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Abstract

The detection of the first gravitational wave marked the beginning of gravitational wave astronomy,
which opened up new avenues to test Einstein’s General Relativity in the previously unreachable
strong-field regime of gravity. Even though the gravitational waves detected so far have not shown
any sign of departure from General Relativity, it is widely acknowledged that the theory is not an
ultimate and complete description of gravity, highlighting the need to continue testing and devel-
oping viable extensions. One promising strategy to pursue this goal is Gravitational Spectroscopy,
which involves measuring black hole quasinormal modes from the ringdown gravitational wave signal
emitted in the aftermath of a compact binary coalescence. The quasinormal modes, which are the
characteristic oscillation frequencies of the perturbed remnant black hole, are inherently linked to
the underlying theory of gravity and as such are perfect tools to perform tests of General Relativity.

As the ringdown signal is expected to be observed with more and more accuracy thanks to design-
sensitivity interferometers and next-generation detectors, the possibility of performing theory-
specific ringdown tests relies on theoretical predictions of quasinormal modes in alternative theories
of gravity.

In this Thesis, we present the first computation of the gravitational quasinormal modes of
rotating black holes up to second order in spin in Einstein-dilaton Gauss-Bonnet gravity, arguably
one of the simplest theories that modify the large-curvature regime of gravity and that can be
tested with black hole observations. To enhance the domain of validity of the spin expansion, we
perform a Padé resummation of the quasinormal modes and, from a comparison with the general
relativistic case, we find that this approach should be accurate up to the astrophysically relevant
spins ∼ 0.7. Our findings indicate that neglecting the second order in the spin could result in a
serious underestimation of the effect of gravity modifications.

Finally, we outline two possible strategies to perform tests of General Relativity by using a
parametrized ringdown template called ParSpec. From a null test with the future detectors Cosmic
Explorer and Einstein Telescope, we find that with at least O(103) ringdown observations of realistic
sources we will be able to put stringent bounds on three beyond-GR parameters with both detectors;
performing a theory-specific test of Einstein-dilaton Gauss-Bonnet gravity with the LIGO-Virgo
data of GW150914 we were not able to put meaningful constraints on the theory, which are expected
to improve with a higher signal-to-noise ratio and by stacking multiple events.

Keywords: General Relativity, Black Holes, Quasinormal Modes, Black Hole Spectroscopy,
Einstein-dilaton Gauss-Bonnet, Tests of General Relativity, Black Hole Perturbation Theory.
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panels) and (nlm) = (033) (lower panels) QNMs computed up to the first order in
the spin, up to second order, and with Padé resummation. . . . . . . . . . . . . . . . 92

6.9 Same as Fig. 6.8, as a function of ζ, with QNMs computed with Padé resummation. . 93
6.10 Real (left panels) and imaginary (right panels) of the relative difference of EdGB

QNMs with respect to GR as a function of ā, for ζ̄ = 0.2 and different values of m.
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ā dimensionless spin parameter

ϕ angular coordinate

φ dilaton field

ζ Einstein-dilaton Gauss-Bonnet dimensionless coupling constant

ix



Acronyms

BBHs Binary Black Holes

BHs Black Holes

CE Cosmic Explorer

DBHs Dilatonic Black Holes

ECO Exotic Compact Object

EdGB Einstein-dilaton Gauss-Bonnet

EFTs Effective Field Theories

ESGB Einstein-Scalar Gauss-Bonnet

ET Einstein Telescope

GR General Relativity

GW Gravitational Wave

IMR Inspiral-Merger-Ringdown

LVK LIGO-Virgo-KAGRA

MCMC Markov Chain Monte Carlo

NR Numerical Relativity

ODE Ordinary Differential Equation

QNMs Quasinormal Modes

SNR Signal-to-Noise Ratio

x



Chapter 1

Introduction

Almost one century after the birth of Einstein’s General Relativity (GR), the first Gravitational
Wave (GW) detection in 2015 [5], describing the coalescence of a binary system of Black Holes
(BHs) 1.4 billion lightyears away, marked the origin of GW astronomy.

With three catalogs of events [6–9], the Advanced LIGO detectors at Hanford, Washington and
Livingston, Louisiana [10], and the Advanced Virgo detector in Cascina, Italy [11], have now detected
about 90 GW events from the merger of compact objects identified as neutron stars and/or BHs.
This result represents an incredible effort in engineering and experimental physics that unlocked an
astounding new opportunity to explore the Universe. Thanks to this milestone in scientific discovery,
we were able to get new astrophysical and cosmological information [12, 13] on the population of
compact objects in our local universe and, crucially, to test GR in a highly dynamical, non-linear
and strong-field regime of gravity, previously unreachable [14–18].

Einstein’s theory of gravity remains remarkably successful to this day, having been validated by
recent observations of a BH shadow image in the electromagnetic spectrum captured by the Event
Horizon Telescope [19, 20] and by numerous GW detections made by the LIGO/Virgo interferom-
eters. These recent findings complement earlier experiments conducted within the Solar System
[21] (which correspond to weak and approximately static gravity), binary-pulsar [22–24] (strong-
field, static regime of gravity) and galactic-center observations [25, 26], as well as cosmological
measurements [27–30].

The currently available GW observations, probing a regime characterized by strong gravitational
fields and large spacetime curvature, have ruled out large deviations of GR within this range [14, 15,
31–33]. However, with the next generation of GW detectors, such as Cosmic Explorer [34], Einstein
Telescope [35, 36], and the space-based observatory LISA [37], we will reach sensitivieties able to
capture even tiny GR modifications [38–41].

Regardless of the success of General Relativity, it is crucial to keep testing and developing viable
extensions of the theory [42]. This is primarily because we anticipate the theory to break down at
some length scale, as it cannot provide a consistent description of the gravitational interaction at
the quantum level. However, the reasons to explore theories beyond GR are multiple and of different
natures. Several fundamental open questions in physics could potentially be answered by introducing
modifications to the gravitational sector: the accelerated expansion of the universe caused by the
dark energy [28, 43], the elusive dark matter needed to explain the observed galactic rotation curves
[27, 44, 45], the matter/antimatter asymmetry in the universe [27, 45], the inflationary period of
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1.1. Gravitational Wave Tests of General Relativity

the early universe [27–29, 45], and the aforementioned unification of GR with Quantum Mechanics
[27, 46]. As a matter of fact, introducing a scalar field in the gravity action [47, 48] or making the
graviton massive [49–51] could explain the late-time acceleration of the Universe [52, 53] without
the need of a cosmological constant or of the dark energy.

Even though it is now accepted that General Relativity is not the ultimate theory of gravity,
it can be viewed as the leading-order manifestation of a more fundamental theory. String theory
and other ultraviolet completions of the Standard Model usually introduce higher-order curvature
corrections to GR’s Einstein-Hilbert action; it has been shown that considering quadratic curvature
terms, such as in low-energy realizations of string theory [54], already makes the theory renormal-
izable [55], although such terms are not sufficient to make it viable.

Even without evoking observational concerns, a straightforward yet critical motivation to rig-
orously test GR is that there is no a-priori reason for the assumptions underlying the theory to
be true: it is only logical to scrutinize each one of them and to consider the available alternatives
[17, 18], since a new regime – that of strong gravity – is now observable.

The Binary Black Holes (BBHs) detected by LIGO and Virgo, providing insights into the strong-
field regime of gravity, could potentially offer enlightening clues about the true description of the
gravitational interaction.

Testing any modified theory of gravity with high accuracy relies on having (at least part of
the) waveform models in such theories, which is only possible with an accompanying significant
theoretical development. Despite recent advancements both on the analytical [56–69] and numerical
[70–86] sides, so far the LIGO-Virgo collaboration has mainly focused on null tests of GR, being the
best-understood theory currently available. These tests assume that this is the correct prescription
of gravity, and then look for generic departures from it [14, 15, 32, 33, 87, 88]. Without precise
waveform templates in modified theories of gravity, it is still unclear how well null tests can actually
detect and constrain any specific GR violation [89].

The goal of this Thesis, already explored in our works [67, 68], is to provide new theoretical
predictions on the late part of the gravitational waveform of a BH in a paradigmatic extension of
GR, called Einstein-dilaton Gauss-Bonnet (EdGB), and outline some example of tests of GR. We
will show how these results will help to further develop theory-specific tests of GR, in order to
ultimately advance our knowledge on beyond-GR physics.

1.1 Gravitational Wave Tests of General Relativity

In General Relativity, the evolution of a BBH comprises of three different stages: during the inspiral
[90] the two objects get adiabatically closer and closer to each other losing energy through GW
emission until, in the merger phase [91–93], a common horizon is formed and a perturbed remnant
object remains, settling down to the final equilibrium configuration, namely a Kerr BH, during
the ringdown [94–98]. In particular, the ringdown stage can be well described as a superposition
of damped sinusoids with characteristic frequencies and damping times: the Quasinormal Modes
(QNMs), labeled by the overtone number n, with n = 0 being the least damped mode, and by the
harmonic indices (l,m) [1].

Modifications of GR can manifest in the GW signal primarily in its generation, propagation,
or polarization. The generation of the gravitational wave carries information on how the source’s
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properties are related to the radiation it emits and on the dynamics that characterize the underlying
theory of gravity. In the case of BH sources, a deviation from GR may show up if the black
holes have different characteristics from the Schwarzschild or Kerr solutions. The propagation of
the wave can be affected by different dispersion relations [99], birefringence [100] and amplitude
damping [101, 102]. Finally, while in GR the gravitational wave is fully described by two tensor
polarizations (referred to as plus"+" and cross"×") [103], a general metric theory of gravity can
have up to six modes of polarization: two tensor, two vector, and two scalar [104]; detections of
additional polarizations (which requires more than two GW detectors to be significant) would be a
clear indication of GR violation.

Tests of GR can follow mainly two strategies: a theory-agnostic test assumes that the GW signal
is well described by GR and includes additional parameters to account for any generic deviation,
while theory-specific tests directly compare the data with the prescriptions of a proposed modified
gravity theory. So far, the former method, which uses the GW data to check for consistency with GR
predictions and ultimately put constraints on the non-GR parameters [15, 31, 33, 87, 105–108], has
been predominantly adopted, due to our greater understanding of GR with respect to its possible
extensions. However, recent developments, such as Numerical Relativity (NR) simulations [72–74]
and QNM computations beyond-GR [3, 4, 66, 109–117] – including our works [67, 68] – have allowed
the first theory specific-tests to be performed with current GW data [84, 118].

Focusing on the first category, null tests of the GW generation [87, 88, 119–121], propagation
[122], polarization [21, 123, 124] have not reported any deviation from GR.

While the inspiral part of the GW signal provides useful insights on possible extra radiation
channels [14, 31, 125, 126], the ringdown allows remarkable tests of GR and of the remnant object’s
nature [118, 127–132] through measurements of the QNMs [1], which are closely linked to the
underlying theory of gravity.

Testing GR with quasinormal modes requires high Signal-to-Noise Ratio (SNR) in the ringdown
part of the gravitational waveform. Currently available ground-based detectors are limited in the
achievable SNR [15, 32, 33], which inevitably affects the precision of the QNM measurement. How-
ever, next-generation detectors will be capable of reaching high enough values of the SNR for this
purpose [36–41, 133–137].

1.2 No-hair Theorems and Black Hole Spectroscopy

In GR, according to well-established no-hair theorems [138–142], a BH is expected to be completely
characterized by its mass and spin – an electric charge is believed to be irrelevant for astrophysical
BHs [143]. Consequently, BH QNMs in GR are determined solely by the mass and spin of the black
hole

This unique relationship between the black hole’s properties and its QNM spectrum makes ana-
lyzing the gravitational waves emitted by perturbed remnant black holes after the merger of compact
objects an effective and compelling way to test General Relativity. If the measured frequencies and
damping times of the QNMs differ from the predictions of General Relativity, it would indicate a
clear deviation from Einstein’s theory or from the black hole nature of the final object. In such
cases, the remnant may instead be an Exotic Compact Object (ECO) [143–152].

The analytical computation of QNMs involves using BH perturbation theory, which was first
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developed by Regge and Wheeler [153] and later by Zerilli [154] and Teukolsky [155]. This theory
takes advantage of the symmetry of spacetime and tensor fields to separate the radial and angular
components of gravitational or scalar perturbations, similar to what is done in quantum mechanics.
Vishveshwara [95] was the first to apply this approach to numerically study GW scattering by
Schwarzschild black holes, discovering that the late-time waveform consists of damped sinusoids.
Press [96] identified these signals as the free oscillation modes of the black hole, later connected by
Goebel to perturbations of the "light ring" [156]. Significant progress was made by Chandrasekhar
and Detweiler [97, 98, 157], while Leaver [158] devised an accurate method for calculating QNMs.

The characteristic modes of rotating BHs in GR are usually obtained by solving the Teukolsky
master equation [155, 159] under the assumption that the remnant BH in a BBH coalescence relaxes
to a Kerr configuration, which is referred to as Kerr hypothesis [160, 161].
If BH solutions in modified theories of gravity do exist [18, 162], they can either be characterized by
different dynamics or a different metric from Kerr (or Kerr-Newman) [18, 163], generally exhibiting
additional hairs. In both cases, the resulting QNM spectrum will differ from the corresponding GR
values and it will carry the imprint of the underlying theory of gravity.

This is why, starting from the 1970s, the idea of treating compact objects such as BHs as
"gravitational atoms" and viewing their QNM spectrum as a unique fingerprint of the spacetime
dynamics, in analogy with atomic spectra, started to grow [164]. Now, this fully established idea,
referred to as gravitational spectroscopy – or BH spectroscopy in the case it is applied to BHs –
is used to perform tests of GR [1]. It can be employed for example as a test of the area law
[165, 166], which states that the total area of a classical BH horizon does not decrease over time, or
to probe the nature of the remnant object, examining BH thermodynamics [167–169] and the BH
area quantization [151, 152].

One of the main applications of BH spectroscopy is to test the GR no-hair conjecture – in the
case that multiple modes are observed for the same event [164, 170–172]: the values of the mass
and spin inferred from one mode [173], assuming a Kerr BH, would determine the whole spectrum,
then the measurement of a second mode should be consistent with the predictions of the first one
(model-independent, null test) [127–131, 133, 164, 172, 174–176]. Inconsistency in the results would
be the manifestation of a non-BH nature of the remnant object or an actual deviation from GR.

Other tests that take advantage of a spectroscopic analysis of the ringdown of GR are Inspiral-
Merger-Ringdown (IMR) consistency tests [31, 177], which check that independent measurements
of the remnant BH mass and spin from the inspiral and merger-ringdown phases of the signal are
consistent, assuming GR is correct [106, 107, 178]. This test, which requires only the measurement
of one mode unlike the no-hair theorem test, can be also generalized to modified theories of gravity
[179–181].

BH spectroscopy has been applied to currently available GW data: while there is consensus on
the measurement of the least damped (fundamental) mode in the first GW detected, GW150914
[31, 129–131, 150], which agrees with the GR prediction within 16% uncertainty [15, 31–33, 106, 178],
many studies, with different positions, focused on understanding if additional modes are present in
the signal in order to test the no-hair theorem; with this goal, a possible detection of the first overtone
n = 1, l = m = 2 in GW150914 has been reported [131, 182, 182–184]. The same motivation led
to a thorough spectroscopic ringdown analysis for other GW events [15, 33, 130, 178, 185], possibly
finding the l = m = 3 fundamental mode in GW190521 [186]. So far, none of these model-
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independent analyses have found proof of GR violations.
However, BH spectroscopy can also be used to perform theory-specific tests of GR: if QNM values

in modified theories of gravity were available, it would be possible to determine which description
of gravity is favored based on the data [118, 187, 188]. This kind of test relies on the theoretical
computation, using BH perturbation theory, of the QNM spectrum in such theories. Since realistic
black holes are expected to be rapidly rotating, especially the end products of coalescences, it
is important to include the effects of rotation in the computation, which has been done only for
a handful of cases [4, 66, 69]. The difficulty arises since, while for the Kerr BHs [161, 189] the
master equation for perturbations is separable [155, 190], the differential operators governing the
QNM perturbations in rotating black hole backgrounds in theories of gravity are, in general, non-
separable.

In this Thesis, we compute the QNMs of rotating BHs in a specific theory of gravity, EdGB,
using the formalism first developed by Hartle [191, 192] and later by Kojima [193], and we lay down
some basic examples of both theory-agnostic and theory-specific tests using QNMs, as first steps
towards a more comprehensive analysis currently in development [194, 195].

1.3 Quadratic Gravity: the Case of Einstein-dilaton Gauss-Bonnet

Theoretical predictions in modified theories of gravity, such as the knowledge of the QNM spec-
trum, would allow us to move past null tests of GR and, using already available data or future
observation, constrain specific alternatives to unprecedented levels. This could provide extremely
valuable insights on the ultimate description of the gravitational interaction.

Many theories of gravity have been proposed to address the unresolved issues within GR and
offer alternatives to its underlying assumptions, generally expressed through Lovelock’s theorem [18]:
the gravitational interaction in GR is only mediated by a massless metric tensor, the spacetime is
four-dimensional, the theory must be position- and Lorentz- invariant, and the gravitational action
is invariant under parity transformations.

From a phenomenological point of view, among all the various potential manifestations of new
physics, one obvious instance would be the presence of a new field, effectively evading the first
assumption of Lovelock’s theorem. The simplest field we could consider is a massless scalar field
(note that the no-hair theorems imply that in GR scalarized states are not supported by stationary
BHs [139, 196–200]). If we try to build a viable theory of gravity that includes an additional scalar
interaction, we could introduce the scalar field in the gravitational action together with polynomial
terms in the curvature, while also requiring second-order and shift symmetric (with respect to the
scalar field) field equations. In this case, only a term consisting of a scalar field coupled to the
so-called Gauss-Bonnet invariant, which is quadratic in the curvature, could originate a scalar hair
in stationary, asymptotically flat configurations [200]1.

From a theoretical perspective, effective actions deriving from string theory [201, 202] fix the
coupling of the scalar field with the Gauss-Bonnet invariant to be of an exponential form. The
resulting theory, called Einstein-dilaton Gauss-Bonnet (EdGB) [17, 201–209], where the "dilaton"
refers to the aforementioned scalar field, is known to lead to BHs with scalar hairs [18, 201, 210–217].

1More generally, if we do not require shift symmetry, the coupling with the Gauss-Bonnet invariant would still
be the simplest way to evade the no-hair theorem [18].
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Since the effects of the EdGB modification appear in the GW signal of BBH mergers, it is
possible to directly test or constrain the theory. On one hand, BBHs in EdGB can source scalar-
dipole radiation [65, 203, 218, 219] (which appears at −1 PN order in the GW phase with respect to
the dominant quadrupolar term in GR); on the other hand the dilaton field, introducing a new kind
of interaction coupled to gravity, affects the response of the compact objects to linear perturbations
and consequently the QNMs. Specifically, when separating such perturbations in polar and axial
according to their parity-transformation properties, the scalar field couples only to the polar sector,
creating a new radiation channel and breaking the equivalence between polar and axial QNMs, that
is a well-known property of Schwarzschild BHs in GR [220–224].

While GR can be considered as a well-posed initial value problem, the same cannot be said with
certainty for EdGB [225, 226]. However, if one considers the dilaton field and metric perturbatively
around the GR solution, then the equations at each perturbative order are well-posed [73, 76, 225,
227, 228]. If the EdGB modification of an isolated BH is not stable, meaning that it pathologically
grows in time, then it has the potential to gradually accumulate over a full BBH system evolution
and affect both the inspiral, merger, and ringdown stages. As a result, this instability can also
manifest in QNMs in the form of exponentially growing modes. The stability of static, nonrotating
EdGB BHs has been proved in detail [3, 109, 229, 230], however the full stability of rotating BHs
has not been established yet.

The existence of EdGB black holes is subject to a theoretical constraint on the coupling constant
of the theory 0 < αGB ≲ 0.691M2 [229], which gives an indication of the scale at which EdGB effects
could appear. Since it is a universal constant, such a bound automatically translates to a physical
constraint whenM is chosen to be the mass of the lightest BH observed: J1655-40, withM ≃ 5.4M⊙,
implies

√
αGB < 6.6 km; if the secondary object in GW190814, with mass M ≃ 2.6M⊙ turns out

to be a BH, then
√
αGB < 3.3 km 2.

Combining multiple GW observations can lead to an increased accuracy when constraining the
theory, as the bounds tend to become progressively tighter with each additional stacked detection
[128, 130, 174, 180, 231]. In this way, considering BBHs from the GWTC-1 and GTWC-2 catalogs
[6, 7], it was possible to put the bound

√
αGB < 9.1 km [232, 233]. Instead, using the Neutron

Star-Black Hole binaries GW200105 and GW200115 [234], led to
√
αGB < 7.1 km [235].

While the spacetime properties of EdGB black holes are well understood [201, 208, 229, 230], the
computation of the QNM spectrum of rotating BHs in this paradigmatic case of quadratic gravity
[18] presents a new and remarkable opportunity to perform theory-specific tests of GR and gain
new information about the kinds of deviations we should expect and at which scale.

1.4 Structure of the Thesis

The Thesis is structured as follows. In Chapter 2 we review some basic knowledge about BH
perturbation theory and QNMs, including applications to nonrotating and slowly rotating BHs. We
discuss in detail the direct integration method we employ for the QNM computation, highlighting
its limits and its strengths, as well as its potential for beyond-GR applications.

In Chapter 3 we define the spacetime of a slowly rotating BH in EdGB gravity, which serves as

2When comparing with other bounds in the literature, one needs to be careful of the convention used, see e.g.
[73, 118].
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the background for studying its linear perturbations.
Chapter 4 focuses on testing our framework by comparing our QNM computations for a test

scalar field on a slowly rotating EdGB BH with literature results.
In Chapter 5 we continue this comparison by investigating the more involved case of gravitational

perturbations, but restricting the analysis to the static, nonrotating case.
Chapter 6 expands on the concepts and techniques presented in the previous chapters to analyze

gravitational QNMs of slowly-rotating BHs in EdGB gravity at first and second order in the spin.
We show that, with the Padé Resummation method, we can extend the results up to astrophysically
relevant spins.

