1944, covering about 
91% of Kruger National Park (KNP)’s nearly 2 million ha. We used this to produce the first historical woody 
cover (tall trees and shrubs) map of KNP, which until now was only partially understood through fragmented 
descriptions in period literature and small-area case studies. We established a supervised learning workflow 
using Google Earth Engine (GEE) which included performing an Object-based Image Analysis (OBIA) with a 
Random Forest classifier. This approach, enhanced by integrating texture, shape, neighboring features, and 
spectral variables into the training/validation dataset, enabled the identification of woody vegetation from B&W 
landscape objects. To enhance accuracy, we guided our sampling method using vegetation types with compa
rable woody cover and species composition. Initially, we tested our method on a smaller set of images (25 km2), 
and after confirming its effectiveness, we then expanded the approach to cover all available historical aerial 
imagery. Our results show that in 1939–1944, 26% of KNP was covered in woody vegetation (overall accuracy of 
89%, producer’s accuracy (non-woody = 88%, woody = 90%), and user’s accuracy (non-woody = 90%, woody 
= 87%)). The importance of geological substrate in driving vegetation pattern is reflected in a higher woody 
cover percentage on granite (28%) than on basalt (21%) soils, with the lowest woody cover on northern basalts 
(11%) and the highest on north-central granites (32%). This study highlights the potential of GEE and OBIA for 
analyzing large-area, high spatial resolution B&W aerial photographs in a systematic and efficient manner and 
the importance of creating large-scale historical land cover baselines to support environmental planning and 
landscape management.   

1. Introduction 

The Earth’s surface is rapidly changing and concerns over climate 
change, habitat loss and fragmentation, food security, and natural 
resource exploitation are increasing (Alves de Oliveira et al., 2021; 
Godfray et al., 2010; Powers and Jetz, 2019; United Nations Convention 
to Combat Desertification, 2022). Monitoring how a landscape changes 

through time is a crucial element for ecological management, environ
mental planning, and improving conservation efforts (Hassan et al., 
2016; Tassi and Vizzari, 2020; Vogels et al., 2017). Although freely 
available satellite imagery has made remote sensing a powerful, cost- 
effective, and widespread tool, the oldest satellite images are from the 
early 1970s, which limits our knowledge of how natural landscapes used 
to look and how they have changed over longer time periods. The 
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absence of past information and historical datasets increases the estab
lishment of inappropriate baselines for nature conservation, restoration, 
and management policies (Soga and Gaston, 2018). 

Prior to satellite imagery, high spatial resolution black and white 
(B&W) aerial photography was used to map land cover and soils (Bauer, 
1975; Wright, 1973). Munteanu et al. (2020) also highlight the Corona 
spy satellite, in operation from 1960 to 1972, for high spatial resolution 
imagery as a resource for long-term studies on environmental change, 
agriculture, geomorphology, archaeology, and other fields. However, 
these aerial surveys were unsystematic, not uniformly available across 
countries, and seldom used for tracking land cover changes over time 
(Kadmon and Harari-Kremer, 1999). Despite these challenges, when 
used properly, aerial images provide crucial historical insights about the 
Earth’s surface and are vital for long-term studies. 

In the past, image interpretation of B&W aerial photographs was a 
time-consuming and costly manual process (Wulder, 1998). To improve 
efficiency, experts need robust, repeatable, and inexpensive methods to 
mine these valuable data. Historical B&W aerial photographs, rich in 
spatial and radiometric (tonal) detail, are ideal for mapping fine-scale 
landscape features but demand extensive processing, storage, and 
computational resources. Google Earth Engine (GEE) has alleviated 
many problems related to large data management, storage, and pro
cessing (Boothroyd et al., 2021; Frake et al., 2020; Hansen et al., 2013; 
Joshi et al., 2016) and in doing so, has facilitated analyzing and mapping 
land-use and land-cover (LULC) changes across the globe (Kayitesi et al., 
2022; Laurance et al., 2014; Pacheco Quevedo et al., 2023; Verburg 
et al., 2011; Yang et al., 2003). 

In ordinary LULC analysis, classifications are based on the spectral 
signatures of different land cover types, however, due to the panchro
matic nature of aerial B&W imagery, traditional pixel-based image an
alyses methods are limited. Object-based Image Analysis (OBIA), also 
called Geographic Object-Based Image Analysis (GEOBIA) (Hay and 
Castilla, 2008), has become popular for LULC classifications due to its 
ability to segment and classify landscape objects (henceforth referred to 
as “objects”). Furthermore, OBIA groups pixels together into objects to 
avoid the so-called ‘salt and pepper’ effect of more traditional pixel- 
based classifications (Blaschke, 2010; Vogels et al., 2017; Whiteside 
et al., 2020). OBIA builds on older methods such as segmentation, edge 
detection, feature extraction, and classification concepts with roots in 
industrial and medical image processing (Blaschke, 2010; Haralick et al., 
1973). These methodologies are also still at the center of studies in the 
medical imaging field (Priyanka, 2020; Yang et al., 2012) as OBIA can 
produce high-quality results on high spatial resolution images. 

Although most OBIA studies focus on the conversion of natural or 
agricultural areas to urban or exurban developments (Sealey et al., 
2018; Tassi and Vizzari, 2020; Vogels et al., 2017), some studies have 
used the method to monitor landscape change in natural areas over time 
(Morgan and Gergel, 2010; Vogels et al., 2017). Others haves specif
ically shown how this approach has worked successfully in savanna type 
landscapes (Levick and Rogers, 2011; Whiteside et al., 2011, 2020). In 
dryland savannas, woody cover maps help describe the ecosystem’s 
current state (Shafeian et al., 2021). Areas with high woody cover often 
indicate unfavorable shrub encroachment, which can reduce biodiver
sity and cause habitat fragmentation (Yang and Crews, 2019). 

