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Abstract
Excessive Ca2+ influx through N-methyl-D-aspartate type glutamate receptors (NMDAR) is associated with excitotoxicity 
and neuronal death, but the inhibition of this receptor-channel causes severe adverse effects. Thus, a selective reduction of 
NMDA-mediated Ca2+ entry, leaving unaltered the Na+ current, could represent a valid neuroprotective strategy. We devel-
oped a new two-fluorophore approach to efficiently assess the Ca2+ permeability of ligand-gated ion channels, including 
NMDARs, in different conditions. This technique was able to discriminate differential Ca2+/Na+ permeation ratio through 
different receptor channels, and through the same channel in different conditions. With this method, we confirmed that 
EU1794-4, a negative allosteric modulator of NMDARs, decreased their Ca2+ permeability. Furthermore, we measured 
for the first time the fractional Ca2+ current (Pf, i.e. the percentage of the total current carried by Ca2+ ions) of human 
NMDARs in the presence of EU1794-4, exhibiting a 40% reduction in comparison to control conditions. EU1794-4 was 
also able to reduce NMDA-mediated Ca2+ entry in human neurons derived from induced pluripotent stem cells. This last 
effect was stronger in the absence of extracellular Mg2+, but still significant in its presence, supporting the hypothesis to use 
NMDA-selective allosteric modulators to lower Ca2+ influx in human neurons, to prevent Ca2+-dependent excitotoxicity 
and consequent neurodegeneration.
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Abbreviations
ACh	� Acetylcholine
ALS	� Amyotrophic lateral sclerosis
CNS	� Central nervous system
DMEM	� Dulbecco’s modified eagle medium
FBS	� Fetal bovine serum
HEPES	� N’-2-Hydroxyethylpiperazine-N’-2 ethanesul-

phonic acid
ING-2	� Ion Natrium Green-2
iPSC	� Induced pluripotent stem cell

nAChRs	� Nicotinic acetylcholine receptors
NES	� Normal external solution
NMDA	� N-methyl-D-aspartate
NMDAR	� N-methyl-D-aspartate receptor
Pf	� Fractional Ca2+ current
ROS	� Reactive oxygen species

Introduction

The N-methyl-D-aspartate type glutamate receptors 
(NMDAR) are Ca2+-permeable glutamate-gated cationic 
channels expressed throughout the CNS, where they play 
key physiological roles in several processes, such as synaptic 
function and plasticity, and therefore learning and memory 
[1]. The flow of current through NMDAR needs two coin-
cident events: the presence of the agonist molecules (gluta-
mate and the coagonist, glycine or d-serine), and the mem-
brane depolarization, removing the channel block caused 
by Mg2+ [2]. Activated NMDAR induces a slow synaptic 
current that allows a substantial influx of external Ca2+ [1, 
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3]. The high Ca2+ permeability of NMDAR is fundamental 
in several processes, leading to multiple short-term or long-
term changes in the synaptic strength of the postsynaptic 
neuron [1]. However, an imbalance in glutamate homeostasis 
and the consequent overactivation of glutamate receptors, 
in particular in conditions of energy availability reduction 
and increased oxidative stress, can damage and kill neurons 
[4]. This excitotoxic mechanism is mainly the response to 
a massive influx of Ca2+ through NMDAR [2] and voltage-
dependent Ca2+ channels that cause reactive oxygen species 
(ROS) release and consequent mitochondrial dysfunction 
[4]. Classic examples of excitotoxic neuronal degeneration 
in humans include severe epileptic seizures and stroke, but 
also neurodegenerative processes in chronic neurodegener-
ative diseases, including Alzheimer’s disease, Parkinson’s 
disease, Huntington’s disease, and amyotrophic lateral scle-
rosis (ALS) [4]. Based on the pathogenic concept of excito-
toxicity, NMDAR has been a longstanding therapeutic target 
for rational drug design that could be used against these 
otherwise heterogeneous and complex pathologies [5]. For 
instance, one of the few approved drugs against Alzheimer’s 
disease is memantine, a partial open-channel blocker of 
NMDAR. However, eliminating the NMDAR current is not 
compatible with life, and even a partial block is sufficient to 
generate several adverse effects [6]. A suitable but still unex-
plored therapeutic strategy could be the selective reduction 
of Ca2+ influx through NMDAR, leaving unaltered the Na+ 
current. During the last three decades, the Ca2+ permeability 
of ligand-gated ion channels has been quantified in terms of 
fractional Ca2+ current (Pf, the percentage, carried by Ca2+ 
ions, of the total current flowing through an ion channel) 
with an experimental approach combining simultaneously 
both electrophysiological and Ca2+ imaging techniques [7]. 
This technique has been used to measure the Pf of several 
cationic ion channels, such as nicotinic acetylcholine recep-
tors (nAChRs; [8]) and ionotropic glutamate receptors [9]. 
The NMDAR’s Pf (~ 12%) is the highest among all known 
glutamate receptors [9]. The same technique was used in 
our laboratory to demonstrate that the Ca2+ permeability 
of human muscle nAChRs could be pharmacologically 
decreased and to show that the therapeutic effect of several 
molecules used to treat slow-channel myasthenic syndromes 
was due to their ability to decrease selectively the excess of 
Ca2+ entry at the neuromuscular junction [10].