In Chapter 7, we present some initial tests of GR using both theory-independent and theory-
specific frameworks, based on the results of the previous chapter. Additionally, we discuss the next
steps required to perform more comprehensive tests of the theory.

Finally, in Chapter 8 we summarize our findings and we outline possible extensions of this work.
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Chapter 2

Quasinormal Modes

In this chapter, we introduce the concept of quasinormal modes (QNMs), which is fundamental for
the scope of the thesis, and then we will lay out some examples of QNM computation, providing
the basis for more complicated cases explored in the next chapters.

2.1 General Definition

Quasinormal modes are eigenfrequencies of the eigenvalue problem associated with a perturbed
dissipative system and describe the response to the perturbation (after a transient time) [1, 236, 237].
In this thesis we shall focus on perturbed black holes, which are intrinsically dissipative systems:
energy is lost at the event horizon, which acts as a one-way membrane, and at infinity, where it
is radiated away in the form of gravitational waves. Dissipative systems are ubiquitous in nature
and the study of their characteristic oscillation frequencies in physics has been proven to be an
outstanding tool, e.g. in atmospheric science and leaky resonant cavities, to get information about
the properties of the oscillating system itself, such as its structure and composition. Although the
properties of QNMs have long been investigated, their study in astrophysical applications can have
still a lot to uncover and provide extremely valuable information.

In more idealized physical examples without dissipation, such as the one of a vibrating string, one
has a conservative system and perturbations of the system can be described through normal modes,
that have a real frequency. In presence of dissipation, it is not possible to expand the solutions of
the perturbed equations governing the system in normal modes [237–239], but instead the related
eigenfrequencies are quasinormal modes [1], described by complex frequencies, with the imaginary
part associated with the decay time-scale of the perturbation. In fact, dissipative systems are not
time-symmetric and hence they will have specific timescales associated with the characteristic oscil-
lations. For black holes, there is a unique timescale that is fully determined, in geometric units, by
the mass of the object [170]. The presence of the horizon is the main feature that makes the bound-
ary value problem non-Hermitian and the associated eigenvalues complex [236, 237, 240, 241]. The
eigenfunctions corresponding to the QNMs, which have intrinsically a transient nature, are usually
not normalizable and, in general, do not form a complete set [236, 242].
From a more rigorous mathematical point of view, further detailed in Sec. 2.4, QNMs can be defined
as the poles in the complex plane of the Green Function associated with an inhomogeneous wave
equation [238, 243–246].
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In this thesis, we shall see how quasinormal modes can provide exceptional information about
the theory of gravity that describes perturbed compact objects.
In GR (but not exclusively), the perturbations of a given background spacetime, such as the
Schwarzschild or Kerr BH solutions [189, 247], obey linear second-order differential equations, char-
acterized by symmetry properties closely related to the ones of that particular background [248].
These symmetries usually allow, with a suitable choice of coordinates, the separation of the equa-
tions’ variables between the time-radial part and the angular one. As a result, we obtain either a
set of linear ordinary differential equations (ODEs) or a single ODE. Once we impose the proper
boundary conditions at the black-hole horizon and at infinity, we automatically single out an infi-
nite, discrete set of eigenmodes of this system of equations: the QNMs.
The possible methods to simplify the perturbation equations to one (or more) ODEs depend on
the specific metric considered [159, 220] and can become quite challenging, especially in modified
theories of gravity.

We shall start by focusing on QNMs in General Relativity (GR) – reviewed for example in Refs.
[1, 159, 249] – in some easier cases, such as scalar field perturbations, with the ultimate goal to
expand the results to linear perturbations of BHs in a modified theory of gravity, in Chapters 4, 5,
6. Throughout this work, we will use geometric units (G = c = 1), in which the mass has the units
of length.

2.2 Scalar Field Perturbations

We shall start with a paradigmatic and simple application of black hole perturbation theory, and
consider perturbations induced by a probe scalar field Φ propagating in a background spacetime.
Assuming that Φ contributes very little to the energy density (no quadratic terms of the field),
we can fix the background metric to be a solution of Einstein equations. For simplicity, we shall
consider the spherically symmetric line element

ds2 = −A(r)dt2 + 1

B(r)
dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
, (2.1)

which we can identify with the Schwarzschild solution when A(r) = B(r) = 1− 2M/r.
The evolution of the scalar field on this background is governed by the Klein-Gordon equation

(
□− µ2

)
Φ = 0 , (2.2)

with µ being the mass of the scalar field. This equation can be recast as

1√
−g

∂µ
(√

−ggµν∂νΦ
)
− µ2Φ = 0 , (2.3)

with gµν being the metric tensor in coordinates xµ = (t, r, θ, ϕ), such that ds2 = gµνdx
µdxν in Eq.

(2.1), and g its determinant.
Given the spherical symmetry of the background spacetime, which is nonrotating, the scalar

field evolution will inherit the same characteristics and will not be affected by any rotation. This
allows a separation of the field equations between the time-radial dependence (t, r) and the angular
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dependence (θ, ϕ), which can be achieved with the use of scalar spherical harmonics, forming a
complete orthonormal set of functions for the angular part. Since we are looking for solutions
that are damped in time (corresponding to the QNMs), and thus described by complex frequencies
ω = ωR + iωI , we assume a time dependence of the perturbation e−iωt. Hence, the scalar field shall
be described by

Φ(t, r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

Ψlm(r)

r
Ylm(θ, ϕ)e−iωt , (2.4)

where we have introduced the radial function Ψlm(r), and the spherical harmonics Ylm(θ, ϕ) =

Plm(θ)eimϕ are the spherical harmonics and Plm(θ) the associated Legendre functions, which satisfy

1

sin θ
∂θ(sin θ∂θPlm)− m2

sin2 θ
Plm = −l(l + 1)Plm . (2.5)

Using the expansion in Eq. (2.4) in the field equation (2.3), simplifying with Eq. (2.5), we
obtain a radial wave equation for the function Ψlm(r)

AB
d2

dr2
Ψl +

1

2
(AB)′

d

dr
Ψl +

[
ω2 − (µ2A+

l(l + 1)

r2
A+

(AB)′

2r

]
Ψl = 0 . (2.6)

We note that there is no dependence on the azimuthal number m, since the background metric is
spherically symmetric, so we shall remove this index from Ψl.

In order to recast Eq. (2.6) in a more familiar, Schroedinger-like wave equation, we introduce a
generalized tortoise coordinate r∗ to remove the first-order derivative, such that

dr

dr∗
≡

√
AB . (2.7)

In this way, we obtain

d2

dr2∗
Ψl +

[
ω2 − Vscalar(µ)

]
Ψl = 0 , (2.8)

with the potential

Vscalar(µ) ≡ Aµ2 +A
l(l + 1)

r2
+

(AB)′

2r
, (2.9)

which becomes, in the Schwarzschild case (A(r) = B(r) = 1− 2M/r),

V S
scalar(µ) =

(
1− 2M

r

)(
µ2 +

l(l + 1)

r2
+

2M

r3

)
. (2.10)

2.3 Gravitational Perturbations

We shall now turn to gravitational perturbation of the same spherically symmetric spacetime as
in Eq. (2.1). Now, instead of a scalar perturbation, the gravitational case will be identified by a
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perturbation tensor hµν , such that the full metric is

gµν = g0µν + ϵhµν , (2.11)

with g0µν the unperturbed background metric of Eq. (2.1), and ϵ a small bookkeeping parameter,
ϵ≪ 1.

In order to find the differential equations that describe the perturbation, we need to solve
Einstein equations (in vacuum) for the metric in Eq. (2.11)

Gµν [gµν ] = G0
µν [g

0
µν ] + ϵδGµν [hµν ] +O(ϵ2) = 0 , (2.12)

where we are considering the vacuum case since the QNMs correspond to the proper oscillation
modes of an isolated perturbed black hole. The information about the excitation of each mode
is instead closely related to the nature of the perturbation, for example to the progenitors in a
coalescence event producing the perturbed BH in question, and thus it requires solving a full inho-
mogeneous equation (see Section 2.4 for details).

The term G0
µν [g

0
µν ], which corresponds to the Einstein tensor computed for the nonperturbed

metric, will be zero in the cases in which g0µν is an exact solution of the unperturbed Einstein
equation, such as the Swarzschild metric. When instead the form of the metric is unknown, solving
the O(ϵ0) equation G0

µν [g
0
µν ] = 0 will determine the unknown metric components, such as A and B

in Eq. (2.1).
We can find the explicit expression of δGµν in Eq. (2.12), which controls the dynamics of the

perturbations, in terms of g0µν and h0µν by recalling that

Gµν ≡ Rµν −
1

2
gµνR (2.13)

and that the Ricci tensor is given by

Rµν = ∂αΓ
α
µν − ∂νΓ

α
µα + Γα

σαΓ
σ
µν − Γα

σνΓ
σ
µα , (2.14)

with the affine connections Γρ
µν computed for the perturbed metric (we now include ϵ in hµν for

simplicity of notation)
Γρ

µν(g) = Γρ
µν(g

0) + δΓρ
µν(h) +O(h2) . (2.15)

The two terms are given by

Γρ
µν(g

0) =
1

2
g0ρα[g0αν,µ + g0µα,ν − g0µν,α] , (2.16)

δΓρ
µν(h) =

1

2
g0ρα(∇νhαµ +∇µhαν −∇αhµν) . (2.17)

By substituting Eq. (2.15) in the Ricci tensor (Eq. (2.14)), we get Rµν ≡ R0
µν(g

0) + δR0
µν with

δRµν = ∇ρδΓ
ρ
µν −∇νδΓ

ρ
µρ =

1

2
(∇α∇νh

α
µ +∇α∇µh

α
ν −∇α∇αhµν −∇ν∇µh

α
α) , (2.18)
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while the perturbation of the Ricci scalar is given by

δR = g0µνδRµν − hµνR0
µν . (2.19)

By comparing Eq. (2.13) with (2.12) we finally find

δGµν = δRµν −
1

2
g0µν(g

0αβδRαβ − hαβR0
αβ)−

1

2
hµνR

0 , (2.20)

with δRµν given by Eq. (2.18).
We are interested in the linear order perturbations, so we shall neglect every O(ϵ2) term in Eq.

(2.12). However, there has been an increasing interest in studying also nonlinear effects induced by
the perturbation that can produce visible effects in the QNM spectrum [250–253].

Starting from the set of perturbation equations δGµν [hµν ] = 0, analogous to Eq. (2.3) for the
scalar field case, we want to follow the same logical steps as Section 2.2 and try to expand the
perturbation tensor hµν in a suitable basis to separate the time and radial variables (t, r) from the
angular ones (θ, ϕ). Once again we can exploit the spherical symmetry of the background metric
and define a generalized set of spherical harmonics being able to capture the tensor nature of the
perturbation [153, 249, 254, 255]. See Appendix A for details on the scalar, vector, and tensor
spherical harmonics decomposition used.

In the Regge-Wheeler gauge [153] and assuming, due to stationarity, a time dependence e−iωt

of the perturbations, the components of gµν can be written as

g0µν =


−A(r) 0 0 0

0 1/B(r) 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 , (2.21)

hpolµν =


A(r)H0,lm(r) H1,lm(r) 0 0

H1,lm(r) 1/B(r)H2,lm(r) 0 0

0 0 r2Klm(r) 0

0 0 0 r2 sin2 θKlm(r)

Y lme−iωt , (2.22)

haxµν =


0 0 −h0,lm(r)

sin θ Y,lmϕ h0,lm(r) sin θY,lmθ

0 0 −h1,lm(r)
sin θ Y,lmϕ h1,lm(r) sin θY,lmθ

−h0,lm(r)
sin θ Y,lmϕ −h1,lm(r)

sin θ Y,lmϕ 0 0

h0,lm(r) sin θY,lmθ h1,lm(r) sin θY,lmθ 0 0

 e−iωt , (2.23)

where we have separated the polar and axial parts of the perturbation tensor hµν = haxµν + hpolµν

depending on the nature of the perturbation functions they contain (see Appendix A), we have left
implicit the sum over the harmonic indexes l,m and the dependence Y lm = Y lm(θ, ϕ).

Eqs. (2.22)-(2.23) provide an expansion for tensor quantities analogous to the scalar case in Eq.
(2.4). With the same procedure, one can obtain a similar result for electromagnetic perturbations.

The next step is to insert these expansions into the field equations (2.12). Assuming g0µν is the
Swarzschild metric, then G0

µν [g
0] = 0, and we have to solve δGµν [h] = 0, with the expression given

in Eq.(2.20). Given the separation in hax and hpol, we find that each component of the perturbation
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equations describes independently either the polar quantities or the axial quantities. We will see
that this is not always the case: in presence of rotation or in modified theories of gravity there can
be couplings between the different sectors, making the resulting QNM spectrum richer.

Let us now focus on the polar set of equations, as it will also be the one considered in the rest of
the thesis. We select the components δGtt, δGtr, δGrr, δGtϕ,δGrθ, δGθθ/ sin

2 θ−δGϕϕ,δGθθ/ sin
2 θ+

δGϕϕ, where the last two combinations have been chosen to separate the angular part.
When considering an axisymmetric, not spherically symmetric spacetime, if we adopt the spher-

ical harmonics decomposition approach, the situation becomes more involved, as the spherical har-
monics cannot separate the variables as we did in the spherically symmetric case [256]; however, the
problem has been solved for a Kerr BH by Teukolsky in 1973 [155, 190, 241] adopting spheroidal
harmonics instead of the spherical ones. As we will see in the next chapters, the situation for
modified theories of gravity is even more intricate, and there is not a known procedure to obtain
decoupled radial and angular equations, although there have recently been some developments in
that sense [4, 257, 258].

In Appendix B we review briefly the procedure to obtain a single second-order perturbation
equation describing polar gravitational perturbations of a Schwarzschild black hole [153, 154, 254,
259]. Here we report the final equation in the Schroedinger-like form, which, for polar perturbations,
takes the name of Zerilli equation

d2Zl

dr2∗
+
(
ω2 − Vpolar

)
Zl = 0 , (2.24)

with

Vpolar =

(
1− 2M

r

)
2Λ2(Λ + 1)r3 + 6Λ2Mr2 + 18ΛM2r + 18M3

r3(Λr + 3M)2
(2.25)

and Λ = (l − 1)(l + 2)/2. Analogously, for the axial sector, we find the Regge-Wheeler equation

d2Ψl

dr2∗
+
(
ω2 − Vaxial

)
Ψl = 0 , (2.26)

Vaxial = −
(
1− 2M

r

)
2

r3
[3M − (Λ + 1)r] . (2.27)

The fact that we are able to describe the gravitational perturbations with a single Schroedinger-
like ordinary wave equation, just as we did for the scalar case in Eq. (2.8), is very remarkable.
Furthermore, the potentials of the polar and axial sectors can be related by a simple relation
[97, 157, 220]: calling V (+) = Vpolar and V (−) = Vaxial, it can be verified that

V (±) = ±(6M)
dW

dr∗
+ (6M)2W 2 + 4Λ(Λ + 1)W , (2.28)

with

W ≡ r(r − 2M)

2r3(Λr + 3M)
. (2.29)
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This has some important consequences, such as the isospectrality between the two sectors of per-
turbations, meaning that they both yield the same QNM spectrum. Note that, even if the QNMs
for polar and axial perturbations are the same, as we will see, the amplitudes with which they are
excited are different, and they need to be found solving Eqs. (2.24)-(2.26) with the source term
describing the physics responsible of the perturbation, e.g. infall into the black hole, binary merger,
etc. [246]. Another interesting property of the perturbation equations, as already anticipated, is
that there is a similarity between the scalar, electromagnetic, and gravitational cases. For elec-
tromagnetic perturbations of a Schwarzschild black hole the equation has the effective potential
[1, 249]

VEM =

(
1− 2M

r

)[
2(Λ + 1)

r2

]
. (2.30)

Comparing the potential in Eq. (2.10) for µ = 0 and Eqs. (2.27), (2.30), we see that we can enclose
all these cases in

d2Ψs

dr2∗
+
(
ω2 − Vs

)
Ψs = 0 (2.31)

Vs =

(
1− 2M

r

)[
l(l + 1)

r2
+ (1− s2)

2M

r3

]
, (2.32)

with s = 0 for massless scalar perturbations, s = ±1 for electromagnetic perturbations and s = 2

for Regge-Wheeler gravitational perturbations. Zerilli and half-integer perturbations have different
forms from Eq. (2.32), but, as we mentioned, the spectrum of Zerilli perturbations is isospectral to
Regge-Wheeler one, and the two perturbation functions are connected by analytic relations [1].

These properties are just other examples that show how special General Relativity is, as other
theories of gravity do not necessarily carry these features that make the task of describing pertur-
bations of compact objects easier.

Even though some characteristics of the equations are peculiar to GR, the methods we will
discuss to compute the perturbation equations and then the QNMs can be generalized to more
complicated cases in modified theories of gravity.

2.4 Quasinormal Modes as Poles of the Green’s Function

In this section, we define and compute QNMs starting from the perturbation equations discussed
in the previous sections.

Let us consider a generic perturbation, either scalar, vectorial or tensorial of the form in
Eq.(2.31), characterized by the perturbation function Ψ(r) (we drop the spin s label)

d2Ψ

dr2∗
+
(
ω2 − V

)
Ψ = 0 , (2.33)

where the tortoise coordinate r∗ is a radial coordinate such that the horizon is located at r∗ → −∞
and radial infinity is r∗ → +∞.

Finding the characteristic oscillation frequencies of the perturbed black hole, i.e. the QNMs,
means finding the ωs that satisfy Eq. (2.33) together with physically appropriate boundary condi-
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tions at the horizon and at infinity.
For a Schwarzschild background and for most spacetimes of interest V → 0 for r∗ → −∞, thus,

in this limit, the solutions of Eq. (2.33) behave as Ψ ∼ e−iω(t±r∗). Furthermore, considering that
classically nothing leaves the horizon, we need to select the plus sign in order to get a purely ingoing
wave

Ψ ∼ e−iω(t+r∗) (r∗ → −∞) . (2.34)

This also follows from regularity requirements that would not be satisfied by the outgoing waves
[1].

On the other hand, considering asymptotically flat spacetimes such as Schwarzschild, the metric
at spatial infinity becomes the Minkowski metric and the potential goes to zero. Discarding unphys-
ical waves coming from infinity and not from the source, we can identify the boundary condition at
infinity as

Ψ ∼ e−iω(t−r∗) (r∗ → +∞) . (2.35)

Requiring that the solution of Eq. (2.33) satisfies these conditions automatically identifies the
QNMs, as they represent the radiation emitted by the perturbed dissipative system, with waves
either going into the BH or escaping to infinity. Only a discrete (and infinite) set of complex
eigenfunctions, the QNMs ωQNM = ωR + iωI , will satisfy the boundary conditions (2.34)-(2.35).

It should be noted that QNMs are not a complete set of wavefunctions [237, 240]; physically
speaking, this means that they are quasistationary states, manifesting for a limited amount of time,
being excited only at a particular instant and decaying exponentially with time.

This infinite set of complex eigenfunctions is usually sorted according to the magnitude of the
imaginary part ωI (whose inverse represents the damping time τ = 1/|ωI |). The least damped mode
is the fundamental mode, labeled with n = 0, then the more damped ones will have an increasing
value of n ∈ N and are called overtones.

In order to find the actual response of the black hole to a specific kind of perturbation, including
the magnitude of the excitation of each QNM, we need to consider the presence of the source that
induced the perturbation. This means that we need to solve Eq. (2.33) with a specific source term,
that can represent, for example, another small compact object merging with the primary black hole

d2Ψ

dr2∗
+
(
ω2 − V

)
Ψ = I(ω, r) . (2.36)

The QNM contribution to the BH response to the perturbation can be formally isolated from other
features of the signal, such as the late-time tail, considering the Green’s function solution to the
inhomogeneous wave equation (2.36) [238, 243–245].

Let us consider an asymptotically flat spacetime and two linearly independent solutions of the
homogeneous equation, that we call ΨH and Ψ∞, the former satisfying the proper boundary condi-
tion (only) at the horizon, Eq. (2.34), the latter satisfying the boundary condition (only) at infinity,

Lorenzo Pierini 15
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Eq. (2.35). This means that the two solutions will behave as

lim
r→rH

ΨH = e−iωr∗ (2.37)

lim
r→+∞

ΨH = Ain(ω)e
−iωr∗ +Aout(ω)e

+iωr∗ (2.38)

lim
r→rH

Ψ∞ = Bin(ω)e
−iωr∗ +Bout(ω)e

+iωr∗ (2.39)

lim
r→+∞

Ψ∞ = e+iωr∗ (2.40)

where we have introduced the coefficients Ain, Aout, Bin, Bout to take into account that where the
QNM boundary conditions are not satisfied, the generic solution of the homogeneous equation will
be a mixture of ingoing and outgoing modes.

The Wronskian associated with the homogeneous equation is

W (ω) ≡ ΨHΨ′
∞ −Ψ′

HΨ∞ , (2.41)

which, given the structure of the differential equation, is constant with respect to the radial coor-
dinate r∗. Thus, we can compute it for simplicity at spatial infinity

W (ω) = 2iωAin(ω) . (2.42)

The general solution to the inhomogeneous equation will be [238]

Ψ(ω, r) = Ψ∞

∫ r∗

−∞

I(ω, r)ΨH

2iωAin
dr′∗ +ΨH

∫ +∞

r∗

I(ω, r)Ψ∞
2iωAin

dr′∗ . (2.43)

When we perform an inverse Laplace transform to get the time-domain solution

Ψ(t, r) =
1

2π

∫ ∞+ic

−∞+ic
Ψ(ω, r)e−iωtdω , (2.44)

where c a small real constant that will be sent to zero for the computation of the integral, we
follow the integration contour in the complex plane shown in Fig. 2.1, obtaining three different
contributions:

• Prompt response (in flat-space), i.e. waves propagating directly from the source to the observer
at the speed of light. It arises from the integral over the quarter circles at infinite frequency
and represents the early time response of the black hole to the perturbation.