Kruger National Park (KNP) in South Africa, established in 1927, is 
one of the world’s most expansive savanna protected areas. Aerial sur
veys, initiated in the late 1930s and conducted every 2 to 4 years since 
2008, have covered KNP and other parts of South Africa. Although, 
previous studies have used the aerial surveys to reconstruct past land
scapes of KNP, they were mostly limited to small and scattered areas. 
Eckhardt et al. (2000) used B&W aerial images of KNP from 1940 and 
estimated the woody cover in 20 sample plots of approximately 1.2 ha 
within nine transects of 75 ha primarily situated between the Sabie River 
in the south and the Olifants River in the north. Levick and Rogers 
(2011) focused only on the Shingwedzi catchment in the northern part 
of KNP. Munyati and Sinthumule (2016) mapped the woody cover using 

aerial images from 1940/1942 in four study sites across KNP (approx. 
20,000 ha in total). For further information on the study sites used by 
Munyati and Sinthumule (2016) see Smit et al. (2013a). 

In this study, we created a composite of high spatial resolution 
(0.5–0.75 m) B&W aerial images from 1939–1944 covering about 1.7 
million ha of KNP. We then established a supervised learning workflow 
in GEE using an OBIA methodology with a Random Forest to classify the 
woody cover of the B&W composite of images. This large-area historical 
map offers the first comprehensive view of what the park’s woody dis
tribution (tall trees and shrubs) was like about 80 years ago, which until 
now was only partially understood through fragmented descriptions in 
period literature and small-area case studies. 

This study will investigate and evaluate: (1) the extraction of infor
mation about woody vegetation from historical B&W high spatial res
olution aerial images using a supervised learning workflow with an 
OBIA approach and (2) the implementation of the OBIA approach to 
classify the woody vegetation of large-area, high spatial resolution B&W 
aerial images. To contribute to understanding spatial distribution of 
woody cover historically, we present our results according to underlying 
geological substrates following previous studies that have highlighted 
their extreme importance in influencing the distribution of the woody 
cover in KNP (Eckhardt et al., 2000; Munyati and Sinthumule, 2016; 
Smit et al., 2013b; Urban et al., 2020). 

2. Materials and methods 

2.1. Study area 

KNP is located in the northernmost part of South Africa, bordering 
Mozambique in the east and Zimbabwe in the north (Fig. 1). The climate 
varies between hot, humid summers (December–March) and mild, dry 
winters (June–August), with average maximum wet season tempera
tures around 34 ◦C and maximum dry season temperatures of 27 ◦C 
(Zambatis, 2003). This region receives the majority of its precipitation in 
the summer months, with a decreasing mean annual rainfall pattern seen 
from south to north and west to east (Gertenbach, 1980). The more arid 
bushveld north of the Olifants River (Fig. 1) receives 300–500 mm of 
rainfall annually, while the southern lowveld bushveld receives 
500–700 mm annually (MacFadyen et al., 2018). KNP is divided from 
north to south by a lithological discontinuity (Fig. 1), with basalt rock 
underlying the eastern side and granitic rocks in the west. Soils that 
derive from granitic formation are considered nutrient-poor compared 
to the nutrient-rich basalt-derived soils. 

The park is classified as a deciduous savanna and is characterized by 
the co-dominance of grasses, predominantly C4, and an overstory of 
woody plants, which ranges from riparian forests to more open shrubs 
(Scholes and Walker, 1993). The south-west granitic part of KNP is 
characterized by mixed broadleaf woodlands dominated by important 
tree species such as red bushwillow (Combretum apiculatum), marula 
(Sclerocarya birrea), and knob thorn (Senegalia nigrescens), and by small- 
leaved shrubveld with thorny woody plants, such as sickle bush 
(Dichrostachys cinerea). In the southeast, on basalt substrates, tree spe
cies include knobthorn, leadwood (Combretum imberbe) and marula. 

Moving up, the granitic areas south of the Timbavati River (Fig. 1) 
are dominated by Combretum species and silver cluster-leaf (Terminalia 
sericea), while the granitic areas north of the river are covered by 
woodlands of mopane (Colophospermum mopane) and red bushwillow. 
The basalt areas between the Olifant and Sabie Rivers are dominated by 
savanna grasslands where the most common tree species are umbrella 
acacia (Vachellia tortilis), big marula trees, and the jackalberries (Dio
sphyros mespiliformis). The center-north areas of KNP, between the Oli
fants River and the Limpopo River, are the hottest and most arid and are 
dominated by medium-sized mopane trees. 

There are also many riverine forests that follow the major perennial 
rivers (the Crocodile, Sabie, Olifants, Letaba, Luvuvhu, and Limpopo) 
(Fig. 1), which run from west to east. The riparian vegetation includes 
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sycamore figs (Ficus sycomorus), nyala trees (Xanthocercis zambesiaca) 
and other riverine species. A detailed study on the vegetation of KNP 
was conducted by Gertenbach (1983) that classified KNP into 35 unique 
landscapes based on climate, soil, geomorphology, fauna, and vegeta
tion studies. We later used these 35 landscapes to structure our sampling 
strategy. 

2.2. Data collection 

Using the first records of B&W panchromatic aerial photographs 
from 1939 to 1944 (KNP Scientific Services Data Repository), we 
generated a composite image mosaic of all B&W aerial images covering 
about 91% of KNP (Fig. 1). All images, comprising photojobs 165A, 

165B, 56p, and 150 with a resolution of 0.5 m, and photojob 155 at 0.75 
m (Table 1), were provided by the National Geospatial Information 
(NGI) of South Africa’s Department of Rural Development and Land 
Reform. Selected from their flight plans to maximize KNP coverage, 
these historical photos were scanned at 1200 dpi into TIFF format 
without compression using an Epson Expression 10000XL A3 scanner 
with a transparency unit. The AAMgroup (now the Woolpert group- 
https://aamgroup.com) a private geospatial services consulting firm 
specializes in mapping and geospatial analysis, then orthorectified and 
combined each of these photojobs into an orthomosaic image. 