Furthermore, we demonstrated that extracellular mild 
acidosis decreases the Pf of human NMDARs, reducing the 
relative Ca2+/Na+ influx ratio through NMDARs [11]. This 
evidence pushed us to identify a suitable molecule able to 
reduce Ca2+ influx through NMDAR without affecting Na+ 
influx, to prevent or decrease the excitotoxic Ca2+-dependent 
neuronal damage. Strong support in this direction has been 
made by Traynelis group, which designed several positive 
and negative allosteric modulators for the human NMDARs 

using bioinformatical resources [12]. One of those mole-
cules, the EU1794-4, is a negative allosteric modulator able 
to reduce single-channel conductance and Ca2+ permeabil-
ity of the human NMDAR formed by the GluN1/GluN2A 
subunits [13]. In the present study, we aim to demonstrate 
the possibility of reducing pharmacologically the Ca2+ per-
meability of human NMDAR and reduce NMDAR-medi-
ated Ca2+ entry in human iPSC-derived neurons, with an 
innovative approach based on simultaneous Ca2+ and Na+ 
fluorescence imaging [14], providing a faster and more effi-
cient method to determine alterations of Ca2+ flow through 
ligand-gated ion channels.

Materials and Methods

Cell Culture and Transfection

HeLa cells and Hek293T cells were grown in Dulbecco’s 
Modified Eagle Medium (DMEM) supplemented with 10% 
heat-inactivated FBS and 1% penicillin–streptomycin, at 
37 °C in a 5% CO2 humidified atmosphere. Cells were plated 
on cover slides (1 × 105 cells/ml) and transiently transfected 
24 h later using Lipofectamine 3000 (Thermofisher, Life 
Technologies Italia, Italy) according to the manufacturer’s 
protocol, adding 0.5 μg human NR1 and NR2A cDNA sub-
type per well, or 0.5 μg human α3β4 nAChR cDNA subtype 
per well. Recordings were carried out 24–36 h following 
transfection.