• Late-time tails, due to backscattering off the background curvature and characteristic of the
specific asymptotic behavior of the spacetime [260–263]. They arise because of the branch cut
we perform along the negative imaginary ω axis to avoid the branch point at ω = 0 (depending
on the structure of the potential V ). In this way, we obtain two-quarter circles for |ω| → ∞
instead of a single half circle.

• Quasi-normal modes. This contribution is associated with the sum over the residuals at the
poles in the complex plane, namely the zeros of Ain(ω) at the denominator. As it can be
seen from Eq. (2.38) when Ain = 0, the poles correspond to perturbations satisfying both the
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Figure 2.1: Integration path for Eq. (2.36) [1]. The crosses are the zeros of the Wronskian and the shaded
area is the branch cut to avoid the essential singularity at ω = 0.

ingoing wave condition at the horizon and the outgoing wave condition at infinity and thus,
by definition, they are associated to the QNMs.

Although we worked assuming the asymptotic behavior of the solutions of the wave equation, the
procedure can be generalized to any not-asymptotically-flat spacetime. We also note that, since
QNMs have a negative imaginary part and Ψ(t, r) ∼ e−iωt, there are no exponentially growing
modes, meaning that the BH is stable.

Focusing on the QNM contribution of the integral in Eq. (2.44), far away from the source we
get

Ψ(t, r) = −Re

[∑
n

Bne
−iωn(t−r∗)

∫ +∞

−∞

I(ω, r)ΨH

Aout
dr′∗

]
, (2.45)

where the sum is over all the poles in the complex plane, labeled by n, and the Bn, defined as

Bn ≡ Aout

2ω

(
dAin

dω

) ∣∣∣∣∣
ω=ωn

, (2.46)

are the quasinormal excitation factors (QNEFs). The QNEFs depend only on the background
geometry and thus can be computed independently from the specific kind of perturbation. They
have been computed for Schwarzschild and Kerr BHs [238, 244–246, 264].

Equation (2.45) can be recast in the form

Ψ(t, r) = −Re

[∑
n

Cne
−iωn(t−r∗)

]
, (2.47)
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where the

Cn ≡ Bn

∫ +∞

−∞

I(ω, r)ΨH

Aout
dr′∗ (2.48)

are called quasinormal excitation coefficients. Since they depend explicitly on the initial conditions
of the perturbation through I(ω, r), they encapsulate the features of the specific source of the
QNMs and quantify the QNM content of the gravitational waveform. Being complex numbers,
they characterize both the amplitudes and the phases of the QNMs. Although we have left it
implicit in the previous derivations, the QNM frequencies ωn, the Bn and Cn will all depend on
the harmonic indexes l,m, which identify the angular shape in space of the radiation, and on the
spin of the perturbing field s. By investigating the excitation coefficients for each QNM in different
astrophysical scenarios, one could understand which mode is more excited, for example between
overtones and higher l,m fundamental modes [265]. However, computing the Cn in perturbation
theory for a variety of initial data can be quite a challenging task, therefore one usually finds the
Cn by requiring the matching and continuity of the waveform in the ringdown part of the signal
with the results of Numerical Relativity (NR) simulations.

In General Relativity, gravitational radiation is quadrupolar, thus GWs have l ≥ 2 [103, 248].
Typically, for realistic astrophysical sources, the fundamental modes (n = 0) with l = 2 are the
most excited. For example, for perturbed BHs that are the remnants of a binary black hole system,
one finds that the gravitational radiation is dominated by the fundamental l = |m| = 2 component,
while the contribution of higher multipoles is subdominant [266, 266, 267]; this is indeed verified in
real gravitational wave events like GW150914 [33, 129].

In this work, our main interest is to find the quasinormal mode frequencies, not the excitation
factors, therefore we can simply ignore the specific source of the perturbation for the computation.
However, the information on the most excited modes is important when choosing which QNMs to
include in the model of the gravitational waveform (see e.g. [268–272]).

In Fig. 2.2 we can see a typical gravitational waveform describing all the stages of a binary BH
coalescence: the inspiral, where the two objects get progressively closer to each other until they
merge in the merger phase and produce a remnant BH that relaxes to the equilibrium configuration
in the ringdown part of the signal. When the QNM contribution to the ringdown is dominant,
i.e. for t > t0, with t0 to be determined by the analysis of the signal, the most generic ringdown
template based on Kerr perturbation theory for the complex-valued ringdown strain, h ≡ h+− ih×,
takes the form of a superposition of damped sinusoids 1

h =
M

r

∞∑
n=0

∞∑
l=2

l∑
m=−l

[
Cnlme−iωnlm(t−t0)−2Snlm(ι, β) + C′

nlme
−iω′

nlm(t−t0)−2S
′
nlm(ι, β)

]
, (2.49)

where −2Snlm are the spin-weighted spheroidal harmonics and Cnlm, C′
nlm complex amplitudes. Fur-

thermore, we have taken into account that the QNMs always come "in pairs" [158, 170, 269]: for
Kerr, for a given (l,m) and a given value of ā = J/M2, the eigenvalue problem admits two solutions:

1We have seen that QNMs are not a complete set, since they are not related to a self-adjoint operator and thus
the expansion in QNMs is not well defined mathematically; however, from numerical simulations and real events, the
approximation given by the linear superposition of damped sinusoids has been found to be reliable at intermediate
times.
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Figure 2.2: Waveform of the gravitational wave event GW150914 describing a binary BH merger [2]. In
the first part, the "inspiral", the two BHs orbit around each other, getting closer and closer until they reach
the "merger" phase, in which a common horizon starts to form and a single remnant BH is originated. The
final perturbed object reaches the equilibrium state by emitting the "ringdown" radiation, which in the late
part is characterized by the quasinormal modes and takes the form of Eq. (2.49).

one with positive frequency fnlm, ωnlm ≡ 2πfnlm − i/τnlm, the other with negative frequency f ′nlm
and different damping time τ ′nlm, ω′

nlm ≡ 2πf ′nlm− i/τ ′nlm. The former is usually referred to as "pro-
grade" or "corotating" mode, while the latter is usually labeled as "retrograde", "counterrotating",
or "mirror" mode (with possible slight changes in the notation). Due to the symmetry properties
of the Kerr (and Schwarzschild) spacetime, specifically the parity-time symmetry, one can see from
the perturbation equations that the following relations are valid

f ′nlm = −fnl−m, τ ′nlm = τnl−m =⇒ ω′
nlm ≡ −ω∗

nl−m . (2.50)

For m = 0 and Schwarzschild QNMs, which are degenerate in m, the two "mirror" solutions are
degenerate in modulus of the frequency and damping time. However, in general, for any given (l,m)

we will always have a superposition of two different damped exponentials since the damping times
and excitation amplitudes are different. Usually one neglects the retrograde modes in the ringdown
analysis since their excitation amplitudes have been found to be orders of magnitude smaller than
the corresponding prograde mode in the case of binaries in which the BHs rotate in the same sense
as the orbit [273–276].

In this Thesis we shall focus on modes with positive frequency, however, we will always consider
spacetimes for which the relation to find the retrograde modes (2.50) is valid.

2.5 Direct Integration Method

As described in the previous section, in order to find the QNM frequencies, we need linearly inde-
pendent solutions of the homogeneous wave equation (2.33). However, exact solutions are generally
hard to find analytically, and this is why usually one employs numerical methods, each one coming
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with its own strengths and shortcomings (see Ref. [159] for a review of the most notable ones). In
this section, we will focus on one method in particular, the direct integration method (see e.g. Refs.
[277, 278] for some applications), which has the advantage of being easily extendable to modified
theories of gravity, where it is not always possible to obtain a single master equation of the form
(2.33). Its strength relies on the fact that it can be applied directly to a set of coupled ODE, such
as Eqs. (B.8)-(B.9) for the Schwarzschild perturbation case, without the need to find a function,
such as the Zerilli or Regge-Wheeler function, that would cast the system into a single second-order
differential equation.

Let us assume we have a system of N first-order ODEs for N perturbation functions, which we
can collect together in a N-dimensional vector Ψ, with N an even integer. Let us also assume that,
working in the frequency domain, we can write the system in the following way

d

dr
Ψ+ V̂Ψ = 0 , (2.51)

with V̂ an N×N matrix that depends on ω and r. Since we are interested in computing the QNMs,
we look for solutions of Eq. (2.51) that satisfy the correct boundary conditions at the horizon and
at infinity, namely

Ψ(r∗ → −∞) = Aine
−iωr∗ ∼ e−iωr∗ (ingoing) (2.52)

Ψ(r∗ → +∞) = Aoute
iωr∗ ∼ eiωr∗ (outgoing) , (2.53)

where we have introduced the tortoise coordinate r∗ and the vectors Ain,Aout.
The vector space given by the set of solutions has dimension N , with N the order of the matrix

V̂ . To construct a basis for this space we can consider N/2 solutions Ψ(i)
H , (i = 1, ..., N/2) obtained

integrating from the horizon outwards and satisfying the ingoing boundary condition (2.52), and
other N/2 solutions Ψ(i)

∞ , (i = 1, ..., N/2), obtained integrating from the infinity inwards and satis-
fying the outgoing boundary condition (2.53).
If we require the vectors Ain,Aout to be proportional to linearly independent vectors, such as
{(1, 0, 0, ...), (0, 1, 0, ...), ...}, corresponding to switching off some perturbation functions at the bound-
aries, the corresponding solutions {Ψ(i)

H ,Ψ
(i)
∞} will also be linearly independent and can be used as

a basis for the solution space.
We then build a matrix X̂ that has the same dimensions of V̂ and has the j-th vector of the

solutions basis as the j-th column

X̂(ω, r) =
(
Ψ

(1)
H ... Ψ

(N/2)
H Ψ

(1)
∞ ... Ψ

(N/2)
∞

)
. (2.54)

By construction, this matrix itself will satisfy

d

dr
X̂ + V̂ X̂ = 0 . (2.55)

By definition, the QNMs are the eigenfrequencies of the system of Eqs.(2.51) that satisfy si-
multaneously both the ingoing boundary condition at the horizon and outgoing boundary condition
at infinity. This means that for ω = ωQNM the corresponding ingoing and outgoing solutions
Ψ

(i)
rH ,Ψ

(i)
∞ will describe the same eigenfunction of the system (2.51), hence no longer being linearly
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independent.
Thanks to the properties of the determinant of a matrix, which becomes null when rows or

columns of the matrix are linearly dependent, finding the QNMs is equivalent to requiring

detX̂(ω, r)
∣∣∣
ω=ωQNM

= 0 . (2.56)

This condition is true regardless of the choice of r; in practice, we evaluate the matrix X̂ at a
matching point r = rm located between the horizon and the numerical infinity, i.e. the number
chosen to represent infinity in the numerical implementation. We also note that the exact values of
the constants of proportionaly appearing in Ain,Aout, as long as they are linearly independent, do
not matter, since the determinant would be zero in any case.

We have seen that the task of finding the eigenfrequencies is reduced to computing the complex
roots of detX̂(ω), which can be done, for example, through a one-parameter shooting method,
providing a tentative guess ωguess as the starting point.

The main disadvantage of this method is that it can be affected by some numerical errors due
to the intrinsic divergence occurring at the boundaries in this prescription. Considering that the
QNMs ω = ωR + iωI have ωR > 0 and ωI < 0, they are, on one hand, stable in time, meaning
that e−iωt = e−iωRteωI t → 0 for t → ∞, on the other hand, focusing only on spatial behavior, we
obtain an exponential divergence eiωr∗ = eiωRr∗e−ωIr∗ → ∞ for r∗ → +∞. This divergence is not
physical, since when we integrate in the radial coordinate we are keeping the time fixed. In reality,
a physical radial trajectory would be also described by a changing time coordinate, thus, in the
time domain, e−iω(t−r∗) would not generate a divergence. As it often happens, to have the correct
physical picture we must look at the time domain, not the frequency domain.
Nonetheless, adding subleading terms in powers of r to Ain,Aout, we can move away from the
"proper" boundaries (rH ,∞) and restrict the integration to a smaller numerical value of infinity
R∞, ultimately avoiding the divergence. Furthermore, since the exponential e|ωI |r∗ diverges earlier
the larger the absolute value of the imaginary part is, we can also understand why this method is
not particularly suited for the computation of overtones [97].

As shown in Ref. [159], an alternative method is to find the QNMs by requiring any ingoing
component at infinity and outgoing component at the horizon to vanish. However, this relies
on identifying the subleading contributions at the boundaries, which can present some numerical
precision problems. After trying both methods, we found the results of the method presented here
to be more reliable, especially when including modifications of GR. An analogous procedure to the
one described in this section for first-order ODEs can be implemented for second-order differential
equations.

2.5.1 Schwarzschild Quasinormal Modes

As a first example of the direct integration method, we shall consider the Schwarzschild case. In
Appendix B we showed how gravitational polar perturbations of the Schwarzschild spacetime can
be fully described by the set of two coupled first-order differential equations (B.8)-(B.9) for the
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functions Kl(r), H1l(r). Written in a symbolic way, these equations are

H1l
′(r) + al(ω, r)Kl(r) + bl(ω, r)H1l(r) = 0 , (2.57)

Kl
′(r) + cl(ω, r)Kl(r) + dl(ω, r)H1l(r) = 0 , (2.58)

with

al(ω, r) ≡ −
2irω

(
9M2 + 2Mr

(
l2 + l − 4

)
+ r4ω2 − r2

(
l2 + l − 2

))
(r − 2M)2 (6M + r (l2 + l − 2))

(2.59)

bl(ω, r) ≡
12M2 +Mr(3l(l + 1)− 4)− 2r4ω2

r(r − 2M) (6M + r (l2 + l − 2))
(2.60)

cl(ω, r) ≡
12M2 +Mr

(
l2 + l − 6

)
− 2r4ω2

r(2M − r) (6M + r (l2 + l − 2))
(2.61)

dl(ω, r) ≡ −i
4Ml(l + 1) + r

(
4r2ω2 + l4 + 2l3 − l2 − 2l

)
2r2ω (6M + r (l2 + l − 2))

. (2.62)

We can then recast this system in the form of Eq. (2.51) as

d

dr
Ψl + V̂l(ω, r)Ψl = 0 , (2.63)

where

Ψl ≡

(
H1l

Kl

)
(2.64)

is a N = 2 vector and

V̂l(ω, r) =

(
al bl

cl dl

)
(2.65)

a 2× 2 matrix. To build a basis of solutions of the vector equation, we shall consider two solutions,
one ingoing Ψl H , i.e. that behaves ∼ e−iωr∗ near the horizon (r∗ → −∞), and one outgoing Ψl∞,
i.e. that behaves like ∼ e+iωr∗ at infinity (r → ∞)2, in which we the tortoise coordinate r∗ for
Schwarzschild is given, as usual, by

dr

dr∗
= 1− 2M

r
⇒ r∗ = r + 2Mlog

( r

2M
− 1
)
. (2.66)

The matrix X̂l containing the basis of solutions will be the 2× 2 matrix

X̂l =
(
Ψl H Ψl∞

)
=

(
H1l H H1l∞

Kl H Kl∞

)
. (2.67)

2The perturbation functions may have different asymptotic behaviors. For example H1 ∼ reiωr∗ for r → ∞, so
one has to take it into account when imposing the boundary conditions. Alternatively, since there is some freedom
when choosing the functions describing the perturbations, one could for example define a perturbation function H1/r
such that at infinity its behavior is ∼ eiωr∗
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The QNMs ωnl are the infinite set of complex frequencies that make the two solutions linearly
dependent, i.e.

detX̂l

∣∣∣
ω=ωnl

= 0 , (2.68)

where, in this case, the QNMs are only labeled by the overtone number n and the harmonic index
l, as there is a degeneracy in the azimuthal number m due to the spherical symmetry of the
Schwarzschild background. This degeneracy will be broken as soon as we introduce rotation to the
black hole spacetime.

The first fundamental Schwarzschild QNMs we find are 3

Mω02 = 0.373672− i 0.088962 (2.69)

Mω03 = 0.599443− i 0.092703 , (2.70)

in agreement with the literature (see e.g. [279]).

Boundary Conditions Implementation

Now we shall discuss in more detail the implementation of the ingoing and outgoing boundary
conditions, as it will be useful for the rest of the thesis. For practical purposes, as mentioned in
Section 2.4, in order to avoid numerical divergences, we choose to fix the boundaries condition for
the horizon at a position RH = rH(1 + ϵ) that is an ϵ ≪ 1 away from the physical horizon rH

(rH = 2M for a Schwarzschild BH), and for spatial infinity at an arbitrary numerical value R∞,
which must not be too large. Schematically, these numerical boundaries as shown in Fig. 2.3. For
our computations, we choose ϵ ∼ 10−3 and R∞ ∼ 40M . As explained in the last part of the section,
we can verify that these are suitable choices by checking a posteriori that the results are stable for
small variations around these values.

Since we are not actually at the physical boundaries, but a bit far away from them, the vectors
Ain,Aout in Eqs. (2.52)-(2.53) shall become functions of r, namely Ain(r) = {kHl (ω, r), hH1l (ω, r)},
Aout(r) = {k∞l (ω, r), h∞1l (ω, r)}. Explicitly the perturbation functions will be

Kl(ω, r ∼ rH) = kHl (ω, r)e−iωr∗ (2.71)

H1l(ω, r ∼ rH) = hH1l (ω, r)e
−iωr∗ (2.72)

Kl(ω, r ∼ ∞) = k∞l (ω, r)eiωr∗ (2.73)

H1l(ω, r ∼ ∞) = h∞1l (ω, r)e
iωr∗ . (2.74)

Since we are assuming to be sufficiently close to the boundaries, the functions {kHl , hH1l}, {k∞l , h∞1l }
can be Taylor expanded around the physical horizon in powers of r−rH , and near infinity in powers
of 1/r. The precise power of the leading order term can be verified a posteriori from the differential

3To convert these values in Hz, they must be multiplied by 2π 5142HzM⊙/M [239].
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𝑟! ∞

𝑅! 𝑅" 𝑟

Figure 2.3: The boundary conditions are imposed at the numerical values for the horizon RH and for
infinity R∞ to avoid numerical divergences.

equations (2.63), also Taylor-expanded. Near the horizon we have

kHl (ω, r ∼ rH) =

NH∑
i=0

kHl,i(ω)(r − 2M)i (2.75)

hH1l (ω, r ∼ rH) =

NH∑
i=0

hH1l,i(ω)(r − 2M)i−1 . (2.76)

At infinity

k∞l (ω, r ∼ ∞) =

N∞∑
i=0

k∞l,i (ω)

ri
(2.77)

h∞1l (ω, r ∼ ∞) =

N∞∑
i=0

h∞1l,i(ω)

ri−1
, (2.78)

with NH , N∞ the orders of the series expansions, that must be chosen such that the resulting
quasinormal modes are stable under small variations around those numbers. In particular, since
the divergence at infinity is the main limitation to the integration method, it is essential to have a
large value of N∞ to balance the smaller choice of R∞. We have verified, trying different options,
that NH = 11, N∞ = 13 ensure stable results, as going to higher order does not affect them in a
significant way.

We note that in the case of GR, it is possible to check the results with other integration methods,
especially with the continued fraction method [158, 280, 281], which does not suffer as much from
these numerical artifacts.

The coefficients in the expansions (2.75)-(2.78) are found by inserting Eqs. (2.71)-(2.74) in the
differential equations (2.57)-(2.58), which are then expanded around the horizon and infinity and
solved order by order in r − 2M or 1/r respectively.

All the coefficients will be proportional to one or more constants, corresponding to the leading
order term of one of the perturbation functions. In fact, fixing these constants corresponds to choos-
ing different solutions of the basis used to build the matrix X̂ in Eq. (2.54). In the Schwarzschild
case considered here, we only have one constant (one for the horizon expansion and one for the in-
finity expansion) since the leading order term of the other perturbation function can be expressed in
terms of the one chosen. To show this concretely, we write the leading order terms of (2.71)-(2.74),
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having selected the leading order term of Kl to be the arbitrary constant

Kl(ω, r ∼ rH) =
[
kH0l +O(r − 2M)

]
e−iωr∗ (2.79)

H1l(ω, r ∼ rH) =

[
−4M2ω(4Mω − i)

l2 + l − 4iMω

kH0l
r − 2M

+O(1)

]
e−iωr∗ , (2.80)

Kl(ω, r ∼ ∞) = [k∞0l +O(1/r)] e+iωr∗ (2.81)

H1l(ω, r ∼ ∞) = [−iωrk∞0l +O(1)] e+iωr∗ . (2.82)

The constants kH0l , k
∞
0l are the free parameters described above, which we can fix kH0l = 1, k∞0l = 1

to build X̂ – any other value would not impact the computation of the determinant.
When finding the coefficients of the expansion at infinity, we need to be careful in solving the

equations to get them. Let us assume that, having substituted Eqs. (2.73)-(2.74), we expand the
differential equations (2.57)-(2.58) in 1/r up to 1/rML.O.+M∞ , with ML.O. the leading order power
of the expansion of each equation (e.g. ML.O = 0 for Kl, ML.O = −1 for H1l).

As an obvious choice, one could think of taking M∞ to be the same as the order of the expansions
of the functions, namely M∞ = N∞, as this would in general provide enough equations for the
number of variables to find. However, one eventually discovers that, once the first coefficients
are found, these equations become degenerate, thus not allowing one to determine the remaining
coefficients. Nevertheless, we are not forced to stop at M∞ = N∞, since we require the expansions
(2.75)-(2.78) to satisfy the differential equations, without assuming a specific M∞. The additional
conditions to find the coefficients are then found by going at orders O(M∞ = N∞+1) or O(M∞ =

N∞ + 2) and neglecting, for example, one of the equations at leading order. In this way, we find
that k∞l,1 = 0.