The orthomosaic procedure performed by the AAMgroup comprised 
seven steps: (1) prepare the imagery (i.e., radiometric adjustments, such 
as contrast enhancements and intensity balancing, and image cropping 

Fig. 1. On the left, the study area with a close-up of KNP highlighting the major rivers and the two main geological substrates, basalt, and granite. On the right, the 
full extent of the historical B&W aerial images used for the OBIA analysis together with the areas of No Data and the boundaries of the five photojobs with the 
corresponding color scale: 165A (1942), 165B (1942), 56p (1944), 155 (1940), and 150 (1939). 
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to fiducial marks to replicate digital frames in photogrammetry pro
cessing), (2) generate approximate photo center positions from flight 
plans, (3) import imagery into photogrammetry software and generate 
tie points using approximate photo center coordinates to line up photos, 
(4) measure control by scaling control points from new NGI imagery for 
plan and NGI DEM for heights, (5) perform aerial triangulation bundle 
adjustment solving for interior and exterior orientations, (6) run single 
frame orthos using NGI DEM and the mosaic, and (7) QA the resultant 
mosaic and fix errors. 

2.3. OBIA workflow for woody cover classification 

To test the methodology, we first focused on a subset of the aerial 
images and divided them into smaller subplots (approx. 25 km2) (Fig. 2). 
Taking into account the diverse landscape of KNP we used Gertenbach 
(1983) vegetation map as a guide and labeled five subplots in the park’s 

southern part based on the vegetation types (Fig. 2). The position of the 
subplots was guided by two factors: (1) geological substrate, in order to 
test the workflow based on the type of soil and (2) the presence of land 
cover elements, such as rivers or large rocks, in order to have a clear land 
cover element to test the accuracy of the segmentation process of the 
OBIA. Subplots 1–4 in photojob 155 are located on granite (Fig. 1), and 
subplot 5 in photojob 150 is located on basalt (Fig. 1). Quantum GIS 
(QGIS) 3.22 (QGIS Development Team, 2023) was used to clip the aerial 
photographs to the extent of the subplot boundaries. 

To develop the supervised learning workflow to classify the woody 
cover from the B&W aerial images we used GEE and applied the OBIA 
methodology. The classification workflow to obtain the OBIA woody 
cover classification is divided into five steps: (1) data upload and script 
preparation (Section 2.3.1), (2) training/validation dataset (Section 
2.3.2), (3) image segmentation (2.3.3), (4) woody cover classification 
(Section 2.3.4), and (5) accuracy, export, and land cover count (Section 
2.3.5). An example of the GEE script is included in the Supplementary 
material. 

2.3.1. Data upload and script preparation 
To perform a land cover (LC) classification, GEE requires two initial 

inputs: an aerial image and the boundary of the area of interest. We 
uploaded the subplot boundary and the aerial images of each subplot as 
GEE assets. Once the assets were imported into our JavaScript-based 
program, the training/validation datasets could be created. Since we 
were interested in extracting the woody cover, we divided our training 
point features into two cover classes: ‘non-woody’ (LC property = 1) and 
‘woody’ (LC property = 2). Woody cover was considered to be all 
vegetation with woody stems (i.e., excluding grasses and forbs), 
including trees that were shrubby (i.e., multi-stemmed) and short in 

Table 1 
Details of the five historical photojobs used to attain full coverage of KNP for the 
period 1939–1944.  

Photojob Scale Format Focal 
length 

Resolution Area 
(ha) 

165A 
(1942) 

1:30000 7”x7” 7” 0.50 m 238,727 

165B 
(1942) 

1:30000 7”x7” 7” 0.50 m 633,260 

56p (1944) 1:20000 7”x7” 7” 0.50 m 513,781 
155 (1940) 1:35000; 

1:21000 
7”x7” 4½” 0.75 m 277,629 

150 (1939) 1:20000 7”x7” 7” 0.50 m 55,832  

Fig. 2. On the left, we see the 35 vegetation types identified in Gertenbach (1983) in light gray in background with five vegetation types highlighted with different 
colors in the southern part of KNP. On the right, we show a zoom in image of the five highlighted vegetation types where we placed five subplots (approx. 25 km2), in 
red, that were used to test the methodology further explained in Section 2.3. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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stature. 

2.3.2. Training/validation dataset 
Most studies dealing with data sampling recommend the use of 

random or stratified sampling approaches to generate training/valida
tion points (Hammond and Verbyla, 1996; Millard and Richardson, 
2015; Tassi et al., 2021). In this study, a set of 400 random points was 
generated within the subplot, and subsequently the points were assigned 
to one of the two LC classes. The number of random points was based on 
trial-and-error classifications that were run in the same areas. Random 
points that fell on a specific pixel were labeled by visual interpretation as 
either ‘non-woody’ or ‘woody’. Important considerations while deciding 
the class of the pixel were (1) pattern of the pixels within which the 
random point fell, (2) shape of the object, and (3) grayness of the pixel. 

However, in an open savanna environment like KNP, where the 
probability of a random point landing on a woody plant is exceptionally 
low, a completely random sampling protocol produced an unbalanced 
training set and resulted in the misclassification of smaller woody plants 
(i.e., shrubs). To address this issue, we created a separate geometry, ‘add 
trees’ (LC property = 2), whereby well-defined examples of woody cover 
elements were added until the two classes had the same number of 
training points. This new geometry was then merged with the randomly 
allocated woody points, ‘woody’ (LC property = 2) + ‘add trees’ (LC 
property = 2) = ‘merged woody’, as they are part of the same land cover 
class. To assess model accuracy, we then randomly separated 80/20% of 
the classified points to generate a training/validation dataset to be used 
later in the accuracy assessments. 