Simultaneous Ca2+and Na+ Imaging

Measures of [Ca2+]i and [Na+]i were obtained by time-
resolved digital fluorescence microscopy using Ca2+ indi-
cator Fura-2 acetoxymethyl ester (Fura-2 AM, Molecular 
Probes, Life Technologies; excitation 340 and 380 nm, 
emission 510 nm) and Na+ indicator ING-2 acetoxymethyl 
ester AM (ING-2 AM, Interchim; excitation 488, emission 
525). Fura-2 is a ratiometric probe, thus the [Ca2+]i varia-
tion is quantified in terms of the ratio (R) of the emission 
obtained from the two excitation wavelengths (F340/F380 = R). 
In the present study, the amplitude of agonist-induced Ca2+ 
transients ΔR = (R peak-R basal) is indicated as FCa. [Na+]i 
variation is quantified, using a single excitation wavelength, 
as ΔF/F0, and the amplitude of Na+ transient is reported 
as FNa. Cells with Na+ transients exhibiting FNa < 0.015 
or FNa > 0.05 were discarded. The ratio FCa/FNa has been 
used to quantify variations of Ca2+ selectivity. Hek 293 T 
cells in culture were incubated with 1 μM Fura-2 AM and 
5 μM ING-2 AM for 1 h at 37 °C in culture medium. Then 
cells were washed and placed in normal external solution 
(NES) for fluorescence microscopy experiments. Ca2+ and 
Na+ transients were elicited in Hek293T cells transfected 
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with NMDAR or in iPSC-derived motoneurons by applying 
NMDA 200 μM and glycine 50 μM, or ACh in Hek293T 
cells transfected with human α3β4 nAChR, for 3 s. Ca2+ 
and Na+ transients were recorded by acquiring time-resolved 
sequences (1 Hz) of fluorescence images alternating excita-
tion wavelengths selective for Ca2+ (340 nm, 380 nm) and 
Na+ (488 nm). Each image was acquired with an exposition 
lasting 100 ms and a switch time between 90 and 100 ms. 
Ca2+ and Na+ signals were measured for each cell using ROI 
following cell morphology. Background subtraction was not 
necessary. In some experiments, before applying agonists, 
cells were pretreated for 3 s with NES at pH 6.5 or with the 
negative allosteric modulator EU1794-4, as indicated. Dur-
ing recording, cells were continuously superfused using a 
gravity-driven perfusion system consisting of independent 
tubes for control and agonist solutions. NES contained (in 
mM): 140 NaCl, 2.8 KCl, 2 CaCl2, 2 MgCl2, 10 glucose, and 
10 HEPES; pH value adjusted with NaOH 1 M at 7.3, or 6.5, 
as necessary. In experiments in 0 Mg2+ the composition of 
the solution was the same, without MgCl2. Perfusion tubes 
were connected to a fast exchanger system (RSC-160; Bio-
logic, Claix, France). All experiments were performed using 
a Quantem 512SC camera, Leica microscope with HCX Apo 
L40X/0.80 WU-V-I objectives, Omega optical filter cubes 
(dichroic mirror DMR-07, emission filter 520 ± 50), a rotat-
ing prism-based monochromator (Deltaram X). Data sam-
pling and analysis were performed using Metafluor imaging 
software (Molecular Devices, Sunnyvale, CA, USA).

Fractional Ca2+ Current

The procedure used for Pf measurements follows the 
method proposed by Zhou and Neher in 1993 [8], which 
has the advantage of being independent of any assumption 
on ion-permeation properties [9]. All measurements were 
performed in transfected HeLa cells, which are not elec-
trically coupled by gap junctions. Cells were loaded with 
cell-impermeant Fura-2 through the patch pipette used to 
measure NMDA-evoked currents. Recordings of fluores-
cence signals and whole-cell membrane currents were syn-
chronized, and images were acquired and analysed offline. 
All optical parameters and digital camera settings were 
maintained throughout this study to avoid nonhomogeneous 
data. The changes of [Ca2+]I were expressed as ΔF/F (i.e. 
basal fluorescence), using only one excitation wavelength, 
380 nm, to increase the temporal resolution. Determinations 
were carried out after the basal fluorescence had reached a 
stable value. Cells displaying a low-basal F380 value were 
discarded. In order to evaluate Pf the F/Q ratio between the 
fluorescence increase (F) and total charge that had entered 
the cell at each fluorescence acquisition time (Q) was defined 
as F/Q = (ΔF/F)/ Q. For each cell, we used the F/Q points 
corresponding to early times after NMDA application and 

following a straight line, indicating a direct proportionality 
between F and Q, and consequently that the Ca2+-buffering 
capability of Fura-2 was not saturated. The F/Q ratio value 
was then measured as the slope of the linear regression best 
fitting the F-Q plot. Finally, Pf was determined by normal-
izing the ratio obtained in standard medium (F/Q) to the 
calibration ratio, measured when Ca2+ ions were the only 
permeant species (F/QCa): Pf = (F/Q) / (F/QCa). Calibrations 
were performed on different days throughout the whole 
experimental period, using NMDA-evoked Ca2+ currents. 
NMDA was applied to each cell only once, to avoid possible 
variations of conditions upon repetitive applications, such as 
basal [Ca2+]i increase.