The discussion above, however, is only relevant in the case of perturbation equations in the form
of first-order ODEs. If we do the same procedure recasting the system as a second-order differential
equation, e.g. working with just Kl or the Zerilli or Regge-Wheeler functions used to obtain Eq.
(2.24), then this problem is not present and finding the asymptotic coefficients is straightforward.
Since, as we mentioned, one usually needs a high-order expansion at infinity to avoid the exponential
divergence, sometimes it is convenient to recast the set of equations in the second-order form just to
compute the boundary conditions 4, otherwise one would need to consider equations at even higher
orders in 1/r. Switching to the second-order formalism is possible also in modified gravity theories,
although typically in such theories there is no equivalent of a Zerilli or Regge-Wheeler function, so
there will still be the problem of having coupled differential equations (with half of the degrees of
freedom of the first order system).

Stability

We checked the stability of the results under variations of the numerical parameters RH ,R∞, NH ,
N∞,rm. We tried different values of the expansion order coefficients NH , N∞ and we found that for
the computation of the fundamental modes, NH = 11 and N∞ = 13 are sufficient to obtain stable

4For example, expressing H1 in terms of K,K′ we get the second order ODE in K; then we can find the boundary
conditions for K from this equation and obtain the one for H1 from the relation between the two perturbation
functions.
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Figure 2.4: Stability of Schwarzschild QNM for n = 0, l = 2 evaluated with the direct integration method
with different values of numerical infinity and horizon. Choosing as a reference R∞ = 40M , we plot the
relative difference δω(R∞, ϵ, 40M) ≡ |ω(R∞, ϵ) − ω(40M, ϵ)|/|ω(40M, ϵ)|. We see that, while the choice of
the horizon deviation ϵ in RH = rH(1 + ϵ) does not impact the results of integration, we can find a range of
R∞ ∈ [35, 60]M for which we obtain stability of the results, which differ for less than 2 · 10−7.

results. The expansion order at infinity is more sensitive since, in order to avoid the numerical
divergence, we actually need to select a not too-large finite value of infinity R∞, thus requiring
a high-order expansion. However, increasing up to N∞ = 17, we verified that the difference in
the fundamental modes is negligible for the scope of our work, while it has an important impact
when trying the computation of the overtones, for which it affects the third decimal position. We
note that the computation of the overtones is not treated in this work, as the direct integration
method is not suited for the task, given the intrinsic problems when trying to compute modes with
large imaginary parts [97]. Even though one manages to compute the first overtone for l = 2 with
precision 10−3, the high order expansion needed and, consequently, the high computational cost,
together with the small values of the EdGB modification expected, indicate that an alternative
method is needed for reliable estimates of the EdGB overtones.

We verified that the value of the matching point rm at which the determinant (2.56) is computed
does not affect almost at all the QNM values obtained, as expected. We have found that the most
significant parameter to choose carefully is R∞, since it may produce noticeably unstable results.
In Fig. 2.4 we plot the relative difference δωR,I of the l = 2 Schwarzschild fundamental mode
computed for different choices of R∞ and horizon parameters ϵ, in RH = rH(1+ ϵ), with respect to
the mode computed with a specific value of R̄∞, that we fixed to be 40M , which reproduces well
the results in Ref. [279]

δωR,I(R∞, ϵ, R̄∞) ≡
|ωR,I(R∞, ϵ)− ωR,I(R̄∞, ϵ)|

|ωR,I(R̄∞, ϵ)|
. (2.83)

We see that there is a range of R∞, namely [35, 60]M , for which the results can be considered
stable, since the relative deviation of the mode is δωR,I(R∞, ϵ, 40M) ≲ 2 · 10−7. We find that the
results are only very weakly affected by the choice of ϵ.

Lorenzo Pierini 26



2.6. Quasinormal Modes of Slowly Rotating Black Holes

2.6 Quasinormal Modes of Slowly Rotating Black Holes

As we mentioned in the previous sections, in GR it is possible to describe gravitational perturbations
of rotating black holes with a single master equation, i.e. the Teukolsky master equation [155, 190],
after separating the angular variables from the radial one. However, this is not usually possible
in modified theories of gravity, where there might be additional dynamical fields and degrees of
freedom that introduce nontrivial couplings between the perturbations. Nonetheless, it is still of
utmost importance to find QNMs of rotating compact objects in modified theories of gravity in
order to perform theory-specific tests of general relativity, as all astrophysically relevant objects,
especially the results of BH mergers, are expected to be rotating.

One possible approach to tackle this problem that can be generalized to allow GR modifications
without many theoretical issues is to start from the nonrotating case and then perform a slow rota-
tion expansion, i.e. a perturbative expansion in the spin of the object. Since we are sufficiently close
to the spherically symmetric case, it is still possible to adopt the spherical harmonics decomposition.

In this section, we will schematically explain how to describe perturbations of slowly rotating
black holes in GR; the same logic will be applied to more complicated theories in the next chapters.
We shall follow the formalism introduced by Hartle and Thorne [191, 192], who applied it to stars,
and later employed by Kojima [193, 282, 283] to explicitly compute the perturbation equations of
neutron stars at first order in the spin. This framework was summarized and extended in Ref. [159]
in the context of BH perturbations, after being applied in different scenarios [278, 284, 285].

2.6.1 Background Metric

The metric of a generic stationary, axially symmetric object, such as a neutron star or black hole,
can be written as

ds2 = −H2(r, θ)dt2 +Q2(r, θ)dr2 + r2K2(r, θ)
[
dθ2 + sin2 θ(dϕ− L(r, θ)dt)2

]
. (2.84)

L(r, θ) is the angular velocity, dϕ/dt, acquired by an observer falling freely from infinity to the point
(r, θ) and represents the rate of rotation of the inertial frame at (r, θ) relative to the distant stars.
Consequently, the non-vanishing gtϕ component implies the presence of dragging of the inertial
frames.

If the object in question, which we shall consider to be a BH, is slowly rotating, we can perform
a perturbative expansion in the angular momentum J around the nonrotating case

ds2 = −A(r) [1 + 2h(r, θ)] dt2 +
1

B(r)
[1 + 2p(r, θ)] dr2

+ r2 [1 + 2k(r, θ)]
{
dθ2 + sin2 θ [dϕ−ϖ(r, θ)dt]2

}
, (2.85)

where A(r), B(r) are the functions describing the nonrotating spherically symmetric spacetime, as
in Eq. (2.1) and h(r, θ), p(r, θ), k(r, θ), ϖ(r, θ) describe the deformations due to rotation.

The metric of a stationary, axially symmetric system, such as the one described by the metric
(2.84), is invariant under an inversion of the direction of rotation as well as under time reversal.
For this reason, the expansions of H,Q,K in powers of J can only contain even powers, while the
expansion of L will have only odd powers. Calling ā ≡ J/M2 the dimensionless angular momentum,

Lorenzo Pierini 27



2.6. Quasinormal Modes of Slowly Rotating Black Holes

with M mass of the black hole, we can expand the functions ϖ,h, p, k in Eq. (2.85) according to
their symmetry properties in a complete basis of orthogonal functions given by

ϖ =

Nā−q∑
n=1,3,5...

n∑
l=1,3,5...

ānω
(n)
l (r)

[
− 1

sin θ

dPl(cos θ)

dθ

]
(2.86)

h =

Nā−v∑
n=2,4,...

n∑
l=0,2,4...

ānh
(n)
l (r)Pl(cos θ) (2.87)

p =

Nā−v∑
n=2,4,...

n∑
l=0,2,4...

ānp
(n)
l (r)Pl(cos θ) (2.88)

k =

Nā−v∑
n=2,4,...

n∑
l=0,2,4...

ānk
(n)
l (r)Pl(cos θ) , (2.89)

where Pl(cos θ) are the Legendre polynomials. v = 0 (q = 0) when the order of the spin expansion
Nā is even (odd), whereas v = 1 (q = 1) otherwise. We also note that we can set the functions
k
(n)
0 (r) = 0 without loss of generality thanks to the invariance of the metric (2.85) under a generic

radial rescaling r → f(r) [191, 192].
In the following chapters of the Thesis, we will focus on the first and second-order spin correc-

tions, therefore the maximum value of Nā we will consider is Nā = 2. At second order we will have,
explicitly

ϖ(r, θ) = ā ω
(1)
1 (r) +O(ā3) (2.90)

h(r, θ) = ā2
[
h
(2)
0 (r) + h

(2)
2 (r)

1

2

(
3 cos2 θ − 1

)]
+O(ā4) (2.91)

k(r, θ) = ā2
[
k
(2)
0 (r) + k

(2)
2 (r)

1

2

(
3 cos2 θ − 1

)]
+O(ā4) (2.92)

p(r, θ) = ā2
[
p
(2)
0 (r) + p

(2)
2 (r)

1

2

(
3 cos2 θ − 1

)]
+O(ā4) . (2.93)

First-order Corrections

At first order in the spin, the metric (2.85) corresponds to a static spherically symmetric BH
with a deformation in the gtϕ component due to the nonvanishing gravitomagnetic term ϖ(r, θ) =

ā ω
(1)
1 (r) ≡ ω(r)

ds2 = −A(r)dt2 + 1

B(r)
dr2 + r2(dθ2 + sin2 θdϕ2)− 2r2ω(r) sin2 θdtdϕ . (2.94)

After computing Einstein equations for this metric, from the differential equation given by Gtϕ = 0,
which is of order O(ā), we find

ω(r) =
2J

r3
. (2.95)

Where we have defined J to include any possible extra integration constants, so that it represents
the physical angular momentum of the BH, as read off the asymptotic behavior of gtϕ (see Appendix
C for more details). In general, we will use the same procedure to define the BH angular momentum
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also in modified theories of gravity, where additional terms proportional to the coupling constants
of the theory will enter the definition.

Second-order Corrections

The main corrections to a static metric due to rotation arise at O(ā2), as the functions h, p, k in
Eq. (2.85) become non-vanishing. As in the previous case, the coefficients of the expansions in
Eqs. (2.87)-(2.89) are found integrating Einstein equations. In particular, we consider the radial
equations obtained from E1 ≡ Gtt = 0, E2 ≡ Grr = 0, E3 ≡ Gθθ + θGϕϕ/ sin

2 θ = 0, contracted
with a Legendre polynomial∫ π

0
dθ sin θPl(cos θ)Ei(r, θ) = 0 (i = 1, 2, 3; l = 0, 2) , (2.96)

in which we exploit the property∫ π

0
dθ sin θPl(cos θ)Pl′(cos θ) =

2

2l + 1
δll′ . (2.97)

In this way, we obtain a set of purely radial ordinary differential equations for h(2)l (r), p
(2)
l (r), k

(2)
l (r)

with l = 0, 2, after having set k(2)0 (r) = 0 (corresponding to simply rescaling of the metric). When
performing the integration, we require asymptotic flatness of the metric in order to fix some of the
integration constants. As a result, we get

p
(2)
0 (r) = − M4

(r − 2M)r3
− δm

r − 2M
(2.98)

h
(2)
0 (r) =

M4

(r − 2M)r3
+

δm

r − 2M
(2.99)

h
(2)
2 (r) =

M3(M + r)

r4
(2.100)

k
(2)
2 (r) = −M

3(2M + r)

r4
(2.101)

p
(2)
2 (r) = −M

3(r − 5M)

r4
, (2.102)

where δm is a constant representing the shift in the mass of the rotating BH with respect to the
static case.

Similarly to what we have done at first order in the spin to define the angular momentum J, the
Arnowitt-Deser-Misner mass M can be read off from the asymptotic behavior of the gtt component
of the metric (2.85). Assuming A(r) = 1− 2M/r as in Schwarzschild, we obtain

gtt → −1 +
2

r

(
M − ā2δm

)
+O

(
1

r2

)
≡ −1 +

2M
r

+O
(

1

r2

)
. (2.103)

M is the only meaningful physical mass that describes the rotating BH and we will always refer
to this quantity. Since the static black hole from which we built our rotating solution is no longer
relevant, in the rest of the text, unless specified, we shall switch back to the notation M → M ,
with M physical mass of the BH.
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The metric (2.85) can be recast in physical quantities M and J , obtaining

ds2 =−
(
1− 2M

r
+ 2

J2

r4

)[
1 + 2

J2

Mr3

(
1 +

M

r

)
P2(cos θ)

]
dt2

+

(
1− 2M

r
+ 2

J2

r4

)−1 [
1− 2

J2

Mr3

(
1− 5M

r

)
P2(cos θ)

]
dr2

+ r2
[
1− 2

J2

Mr3

(
1 +

2M

r

)
P2(cos θ)

][
dθ2 + sin2 θ

(
dϕ− 2J

r3
dt

)2
]
, (2.104)

which is valid up to order J2. We note that, as expected, when expressing the metric in physical
quantities, the integration constant δm does not appear anywhere.

It is natural to compare the line element in Eq. (2.104), describing the geometry outside a
slowly rotating configuration, with the exact solution of Einstein equations describing a rotating
black hole – the Kerr metric [189], which in Boyer-Lindquist coordinates is

ds2 = −
(
1− 2Mr

Σ

)
dt2 +

Σ

∆
dr2 +Σdθ2 +

(
r2 + a2 +

2Mra2

Σ
sin2 θ

)
sin2 θdϕ2 − 4Mra sin2 θ

Σ
dtdϕ

(2.105)

with a = J/M , Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr+ a2. If we expanded it to the second order in J ,
we can obtain the Hartle-Thorne metric (2.104) using the simultaneous coordinate transformation

r → r

{
1− a2

2r2

[(
1 +

2M

r

)(
1− M

r

)
+ cos2 θ

(
1− 2M

r

)(
1 +

3M

r

)]}
(2.106)

θ → θ − a2 cos θ sin θ
1

2r2

(
1 +

2M

r

)
. (2.107)

2.6.2 Perturbations

Now that we have the metric describing a slowly rotating BH up to second order in the angular
momentum, as seen in Eq. (2.104), we want to perturb this background, which we refer to as g0µν ,
with the ultimate goal of finding the QNM spectrum and the shifts induced by the rotation with
respect to the nonrotating case. In this section, we will write schematically the steps needed to
compute the QNMs on the slowly rotating background, but we leave the details of the computations
to the next chapters, where the same steps will be implemented in EdGB gravity.

A generic perturbation δX (either scalar, vector, or tensor) applied to this background can
be expanded in a complete basis of spherical harmonics in the same way we discussed for the
nonrotating case (see Appendix A). In the frequency domain, this expansion takes the form

δXµ1...(t, r, θ, ϕ) = δX
(i)
lm(r)Y lm (i)

µ1... (θ, ϕ)e−iωt , (2.108)

where Y lm (i)
µ1... (θ, ϕ) is a suitable basis of scalar, vector, or tensor spherical harmonics, depending on

the nature of the perturbation δX. δX
(i)
lm(r) are radial functions that can be classified either as

polar, if they have the same behavior of the scalar spherical harmonics under parity transformations,
or axial, if they have the opposite behavior.

After substituting this expansion in the field equations and integrating the angular part using
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the properties of spherical harmonics, the linear response of the system to the perturbation is fully
described by a set of coupled ODEs in the perturbation functions δX(i)

lm(r). However, in contrast with
the spherically symmetric case discussed earlier in the chapter, in the rotating, axially symmetric
background, perturbations with different harmonic index l become coupled, while the ones with
different values of m remain decoupled.

Schematically, the general structure of the perturbation equations can be written as

0 =Pl m + ām P̄l m + ā2P̂l m + m2 ā2 ¯̄P l m

+ ā
(
Ql mÃl−1m +Ql+1mÃl+1m

)
+ ā2

(
Ql−1mQl mP̆l−2m +Ql+1mQl+2mP̆l+2m

)
+mā2

(
Ql mǍl−1m +Ql+1mǍl+1m

)
, (2.109)

0 =Al m + ām Āl m + ā2Âl m + m2 ā2 ¯̄Al m

+ ā
(
Ql mP̃l−1m +Ql+1mP̃l+1m

)
+ ā2

(
Ql−1mQl mĂl−2m +Ql+1mQl+2Ăl+2m

)
+mā2

(
Ql mP̌l−1m +Ql+1mP̌l+1m

)
, (2.110)

where ā = J/M2,

Qlm =

√
(l −m)(l +m)

(2l − 1)(2l + 1)
, (2.111)

and Pl m, P̄l m, P̂l m,
¯̄P l m, P̃l m, P̆l m, P̌l m (Al m, Āl m, Âl m,

¯̄Al m, Ãl m, Ăl m, Ǎl m) are linear combina-
tions, which do not depend explicitly on m, of the polar (axial) perturbation functions. At zeroth
order in the spin we get, as expected, no couplings between different ls, i.e. Pl m = 0, Al m = 0,
corresponding for example to Eqs. (2.57)-(2.58).

The structure of Eqs. (2.109)-(2.110) is similar to many results in Quantum Mechanics, where
the slow rotation technique is often used, and it interestingly resembles a Laporte-like selection rule
[286]:

• at first order in ā, perturbations with a given value of l are only coupled to perturbations
with l ± 1 and opposite parity;

• at second order in ā, perturbations with a given value of l are also coupled to same parity
perturbations with l ± 2 and, when m ̸= 0, to opposite parity perturbations with l ± 1 .

The symmetries of the harmonic expansion guarantee that this scheme is preserved at any order in
ā. We note that in the case |m| = l we have Qlm = 0, thus the couplings of perturbations with
index l to perturbations with indices l− 1 and l− 2 are suppressed, leaving only couplings to l+ 1

and l + 2, in analogy to the "propensity rule" in atomic theory, stating that l → l + 1 transitions
are strongly favored over l → l − 2.
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The boundary conditions defining the QNM are

δX
(i)
lm(r ∼ rH) ∼ e−ikHr∗ (2.112)

δX
(i)
lm(r → ∞) ∼ eiωr∗ , (2.113)

where we have included the frame-dragging effect on the frequency near the horizon through kH =

ω −mΩH , with ΩH = − limr→rH g
(0)
tϕ /g

(0)
ϕϕ the angular velocity of the BH.

2.6.3 Quasinormal Mode Spectrum

Due to the aforementioned couplings between different multipolar indices and different parities, the
computation of the QNM spectrum of a rotating black hole in the slow rotation expansion can
become very intricate. Luckily, when our focus is only to compute the spectrum at a specific spin
order and not to find the exact form of the perturbation functions, the equations (2.109)-(2.110)
can be further simplified.

We remark that both the equations (2.109)-(2.110) and the boundary conditions (2.112)-(2.113)
are invariant under the transformation (ā,m) → (−ā,−m), as long as axial perturbations change
sign and polar perturbations remain the same. Therefore, the quasi-normal modes are also invariant
under this transformation, and consequently, the O(ā) corrections to the spectrum are odd in m,
while the O(ā2) corrections are even [159, 278, 285]. Hence, since the equations are at most quadratic
in m, a reasonable ansatz satisfying these properties is

ωnlm(ā) = ωnl
0 + āmωnl

1 + ā2(ωnl
2a +m2ωnl

2b) +O(ā3) , (2.114)

where the coefficients ωr (r = 0, 1, 2a, 2b) do not depend on m and ω0 are the frequencies for the
nonrotating case – see e.g. Eqs. (2.69)-(2.70).

We note that the QNM spectrum of BHs in GR, according to no-hair theorems [18, 287], depends
only on the mass M , which is implicit in Eq. (2.114), and the spin ā. In modified theories of gravity,
the no-hair theorems can be violated and this translates to additional parameter dependences in
the QNM spectrum, which provides an important tool to perform tests of GR.

First Order

At first order in the spin Eqs. (2.109)-(2.110) become

0 =Pl m + ām P̄l m + ā
(
Ql mÃl−1m +Ql+1mÃl+1m

)
(2.115)

0 =Al m + ām Āl m + ā
(
Ql mP̃l−1m +Ql+1mP̃l+1m

)
. (2.116)

An example of the explicit form of these equations for neutron stars can be found in Ref. [193].
We now want to determine which terms actually contribute to the first order QNM coefficient ω1

in Eq.(2.114). Since Ãl±1m, P̃l±1m are not multiplied by m and do not depend explicitly on it, the
only terms that could give rise to the m dependence in the expansion (2.114) are the ones containing
Āl±1m, P̄l±1m.

Therefore, as long as we are interested in computing the first-order correction to the QNM
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spectrum, the eigenvalue problem is equivalent to the set of equations

0 =Pl m + ām P̄l m (2.117)

0 =Al m + ām Āl m , (2.118)

which are decoupled. The spectrum at first order is then

ωnlm(ā) = ωnl
0 + āmωnl

1 , (2.119)

where we see that the degeneracy in m that was present in the spherically symmetric case is now
broken, similarly to what happens in the quantum mechanics with the Zeeman-like splitting of the
energy levels of an atom in a static external magnetic field [1].

Second Order

In order to understand which terms of the Eqs. (2.109)-(2.110) actually contribute to the QNM
spectrum at the second order in the spin, it is useful to consider the expansions of a generic polar
perturbation Plm and axial perturbation Alm

Plm = P
(0)
lm + āP

(1)
lm + ā2P

(2)
lm (2.120)

Alm = A
(0)
lm + āA

(1)
lm + ā2A

(2)
lm . (2.121)

Since perturbations with index l ± 1 are always multiplied by at least ā in the equations (2.109)-
(2.110), their second-order terms, P (2)

l±1m, A
(2)
l±1m, will not contribute to the equations at this order;

moreover, when they are multiplied by ā2, their first-order terms P (1)
l±1m, A

(1)
l±1m, do not contribute

as well.
Similarly, perturbations with index l± 2 contribute to the equations (2.109)-(2.110) only with their
0-order part P (0)

l±2m, A
(0)
l±2m.