2.3.3. Image segmentation 
We used a bottom-up, seed-based segmentation algorithm in GEE 

called Simple Non-Iterative Clustering (SNIC) based on parameters of 
compactness, connectivity, and neighborhood size (Achanta and Sus
strunk, 2017). The “compactness” influences the shape of the clusters 
(larger values produce more compact clusters), the “connectivity” de
fines how to merge adjacent clusters, and the “neighborhoodSize” 

avoids tile artifacts. The values of the SNIC parameters for this study are 
present in the GEE script included in the Supplementary material. For 
further description of the segmentation approach, we refer to the work 
of Achanta and Susstrunk (2017) and a recently published book on GEE 
(Cardille et al., 2024). We adopted the two-step procedure presented in 
Tassi and Vizzari (2020) that combines the SNIC segmentation algo
rithm with a Gray-Level Co-occurrence Matrix (GLCM). GLCM is a 
second-order statistical method for extracting textural metrics from 
gray-scale images and examines the spatial relationships between pixel 
intensities in an image to quantify texture, providing insights into pat
terns, and variability within the data. 

The GLCM metrics describe the texture of an object, intended as the 
spatial arrangement of the brightness values within an object. In total, 
18 GLCM texture metrics were derived for each object, 14 metrics pro
posed by Haralick et al. (1973) and an additional four metrics added by 
Conners et al. (1984). For the spatial clustering step of the classification, 
we used GEE’s “Image.Segmentation.seedGrid” algorithm that works 
with superpixels, a concept first introduced by Ren and Malik (2003) 
and then further developed by Achanta and Susstrunk (2017) which 
groups pixels together to obtain a more natural and homogenous 
structure. For the purpose of this study, a superpixel seed location 
spacing of 15 was chosen as the grouping pixel size, considering the 
textural characteristics of the landscape patches. 

2.3.4. Woody cover classification 
To obtain the woody cover classification we chose the Random 

Forest classifier, which is a supervised learning algorithm that produces 
multiple decision trees using a randomly selected subset of training data 
and independent variables (Breiman, 2001). It has received much 
attention in the last few years due to its excellent classification results, 
fast-processing speed, ease in handling different types of data, e.g., 

shape and texture, and no requirement for normally distributed data 
(Belgiu and Drăguţ, 2016; Rodriguez-Galiano et al., 2012; Vogels et al., 
2017). Another advantage of the Random Forest is that it is able to 
compute variable importance measures that allow us to identify the 
variables that exerted a substantial influence on the classification pro
cess (Rodriguez-Galiano et al., 2012). 

For assessing the variable importance of the 18 GLCM texture met
rics, we utilized the “ee.classifier.explain” algorithm and then calculated 
the relative importance of each metric. In contrast to other image clas
sification software, the segmentation process is performed after the 
training dataset is created, therefore, the objects obtained from the SNIC 
algorithm (Section 2.3.3) are then labeled with the corresponding LC 
labels of the training points collected in Section 2.3.2 as preparation for 
image classification with the chosen classifier. Therefore, using the 
Random Forest together with the GLCM texture metrics (independent 
variables) and the training samples identified with LC labels (dependent 
variable), we classified all other segmented objects into woody or non- 
woody LC to obtain the final woody cover classification image. 

2.3.5. Accuracy, export, and land cover count 
After each aerial image was classified, we evaluated the accuracy 

metrics using a confusion matrix in GEE to summarize the performance 
of our classification workflow (Radoux et al., 2008). Factors that 
affected the measurement of accuracy included the resolution of the 
aerial images, the training/validation dataset, and the LC classes chosen. 
Accuracy assessment of the performance of the Random Forest classifi
cation yields values ranging from 0% (no match) to 100% (complete 
match) (Lillesand et al., 2004). Overall accuracy reflects the percentage 
of correctly classified pixels in a map, but it does not show how errors 
are distributed among different land cover classes. To address this, we 
calculated producer’s accuracy, which gauges the correctness of refer
ence pixel classification, and user’s accuracy, which indicates how 
accurately the classification represents actual ground conditions. To 
overcome computational limits in GEE, we divided our output into 
smaller tiles and exported each OBIA woody cover classification subset 
to Google Drive for post-processing and analyses. To calculate the per
centage of woody and non-woody land cover we used QGIS. 

2.4. Large-area, high spatial resolution woody cover classification 

After refining our supervised learning workflow for woody cover 
classification using OBIA on the five small subplots (Fig. 2), we faced 
two challenges in applying the methodology to the broader set of aerial 
photojobs (Table 1): first, working with a mosaic of images from 
different years and characteristics adds complexity; second, processing 
and handling large areas requires significant storage and computational 
resources. Moreover, a small part of the image from photojob 155 
(1940) was omitted due to the diminished panchromatic fidelity and 
incidence of artifacts, indicative of the aerial photographs’ degradation 
over time. The total area of the photojobs included in the OBIA classi
fication is shown in Table A.1. To address both issues, we treated each 
photojob separately, divided the photojobs into smaller boundaries 
(Fig. A.1), and performed the OBIA woody cover classification on each. 

The supervised learning workflow adheres to the steps outlined in 
Sections 2.3.1–2.3.5. However, as detailed in Section 2.3.2, we deviated 
by not generating 400 random points over the entire boundary. Instead, 
we used the vegetation types described by Gertenbach (1983) to guide 
the placement of our sampling plots, from which we then collected the 
training and validation points (Fig. A.2). The creation of several small 
sampling plots within each vegetation type, instead of using one large 
area, also helped speed up the sampling process. Performing the data 
collection within the sampling plots ensured that we had training/ 
validation points that were representative of the diverse vegetation 
within each boundary. To determine the size of the sampling plots, we 
first calculated 5% of the total area covered by the boundary, divided 
that area by the number of vegetation types intersecting the boundary 
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and then proceeded to label the sampling plots based on vegetation type. 
However, if a vegetation type was too small to accommodate the entire 
sampling plot, we placed the largest area within that vegetation type, 
while assigning the remaining area to the nearest largest vegetation 
type. 