Human iPSCs Culture and Differentiation

The human T12.9 WT-15 iPSC line used in this study has 
been previously generated and characterized (a kind gift of 
J. Sterneckert [15]. iPSCs were maintained in Nutristem-XF 
medium (Biological Industries), with 0.1X Penicillin/Strep-
tomycin (Merck Life Sciences, Nutristem P/S), in Matrigel-
coated dishes (hESC-qualified Matrigel; Corning) and pas-
saged every 4–5 days with 1 mg/ml Dispase (Gibco). iPSCs 
were co-transfected with 4.5 μg of the epB-NIL transposable 
vector [16] and 0.5 μg of the piggyBac transposase with 
the Neon Transfection System (Life Technologies), using 
100 μl tips in R buffer and the settings: 1200 V, 30 ms, 1 
pulse. Selection was carried out for 10 days with 5 μg/ml 
blasticidin in Nutristem-XF medium, giving rise to a stable 
cell line (hereafter NIL iPSCs). Differentiation to a neuronal 
population enriched for spinal motoneurons was induced as 
previously described in De Santis et al., 2018 and Garone 
et al., 2019 [16, 17]. Briefly, NIL iPSCs were dissociated 
with Accutase (Thermo Fisher Scientific) to single cells and 
replated in Nutristem 0.1 × P/S supplemented with 10 µM 
Y-27632 ROCK inhibitor (Enzo Life Sciences). The next 
day differentiation was induced in DMEM/F12 (Dulbecco’s 
Modified Eagle’s Medium/ Nutrient Mixture F-12 Ham; 
Merck Life Sciences), 1X Glutamax (Thermo Fisher Scien-
tific), 1X NEAA (Thermo Fisher Scientific), 0.5X P/S and 
doxycycline 1 µg/ml (Thermo Fisher Scientific) for 2 days. 
On the third day, the medium was replaced by Neurobasal/
B27 (Neurobasal medium, Thermo Fisher Scientific; 1X 
B27, Thermo Fisher Scientific; 1X Glutamax; 1X NEAA; 
0.5X P/S) supplemented with 5 µM DAPT, 4 µM SU5402 
(both from Merck Life Sciences) and 1 µg/ml doxycycline 
for 3 days. At day 5, neuronal progenitors were dissociated 
with Accutase and plated at a density of 400 × 105 cells 
onto Matrigel-coated 35 mm dishes for electrophysiologi-
cal recordings. Cells were plated in Neurobasal/B27 sup-
plemented with 10 µM Y-27632 ROCK inhibitor for the first 
24 h, and then maintained in Neurobasal/B27 supplemented 
with 20 ng/ml L-ascorbic acid (Merck Life Sciences), 20 ng/
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ml BDNF (PreproTech) and 10 ng/ml GDNF (PreproTech). 
Cells were used after a differentiation period of 21 days, 
when they displayed complete action potentials and neuro-
transmitter-induced whole-cell currents.

Electrophysiological Recordings

For Pf measurements in Hek293T cells, whole-cell currents 
were recorded at room temperature using borosilicate glass 
patch pipettes having a tip resistance of 3–5 MΩ filled with 
the following solution: 140 mM CsCl, 10 mM HEPES and 
0.5 mM Fura-2 pentapotassium salt (pH 7.3); measure-
ments were performed at holding potential of -70 mV. Cell 
capacitance was routinely compensated using the amplifier 
function and value used to estimate the cell surface. For 
measurements in neurons, borosilicate glass patch pipettes 
having a tip resistance of 3–5 MΩ were filled with the 
following solution: 140 mM KCl, 2 mM MgATP, 5 mM 
BAPTA, 10 mM HEPES. Whole-cell currents induced by 
different neurotransmitters were recorded in the voltage-
clamp configuration, while evoked action potentials in the 
current-clamp configuration. During recording, cells were 
continuously superfused with the same NES described for 
imaging experiments. Membrane currents and potentials 
were filtered at 3 kHz upon the acquisition with the HEKA 
EPC 800 amplifier (HEKA Elektronik, Germany) and ana-
lyzed offline.