Let us now assume that a source only excites a polar perturbation with a given harmonic index
l. The rotation-induced couplings in the field equations will source perturbations with both axial
and polar parity, and with harmonic index l′ ̸= l. However, since this only occurs in presence of
rotation, the axial perturbations with l, l′ and polar perturbations with l′ will not be present in the
nonrotating limit, meaning

A
(0)
lm = A

(0)
l′m = P

(0)
l′m = 0 , (2.122)

so that the only perturbations present at this order are P (0)
lm . Axial parity perturbations with index

l ± 1 are excited through the rotation-induced couplings at first order in the spin, thus

Al±1m = āA
(1)
l±1m + ā2A

(2)
l±1m . (2.123)

Similarly, polar parity perturbations with index l ± 2 are excited through the rotation-induced
couplings at second order in the spin, and are

Pl±2m = ā2P
(2)
l±2m . (2.124)
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Calling the polar-led sector the one in which only a polar perturbation is nonvanishing in the
nonrotating limit [288], applying the considerations above to Eqs. (2.109)-(2.110), we get the polar-
led set of equations

Pl m + ām P̄l m + ā2P̂l m + m2 ā2 ¯̄P l m + ā
(
Ql mÃl−1m +Ql+1mÃl+1m

)
= 0

Al+1m + ām Āl+1m + ā Ql+1mP̃l m +mā2Ql+1mP̌l m = 0

Al−1m + ām Āl−1m + ā Ql mP̃l m +mā2Ql mP̌l m = 0 . (2.125)

from which we can compute the polar-led subset of QNMs up to the second order in the spin ā.
Through completely analogous considerations when in the nonrotating case only an axial per-

turbation is excited, we can find the axial-led set of equations

Al m + ām Āl m + ā2Âl m + m2 ā2 ¯̄Al m + ā
(
Ql mP̃l−1m +Ql+1mP̃l+1m

)
= 0

Pl+1m + ām P̄l+1m + ā Ql+1mÃl m +mā2Ql+1mǍl m = 0

Pl−1m + ām P̄l−1m + ā Ql mÃl m +mā2Ql mǍl m = 0 . (2.126)

which gives the axial-let subset of QNMs.
As we can see from Eqs. (2.125)-(2.126), to compute the QNM spectrum at second order in the

spin, it is not necessary to include couplings with index l ± 2, which would contribute only to the
next order of spin corrections. Even though, for a given l, rotation couples terms with opposite
parity and different multipolar index, the subsystems (2.125)-(2.126) are closed, meaning that they
contain a finite number of equations that fully describe the dynamics to second order in the spin.
Without these considerations, we would have an infinite number of equations and a truncation at a
specific lmax would have been necessary.

It is important to remark that the "polar-led" ("axial-led") class is a subset of the whole set
of solutions to Eqs. (2.109)-(2.110), since it has been obtained under the main assumption that
only polar (axial) perturbations with harmonic index l are activated at zeroth order in the rotation
(which is reasonable when a specific multipolar contribution l is dominant) [285]5. Nonetheless, all
solutions belonging to one of the two classes which fulfill the appropriate QNM boundary conditions,
are also solutions of the full system (2.109)-(2.110) and hence belong to the eigenspectrum [278] .

We have computed the QNMs at second order in the spin

ωnlm(ā) = ωnl
0 + āmωnl

1 + ā2(ωnl
2a +m2ωnl

2b) , (2.127)

for slowly rotating BHs in GR, for n = 0, l = 2, l = 3 with a direct integration method (for further
details see the implementation in the following chapters). The coefficients ωnl

r R,I r = 0, 1, 2a, 2b are
shown in Tab. 2.1.
The n = 0, l = 2 case has also been computed by Hatsuda et al. [289] using the Chandrasekhar-
Detweiler and Sasaki-Nakamura equations; our results are in very good agreement with their find-

5This is usually the case for realistic scenarios of BBH mergers, where the l = 2 is usually dominant, while
other modes like l = 3 are only mildly (or not at all) excited [31, 33, 128, 266, 267]. Nevertheless, since we are
considering linear perturbations we can study each l-index perturbation at zeroth order independently and find the
related rotating frequencies. In case more perturbations are excited at zeroth order in the spin, we can then take into
account all the contributions separately.
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ings.

Table 2.1: Values of the coefficients for the slow rotation expansion for fundamental modes with l = m = 2
and l = m = 3 for perturbations of a slowly rotating BHs in GR.

spin order r ω02
r R ω02

r I ω03
r R ω03

r I

0 0.37367 −0.08896 0.59944 −0.09270
1 0.06289 0.00010 0.06737 0.00065
2a 0.03591 0.00638 0.04758 0.00659
2b 0.00896 −0.00031 0.00661 0.00006

Padé Resummation

The expansion of the QNM frequencies in Eq.(2.127) is a Taylor expansion and as such is valid in the
proximity of ā = 0; the more terms in the expansion the better the agreement with the Kerr QNMs,
especially for larger spins. Once the modes ωnlm(ā) are computed, taking the derivatives with
respect to ā yield the expansion coefficients ωnl

r (r = 0, 1, 2a, 2b) – where the separation between
ω2a and ω2b can be obtained by repeating the computation for different values of m and linearly
combining them.

The Taylor expansions (2.127) can be resummed using Padé approximants [290, 291]. The Padé
resummation, which consists in replacing polynomials with rational functions, often improves the
convergence of an expansion, as it has been seen in applications, for instance, to post-Newtonian
expansions [290] and, more recently, to the computation of BH sensitivities in EdGB gravity [218,
219]. Padé resummation also improves the convergence of the spin expansion of BH QNMs [289],
and we will exploit this feature to extend the validity of our slow-rotation approximation.

Given a Taylor expansion TK(x) of order K around x = 0, we can construct a Padé approximant
P [M,N ], with M,N integer numbers such thar M +N = K, given by

P [M,N ](x) =
A0 +A1x+A2x

2 + ...+AMx
M

B0 +B1x+B2x2 + ...+BNxN
(2.128)

such that P [M,N ](x) = TK(x) up to orderK. Solving order by order in x, the coefficients A0, ...AM ,
B0, ..., BN can be determined as combinations of the Taylor expansion coefficients.

Since the Taylor expansion to second order is not accurate for QNMs of rotating BHs with
large spins (we note that a BH in the aftermath of a binary coalescence has typically ā ∼ 0.7), we
shall perform a Padé resummation of the second-order expansion (2.127). In this case the Taylor
approximant of ωnlm(ā) is of second order, and, for each (n, l,m ̸= 0), the possible choices of Padé
approximants are:

P [1, 1](ā) =
mωnl

0 ω
nl
1 +

[
m2 ωnl

1
2 − ωnl

0 ω
nlm
2

]
ā

mωnl
1 − ωnlm

2 ā
(2.129)

and

P [0, 2](ā) =
ωnl
0

3

ωnl
0

2
+ ā2m2ωnl

1
2 − āωnl

0

[
mωnl

1 + āωnlm
2

] , (2.130)
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Figure 2.5: Real (upper panel) and imaginary (lower panel) parts of the relative difference between the
QNMs of Kerr BHs and those of rotating BHs computed within the slow-rotation approximation, for the
(nlm) = (022), (033) modes. The slow-rotation expansion is performed to first order (O1), to second order
(O2), to second order with Padé resummation (Padé). The horizontal dotted line represents a 1% error.

where we recall that ωnlm
2 = ωnl

2a +m2ωnl
2b. Note that since the QNMs are complex, the coefficients

of the Taylor and Padé approximants are complex as well.
As suggested in Ref. [290], we shall use the “diagonal” Padé, P [1, 1], unless it is not accurate

due to the presence of a pole or a reduction of order in the polynomials, in which case we instead
use P [0, 2]. In practice, for the QNMs with n = 0, l = 2, 3 we shall always use P [1, 1] except for
m = 0 (since Eq. (2.129) reduces to a constant) and for the imaginary parts of the modes with
m = ±1, for which P [1, 1] has a pole close to the spin interval which we have considered. A similar
computation has been done in Ref. [289], where instead P [1, 1] was used for all values of m.

We have computed the QNMs of a slowly rotating BH in GR, using the direct integration
method, to first order in the spin (neglecting O(ā2) terms in the background and in the perturbation
equations), and then to second order, with the QNMs Taylor-expended to the same order, as Eqs.
(2.119) or (2.127) respectively. Moreover, the QNMs at second order in the spin have been resummed
using Padé approximants. Finally, we have compared the frequencies of these modes with those of
Kerr BHs (see e.g. [279]), by computing the discrepancies

δωnlm(ā) =
ωnlm
T,P − ωnlm

Kerr

ωnlm
Kerr

, (2.131)

where the subscripts ’T’ and ’P’ refer to the modes (computed in slow-rotation expansion) Taylor-
expanded and Padé resummed, respectively, while the subscript "Kerr" refers to the modes of Kerr
BHs.

In Fig. 2.5 we show real and imaginary parts of the discrepancies (2.131) as functions of ā, for the
QNMs with (nlm) = (022) and (nlm) = (033), which are expected to be the most excited in typical
binary BH coalescences [133, 178, 292, 293]. The curves labeled O1, O2 show the discrepancies
between the modes of Kerr BHs and those computed within the slow-rotation approximation, to
O(ā) and to O(ā2), respectively. Instead, the curves labeled Padé show the discrepancies with the
O(ā2) modes resummed using Padé approximants.

At first order, the discrepancy of the Taylor expansion is smaller than 1% as long as ā ≲ 0.22;
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when we include the second order correction, the discrepancy is smaller than 1% for ā ≲ 0.4.
Applying the Padé resummation improves the accuracy of the expansion, which is accurate to ∼ 1%

for ā ≲ 0.6 and to ∼ 2% for ā ≲ 0.7.
Repeating the analysis for modes with different values of m, we obtain the same (or better)

accuracy for the Padé-resummed modes. However, we need to employ the approximant P [0, 2]
instead of P [1, 1] in two cases: when m = 0, for which Eq. (2.129) reduces to a constant, and for
the imaginary parts of the modes when m = ±1. In the latter case, the Padé approximant P [1, 1]
leads to a larger error, compared with that of the Taylor approximant, for ā ∼ 0.7 6; if, instead, we
use P [0, 2] for the imaginary parts of the modes with n = 0, l = 2, 3, m = ±1, the error is smaller
than 1% for ā ≲ 0.7.

We will apply this Padé Resummation analysis also to a modified theory of gravity in Chapter
6, where the results obtained here for the GR case will be used as a reference of the extent to which
we can consider our slow-rotation approximation to be reliable.

2.7 Going Beyond General Relativity

In this section we are going to summarize schematically some of the main differences we expect
from the framework described in this chapter, when going to a modified theory of gravity, such as
EdGB, introduced in the next chapter:

• The separability of the radial and angular parts of the perturbation equations without the
introduction of couplings is not guaranteed to be possible when there are modifications of the
GR and it is a characteristic that reflects how special the Schwarzschild and Kerr solutions
are;

• There is not a single master equation like the Zerilli/Regge-Wheeler equations or the Teukolsky
equation describing BH perturbations. Some methods to compute the QNMs – including
Leaver, WKB and Pöschl-Teller [1] – rely on having an effective potential such as the ones
in (2.25)-(2.27). In modified theories of gravity, however, it is not always possible to find
an effective potential and consequently use these methods. However, for some cases, it was
possible to apply them even if the equations are coupled ( see e.g. Refs. [294, 295]);

• If we introduce an additional dynamical field that couples to the curvature in the theory’s
action, we expect isospectrality to be broken, due to the coupling of the new field with either
the axial or polar sector [18];

• The null geodesic correspondence [296–298], which assumes that QNMs, for l ≫ 1, correspond
to waves trapped near the peak of the potential barrier for null particles (the photon sphere)
and slowly leaking out, is a method useful to compute QNMs in GR, but it is not necessarily
valid beyond-GR, especially when there are additional degrees of freedom and isospectrality
is broken;

• The no-hair conjecture valid in GR [287] might no longer hold, and the QNM spectrum can
depend on additional hairs.

6we believe this is due to the presence of a pole close to the considered range of values for the spin.
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• The physical quantities, such as the mass and angular momentum, will take into account the
GR modifications;

• When the background spacetime is no longer a solution of Einstein GR equations, one needs
to find a new suitable definition of the tortoise coordinate that reproduces specific properties.
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Chapter 3

Black Holes in Einstein-dilaton
Gauss-Bonnet Gravity

In the previous chapter, we reviewed some applications of BH perturbation theory in the context
of General Relativity that will be useful when including modifications of the theory.

We introduced some of the needs and the reasons to go beyond Einstein’s theory of General
Relativity in Ch. 1. Alternative theories have been proposed, which make specific and, thanks to
present and future technology, potentially testable predictions of how exactly GR would be modified
[136]. To do that, we should be able to predict the structure and dynamics of compact objects and
the gravitational radiation they emit, whether isolated or in binary systems. Of course, even if we
add additional degrees of freedom, we still must have a theory that is cosmologically viable and
consistent with GR in the intermediate energy regime, where we know that GR works astonishingly
well.

The possible ways to modify GR are countless, but we can divide them into groups depending
on which fundamental assumption of the theory is put aside [18]. Lovelock’s theorem states that
[299, 300]:
In four spacetime dimensions the only divergence-free symmetric rank-2 tensor constructed solely
from the metric gµν and its derivatives up to second differential order, and preserving diffeomorphism
invariance, is the Einstein tensor plus a cosmological term.
This leads naturally to the Einstein equations:

Gµν + Λgµν = χTµν . (3.1)

The divergence-free condition on Einstein tensor implies ∇µT
µν = 0, that is necessary for geodetic

motion, and it guarantees the validity of the weak equivalence principle, i.e. the universality of free
fall (the curves followed by test particles do not depend on their mass or composition) [301]. The
equations of motion (3.1) can be obtained from the variation of the Einstein-Hilbert action:

S =
c3

16πG

∫
d4x

√
−gR+ SM , (3.2)

with SM the Standard Model action.
There are at least four nonequivalent ways to circumvent Lovelock’s theorem:
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• Additional fields: we can add extra degrees of freedom in the form of fundamental (scalar,
vector, tensor) dynamical fields coupled with the metric tensor, leaving more options to con-
struct the left-hand side of (3.1). Alternatively, we drop the assumption that Tµν enters
linearly in the Einstein equations, so that the right-hand side is a nonlinear combination of
the stress-energy tensor such that ∇µT

µν = 0 still holds. The coupling to matter shall then
be different.

• Violations of diffeomorphism invariance: we can introduce violations of Lorentz invari-
ance (a particular case of diffeomorphism) at high energies or we can attribute mass to the
mediator of gravity, which is required to be, according to the diffeomorphism invariance, a
massless spin-2 field.

• Higher dimensions: Einstein-Hilbert action (3.2) is not unique in higher dimensions and
the theories of gravity in dimensions other than four have a strong theoretical interest (string
theories, dependence on spacetime dimension).

• WEP violation: giving up the divergence-free request means sacrificing the condition
∇µT

µν = 0 and thus the weak equivalence principle (WEP). However, this principle has been
tested with excellent precision, so this case is less appealing.

The theory we shall focus on is Einstein-dilaton Gauss-Bonnet (EdGB) gravity, which fits in
the first case and it is one of the simplest modifications of gravity that features the addition of a
scalar dynamical field (the dilaton field) coupled to a scalar combination of the metric. It is natural
to couple this scalar field to a quadratic term in the curvature tensor so that in the weak-field
regime this contribution would be negligible and GR would be recovered, in line with the current
observational constraints.

If we consider Einstein-Hilbert action (3.2) as the first term in an expansion containing all
possible curvature invariants (the Ricci scalar is the simplest), as suggested by low-energy effective
string theories [54], quadratic curvature terms already make the theory renormalizable [55]. In
general, this carries the cost of having higher-derivative terms in the field equations, thus being
subject to Ostrogradsky’s instability [302], which may lead to ghosts or other pathologies.
Therefore, if we consider a theory with only linear and quadratic terms in the action, we should
consider it as effective, i.e. a truncation of a theory with additional terms that are neglected in the
perturbative regime.

At the second order in the curvature, the only possible independent curvature invariants are

R2, R2
µν , R

2
µνρσ

∗RR (3.3)

where R2
µν ≡ RµνR

µν , R2
µνρσ ≡ RµνρσR

µνρσ, ∗RR = 1
2Rµνρσϵ

νµλκRρσ
λκ (Pontryagin or Chern-Simons

scalar). Of particular interest are the Pontryagin scalar and the Gauss-Bonnet (GB) scalar,

R2
GB ≡ R2 − 4R2

µν +R2
µνρσ , (3.4)

because they emerge in low-energy realizations of string theory. One of the main candidates for a
theory of quantum gravity is in fact string theory [303]. Since geometrical studies are still difficult
in superstring theories, it is useful to work with effective theories that are a low-energy truncation of
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string theory. One paradigmatic example is the one-loop corrected four-dimensional effective theory
of the heterotic superstrings at low energies known as Einstein-dilaton-Gauss-Bonnet (EdGB) theory
[304]. If we consider the GB scalar (3.4) alone in the action, it does not yield modifications to
Einstein’s equations in four spacetime dimensions because it would appear in an integral that is
a topological invariant and only accounts for boundary terms. Thus, in the EdGB theory, this
quadratic term in the curvature is coupled to a scalar dynamical field, the dilaton field φ, in an
exponential form eφ. The more general theory in which the coupling with the dilaton field can
appear in other functional forms is referred to as Einstein-Scalar Gauss-Bonnet (ESGB).

Quadratic terms in the action are responsible for changing the behavior of stationary BHs. If
we were to include in the linear gravitational action one or more scalar fields, we would still obtain
vacuum BH solutions that are the same as in GR [197, 198, 305], since this theory would still satisfy
the no-hair theorems (see e.g. [306–308] for cases in which these theorems can be violated). Instead,
including quadratic terms in the action, besides modifying the strong-field regime, guarantees that
stationary BH solutions are different from GR.

EdGB gravity is considered one of the simplest and most consistent high-energy extensions
of GR because the GB term is such that it avoids some pathological features, like ghosts [302].
Indeed, it avoids Ostrogradsky instability thanks to the field equations being of second order in
time (this also allows the use of the Regge-Wheeler gauge) for any coupling, not only in the weak-
coupling limit as we would have for Effective Field Theories (EFTs) [18, 208]. Furthermore, the
post-Newtonian expansion of this theory (i.e. in powers of v/c, with v the velocity and c the speed
of light) is identical, to the lowest order, to that of GR, which means that it passes all Solar system
experimental tests of gravity at intermediate scales [309], where the deviations from Newton’s theory
of gravity are small. The differences arise only at higher orders, i.e. large curvature; thus, ideal
places to look for these modifications are in the strong-field regime, near compact objects such as
BHs.

In classical Einstein-Maxwell theory, the no-hair theorem states that BHs are characterized
only by three parameters [142, 287]: mass M, electric charge Q (∼ 0 for astrophysical BHs) and
angular momentum J ≡ āM2 ≤M2. EdGB gravity admits BH solutions, which are scalarized, i.e.
endowed with a non-trivial scalar field profile outside the horizon [210, 212, 213, 215–217, 310], thus
they possess an additional scalar hair and they are usually called Dilatonic Black Holes (DBHs)
[201, 230]. One possibility of ruling out these alternative theories is therefore given by testing the
no-hair theorem for example through gravitational wave observations [211, 311]. The dilaton field
introduces an additional force interaction coupled with the gravitational interaction. Given this
additional interaction, two DBHs in a binary orbit would decay faster than what is predicted by
GR, due to the additional radiation channel associated with the scalar emission [180].

The stability under different perturbations of stationary EdGB BHs, studied in Refs. [3, 229,
230, 312], makes the BH solutions in this theory proper alternative spacetimes to the Schwarzschild
and Kerr metrics found in GR, which are not solutions of EdGB. We remark that the general well-
posedness of ESGB, necessary to perform numerical relativity simulations of merger events, is still
under investigation [226, 313, 314].

One of the most important imprints left by the modification of GR on observable quantities is
given by the shift in the QNM spectrum with respect to the GR values. In fact, BH QNMs are
intrinsically linked to the underlying theory of gravity, as they depend on the same quantities that
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can either support or confute the no-hair conjectures: QNMs in GR depend only on the mass and
spin of the BH, while in EdGB they would depend also on the additional scalar charge connected
to the presence of the dilaton field [3, 180].
Therefore, if we had the QNM spectrum in EdGB gravity, we would be able to compare the the-
oretical predictions with present and future GW observations to look for GR deviations [118, 137,
178, 311]; this approach is called gravitational spectroscopy [1].

In this Chapter, we define the Black Hole solution in EdGB gravity, which we will use as
background to apply BH perturbation theory in the following chapters and ultimately find the
corresponding QNM spectrum.

3.1 Action and Field Equations

EdGB gravity is obtained from the Einstein-Hilbert action (3.2) describing GR, by introducing an
additional quadratic term in the curvature in the following way

S =

∫
d4x

√
−g

16π

(
R− 1

2
∂µφ∂

µφ+
αGB

4
eφR2

GB

)
+ Sm , (3.5)

where we adopt geometric units G = c = 1,

R2
GB = RµνρσR

µνρσ − 4RµνR
µν +R2 (3.6)

is the Gauss-Bonnet term, and Sm is the matter action, which we neglect since we are assuming
that the matter is not coupled with the dilaton field φ, and because we are interested in studying
the ringdown emission of isolated black holes.
As already mentioned, since the Gauss-Bonnet term is topological, it is coupled with the scalar field
φ, the dilaton, in an exponential form through a coupling constant αGB. Because we are introducing
a scalar field, we also have the corresponding kinetic term in the action.

EdGB gravity belongs to the wider class of theories, called Einstein-Scalar Gauss-Bonnet (ESGB),
in which, instead of the exponential coupling eφ, there is a generic function of the scalar field f(φ).
When f ′(φ) = df/dφ ̸= 0, as for EdGB, BHs always support scalar hair. When instead f ′(φ) = 0

for some constant φ0, as for the Gaussian f(φ) ∝ exp(−φ2) and quadratic f(φ) ∝ φ2 couplings,
the theory admits the same stationary, asymptotically flat BH solutions as GR [315], together with
additional scalarized BH solutions [316–319].

The coupling between the curvature and a scalar field implies that the gravitational interaction
is no longer mediated by the curvature only, but also by the dilaton field. Of course, this is expected
to be a small effect since the Gauss-Bonnet term is quadratic in the curvature and thus negligible
in the weak-field regions of spacetime, where we know that the predictions of GR are correct.