The position of the sampling plots was chosen based on (1) quality of 
the historical image, (2) recognizable objects (rivers, large rocks, roads), 
and (3) distance to other sampling areas. Once we labeled the sampling 
plots based on vegetation type, we generated 400 random points across 
the sampling plots. After collecting the training/validation points, as 
seen in Section 2.3.2, we followed the steps in Section 2.3.3–2.3.5 to 
obtain the OBIA woody cover classification and accuracy measurements 
of each individual photojob boundary. The final OBIA classification 
results are presented for each photojob. An example of the methodology 
is shown in Fig. A.2, in which the five sampling plots (a - e) are located 
inside the five vegetation types (Gertenbach, 1983) intersecting one of 
the individual boundaries of photojob 56p (1944). 

3. Results 

The resulting woody cover classification of the five subplots (Fig. 2) 
had a high overall accuracy in all subplots (Table 2). Subplot 5 on basalt 
soils had the lowest overall accuracy (84%) with a producer’s accuracy 
value for the woody cover class of 76%, indicating a higher probability 
of misclassification. Subplot 1 on the granitic soils had the highest 
percentage of woody cover (25%) while the lowest percentage (10%) 
was recorded on the basalt soils on subplot 5. The highest value of 
overall accuracy obtained was 95% in subplot 3. The producer’s and 
user’s accuracy for subplots 1, 2, 3, and 4 indicate low errors of com
mission and omission, suggesting a low probability of misclassification 
on granite. In Fig. 3, we present an enlarged extract of the OBIA woody 
cover classification for each of the five subplots. 

When performing the OBIA on all photojobs, the overall accuracies 
remained high, with photojob 165A (1942) in the north having the 
highest values for overall accuracy (92%) (Table 3). Similarly, the 
producer’s and user’s accuracy parameters indicate low errors of com
mission and omission (Table 3) and thus low probability of misclassifi
cation for all photojobs. Photojob 165A (1942), 155 (1940), and 150 
(1939) had the lowest percentages of woody cover, 19%, 23%, and 22%, 
respectively, while the central areas of KNP, covered by photojobs 165B 
(1942) and 56p (1944) had the highest values, 29% and 28% respec
tively (Table 3). Furthermore, we also calculated the total percentage of 
non-woody cover (74%) and woody cover (26%) of the composite of 
photojobs, with an overall accuracy of 89%, producer’s accuracy (non- 
woody = 88%, woody = 90%), and user’s accuracy (non-woody = 90%, 
woody = 87%). In Fig. 4, we present an enlarged extract of the OBIA 
woody cover classification for each of the five photojobs. Supplementary 
material includes a link to a full image of the woody cover classification 

of KNP in an A0 format (Fig. S.1) and all individual OBIA woody cover 
classifications for each individual photojob can be downloaded freely. 

The analysis of the woody and non-woody cover and geological 
substrate showed that, on average, the percentage of woody cover is 
lower on basalt than on granite (Table 4). Photojob 165A had the lowest 
percentage of woody cover on basalt (11%), while granite had more 
than double the percentage of woody cover (23%). We also calculated 
the percentage of woody and non-woody cover in the composite images 
for each geological substrate. In basalt areas, the total woody and non- 
woody cover was 21% and 79%, respectively. Granite, averaged 
across vegetation types, had a higher percentage of woody cover (28%) 
and a lower percentage of non-woody cover (72%) than basalt. 

Analyzing the variable importance for each OBIA classification for 
both the subplots (Fig. A. 3) and the photojobs showed comparable re
sults (Fig. A.4). However, as the OBIA classifications per photojob were 
run on smaller boundaries, to better highlight the variance between the 
different classifications we used a boxplot to show the importance of 
each GLCM texture metric, highlighting the minimum and maximum 
value (Fig. A.4). The four most important GLCM texture metrics are: 
mean-difference-to-neighboring brightness, sum average, cluster shade, 
and correlation. 

4. Discussion 

The historical aerial images covering KNP provided an opportunity 
to apply OBIA to a large dataset (approx. 1.7 million ha) and to create a 
methodology tailored to classify land cover of B&W historical photo
graphs. This methodology was an iterative process built on previous 
studies in the field (Eckhardt et al., 2000; Fensham and Fairfax, 2002; 
Hay and Castilla, 2008; Tassi and Vizzari, 2020; Vogels et al., 2017) and 
on new site-specific methods. We first developed a supervised learning 
workflow in GEE that detects woody cover from B&W images and then 
conceptualized an efficient training/validation sampling strategy that 
was applied to create the first historical woody cover map of KNP in 
1939–1944. 

The accuracy of land cover classification through OBIA differed 
across various landscapes. This variance is attributed to the diverse 
characteristics of natural features like trees and shrubs, including their 
size, shape, and height (Drăguţ et al., 2009; Tassi and Vizzari, 2020; 
Vogels et al., 2017). Consequently, selecting appropriate parameters for 
the OBIA segmentation process was crucial for achieving accurate 
classifications. The variable importance analysis of each GLCM texture 
metric on both the subplots (A.3) and the photojobs (A.4) highlighted 
how the most important variables are the same, indicating a consistency 
overall in the analysis, independent of the photojob and the geological 
substrate. 