Statistics

All data were expressed as mean ± S.D. and analysed using 
one-way ANOVA or paired t-test, as appropriate. When 
necessary, the non-parametric Dunn’s one-way ANOVA on 
ranks was used. In case of significance, all pairwise multi-
ple comparison procedure was used (Holm-Sidak, or Dunn’s 
method for non-parametric tests). The minimum power of 
statistical tests was set at 0.8. The significance for all tests 
was set at p < 0.05.

Results

Simultaneous Ca2+and Na+ Imaging is Able 
to Discriminate Between Different Ca2+ 
Permeabilities

Ion imaging measures changes in the free intracellular con-
centration of a given ion. To extend its use to the quan-
tification of ion fluxes through channels, it is crucial to 
demonstrate that this technique is able to highlight differ-
ences in the known Ca2+ permeabilities of distinct channels. 
Thus, we compared the human NMDAR with the human 
α3β4 nicotinic acetylcholine receptor (nAChR), a channel 

that has a lower Pf (2.7%[18]) and is well expressed in het-
erologous systems. We recorded, using Fura-2 and ING-2 
as fluorophores, respectively the Ca2+ and Na+ influxes 
through human NMDARs and α3β4 nAChRs expressed in 
Hek293T cells (Fig. 1A, B). The NMDARs exhibited a 
higher FCa/FNa than α3β4 nAChRs (mean ratio: 14.5 ± 1.1 vs 
5.8 ± 0.9; Fig. 1C, D), indicating the ability of this technique 
to discriminate between ion channels with different Ca2+ 
permeability. The same approach was able to evidentiate 
changes in Ca2+ permeation in the human NMDAR due to 
different [Ca2+]o (0, 1, 2 mM Ca2+; Fig. 2A). FCa/FNa was 0 
in the Ca2+-free condition (no Ca2+ signal was observed), 
has an intermediate value in the 1 mM Ca2+ condition and 
is higher in the physiological condition (mean ratio: 0 ± 0 
vs 11.4 ± 0.7 vs 14.5 ± 1.1; Fig. 2B, C). Last, the effect of 
extracellular mild acidosis on the human NMDAR Ca2+ per-
meability was tested, given its ability to decrease the Pf of 
human NMDAR [11]. In this case, when pHe was shifted 
from 7.3 to 6.5 during NMDA and glycine co-application 
on NMDAR-expressing Hek293T cells (Fig. 3A, B), there 
was no significant difference in FCa/FNa compared to con-
trol cells (mean ratio: 14.5 ± 1.1 vs 13.8 ± 1.0; Fig. 4 C, D), 
likely due to the strong influence of membrane potential on 
proton-channel interactions.

EU1794‑4 Decreases the Human NMDAR Ca2+ 
Permeability

The negative allosteric modulator EU1794-4 has recently 
been shown to reduce the single-channel conductance and 
Ca2+ permeability of NMDAR, assessed by analyzing the 
shift of the reversal potential [13]. In its presence (30 μM, 
Fig. 4A, B) we recorded a significant reduction of the FCa/
FNa in Hek293T cells expressing the NMDAR, compared to 
untreated cells (mean ratio: 14.5 ± 1.1 vs 11.6 ± 0.5; Fig. 4C, 
D). To further detail the effect of EU1794-4 on the Ca2+ per-
meability of human NMDAR we measured, for the first time, 
its Pf, simultaneously recording NMDA-evoked whole-cell 
currents and variations of intracellular free Ca2+ concentra-
tion ([Ca2+]i, Fig. 5A, B): the mean Pf value of NMDAR in 
control cells was 9.4 ± 1.2%, while the Pf value of NMDAR 
in cells treated for 3 s with 30 μM EU1794-4 was signifi-
cantly reduced to 5.7 ± 0.4% (Fig.  5C, D). The current 
density values were measured in distinct transfected cells 
and did not show any significant difference (mean values 
34 ± 4 pA/pF n = 10 and 40 ± 3 pA/pF, n = 10, in the absence 
or presence of EU1794-4, respectively).