By extremizing the action (3.5) with respect to the metric and to the scalar field, we get the
equations

□φ =
1√
−g

∂µ(
√
−ggµν∂νφ) =

αGB

4
eφR2

GB , (3.7)

Gµν =
1

2
∂µφ∂νφ− 1

4
gµν(∂ρφ)(∂

ρφ)− αGBKµν ≡ Tµν , (3.8)
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where
Kµν =

1

8
(gµρgνσ + gµσgνρ)ϵ

δσγξ∇ϵ

(
R̃ρϵ

γξ∂δe
φ
)

(3.9)

and
R̃µν

ρσ = ϵµνδγRδγρσ . (3.10)

The tt component of the effective stress-energy tensor Tµν in Eq. (3.8) can be seen as the local
energy density E = −Ttt, which can become negative [201]. Since this is a main hypothesis of the
no-hair theorem [197], in EdGB this theorem is in fact evaded [229] and black holes are endowed
with an additional scalar hair, the dilaton charge.

From the scalar field equation (3.7) we see that, at the leading order, the correction to the scalar
field is of the order αGB. From Eq. (3.8) we see that the corrections to the metric quantities are
instead of the order α2

GB, since there is either a scalar field multiplied for αGB or two scalar fields.
The same holds true for the QNMs, which will get corrections at O(α2

GB) in the gravitational sector
of the spectrum, and at O(αGB) in the scalar sector [3, 4].

3.2 Black Hole Solutions in Einstein-dilaton Gauss-Bonnet: Per-
turbative Approach

Before being able to compute the QNMs in EdGB gravity, we have to define BHs solutions in EdGB.
We proceed gradually, first considering the static case and then introducing the rotation, following
the approach of Ref. [208].

3.2.1 Static Case

To compute the metric of a static, nonrotating DBH, we adopt a perturbative approach with respect
to the EdGB coupling constant ζ ≡ αGB/M

2, meaning that we start from the GR solution and
then, considering the small coupling limit ζ ≪ 1, we add perturbative corrections that we determine
analytically solving the field equations (3.7)-(3.8). Assuming spherical symmetry, a dilatonic BH
will be described by the spacetime

ds2 = −A(r)dt2 + 1

B(r)
dr2 + r2dΩ2 = −A(r)dt2 + 1

B(r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
(3.11)

and by the dilatonic field profile φ(r), with A(r), B(r), φ(r) functions to be determined – their
dependence on αGB is left implicit. These functions must be such that they satisfy regular boundary
conditions, allowing the presence of a horizon and describing asymptotically flat spacetimes.

Far away from the BH, the unknown functions can be expanded in a power series 1/r. Substi-
tuting them into the field equations, we can express these expansions in terms of three parameters,
namely the asymptotic value of the dilaton field φ∞, the Arnowitt-Deser-Misner mass M , and the
dilaton charge D, defined as [320]

D = − 1

4π

∫
d2Σµ∇µφ , (3.12)
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where the integral is over a two-sphere at spatial infinity. Asymptotically, we shall have [230]

A(r) = 1− 2M

r
+O

(
1

r3

)
(3.13)

B(r) = 1− 2M

r
+
D2

4r2
+O

(
1

r3

)
(3.14)

φ(r) = φ∞ +
D

r
+
MD

r2
+O

(
1

r3

)
, (3.15)

where we can fix φ∞ = 0 if we require that the scalar field vanishes at infinity. Thus, at infinity,
we can fully characterize the black hole with the parameters (M,D). It can be shown that for
each value of M (and for a given value of αGB) there is only one solution describing a nonrotating
dilatonic BH, meaning that D is a secondary hair, as it can be determined in terms of the mass M .

At the horizon, the behavior of the functions can be described by the ansatz [201]

A(r) = a1(r − rH) + a2(r − rH)2 +O((r − rH)3) (3.16)

B(r) = b1(r − rH) + b2(r − rH)2 +O((r − rH)3) (3.17)

φ(r) = φH + φ′
H(r − rH) + φ′′

H(r − rH)2 +O((r − rH)3) , (3.18)

which can be verified a posteriori from the field equations (3.7)-(3.8), along with the values of the
coefficients in the expansion. When solving the field equations evaluated near the horizon, one finds
a solution for the derivative of the dilaton field

φ′
H =

rH
αGB

e−φH

(
−1±

√
1− 6α2

GB

e2φH

r4H

)
, (3.19)

with the sign + corresponding to the solution that guarantees asymptotic flatness. It can be verified
that a1 is also a function of φ′

H , while b1 is a constant that can be fixed requiring asymptotic flatness.
The condition to have real solutions for the scalar field in (3.19)

eφH ≤ 1√
6αGB

r2H (3.20)

translates to the fact that black hole solutions for a fixed horizon radius can exist only if the GB
coupling constant αGB is smaller than a critical value, given by the magnitude of the horizon scale.

These black hole solutions are uniquely characterized by two parameters (φH , rH), which corre-
spond to a unique choice of (M,D).

We now note that the field equations are invariant under the simultaneous transformation

φ→ φ+ φ̂ (3.21)

r → reφ̂/2 (3.22)

with φ̂ a constant. As a consequence of the radial rescaling, the two other asymptotic parameters
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(M,D), found expanding in 1/r, are then rescaled in the following way

M →Meφ̂/2 (3.23)

D → Deφ̂/2 . (3.24)

Using this invariance, we can rescale the scalar field and require that its asymptotic value is finite 1.
In order to describe different BH solutions, it is then sufficient to vary only one parameter between
rH and φH . Following Ref. [201], we keep rH fixed while varying φH . As found numerically in
Ref. [229], after the rescaling, Eq. (3.20) can be expressed in terms of the coupling constant of the
theory as

0 <
αGB

M2
≲ 0.691 , (3.25)

which correspond to D/M ≲ 0.572. For larger values of ζ ≡ αGB/M
2, it is not possible to impose

physical boundary conditions for the field equations and thus no dilatonic BH solution can exist, as
it would present a naked singularity [213].

Since the value of the coupling constant of the theory αGB is universal, meaning it has the
same value for every black hole, the existence of the lightest BH observed, J1655-40, with mass
M ≃ 5.4M⊙ implies

√
αGB ≲ 6.6 km; if the secondary object in GW190814, which has a mass

M ≃ 2.6M⊙, turns out to be a BH, then
√
αGB ≲ 3.3 km [132] 2. For a summary of the most recent

constraints from gravitational wave events, see e.g. Ref. [235].
√
αGB provides an indication of the

scale at which we expect the EdGB corrections to manifest.

Perturbative Approach

Defining the dimensionless coupling constant

ζ ≡ αGB

M2
, (3.26)

we must have 0 < ζ < ζmax ≃ 0.691 to guarantee the existence of a dilatonic black hole, as
stated by Eq. (3.20) [229]. Since ζmax is strictly less than unity, we are motivated to adopt a
perturbative approach to find analytically the functions A(r, ζ), B(r, ζ), φ(r, ζ) that describe the
spherically symmetric spacetime. This means assuming that they deviate only perturbatively from
the GR values of a Schwarzschild BH, A(r) = B(r) = 1− 2M/r, φ(r) = 0, which are recovered in
the limit ζ → 0.
Explicitly, we shall write

A(r, ζ) = 1− 2M

r
+

Nζ∑
j=2

ζjA(j)(r) (3.27)

B(r, ζ) = 1− 2M

r
+

Nζ∑
j=2

ζjB(j)(r) (3.28)

1We shall then take this constant to be zero at infinity. A non-zero value, which would translate to a cosmological
constant, hence the same for every BH, could be reabsorbed by a redefinition of αGB .

2For a comparison with other bounds in the literature arising from astrophysical observations [204, 321], taking
into account differences in notations and conventions, see Ref. [73].
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φ(r, ζ) =

Nζ∑
j=1

ζjφ(j)(r) , (3.29)

where Nζ is the chosen order of the perturbative expansion – in our case Nζ = 6. As mentioned
in Sec. 3.1, in agreement with the equations (3.7)-(3.8), the leading order corrections to the metric
functions must be O(ζ2), while for the dilaton field O(ζ).
By substituting these expansions in the field equations, integrating them order by order in ζ, and
requiring regularity conditions at the boundaries, we are able to determine the expansion coefficients.
In particular, the integration constants are fixed by requiring the right behavior of the functions at
the horizon rH , e.g. A(r → rH) = 0, and at infinity, where we assume φ(r → ∞) = 0. In this way
we obtain A(j)(r), B(j)(r), φ(j)(r); their expressions can be found in the Supplemental Material
[322].

Another possibility explored in the literature is not to adopt the small coupling limit and instead
to solve the Einstein equations numerically to find A(r), B(r), φ(r) in the whole domain of ζ, as done
in Refs. [3, 201]. Throughout the thesis, however, we will always use the perturbative framework.

Since we have found the metric and dilaton field for a nonrotating configuration starting from
the Schwarzschild BH solution, physical quantities such as the mass M , scalar charge D, the horizon
rH must be suitably defined, as shown in Appendix C.

3.2.2 Rotating Case

In order to find the expression of the metric and dilaton field of a rotating black hole in EdGB
gravity, we start from the nonrotating configuration of the previous section and then apply the slow
rotation formalism, originally developed by Hartle [191], and summarized in Section 2.6 for GR.

The solution describing a stationary, rotating BH in EdGB gravity has been found numeri-
cally [209, 323], by solving non-perturbatively the field equations, and analytically [208, 229] in
terms of a perturbative expansion in the spin ā = J/M2, where J is the angular momentum of the
black hole. We will follow the latter approach.

A slowly rotating DBH can be described by the axially symmetric metric

ds2 = −A(r, ζ)[1 + 2h(r, θ, ζ)]dt2 +
1

B(r, ζ)
[1 + 2p(r, θ, ζ)]dr2

+ r2[1 + 2k(r, θ, ζ)]
[
dθ2 + sin2 θ(dφ−ϖ(r, θ, ζ)dt)2

]
(3.30)

that has the same form of (2.85), but with the additional dependence on ζ, and by the dilaton field
profile φ(r, ζ). A(r, ζ), B(r, ζ) are the functions of the nonrotating case described in Section 3.2.1,
while the functions h(r, θ, ζ), p(r, θ, ζ), k(r, θ, ζ), ϖ(r, θ, ζ), to be determined, define the deformation
of the spherically symmetric case induced by the rotation. Following the same strategy of Section
2.6, we further expand the metric and dilaton field by exploiting the symmetries of the problem and
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using the complete orthogonal basis given by the Legendre polynomials

ϖ(r, θ, ζ, ā) =

Nζ∑
j=0

Nā−q∑
n=1,3,5...

n∑
l=1,3,5...

ζj ānω
(nj)
l (r)

[
− 1

sin θ

dPl(cos θ)

dθ

]
(3.31)

h(r, θ, ζ, ā) =

Nζ∑
j=0

Nā−p∑
n=2,4,...

n∑
l=0,2,4...

ζj ānh
(nj)
l (r)Pl(cos θ) (3.32)

p(r, θ, ζ, ā) =

Nζ∑
j=0

Nā−p∑
n=2,4,...

n∑
l=0,2,4...

ζj ānp
(nj)
l (r)Pl(cos θ) (3.33)

k(r, θ, ζ, ā) =

Nζ∑
j=0

Nā−p∑
n=2,4,...

n∑
l=0,2,4...

ζj ānk
(nj)
l (r)Pl(cos θ) (3.34)

and

φ(r, θ, ζ, ā) =

Nζ∑
j=1

Nā−p∑
n=0,2,4,...

n∑
l=0,2,4...

ζj ānφ
(nj)
l (r)Pl(cos θ) , (3.35)

where Pl(θ) are the Legendre polynomials, Nζ , Nā are the orders of the expansions in the coupling
and in the spin, respectively. As usual, v = 0 (q = 0) when the order of the spin expansion Nã is
even (odd), whereas v = 1 (q = 1) otherwise.

Using the expansions in Eqs. (3.31)-(3.35), our goal is to integrate order by order in ζ the field
equations (3.7), (3.8), also expanded in the coupling constant, with suitable boundary conditions,
to find the functions ω(nj)

l (r), h(nj)l (r), p(nj)l (r), k(nj)l (r), ϕ(nj)l (r).
Separating in two steps the slow rotation and the small coupling approximation of Eq. (3.31),

at first order in the spin, we only have a modification in the gtϕ term due to ϖ(r, θ, ā, ζ) ≡ ā ω(r, ζ).
From the component Gtϕ of the Einstein equations (that is of order ā) we get

ω′′ +
ω′

rB (r − eφαGBBφ′)

{
− A′

A
+
[
r2B′ − rB

(
3eφαGBB

′φ′ − 8
)

− 2eφαGBB
2
(
3φ′ + rφ′2

) ]}
= 0 , (3.36)

where the prime denotes the radial derivative and αGB = ζM2. For αGB = 0 we recover the GR
result of Eq. (2.95). In order to get the EdGB corrections to the gravitomagnetic term, we now
perform the small coupling expansion ω(r, ζ) =

∑
j ζ

jω
(1j)
1 (r) and substitute Eqs. (3.27)-(3.29) in

the field equation (3.36), and solving them at each order j requiring asymptotic flatness.
At the leading order of the EdGB correction to the gravitomagnetic term, we find

ϖ(r, J, ζ) =

{
2J

r3
− ζ2J

3M2

80r5
+O

(
Jζ3

r6

)}
+O(J3) , (3.37)

where we have included any remaining integration constants (see Appendix C) in the definition of
the angular momentum J , as read-off from the asymptotic behavior of the gravitomagnetic term

ω → 2J

r3
(3.38)

similarly to what we did for the ADM mass and scalar charge.
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At the second order in the spin, the procedure is analogous to the one described in Section 2.6.1,
with the difference that now there is also the small coupling expansion in ζ: each equation, after
integrating the angular part exploiting the Legendre polynomials property (2.97), is then solved at
each order j.

As already mentioned, the integration process at each order in ā, ζ yields some integration
constants that can be either uniquely fixed or reabsorbed in the physical definitions, requiring that

• the metric is asymptotically flat, and the scalar field vanishes at spatial infinity;

• the condition for the existence of the horizon is satisfied, and perturbations are regular there;

• the physical mass M and angular momentum J of the DBH are the ones measured by an
observer at spatial infinity

The functions ω(nj)
l (r), h(nj)l (r), p(nj)l (r), k(nj)l (r), φ(nj)

l (r) and the final expression of the metric
and dilaton field can be found, up to order O(ā2, ζ6), in the Supplemental Material [322]. Our
results are in agreement with Maselli et al. [208], who made the computation up to order O(ā5, ζ7).

In the following we will consider as a background solution to perform BH perturbation theory
the expansion (3.30), together with (3.31)-(3.35) up to Nζ = 6 and Nã = 2. An estimate based on
the subsequent terms in the perturbation expansion shows that the truncation error on quantities
characterizing the background (such as the location of the horizon and the innermost stable circular
orbit) is ≲ 2% for ā ≤ 0.7 and ζ ≤ 0.6 [208].

The scalar charge D and horizon radius rH , found from the largest root of gϕϕgtt − g2tϕ = 0 (see
e.g. [324]), acquire corrections at the second order in the spin that can be expressed in terms of the
dimensionless coupling constant ζ and dimensionless spin ā = J/M2

rH
M

=
6∑

j=0

ζi(aj + bj ā
2) (3.39)

D

M
=

6∑
j=0

ζj(cj + dj ā
2) , (3.40)

with the coefficients, in agreement with Ref. [208], reported in Tab. 3.1. The two quantities are
shown, as functions of ζ and ā, in Fig. 3.1. We note that the scalar charge is not greatly affected by
the spin, while the horizon is more sensitive to it. We also see how DBHs are more compact with
respect to a GR black hole with the same mass and angular momentum [229]. It is also evident
the secondary hair nature of the scalar charge D, which is not an independent parameter, as it is a
function of the primary hair M (and of course of the coupling constant ζ).

In Ref. [229], where a slow-rotation approach together with a non-perturbative numerical
method for the EdGB correction has been employed, Pani et al. show how the angular veloc-
ity ω(r, ζ) of a DBH can be up to ∼ 40% higher than the one of a slowly rotating Kerr BH. Since
we are considering a rotating spacetime, ergoregions can develop and can be found by looking at
the surface where gtt vanishes. The width of the ergoregion for a DBH can be up to ∼ 50% larger
than for a slowly rotating Kerr BH [208]. This implies that, when we introduce perturbations to
the DBH, superradiance in EdGB is expected to be stronger than GR [229]. To the purpose of
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this thesis, which is the computation of QNMs of slowly rotating DBHs, it can be seen that the
superradiant regime is not relevant. Given the angular velocity at the horizon

ΩH = − lim
r→rH

gtϕ
gϕϕ

(3.41)

and the frequency ω of a perturbation ψ, near the horizon we would have ψ ∼ exp [−i(ω −mΩH)r∗]

so that, when ω < mΩH , an observer at infinity would see wave outgoing from the horizon. It can
be verified that the range of frequencies for which the condition ω < mΩH is satisfied corresponds
to the superradiant regime [325, 326]. Nonetheless, for the perturbations and values of spin and
coupling constant considered in the next chapters, the condition is never verified.

Finally, we note that the bound in Eq. (3.20) has been found non-perturbatively for stationary
nonrotating black holes. The maximum value ζmax for which we still have DBHs can be modified
for large rotation values [209]. In fact, the same bound can still be taken into account remembering
that the physical mass M has now corrections in spin included in its definition (see Appendix C).
Nonetheless, the bound on ζ does not actually appear in the small-coupling approach, which already
assumes ζ ≪ 1.

Rotating DBHs for finite values of coupling constant and spin have been studied numerically
in Ref. [209, 323], which is extremely useful if one wants to investigate their properties for large
values of these parameters – e.g. DBHs can exceed the Kerr bound and have ā > 1. However,
to study perturbations and QNMs of DBHs we found more practical working with the analytical,
perturbative framework, which is also motivated by the fact that we expect small deviations from
GR, especially in the ringdown GW signal.

ā=0
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Figure 3.1: The horizon radius (left panel) and dilaton charge (right panel) as a function of ζ for fixed
values of spin ā. The dotted black line on the right panel represent the asymptotic behavior D ∼ ζ/2 as
ζ → 0.
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Table 3.1: Values of the coefficients for the slow rotation and small coupling expansion of the horizon and
dilaton charge as written in Eqs. (3.39)-(3.40). (aj , cj) are the zeroth order in the spin coefficients, (bj , dj)
the second order.

EdGB expansion order rH/M D/M

j aj bj cj dj

0 2 −0.25 0 0
1 0 0 0.5 −0.125
2 −0.0766 −0.0053 0.1521 −0.0656
3 −0.0548 0.0034 0.0966 −0.0650
4 −0.0514 0.0074 0.0818 −0.0672
5 −0.0527 0.0122 0.0789 −0.0751
6 −0.0575 0.0181 0.0825 −0.0879
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Chapter 4

Quasinormal Modes of a Scalar Field on
a Slowly Rotating Dilatonic Black Hole

Before venturing into the analysis of gravitational and scalar perturbations together and the corre-
sponding QNMs, it is easier to first consider only scalar perturbations as an intermediate step.

In this chapter, we generalize the procedure described in Sec. 2.2 to the case of QNMs of a
test scalar field on a slowly rotating BH background in EdGB gravity. In particular, we want to
compare our results with those of Cano et al. [4], which are based on a different approach. While
we work with a perturbative expansion in the spin ā = J/M2, they consider a test scalar field on a
rapidly rotating BH background. In fact, they were able to extend Teukolsky formalism [155, 190]
for the scalar field to the EdGB case, finding a radial master equation and using a high-order spin
expansion. So far, this result has been achieved only for the scalar field case, while our approach
can be straightforwardly generalized to the gravitational case. Nonetheless, the different hypotheses
behind the two frameworks will require care when comparing the results.

The procedure we follow is the one used in [67], which implements and extends the approach of
[159] to slowly rotating EdGB black holes.

4.1 Perturbation Equations

Let us consider a slowly rotating DBH, which is described by the metric given by Eqs.(3.30)-(3.34)
and dilaton field φ in Eq. (3.35). We introduce perturbations of a massless test scalar field Φ (not
to be confused with the dilaton scalar field), which satisfies the Klein-Gordon equation

∇µ∇µΦ = 0 (4.1)

in the slowly rotating DBH background up to second order in the spin. The metric enters explicitly
in (4.1) through the covariant derivatives

1√
−g

∂µ
[√

−ggµν∂νΦ(t, r, θ, ϕ)
]
= 0 . (4.2)
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Since the perturbation is a scalar, we can expand it using the usual scalar spherical harmonics

Φ(t, r, θ, ϕ) =
1

r

∑
lm

Φlm(t, r)Y lm(θ, ϕ) , (4.3)

where the radial factor 1/r has been arbitrarily factored out just for practical reasons. We look for
solutions with the time dependence Φlm(t, r) = Φlm(r)e−iωt.
Using χ ≡ cos θ to simplify the notation and substituting the expansion above, Eq. (4.2) can be
symbolically rewritten to make the angular dependence explicit, as(

clm1 χ2 + clm2

)
Ylm + clm3 χ(χ2 − 1)∂χYlm = 0 , (4.4)

where the sum over lm is left implicit. The coefficients clm1 , clm2 , clm3 are radial functions which con-
tain the scalar field perturbation Φlm(r) (see the Supplemental material for the explicit expression
[322]).