In the past, most studies that adopted GLCM texture metrics for land 
cover assessments were focused on agricultural areas (Abu et al., 2021; 
Vogels et al., 2017). Vogels et al. (2017) assessed land degradation with 
a semi-automated methodology to map cropland using B&W photo
graphs and found that the most important GLCM texture metrics were 
homogeneity, angular second momentum, and entropy. However, the 
variables most important for identifying small natural elements, such as 
woody vegetation differ compared to man-made objects such as agri
cultural fields. A recent study by Park and Guldmann (2020) that 
analyzed the correlation between the GLCM texture metrics and 
commonly used landscape metrics to study landscape fragmentation 
shows that the GLCM mean-difference-to-neighboring brightness texture 
metric is highly correlated with the PLAND landscape metric (i.e., per
centage of tree patches in a landscape) and that the GLCM correlation 
texture metric appears to be strongly associated with the level of patch 
aggregation in an image. These results confirm the importance of 
including GLCM texture metrics as attributes to help classify and 
distinguish woody cover elements in the landscape. 

Moreover, in the medical field, the GLCM cluster shade texture 
metric is widely used to highlight the degree of skewness (i.e., when the 

Table 2 
Statistics for each Subplot include percentage of Non-woody (NW) and Woody 
(W) cover (%), Overall accuracy, Producer’s accuracy (%), and User’s accuracy 
(%).  

Subplots Non- 
woody 
cover 
(%) 

Woody 
cover 
(%) 

Overall 
accuracy 
(%) 

Class Producer’s 
accuracy 
(%) 

User’s 
accuracy 
(%) 

1 75 25 86 NW 84 88     
W 87 83 

2 87 13 93 NW 96 91     
W 91 96 

3 86 14 95 NW 98 91     
W 92 98 

4 81 19 89 NW 89 90     
W 90 88 

5 90 10 84 NW 92 80     
W 76 90  
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Fig. 3. a) Extracts of the original B&W aerial image of the five subplots described in Fig. 2; b) Results of the OBIA classification of the woody cover of the aerial 
images in a). 
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cluster shade is high the image is asymmetric). A recent study by Abu 
et al. (2021), focused on the fragmentation of cocoa farms in Côte 
d’Ivoire and Ghana, identified the cluster shade as the most significant 
GLCM texture metric for the Random Forest classifier. Therefore, 
considering our findings and existing research in the field, we propose 
that GLCM texture metrics such as mean-difference-to-neighboring 
brightness, sum average, cluster shade, and correlation play a signifi
cant role in comprehending landscape composition, symmetry, and ag
gregation (Figs. A.3 and A.4). 

The analysis performed at the subplot level helped us define the 
segmentation parameters, fine tune the training/test sampling strategy, 
and finalize the classification process. The classification of woody cover 
performed better on granite than on basalt soils (Table 2), which could 
be due to the darker background color of the basalt soils and overall 
lower percentage of woody cover on basalts, as confirmed by more 
recent studies in KNP (Munyati and Sinthumule, 2016; Urban et al., 
2020). Roads, rivers, and rocks contrasted sharply in shape and color 
with the vegetation and, as a result, were accurately classified (see ex
tracts of subplots 1, 3 and 4 in Fig. 3b) as opposed to small trees on dark 
soils (extract of subplot 5 in Fig. 3b). Furthermore, subplot 5 had a low 
producer’s accuracy value for the woody cover class (76%) (Table 2), 
indicating that the woody land cover class could have been over
estimated in relation to the reference data. 

Our findings that subplots 1 and 4 (Fig. 2), on granite, had the 
highest woody cover, 25% and 19%, respectively (Table 2), align with 
the overall results of Eckhardt et al. (2000), which found a mean cover of 
20% on granites in the 1940’s aerial images of KNP. Subplot 5 (Fig. 2) 
located on the basalt areas near Lower Sabie had the lowest woody cover 
(10%), a result also confirmed by Eckhardt et al. (2000) which calcu
lated a mean of 12% woody cover on basalts for the 1940s. On the other 
hand, subplots 2 and 3 (Fig. 2) had a lower woody cover, 13% and 14%, 
respectively, even though they are also on granitic soil. However, it is 
important to recognize that Eckhardt et al. (2000) focused their study on 
the southern-central part of KNP, using aerial photographs from 1940, 
1974, and 1998, as well as fixed-point photographs from 1984 and 1996. 
They employed IDRISI software to segment and classify these images, 
identifying distinct objects or areas such as woody vegetation and cat
egorizing them based on their spectral and spatial properties to estimate 
woody cover. Due to the specific location and unique methodology of 
their study, direct comparisons with our results may not be feasible. 

Based on historic photographs and the diaries of Stevenson- 
Hamilton, first published in 1937 (Stevenson-Hamilton, 1993), the 
areas around subplot 2 (Fig. 2) in the lowveld sour bushveld of Pretor
iuskop and subplot 3 (Fig. 2) in the Malelane mountains, were highly 
grazed, especially by livestock, with frequent early season burns (Wol
huter, 2010), which may explain why the woody cover was lower in 
these subplots. Therefore, with regard to previous studies and the results 
obtained in the subplots, the difference in woody cover across the park 
could be attributed to the dynamics of the vegetation in relation to soil 
properties (Knoop and Walker, 1985) which, in turn, interact with 
productivity and disturbances such as herbivory and fire (Du Toit et al., 
2003). 

The results performed at the photojob level (Table 3) are comparable 
with the previous analyses performed for the subplots (Table 2). Pho
tojob 165A (1942) in the north and photojobs 155 (1940) and 150 
(1939) in the south had a lower percentage of woody cover than the 
central areas of the park 165B (1942) and 56p (1944) (Table 3). The 
woody cover in photojob 155 (1940) may be slightly overestimated due 
to the presence of artifacts (i.e., dark green spots shown in Fig. S.1) 
misclassified as woody vegetation. However, the OBIA classification 
results for photojob 155 (1940) are comparable to the adjacent photojob 
150 (1939), which suggests that overestimation may not be a problem. 
The woody cover classification of the five photojobs represents the first 
large-area, high spatial resolution historical analyses of woody vegeta
tion across KNP. 