EU1794‑4 Reduces the Ca2+ Entry Through NMDAR 
in Human iPSCs‑derived Neurons

To study the effect of EU1794-4 on human NMDAR in a 
more physiological context, we measured the Ca2+ and Na+ 
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signals elicited by NMDAR activation in human neurons 
derived from iPSCs (Supplementary Fig. and Fig. 6A). In 
these cells Na+ transients were not detectable, likely due to 
the small amplitude of NMDA-mediated currents and the 
consequent subthreshold increase of [Na+]i. By contrast, 
we recorded a significant reduction of the FCa in neurons 
treated with the EU1794-4 compared to control cells (mean: 
0.051 ± 0.005 vs 0.046 ± 0.006; Fig. 6B, green boxes). This 
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difference was more evident in the absence of extracellu-
lar Mg2+ (mean: 0.07 ± 0.01 vs 0.027 ± 0.005; Fig. 6B, red 
boxes). The normalized mean amplitude of Ca2+ transients 
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was very different in the presence or absence of Mg2+ 
(mean: 0.87 ± 0.05 vs 0.42 ± 0.07; Fig. 6C), suggesting a 
competition mechanism between this ion and the positively 
charged EU1794-4.

Discussion

Excessive Ca2+ influx through NMDARs has been linked to 
neuronal damage in several pathologies [19–21], and efforts 
have been made to lower the Ca2+-dependent excitotoxic-
ity [22–24], providing clinically approved drugs targeted to 
NMDARs, such as memantine [25, 26]. However, the block-
ing of these receptor channels is not a suitable therapeutic 
strategy, given the high and relevant adverse effects [27, 28]. 
In this study we demonstrate the possibility of pharmaco-
logically lowering NMDAR-mediated Ca2+ entry in human 
iPSC-derived neurons by modulating the ion selectivity of 
human NMDARs, altering their Ca2+/Na+ influx ratio with-
out the need to block these essential receptor-channels. Our 
analysis is based on a new experimental approach, recording 
simultaneously the intracellular free Ca2+ and Na+ concen-
trations ([Ca2+]i and [Na+]i, respectively. The two classical 
methods to study Ca2+ permeability of a cationic channel 
are the measure of the shift of the reversal potential upon 
changes of the [Ca2+]o [29], and the measure of the frac-
tional Ca2+ current (Pf, i.e. the percentage of the total current 
carried by Ca2+ ions) by the simultaneous recording of the 
transmembrane current and of the changes in [Ca2+]i [7]. 
This second method, not relying on any theoretical assump-
tion [30], is highly reliable, and it has been used to measure 
the Pf values for a large number of ligand-gated ion channels 
[9, 18, 31]. However, it is also extremely time-consuming, 
and thus not suitable for screening the effects of multiple 
candidate drugs. Our new approach is no longer centered 
on directly measuring ionic fluxes, but on the changes of 
[Ca2+]i and [Na+]i due to fluxes, measured simultaneously 
by fluoresce microscopy. This technique, already described 
in different contexts [14], was used here for the first time to 

evaluate the Ca2+ permeability of ligand-gated ion chan-
nels. Of course, using changes in intracellular ion concen-
trations to compare ionic fluxes is not an obvious operation, 
given the possibility that other mechanisms could modulate 
concentrations, such as ion buffering and active transport. 
Thus, before applying this approach to test whether a drug 
is able to affect the ion selectivity of a channel, it must be 
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quantitatively validated. Thus, we showed that this method 
was able to discriminate between different ion channels 
already known to exhibit different Pf values, such as human 
α3β4 nAChRs (Pf = 2.7%; [18, 32]) and human NR1/NR2A 
NMDARs (Pf = 11%; [9]), and that it was possible to clearly 
separate different Ca2+ entries through human NMDARs due 
to changes in [Ca2+]o. Interestingly, doubling the [Ca2+]o 
(from 1 to 2 mM) produced a 27% increase in FCa/FNa value. 