From the definition and properties of the spherical harmonics one finds the relations

χ2Ylm =
(
Q2

l+1m +Q2
lm

)
Ylm +Ql+1mQl+2mYl+2m +QlmQl−1mYl−2m (4.5)

χ(χ2 − 1)∂χYlm =
[
lQ2

l+1m − (l + 1)Q2
lm

]
Ylm + lQl+1mQl+2mYl+2m −QlmQl−1m(l + 1)Yl−2m

(4.6)

with

Qlm ≡
√
l2 −m2

4l2 − 1
. (4.7)

Using these relations, we can remove the angular derivative from Eq. (4.4), at the cost of introducing
couplings with different harmonic indices l ± 2, while the index m remains unaffected

clm2 Ylm + clm1
[
Q2

l+1m +Q2
lm

]
Ylm + clm3

[
lQ2

l+1m − (l + 1)Q2
lm

]
Ylm + clm1 Ql+1mQl+2mYl+2m

+ clm3 lQl+1mQl+2mYl+2m + clm1 QlmQl−1mYl−2m − clm3 (l + 1)QlmQl−1mYl−2m = 0 . (4.8)

Taking advantage of the orthogonality of the spherical harmonics
∫
dΩY ∗

l′m′Ylm = δl′lδmm′ , we can
remove the implicit sum over all the harmonic indices and focus on a single lm mode by multiplying
Eq. (4.8) by Y ∗

l′m′ and by integrating over the solid angle (for more details see App. F). Finally, we
find the radial differential equation

clm2 + clm1
(
Q2

l+1m +Q2
lm

)
+ clm3

[
lQ2

l+1m − (l + 1)Q2
lm

]
+ cl−2m

1 QlmQl−1m

+ cl−2m
3 (l − 2)QlmQl−1m + cl+2m

1 Ql+1mQl+2m − cl+2m
3 (l + 3)Ql+1mQl+2 = 0 . (4.9)

Substituting the definitions of the coefficients clmj (j = 1, 2, 3) and expanding in ā = J/M2 up to
second order, the previous equation takes the form

Φ′′
lm +

1

2

(
A′

A
+
B′

B

)
Φ′
lm + VlmΦlm + ā2

[
C1,l−2mΦ′

l−2m + C2,l+2mΦ′
l+2m + C3,lmΦ′

lm

+ C4,l−2mΦl−2m + C5,l+2mΦl+2m + C6,lmΦlm

]
= 0 , (4.10)

where we have introduced new radial coefficients Ci,lm (i = 1, ..., 6) and A,B are the radial functions
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appearing in gtt, grr – see Eq.(3.30). In the limit ā = 0 we recover the expression (2.6) (with µ = 0,
being Φ a massless scalar field). Denoting with the superscript (0) the quantities appearing for
ā = 0, we define the potential Vlm as

Vlm ≡ V
(0)
l + ā Tlm , (4.11)

with

V
(0)
l ≡ 1

AB

[
ω2 − A′B +B′A

2r
−A

l(1 + l)

r2

]
(4.12)

Tl ≡ −2mωω
(1)
1 (r)

AB
(4.13)

where ω
(1)
1 ≡

∑Nζ

j ζjω1j
1 is the first-order spin coefficient of the background expansion (3.31),

describing the gravitomagnetic term. In GR ω
(1)
1 = 2J/r3.

Let us suppose we wanted to solve Eq. (4.10) as it is, for l = 2, to find the perturbation function
Φ2. Then, we would also need the solutions for l = 0 and l = 4, which, in return, would depend
on the l = 6 solution, and so on; this means that we would have to solve an infinite set of coupled
differential equations. In this case we could choose a maximum value for the harmonic index Lmax

and truncate the set of equations to include only up to l = Lmax.
However, if the goal is the computation of QNMs up to order O(ā2), the problem can be simplified

with some considerations about the spin orders of the different perturbation functions that enter into
the equation. First, keeping the spin expansion only up to the second order, the functions Φlm,Φ

′
lm

appearing in square brackets in Eq. (4.10), can be taken to be as the corresponding nonrotating
functions, meaning that they satisfy

Φ′′
lm

(0)
+

1

2

(
A′

A
+
B′

B

)
Φ′
lm

(0)
+ V

(0)
l Φ

(0)
lm = 0 (4.14)

because, due to the factor ā2 in front, the higher-order terms would contribute at O(ā3).
Secondly, let us consider the case in which a scalar field perturbation with index l is excited.

At zeroth order in the spin no other l′ ̸= l is present, while the l ± 2 perturbations are excited
only at O(ā2), since they appear at that order in (4.10). This translates into the fact that the l
perturbation can be expanded as

Φlm = Φ
(0)
lm + āΦ

(1)
lm + ā2Φ

(2)
lm , (4.15)

while the l ± 2 will be of order O(ā2)

Φl±2m = ā2Φ
(2)
l±2m . (4.16)

Hence, we see that the terms with l ± 2 would contribute to the QNM spectrum only at O(ā4), so
that, to compute the modes at second order in rotation, we can simply solve the equation without
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couplings

Φ′′
lm +

1

2

(
A′

A
+
B′

B

)
Φ′
lm + VlmΦlm + ā2

[
C3,lmΦ′

lm + C6,lmΦlm

]
= 0 . (4.17)

To confirm these simplifications, in the perspective to apply them also in the gravitational case,
as described in Sec 2.6.3, we decided to compute the fundamental l = 2 mode in both ways: keeping
the l±2 couplings and truncating at Lmax = 4, and neglecting the couplings, i.e. solving Eq. (4.17).

We can recast the second order differential equation (4.10) in a set of first order differential
equations in the form

d

dr
Ψlm + V̂lmΨlm = Ŝl−2mΨl−2m + Ŝl+2mΨl+2m , (4.18)

where we have defined

Ψlm ≡

(
Φlm

Φ′
lm

)
, (4.19)

with the prime denoting differentiation with respect to r. The matrices V̂lm = V̂
(0)
l + āmV̂

(1)
l +

ā2V̂
(2)
lm , Ŝlm = ā2Ŝ

(2)
lm are two-dimensional square matrices. The expansions in the coupling parame-

ter ζ up to O(ζ4) of the components of these matrices are given in the supplemental Mathematica

notebook [322].
The first approach consists of computing the n = 0, l = 2 mode truncating the harmonic

expansion up to Lmax = 4, so we solve the three coupled equations (4.18) with l = 0, 2, 4 (the
equations with odd values of l are decoupled from those with even values, and correspond to different
modes). We can further recast this system as

d

dr
Z + ŴZ = 0 , (4.20)

where Z is the six-dimensional vector

Z ≡

Ψ0m

Ψ2m

Ψ4m

 (4.21)

with −2 < m < 2, and Ŵ is the six-dimensional matrix

Ŵ ≡

−V̂0 Ŝ2 0̂

Ŝ0 −V̂2 Ŝ4

0̂ Ŝ2 −V̂4

 , (4.22)

where 0̂ is the null 2× 2 matrix.
In the second approach, where the couplings Ψl±2 are neglected, we will simply solve

d

dr
Ψlm +

[
V̂

(0)
l + āmV̂

(1)
l + ā2V̂

(2)
lm

]
Ψlm = 0 , (4.23)

corresponding to Eq.(4.17).
After verifying that the two approaches actually produce the same results, we compare them

with the computation from [4]. Since in [4] the EdGB corrections are included up to O(ζ2), we also
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compute the scalar field QNMs up to Nζ = 2.

4.2 Quasinormal Mode Spectrum

The quasinormal modes are the solutions of the perturbation equation with Sommerfeld boundary
conditions, i.e. outgoing waves at infinity and ingoing waves at the horizon. With an appropriate
definition of the tortoise coordinate r∗ (see Appendix E), the scalar perturbation function Φlm

behave at the horizon and at infinity as

Alm
in e

−ikHr∗ +Alm
oute

ikHr∗ (r → rH)

Alm
in e

−iωr∗ +Alm
oute

iωr∗ (r → ∞) , (4.24)

where

kH ≡ ω −mΩH (4.25)

takes into account the frame-dragging effect due to the presence of rotation, being

ΩH = − lim
r→rH

g
(0)
tϕ

g
(0)
ϕϕ

(4.26)

the angular velocity at the horizon of locally nonrotating observers, calculated with respect to the
non-perturbed metric g(0)µν , and expanded at order O(ā2). Explicitly, at the second order in the
coupling constant and in the spin,

kH = ω −mΩH =ω − ā
m

rH

[
1

2
+ ζ2

7

512

]
+O

(
ζ3
)
+O

(
ā3
)
. (4.27)

At the horizon and at infinity, the couplings with l ± 2 in Eq.(4.10) are subleading, so that the
perturbation equation can be written in the familiar second-order differential equation form

Φlm
,r∗r∗ + k2HΦlm

,r∗r∗ = O(r − rH) (r → rH) (4.28)

Φlm
,r∗r∗ + ω2Φlm

,r∗r∗ = O
(

1

r2

)
(r → ∞) . (4.29)

The Sommerfeld boundary conditions are then

Φlm ∼ e−ikHr∗ (r → rH) (4.30)

Φlm ∼ eiωr∗ (r → ∞) , (4.31)

which are satisfied only by a discrete set of frequencies, the BH QNMs ω = ωR + iωI .
The tortoise coordinate r∗(r) maps the region outside the BH horzion r ∈ [rH ,∞] into r∗ ∈

[−∞,+∞]. Calling F (r) the function

F (r) ≡ dr

dr∗
, (4.32)
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we shall have

F (r) ∼ r − rH (r → rH)

F (r) → 1 (r → ∞) . (4.33)

Since the intrinsic geometry of the slowly rotating metric in the Hartle form is nonspherical [208],
it is not straightforward to define a tortoise coordinate that maps null geodesics into straight lines,
as one can do for Schwarzschild and Kerr. Thus, in this case, we can find the explicit expression of
F (r) requiring the property that, using the tortoise coordinate, the perturbation equation reduces,
at the boundaries, to Eqs. (4.28)-(4.29). These conditions allow some arbitrariness and can lead to
different choices; however, we verified that different options, which still satisfy Eqs. (4.28)-(4.29),
yield negligible differences in the QNMs, compatible with numerical intrinsic uncertainty. Imposing
the stronger requirement at infinity

Φlm
,r∗r∗ + ω2Φlm

,r∗r∗ =
l(l + 1)

r2
Φlm +O

(
1

r3

)
(r → ∞) , (4.34)

the function F (r) is uniquely determined and, up to O(ζ2) and O(ā2) is

F (r) =
(
1− rH

r

){
1− ā2

rH(r2 + rrH + r2H)

8r3
− ζ2

[ rH
3840r4

(147r3 + 117r2rH − 526rr2H + 263r3H)

+ ā2
rH

30720r3
(375r2 + 435rrH + 343r2H)

]}
. (4.35)

Proceeding as in Sec. 2.5 and working with the full vectorial form of Eq. (4.18), we find (by direct
integration from the horizon) three independent solutions ZH

i (i = a, b, c) satisfying the boundary
conditions at the horizon (4.30), and (by direct integration from infinity) three independent solutions
Z∞

i satisfying the boundary conditions at infinity (4.31). Thus, we define the six-dimensional square
matrix containing these solutions

X̂ =

Ψ0H
a Ψ0H

b Ψ0H
c Ψ0∞

a Ψ0∞
b Ψ0∞

c

Ψ2H
a Ψ2H

b Ψ2H
c Ψ2∞

a Ψ2∞
b Ψ2∞

c

Ψ4H
a Ψ4H

b Ψ4H
c Ψ4∞

a Ψ3∞
b Ψ4∞

c

 . (4.36)

The QNMs ωnlm are found by requiring

detX̂(ωnlm) = 0 . (4.37)

4.2.1 Boundary Conditions

The procedure of the numerical integration is analogous to the one for GR described in Sec 2.5.1,
but now we must take into account the perturbative expansions in ζ and ā. In particular, to
accommodate the fact that the numerical integration boundaries lie in a smaller range [RH =

rH(1 + ϵ), R∞] with respect to the physical boundaries [rH ,∞) (see Fig. 2.3), we shall perform an
expansion of the perturbation functions in powers of r− rH near the horizon and 1/r near infinity.
Calling Nā, NH/∞ the expansion orders in the spin and in the radius, respectively, at the numerical
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horizon r = RH ∼ rH we shall have

Φl(ω, r ∼ rH , ζ) = e−ikHr∗
Nā∑
j=0

NH∑
i=0

ājϕHl,ij(ω, ζ)(r − rH)i (4.38)

Φ′
l(ω, r ∼ rH , ζ) = e−ikHr∗

Nā∑
j=0

NH∑
i=0

ājξHl,ij(ω, ζ)(r − rH)i−1 , (4.39)

while at the numerical infinity r = R∞

Φl(ω, r → ∞, ζ) = eiωr∗
Nā∑
j=0

N∞∑
i=0

āj
ϕ∞l,ij(ω, ζ)

ri
(4.40)

Φ′
l(ω, r → ∞, ζ) = eiωr∗

Nā∑
j=0

N∞∑
i=0

āj
ξ∞l,ij(ω, ζ)

ri
, (4.41)

where the asymptotic behavior can be verified a posteriori from the perturbation equations. In our
computation we have set Nā = 2, NH = 11, N∞ = 13. The coefficients ϕHl,ij , ξ

H
l,ij , ϕ

∞
l,ij , ξ

∞
l,ij are found

solving the perturbation equations at each order in r− rH or 1/r after substituting the expansions
(4.38)-(4.41), and are then expanded in ζ.
Following this procedure, we find that there is a couple of free parameters (one for the horizon
and one for infinity) not constrained by the equations, for example ϕHl,00, ϕ

∞
l,00. Fixing arbitrarily

these parameters is equivalent to choosing different vectors of the solution basis that constitutes
the matrix X̂ in Eq. (4.36): (ϕH0,00, ϕ

H
2,00, ϕ

H
4,00) identify the outgoing solutions ZH

i satisfying the
horizon boundary condition (4.38)-(4.39), while (ϕ∞0,00, ϕ∞2,00, ϕ∞4,00) identify the ingoing solutions Z∞

i

satisfying the infinity boundary conditions (4.40)-(4.41).

4.2.2 Results

Since we are working at order O(ζ2) and O(ā2) in the perturbative framework, we compute the
QNMs for different values of ζ, ā in the range ζ ≲ 0.15 and ā ≲ 0.1, and then we fit the data,
obtaining the following analytical expressions for the (n, l,m) = (0, 2, 2) mode 1

Mω022
R = 0.48365 + 0.15049ā+ 0.07309ā2 + ζ2

(
0.00653 + 0.00945ā+ 0.00523ā2

)
(4.42)

Mω022
I = −0.09676 + 0.00014ā+ 0.00553ā2 + ζ2

(
0.00048 + 0.00006ā+ 0.00081ā2

)
. (4.43)

We find that the shift due to EdGB with respect to GR is the same in the two approaches described
in the previous section, one including the l ± 2 couplings and truncating at Lmax = 4, and one
without couplings, up to a relative difference ∼ 10−6 for ā = 0.1. This being a subleading and
negligible difference, we think it is entirely due to the numerical precision, thus we can consider the
approach that neglects the l ± 2 couplings to be validated confidently.

1In this case, since there is no coupling between the test scalar field Φ and the curvature, the leading order
correction to the QNMs is of O(ζ2). Instead, when we will consider perturbations of the dilaton field φ, which is
coupled to the Gauss-Bonnet term in the Klein-Gordon equation, the EdGB correction to the QNMs will be of O(ζ).
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Figure 4.1: Relative difference with respect to GR of the (nlm) = (022) scalar quasinormal mode, for fixed
values of ζ and as a function of the spin ā.

In Fig. 4.1 we plot the relative difference with respect to GR

∆ωnlm
R,I (ā, ζ) ≡

ωnlm
R,I (ā, ζ)− ωnlm

R,I (ā, 0)

ωnlm
R,I (ā, 0)

(4.44)

for the (nlm) = (022) mode for different values of ζ as a function of the spin ā, using the spectrum
given in Eqs. (4.42)-(4.43).

We finally compare our results with those of [4] in the limit of small spins. In order to estimate
the contribution of the O(ā2) terms, we repeat the computation by neglecting the quadratic terms
in the spin; in this case, the matrices V̂ (2) and Ŝ vanish in Eq. (4.18). We define the shifts

fAR,I(ζ, ā) ≡ lim
ζ→0

ωA
R,I(ζ, ā)− ωA

R,I(ζ = 0, ā)

ζ2 ωA
R,I(ζ = 0, ā)

(4.45)

describing the leading-order O(ζ2) EdGB corrections to the real and imaginary parts of the QNMs;
A = 1 (A = 2) refers to the computation of the QNMs up to O(ā) (up to O(ā2)). We denote
with fCR,I the corresponding shifts obtained by the numerical fits in [4]. In Table 4.1 we show that
our results are in good agreement with those of [4] for ā ≤ 0.1 if the quadratic terms in the spin
are included; the agreement is much worse with the computation to O(ā) , in particular for the
imaginary part 2.

With our two-parameter perturbation framework, consisting of a perturbative expansion for
small values of the coupling constant ζ and of the spin ā, we verified our computation of the QNM
spectrum of a test scalar field in an EdGB BH spacetime against the results in the literature [4].
Furthermore, we were also able to check our considerations about which terms in the perturbation
equations actually contribute to the spectrum at a certain order in the spin, and this result will be
used as a basis for the gravitational case explored in the next chapters.

2This is not true for the smallest value of the spin in Table 4.1, ā = 0.01. We think this is due to the fact – also
remarked by the authors of [4] – that their fit is optimized to describe the entire range 0 ≤ ā ≤ 0.7, and thus it may
not coincide with a perturbative expansion for ā ≪ 1.
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Table 4.1: Leading-order EdGB corrections to the n = 0, l = m = 2 QNM, defined in Eq. (4.45), up to
first and to second order in the spin, and as computed in [4].

ā fCR f1R f2R

0.01 0.013653 0.013667 0.013660
0.05 0.014273 0.014576 0.014274
0.1 0.015065 0.016565 0.015004

ā fCI f1I f2I

0.01 -0.005178 -0.005092 -0.005035
0.05 -0.005287 -0.006337 -0.005089
0.1 -0.005410 -0.007087 -0.005272
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Chapter 5

Quasinormal Modes of Nonrotating
Dilatonic Black Holes

In order to compute the QNMs of rotating BHs in EdGB, we analyze increasingly difficult scenarios,
following our work in Refs. [67, 68]. In the previous chapter, we explored the computation of QNMs
of a test scalar field in a slowly rotating EdGB spacetime; now we shall consider the more involved
case of gravitational perturbations.

We first focus on gravitational perturbations of nonrotating EdGB black holes. In Sec. 2.5 we
explained how to use the direct integration method to compute the QNMs of a Schwarzschild BH;
in this chapter, we will generalize the same method to EdGB gravity, in the small coupling limit.

While we know that Schwarzschild BHs are stable against linear perturbations [94], the stability
in the EdGB case has been explored in Refs. [3, 109, 229, 230, 312]. A way to have linearized mode
stability for a certain spacetime is to check that all the QNMs have a negative imaginary part, in
order to avoid exponential divergences in time due to the e−iωt dependence of the eigenfunction [1].
The analysis of Blázquez-Salced et al. [3, 109] was performed for nonrotating DBHs by spanning all
of the parameter space of ζ = αGB/M

2 ≲ 0.691 using a numerical approach. Nonetheless, working
in the small coupling limit ζ ≪ 1, we naturally find QNMs that only slightly differ from the GR
values of a Schwarzschild, which we know to be stable, and thus remaining stable themselves for
sufficiently small couplings1.

In this chapter, we compute the QNMs of static, nonrotating, EdGB black holes, and check the
agreement with the results of Ref. [3]. Once verified that our Wolfram Mathematica code is able
to reproduce the results present in the literature, as already confirmed for the test scalar field, we
will introduce the effects of rotation on gravitational perturbations in the following chapter.

5.1 Metric and Scalar Perturbations

The static solution of the EdGB field equations is the one described in Section 3.2.1, calculated
in the small-coupling approximation up to order O(ζ6). The static DBH is characterized by the
metric g(0)µν in Eq. (3.11), with the functions A(r, ζ), B(r, ζ) given by Eqs. (3.27)-(3.28), and by the
dilaton field, here referred to as φ(0)(r, ζ), given by (3.29). We use the symbol "(0)" to indicate that

1We expect this to hold also in the slow rotation case explored in the following chapter, where the spins are
assumed to be small and the QNMs are sufficiently close to the values of GR.
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the BH corresponds to the nonperturbed, equilibrium solution of Einstein and scalar field equations
(3.7)-(3.8).

In order to find the characteristic oscillation modes, i.e. the quasinormal modes, of the back-
ground DBH we introduce a small metric perturbation hµν and scalar field perturbation δφ to g(0)µν ,
φ(0)

gµν = g(0)µν + hµν (5.1)

φ = φ(0) + δφ , (5.2)

where now gµν and φ are the full perturbed metric and dilaton field and |hµν | ≪ 1, |δφ| ≪ 1.
As explained in Appendix A, any function of (t, r, θ, ϕ) can be expanded in a combination of

functions of t and r (that does not change the properties of transformation under rotation) multiplied
by suitable spherical harmonics (scalar, vector, tensor) of given parities. The same rule holds true
for the perturbation components, which can be written in a multipole expansion as Eq. (A.7).

Analogously to the GR case summarized in Sec. 2.3, the gravitational perturbation is described
by 10 functions of t and r that we call H lm

0 (t, r), H lm
1 (t, r), H lm

2 (t, r), qlm0 (t, r), qlm1 (t, r), K lm(t, r)

and Glm(t, r) for the even parity (or polar) modes, and hlm0 (t, r), hlm1 (t, r), hlm2 (t, r) for the odd
parity (or axial) modes.