To better understand the spatial distribution of vegetation, we fol
lowed previous studies that have highlighted the importance of 
geological substrates in KNP (Eckhardt et al., 2000; Munyati and Sin
thumule, 2016; Smit et al., 2013b; Urban et al., 2020) and calculated the 
percentage of woody cover on basalt and granite separately (Table 4). 
Overall, the percentage of woody cover on basalts is 21% while it is 
higher on granites, at 28%, a difference clearly visible in Fig. S.1. These 
results support the broader understanding of vegetation distribution 
within KNP’s savanna ecosystems as outlined by Du Toit et al. (2003). 
Granitic, sandy soils, with less palatable vegetation for herbivores, lower 
intensity fires, and lower competition, have more dense savannas with a 
higher number and cover of woody plants, while basaltic, clay soils 
support higher grass biomass, resulting in more intense fires and more 
open landscapes. 

The lowest percentage of woody cover on basalt soils (11%) was 
obtained in photojob 165A in the northernmost part of KNP, while the 
highest percentage on basalt, 23%, was recorded in the central part of 
KNP for both photojob 165B and 56p (Table 4). This result could be 
explained by a more semi-arid environment in the north as opposed to a 
subhumid climate in the south (Trabucco and Zomer, 2014). The per
centage of woody cover on basalts obtained for photojob 155 (1940), 
19%, could be slightly lower due to the artifacts in the aerial image 
(Fig. S.1), yet they are comparable with the results for photojob 150 
(1939) (Table 4). The highest percentages on granite soils were recorded 
in the central areas of KNP (photojob 165B and 56p), approximately 
30%. The higher woody cover on both granite and basalt in the central 
areas could be attributed to the mopane trees (Colophospermum mopane) 
that dominate these hot and dry environments. 

We obtained higher values of woody cover for photojob 56p, 23% for 
basalts and 30% on granites, than what Eckhardt et al. (2000) presented 
in their study (on average 12% for basalts and 20% for granites). These 
higher results could be attributed to the differences in methodologies 
adopted, specifically, the different sizes of the sampling area and the 
divergent dates of the aerial images. Eckhardt et al. (2000) used an area 
of approximately 200 ha over 9 transects as opposed to approximately 
500,000 ha covered by photojob 56p and used aerial images from 1940 
as opposed to those from 1944 in photojob 56p. However, overall, the 
woody cover was higher on granites than on basalts as confirmed by 
Eckhardt et al. (2000) and this study, and the difference in percentage 

Table 3 
Statistics include percentage of Non-woody (NW) and Woody (W) cover (%), Overall accuracy, Producer’s accuracy (%), and User’s accuracy (%) per photojob.  

Photojob Non-woody cover (%) Woody cover (%) Overall accuracy (%) Class Producer’s accuracy (%) User’s accuracy (%) 
165A (1942) 81 19 92 NW 91 92     

W 92 91 
165B (1942) 71 29 87 NW 85 90     

W 89 83 
56p (1944) 72 28 89 NW 90 89     

W 88 90 
155 (1940) 77 23 91 NW 88 92     

W 94 91 
150 (1939) 78 22 83 NW 85 85     

W 81 81  
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Fig. 4. a) Extracts of the original B&W aerial image divided per photojob described in Fig. 1; b) Results of the OBIA classification of the woody cover of the aerial 
images in a). 
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between geological substrates is approximately at 8% for Eckhardt et al. 
(2000) and 7% for photojob 56p. 

Previous studies in KNP have shown that the combination of abiotic 
factors like rainfall, geological substrate, soils, fire regimes, and biotic 
factors like herbivores have created the park’s complex environmental 
mosaic we see today (Du Toit et al., 2003; Scholtz et al., 2014; Smit 
et al., 2010; Urban et al., 2020). Eckhardt et al. (2000) and Munyati and 
Sinthumule (2016) performed a land cover change analysis to better 
understand vegetation dynamics linked to the geological substrate in 
KNP, yet both studies considered small or scattered study sites (approx. 
200 ha over 9 transects and 4 sites of approx. 20,000 ha in total, 
respectively). 

Large-area studies are necessary to fully understand the dynamics 
linked to the main drivers of vegetation change in savannas and more 
specifically in KNP. Urban et al. (2020) mapped the woody cover of KNP 
using Sentinel-1 (10 m spatial resolution) for the years 2016–2017. They 
found that the highest woody cover percentages were reached in the 
northern part of KNP on sandy granite-derived soils, while the lowest 
values were found on the basalt areas in the eastern part of KNP, high
lighting how the woody cover in KNP is significantly controlled by the 
underlying geological substrate and the north-to-south rainfall gradient. 
The results of this study could be used for land cover change analysis as a 
historical baseline to document how the woody cover has changed 
through time in KNP, even though for comparative studies using images 
at the same spatial scale would be advisable. 

Moreover, the results of this study provide a snapshot of what the 
park looked like with low densities of herbivores in the landscape and 
with no active fire management strategies implemented. In 1946 Ste
venson Hamilton in the Kruger National Park, warden’s annual report 
counted only 400–450 elephants in the entire park (Stevenson-Hamil
ton, 1993), as opposed to 17,086 counted in 2015 (Ferreira et al., 2017). 
In the light of concerns around accelerated elephant impacts in KNP (Das 
et al., 2022), the results of this study could be used to help formulate 
future elephant management strategies. 