This non-linear relationship may in principle be due to dif-
ferent mechanisms, even acting simultaneously, such as ion 
selectivity properties of NMDAR and differential kinetics 
of Ca2+ buffering and/or pumping at different [Ca2+]o. Any-
way, channel activation is much faster than the mechanisms 
underlying ion buffering and removal, and consequently 
at least the earliest phases of the concentration transient 
are determined by ion entry. Furthermore, the comparison 
between ion concentrations is made in a well-defined cellu-
lar context in which the buffering and removal mechanisms 
are maintained. Thus, our data, taken together, demonstrate 
that it is possible to monitor [Ca2+]i and [Na+]i simultane-
ously, without fluorescence signal overlapping, with a suit-
able time resolution, allowing the detection of the differen-
tial modulation of the influx of these two ions through the 
same channel. Of course, the signal-to-noise ratio is much 
higher for Ca2+ than for Na+ signals, as evidenced by the 
experimental traces and expected due to the much higher 
intracellular concentration of Na+, which is scarcely affected 
by the inward Na+ currents.

By contrast, our experimental approach was not able to 
replicate our previous findings about the ability of mild aci-
dosis (pH 6.5; [11]) to reduce the Pf of human NMDARs. 
We speculate that this discrepancy might be due to the fact 
that the present measurements were made on non voltage-
clamped cells, and that the interaction of protons with the 
NMDAR channel pore could be sensitive to membrane 
potential, even though the inhibitory effect of pH on NMDA 
kinetics is voltage independent [33]. The reduction of Pf 
due to acidosis was recorded on cells clamped at -70 mV 
[11], while Hek293 T cells have a much more depolarized 
resting potential, between -20 and -30 mV. This observa-
tion indicates that the modulation of the biophysical prop-
erties of ion channels must be analyzed considering all the 
surrounding contexts and parameters. The same concept 
arises from our study of the effect of a recently developed 
compound, an NMDAR-selective negative allosteric modu-
lator, EU1794-4, able to reduce the Ca2+ permeability of 
NMDAR [13]. In our hands this molecule was able to reduce 
the FCa/FNa ratio of human NMDARs, confirming previous 
results [13]. For the first time, we measured the Pf of human 
NMDAR in the presence of EU1794-4, revealing a relevant 
40% reduction in comparison to control conditions, similar 
to the reduction of the permeability ratio PCa/PNa observed 
by the Traynelis group [12]. With the same drug, we were 
able to reduce NMDA-dependent Ca2+ entry in human iPSC-
derived neurons. In these cells, it was not possible to reliably 
measure changes in the FCa/FNa ratio, due to undetectable 
[Na+]i variations. This technical limit is probably linked to 
high values of [Na+]i in our iPSC-derived neurons, and/or 
to the small NMDA-mediated current amplitudes in these 
cells. The inhibitory effect of EU1794-4 on NMDA-medi-
ated Ca2+ entry depends on extracellular Mg2+, being much 
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stronger in its absence (58% inhibition vs 13%), suggesting 
a possible interaction between Mg2+ and EU1794-4. This 
observation about a different functional behavior of an allos-
teric modulator in different ionic conditions must be kept in 
mind, given the high number of studies on NMDARs done 
in the absence of extracellular Mg2+. Even if the EU1794-
4-mediated inhibition of Ca2+ entry in neurons was smaller 
in the presence of Mg2+, this result is still very interesting: 
to our knowledge this compound is the first to be shown to 
reduce NMDA-mediated Ca2+ influx in human iPSC-derived 
neurons without blocking these receptor-channels, opening 
a new field of possible therapeutic tools to fight Ca2+- and 
NMDA-dependent excitotoxicity, and thus neurodegenera-
tion, in a wide number of neuropathologies.
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