As with any other type of remotely sensed data and image analysis 
approach, there are challenges in this study that need to be taken into 
consideration with the interpretation of the results. The biggest chal
lenge was working with a mosaic of historical B&W aerial images from 
different years together with compiling the training/validation dataset 
for large-area, high spatial resolution aerial images. Therefore, it was 
essential to build an easy and efficient sampling strategy and export 
methodology. GEE played a significant role in this process, as it allowed 
different independent operators to collect training and test samples 
using a cloud-based server to run the analyses which minimized large 
data management and storage. Furthermore, as mentioned in Section 
2.4, photojob 155 (1940) was the aerial image with the highest number 
of visible artifacts (i.e., dark round green circles) and this can be 
observed looking at this area in Fig. S.1. For this reason, a part of this 
photojob was eliminated from our analysis (Table A.1) as the quality and 
presence of artifacts highly compromised our classification. Other arti
facts due to image quality (i.e., horizontal lines) are present in photojob 
56p (Fig. S.1), however, the overall distribution of the woody cover is 

consistent and overall accuracy, the producer’s accuracy, and con
sumer’s accuracy are all high, validating the result. 

The presence of shadows around trees has also been mentioned as an 
issue surrounding woody cover classification of B&W images (Fensham 
and Fairfax, 2002). Manual techniques applied for the training/valida
tion dataset have been shown to represent a major advantage to avoid 
shadow effects (Fensham et al., 2002) and the balance of the producer’s 
accuracy and the consumer’s accuracy obtained in our analyses for all 
photojobs indicates a low misclassification error. This historical study 
focuses on woody cover, defined as both trees and shrubs. A future 
stereoscope analysis could help better understand the ongoing process of 
the encroachment of small trees and shrubs in African savannas (Coetsee 
et al., 2023). Lastly, another challenge for panchromatic images is fire 
scars, often widespread in African savannas. In this study, it was not 
necessary to exclude burned areas from the analysis because few of these 
were present. It would be advisable for further studies of B&W photo
graphs that show extensive burned areas to exclude them from the 
classification to avoid woody cover overestimation. 

5. Conclusions 

The analysis of B&W images is clearly challenging; nonetheless, it 
represents an essential piece of the puzzle for long-term LULC analysis. 
Historical datasets provide valuable insights into past landscapes, 
enhance conservation efforts, and support evidence-based decision- 
making. This study represents the first historical woody cover baseline 
for KNP dating back 80 years and covering an extent of about 1.7 million 
ha with important implications for assessing the impact of past human 
activities, gauging the effectiveness of implemented management stra
tegies, and setting future conservation priorities. 

Leveraging freely available satellite imagery and cloud-based 
computing platforms like GEE, conservationists can analyze large- 
area, high spatial resolution land cover changes and, based on that 
make informed decisions regarding habitat restoration, invasive species 
management, and fire regimes. Therefore, the implications of this 
research extend beyond KNP because the developed methodology can be 
replicated in other ecosystems and protected areas and contribute to 
landscape management and environmental planning. 

The results obtained in this study can be used as a baseline for future 
LULC analysis performed with other methodologies, such as deep 
learning CNN (Jagannathan and Divya, 2021). Going forward, the 
analysis of aerial images of KNP taken about every two years deep 
learning methods will be most effective and useful to map land cover or 
more specifically woody cover. Integrating large-area historical datasets 
in land-use and land-cover analysis can serve as a resource to better 
understanding long-term landscape changes and support ecological 
monitoring programs. The results of studies such as this one can be used 
to better protect and preserve our natural heritage, enable effective 
management strategies, and contribute to the conservation of global 
biodiversity. 
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Table 4 
Non-woody (%) and Woody cover (%) of each photojob per geological substrate.  

Photojob Class Non-woody cover (%) Woody cover (%) 
165A (1942) Basalt 89 11  

Granite 77 23 
165B (1942) Basalt 77 23  

Granite 68 32 
56p (1944) Basalt 77 23  

Granite 70 30 
155 (1940) Basalt 81 19  

Granite 77 23 
150 (1939) Basalt 84 16  

Granite 78 22  
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Appendix A. Appendix  
Table A.1 
Total area in hectares (ha) covered by the B&W aerial 
images during the OBIA classification.  

Photojob Area (ha) for the OBIA 
165A (1942) 238,727 
165B (1942) 633,260 
56p (1944) 513,781 
155 (1940) 262,052 
150 (1939) 55,832 
Total 1,647,820  

Fig. A.1. The outline of the boundaries that are used to perform the individual OBIA woody cover classification. We highlight the boundaries of each photojob with 
the corresponding color scale.  
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Fig. A.2. On the left, the 35 vegetation types identified in Gertenbach (1983) are shown in light gray in the background together and the seven separate boundaries 
of photojob 56p (1944) used to perform the OBIA classification (Fig. A.1) with the original B&W aerial images; On the right, we see a close up of the sampling 
methodology for boundary 56p5, with the sampling areas in red placed within the five vegetation types that intersect the boundary. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A.3. Variable importance of GLCM texture features for each subplot 1–5 (Fig. A.1). The GLCM features: ASM = angular second moment, Contrast, CORR =
correlation, DENT = difference entropy, DISS = dissimilarity, DVAR = difference variance, ENT = Entropy, IDM = inverse difference moment, IMCORR1 = in
formation measure of Corr. 1, IMCORR2 = information measure of Corr. 2, Inertia, MEAN = mean-difference-to-neighboring brightness, PROM = cluster promi
nence, SAVG = Sum Average, SENT = sum entropy, SHADE = cluster shade, SVAR = sum variance, VAR = variance.  
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Fig. A.4. Variable importance of GLCM texture features for each photojob (Fig. 1) and on the bottom right a boxplot showing the average importance value of each 
GLCM feature and the maximum and minimum values. The GLCM features: ASM = angular second moment, Contrast, CORR = correlation, DENT = difference 
entropy, DISS = dissimilarity, DVAR = difference variance, ENT = Entropy, IDM = inverse difference moment, IMCORR1 = information measure of Corr. 1, 
IMCORR2 = information measure of Corr. 2, Inertia, MEAN = mean-difference-to-neighboring brightness, PROM = cluster prominence, SAVG = Sum Average, SENT 
= sum entropy, SHADE = cluster shade, SVAR = sum variance, VAR = variance. 
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Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ecoinf.2024.102590. 
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