In the Regge Wheeler (RW) gauge2 we set qlm0 (t, r) = qlm1 (t, r) = Glm(t, r) = 0 and hlm2 (t, r) = 0,
so that

g0µν =


−A(r) 0 0 0

0 1/B(r) 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 (5.3)

hpolµν =


A(r)H lm

0 H lm
1 0 0

H lm
1 1/B(r)H lm

2 0 0

0 0 r2K lm 0

0 0 0 r2 sin2 θK lm

Y lm (5.4)

haxµν =


0 0 − hlm

0
sin θY,

lm
ϕ hlm0 sin θY,lmθ

0 0 − hlm
1

sin θY,
lm
ϕ hlm1 sin θY,lmθ

− hlm
0

sin θY,
lm
ϕ − hlm

1
sin θY,

lm
ϕ 0 0

hlm0 sin θY,lmθ hlm1 sin θY,lmθ 0 0

 , (5.5)

where the sum over the l,m indices is left implicit. Focusing on a Fourier mode with complex
frequency ω, we can summarise the gravitational perturbation as hµν = hpolµν + haxµν , with

hpolµν (t, r, θ, ϕ)dx
µdxν =[

A(r)H lm
0 (r)dt2 + 2H lm

1 (r)dtdr +B−1(r)H lm
2 (r)dr2 +K lm(r)(dr2 + sin2 θdφ2)

]
Y lm(θ, ϕ)e−iωt

(5.6)

2We can use this gauge since the equations of motions in EdGB still contain only up to second order derivatives
of the metric (see Ref. [229])
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haxµνdx
µdxν = 2(hlm0 (r)dt+ hlm1 (r)dr)× (Sθ(θ, ϕ)dθ + Sϕ(θ, ϕ)dϕ)e

−iωt , (5.7)

where (Slm
θ , Slm

ϕ ) = (−(sin θ)−1Y lm
,ϕ , sin θY lm

,θ ).
Differently from GR, we also have the dilaton field perturbation

δφ(t, r, θ, φ) =
1

r
Φlm(r)Y lm(θ, ϕ)e−iωt (5.8)

in which the factor 1/r is introduced for practical convenience. Being a scalar perturbation, Φlm

belongs to the polar sector, and it will appear coupled to the other polar gravitational perturba-
tions in the field equations, introducing nontrivial effects on the polar QNM spectrum. The axial
gravitational sector is decoupled from the scalar field perturbations [229], but it is still inherently
different from the GR case due to the different background solution considered.

5.2 Perturbation Equations

Replacing the perturbed metric and dilaton field in Eqs. (5.1)-(5.2), properly expanded in spherical
harmonics according to the prescriptions (5.6)-(5.8), into the field equations (3.7) - (3.8), we obtain
a set of partial differential equations in r and θ. The coordinates t and ϕ can be factored out
as ∼ ei(mϕ−ωt), due to the stationarity and axial symmetry of the background, and therefore the
equations with different values of m,ω are decoupled.
Separating the ϕ-dependent part of the spherical harmonics by defining Y lm(θ) such that Y lm(θ, ϕ) ≡
Y lm(θ)eimϕ, we can integrate easily the angular dependence in the equations by exploiting the or-
thonormality properties of the spherical harmonics

∫ ∫
dϕdθ sin θY ∗

l (θ)Yl′(θ)e
i(m−m′)ϕ = δll′δmm′

and the integrals (F.2)-(F.3); since the only dependence on m is coming from the spherical harmon-
ics and give rise to the δmm′ , the azimuthal number m plays no active role in the final equations,
as expected in a spherically symmetric spacetime, so we shall drop this index. On the other hand,
the resulting radial equations will describe each mode l individually.

Focusing on the polar sector, we are left with six radial differential equations and an algebraic
relation in H l

0, H l
1, H l

2, K l, Φl, Φl′. However, not all the perturbation functions are necessary
to fully describe the perturbation; indeed these equations can be further manipulated in order to
obtain a first-order Ordinary Differential Equation (ODE) system in H l

1, K l, Φl,Φl′:

d

dr
Ψl + V̂lΨl = 0 (5.9)

where

Ψl ≡


H1l

Kl

Φl

Φ′
l

 (5.10)

and V̂l is a four-dimensional square matrix, whose components Vl,ij(r) (i, j = 1, ..., 4) are linear in
H1l, Kl, Φl, Φ′

l. The expression of V̂l is given in Appendix D up to O(ζ2), while the full equations
and the matrix components are given in the Supplemental Material [322] up to sixth order in the
coupling parameter ζ. We note that in this case, the equations are not coupled between different
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values of the harmonic index l, meaning that every mode can be computed independently from the
others. We will see that this is not true in the presence of rotation.

Eq. (5.9) shows explicitly that the scalar perturbations and gravitational perturbations are
coupled through the effect of the matrix V̂ . This does not happen in the axial sector because the
scalar field is of polar parity and it would not enter in the axial perturbation equation, which has
the same form of (5.9) but two-dimensional, with the perturbation functions given by the vector
composed of two axial functions, e.g. Ψax = {h0, h1}.

5.3 Quasinormal Mode Computation

To compute the QNM spectrum of a static DBH, we use the direct integration method described in
Section 2.5 for GR, where now the dimension of the problem, controlled by the order of the matrix
V̂ in Eq. (5.9), is N = 4.

We construct a basis of four solutions of Eq. (5.9), two of them, {Ψ(1)
l,H(r),Ψ

(2)
l,H(r)}, found inte-

grating two times from the horizon rH outwards to a point r, and the other two, {Ψ(1)
l,∞(r),Ψ

(2)
l,∞(r)},

found integrating from infinity inwards up to r, satisfying the boundary conditions

Ψl ∼ e−iωr∗ (r → rH)

Ψl ∼ eiωr∗ (r → ∞) , (5.11)

with the tortoise coordinate r∗ such that

dr∗
dr

=
1√

A(r)B(r)
. (5.12)

For more details on the tortoise coordinate, see Appendix E.
We then build the 4× 4 matrix X̂l that contains the four vectors of the basis

X̂l(ω, r, ζ) =
(
Ψ

(1)
l,H Ψ

(2)
l,H Ψ

(1)
l,∞ Ψ

(2)
l,∞

)
. (5.13)

The solutions will be in general linearly independent unless the frequency is the QNM frequency
or, in other terms, the eigenvectors satisfy both the ingoing boundary condition at the horizon and
outgoing boundary condition at infinity (5.11).

Thanks to the properties of the determinant of a matrix, which is null when two or more
components are linearly dependent, we can find the quasinormal mode ωnl(ζ) from the root of

detX̂l(ω, r, ζ)
∣∣∣
ω=ωnl

= 0 . (5.14)

Since this condition is true regardless of the choice of r, for our calculation the matrix X̂ will be
evaluated at a matching point r = rm of the other of the horizon radius rH .

5.3.1 Boundary Conditions

Implementing the boundary conditions (5.11) in the numerical integration process requires some
care, as explained in Sec. 2.5.1. In particular, we need to pay attention to the choice of numerical
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values for

• the horizon radius RH , as we cannot impose the boundary condition exactly at r = rH , where
some perturbation functions diverge; The solution is to consider a position which is an ϵ≪ 1

away from the physical horizon: RH ≡ rH(1 + ϵ), with ϵ ∼ 10−4 − 10−2;

• infinity, which will assume a finite value R∞. The choice of R∞ is influenced by the fact
that for values of the radial coordinate that are too large, the exponential behavior at infinity
exp(iωr∗) = exp(iωRr∗) exp(−ωIr∗) would explode, as ωI < 0 – being the mode stable. Hence,
it is necessary to choose R∞ large enough to still be considered "infinity", but not too large
to create instabilities. We found that a good range to consider is R∞ ∈ [15, 40]rH .

To avoid these numerical artifacts, when we integrate Eq. (5.14) to build the matrix X̂ in Eq.
(5.13), we impose the boundary conditions at r = RH and at r = R∞, as shown in Fig. 2.3

In order to compensate for this workaround, the perturbation Ψ is expanded perturbatively
around the horizon in powers of r − rH and around infinity in powers of 1/r. The larger the
expansion order, namely NH for the horizon and N∞ for infinity, the smaller will be the error
induced by imposing the "numerical" boundary conditions, instead of the physical ones.

Explicitly, at r = RH ∼ rH we will use

Kl(ω, r ∼ rH , ζ) = e−iωr∗

NH∑
i=0

kHl,i(ω, ζ)(r − rH)i (5.15)

H1l(ω, r ∼ rH , ζ) = e−iωr∗

NH∑
i=0

hH1l,i(ω, ζ)(r − rH)i−1 (5.16)

Φl(ω, r ∼ rH , ζ) = e−iωr∗

NH∑
i=0

ϕHl,i(ω, ζ)(r − rH)i (5.17)

Φ′
l(ω, r ∼ rH , ζ) = e−iωr∗

NH∑
i=0

ξHl,i(ω, ζ)(r − rH)i−1 , (5.18)

while at r = R∞,

Kl(ω, r → ∞, ζ) = eiωr∗
N∞∑
i=0

k∞l,i (ω, ζ)

ri
(5.19)

H1l(ω, r → ∞, ζ) = eiωr∗
N∞∑
i=0

h∞1l,i(ω, ζ)

ri−1
(5.20)

Φl(ω, r → ∞, ζ) = eiωr∗
N∞∑
i=0

ϕ∞l,i(ω, ζ)

ri
(5.21)

Φ′
l(ω, r → ∞, ζ) = eiωr∗

N∞∑
i=0

ξ∞l,i (ω, ζ)

ri
. (5.22)

At variance with the GR case, we also have to set the behavior at the boundaries of the dilaton
field perturbation Φl and of its derivative Φ′

l. Our assumption for the scalar field perturbation Φl

is that it is regular at the boundaries, meaning it tends asymptotically to a finite value.
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The behavior of Φ′
l at the boundaries takes into account that for r∗ → ±∞, being Φl ∼ ϕl(ω, r)e

±iωr∗ ,
the dr∗/dr = 1/

√
AB factor that comes from the derivative Φ′

l = ∂rΦl diverges near the horizon.
Analogously to the procedure in Section 2.5.1, the set of coefficients kH,∞

l,i , hH,∞
1l,i , ϕ

H,∞
l,i , ξH,∞

l,i are
found by substituting the expansions (5.15)-(5.18) and (5.19)-(5.22) into the field equations (5.9)
and solving them, after expanding them near the horizon and infinity respectively, order by order in
r − rH or 1/r. These coefficients will depend on four free parameters, two for the horizon case and
two for the infinity case, that we choose to be kH,∞

l,0 , ϕH,∞
l,0 , and that will allow selecting different

independent solutions to construct the matrix X̂l. For example, two independent ingoing solutions
can be found from (kHl,0, ϕ

H
l,0) = {(1, 0), (0, 1)}, two independent outgoing solutions can be found

from(k∞l,0, ϕ
∞
l,0) = {(1, 0), (0, 1)}.

5.3.2 Quasinormal Mode Spectrum

The QNM spectrum is composed of a scalar sector and a gravitational sector. The scalar waves can
be detected only if the dilaton field is coupled to matter in the action term Sm in Eq. (3.5). This
coupling is expected to be small, but possible detection strategies have been recently investigated
in Ref. [327].
The gravitational sector can be further divided according to the parity transformation properties of
the perturbations, in axial and polar families. The axial sector is decoupled from the scalar field,
thus it is easier to compute, as the only modifications appear in the background spacetime. The
axial QNMs for nonrotating EdGB black holes have been computed in Refs. [3, 109] and are not
studied here, since they were found to be closer to the GR values than the polar perturbations, at
least in the static case. In the polar gravitational sector, since the metric perturbations are coupled
to the dilaton-field perturbations, we can identify two sub-families of QNMs:

• gravitational-led modes, which reduce to the quasinormal modes of a Schwarzschild BH for
ζ → 0;

• scalar-led modes, which reduce to the quasinormal modes of a test scalar field on a Schwarzschild
spacetime for ζ → 0.

For the coalescence of two equal mass BHs the shift in the ringdown frequency due to EdGB gravity
is expected to be dominated by the gravitational-led modes, since the scalar-led are only mildly
excited [3]. We note that while in GR the geometric correspondence [296–298] can be used to
compute the QNMs in the limit l ≫ 1, in EdGB this procedure can be generalized only to find the
axial QNMs. Instead in the polar sector, which is intrinsically different due to the coupling with
the dilaton field and hence the two sub-families of modes, the geometric approach fails to capture
all the features of the spectrum [3, 328]

Once we have determined the boundary conditions as described in the Sec. 5.3.1 and built the
matrix X̂ containing a basis of solutions of the system (5.9), we find the quasinormal modes from
the condition (5.14) for specific values of harmonic index l and coupling constant ζ. Throughout
this work, we shall always consider ζ < 0.4, since this is the maximum value for which there is good
agreement between a O(ζ6) small coupling expansion and the full numerical results, as stated in
Ref. [3]. By repeating the integration for different values of ζ we can then find analytical fits for
the EdGB spectrum in the range considered.
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We focus on the fundamental l = 2, 3 gravitational-led polar modes and the l = 2 scalar-led
mode. As mentioned in Sec. 5.2, due to the spherical symmetry of the nonrotating DBH, there
is degeneracy in the azimuthal number m. The resulting spectrum ωnl up to order O(ζ6) for the
gravitational-led modes is

Mω02
R (ζ) = 0.37367−

(
1.406 · 10−2

)
ζ2 −

(
7.55 · 10−3

)
ζ3 +

(
1.53 · 10−3

)
ζ4

+
(
6.42 · 10−3

)
ζ5 −

(
9.9 · 10−4

)
ζ6 (5.23)

Mω02
I (ζ) = −0.08896−

(
4.70 · 10−3

)
ζ2 −

(
6.10 · 10−3

)
ζ3 −

(
3.22 · 10−3

)
ζ4

−
(
1.65 · 10−3

)
ζ5 −

(
1.4 · 10−4

)
ζ6 (5.24)

for l = 2, while for l = 3 is

Mω03
R (ζ) = 0.59944−

(
5.445 · 10−2

)
ζ2 −

(
3.235 · 10−2

)
ζ3 +

(
7.382 · 10−2

)
ζ4

−
(
3.49 · 10−3

)
ζ5 −

(
2.390 · 10−5

)
ζ6 (5.25)

Mω03
I (ζ) = −0.09270−

(
7.19 · 10−3

)
ζ2 −

(
1.097 · 10−2

)
ζ3 +

(
9.98 · 10−3

)
ζ4

+
(
2.173 · 10−2

)
ζ5 −

(
3.380 · 10−2

)
ζ6 . (5.26)

For the scalar-led fundamental l = 2 mode we find

Mωs02
R (ζ) = 0.48364−

(
5.27 · 10−3

)
ζ +

(
2.588 · 10−2

)
ζ2 +

(
7.139 · 10−2

)
ζ3 −

(
2.448 · 10−2

)
ζ4

(5.27)

Mωs02
I (ζ) = −0.09676−

(
3.7 · 10−4

)
ζ +

(
2.88 · 10−3

)
ζ2 +

(
6.21 · 10−3

)
ζ3 +

(
1.018 · 10−2

)
ζ4 .

(5.28)

We stress that a fit is intrinsically different from a Taylor expansion, since the former describes
the whole range of ζ ∈ [0, 0.4], while the latter is accurate for ζ ≪ 1. The choice of a polynomial fit
comes naturally from the small coupling limit framework we adopted throughout this work, but, in
principle, one could have different functional expressions. To decide which order of the polynomial
better describes the data we estimated the error associated with the functional form of the fit δf
by computing the mean over 100 attempts of the relative difference between the fit, performed on
randomly selected 80% of the data points, and the remaining 20% of the data. Considering a sixth-
order polynomial for the gravitational-led modes and a fourth-order polynomial for the scalar-led
modes we find at most δf ∼ 10−7, thus we believe the polynomial form of the fit to be sufficiently
accurate.

In Fig. 5.1 (5.2) we plot the ratio between the EdGB gravitational-led (scalar-led) modes and
the corresponding GR one ωnl

R,I(ζ)/ω
nl
R,I(0), and we compare the results with the analytical fits

given in Ref. [3]. Considering for example ζ = 0.3, the fits for the gravitational-led modes agree
up to 0.08% for the real part and up to 0.12% for the imaginary part. For the scalar-led mode
these number become 0.15% for the real part and 0.02% for the imaginary part. However, from an
approximate visual comparison, some of our results seem to better reproduce the numerical results
in Fig.2 of Ref. [3] rather than their small-coupling fit 3.

3We do not make further considerations from the comparison since we did not have access to the original data
that generated the fourth-order polynomial fits in Ref. [3] and the numerical values plotted in their Fig. 2.
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Figure 5.1: Comparison of the ratio between the n = 0, l = 2, 3 polar gravitational EdGB mode and GR
mode ωR,I(ζ)/ωR,I(ζ = 0) with the analytical fits provided in Blázquez-Salcedo et al. [3], as a function of ζ.
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Figure 5.2: Comparison of the ratio between the n = 0, l = 2 polar scalar EdGB mode and GR mode
ωR,I(ζ)/ωR,I(ζ = 0) with the analytical fits provided in Blázquez-Salcedo et al. [3], as a function of ζ.

We see that the effect of the EdGB corrections, for the range of coupling constant considered
here, is to decrease the real part of the gravitational-led mode – for ζ = 0.3 of about 0.4% for l = 2

and 1% for l = 3 – and increase the imaginary part of the mode (thus decreasing the damping time
τ = −1/ωI) – of about 0.6% for l = 2 and 1% for l = 3.

For the l = 2 scalar-led mode we find a difference with respect to GR of about 0.6% for the real
part of the mode, 0.5% for the imaginary part.

Numerical Stability

The results we have computed are evaluated in the small-coupling framework at order O(ζ6). In
order to assess the error introduced by stopping at a certain expansion order O(ζs) instead of going
to the next order s+ 1, we define the truncation error

ε
nl(s)
r R,I(ζ) ≡

∣∣∣ωnl(s+1)
r R,I (ζ)− ω

nl(s)
r R,I(ζ)

∣∣∣∣∣∣ωnl(s)
r R,I(ζ)

∣∣∣ , (5.29)

where r is the order in the spin expansion – here r = 0, the subscripts R, I refer, as usual, to the
real and imaginary parts of the mode. The results are plotted in Fig. 5.3 for an expansion order in
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ζ up to s = 5.
Since we did not compute the s = 7 order, we cannot know the truncation error at s = 6, but we
can have an order of magnitude estimate, considering that ε02(5)0R,I ≲ 10−5 up to ζ ≲ 0.4.

Throughout the numerical integration, we have fixed some parameters, namely the orders of
the series expansions near the horizon and infinity NH , N∞, the small deviation ϵ from the horizon
RH = rH(1 + ϵ), the numerical value of infinity R∞, and the matching point rm at which the
determinant of X̂ is computed. Our goal is for the final spectrum to be dependent with good
approximation only on the physically meaningful parameters characterizing the QNMs: the coupling
constant ζ and the harmonic index l. In order to achieve this, we verify that by varying these
numerical parameters we reach a range of values for which the results are stable, meaning that the
difference is less than a certain arbitrary small value.
Similarly to what we have discussed in Sec. 2.5.1, we found that the effects of a specific choice of rm
can be considered negligible, whereas NH = 11, N∞ = 13 are good values for the expansion orders,
while still requiring a reasonable computation time (for these values, their effects are of the order
O(10−8) per QNM, which are subleading with respect to other systematics). The main parameter
to calibrate is, also in this case, R∞. In Fig. 5.4 we plot the n = 0, l = 2 polar gravitational mode
for a fixed value of ζ = 0.3 and different values of (R∞, ϵ) and we see that, for R∞ ≳ 60M , the
results become clearly unstable, and only then the choice of ϵ affects greatly the outcome.
Choosing R̄∞ = 40M as a reference, we plot in Fig. 5.5 the relative variation in the QNM between
the choices of infinity and horizon

δωR,I(R∞, ϵ, ζ, R̄∞) ≡
|ωR,I(R∞, ϵ, ζ)− ωR,I(R̄∞, ϵ, ζ)|

|ωR,I(R̄∞, ϵ, ζ)|
(5.30)

and we see that in the range R∞ ∈ [25, 45]M , the variation due to a different choice of R∞ is at
most of order ∼ 10−4, while the shift introduced by EdGB with respect to GR

∆ωnl
R,I(ζ) ≡

|ωR,I(ζ)− ωR,I(0)|
|ωR,I(0)|

(5.31)

is of the order ∼ 10−3, meaning that this deviation is still in principle measurable, regardless of the
value of R∞. These values are computed for ζ = 0.3, which is almost at the limit of validity of the
small coupling limit expansion ζ ∼ 0.4 [3]: for smaller values of the coupling constant the results
are more stable. Our chosen values for the integrations are ϵ = 10−2, R∞ = 35M .

Lorenzo Pierini 68



5.3. Quasinormal Mode Computation

s=5

s=4

s=3

s=2

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
10-12

10-9

10-6

ζ

ε
02

(s
) 0
R

s=5

s=4

s=3

s=2

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
10-12

10-9

10-6

0.001

ζ

ε
02

(s
) 0
I

Figure 5.3: Truncation error at order s ≤ 5 for the n = 0, l = 2 QNM as a function of the dimensionless
coupling constant ζ. The truncation error is always smaller than the relative correction due to the EdGB
modification to GR (solid black curve).
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Figure 5.4: Stability of the n = 0, l = 2 quasinormal mode evaluated at ζ = 0.3, for different choices of ϵ
and R∞. We see that for values of R∞ > 60M the results start to get highly unstable.
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Figure 5.5: Relative difference of the n = 0, l = 2 quasinormal mode, evaluated at ζ = 0.3, with respect
to a fixed value of infinity R̄∞ = 40M and compared with the overall EdGB correction |ωR,I(R∞, ζ =
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Chapter 6

Quasinormal Modes of Slowly Rotating
Dilatonic Black Holes

In Chapter 4 we have introduced the effect of rotation to compute the QNMs of a test scalar field
in EdGB gravity. In Chapter 5 we studied the problem of gravitational perturbations in EdGB
gravity, but without including rotation. In this chapter, we put together the information gained
from the previous cases and consider the QNMs of slowly rotating EdGB black holes, originating
from perturbations of both the metric and of the dilaton field, as studied in our works [67, 68].

The main difference we expect in the following analysis is for the rotation to create couplings
between the polar and axial sectors, and between different harmonic indices l, as described in Sec.
2.6.3 for General Relativity. In fact, while in the scalar field case we have verified that we can
neglect the couplings to compute the QNM spectrum at second order in the spin, in this case, the
couplings of perturbation functions with harmonic indexes l ± 1 cannot be neglected, thus making
the equations to solve more involved.

6.1 Perturbation Equations

We consider a perturbed, stationary, rotating DBH described by the spacetime metric gµν and
dilaton field φ:

gµν = g(0)µν + hpolµν + haxµν (6.1)

φ = φ(0) + δφ , (6.2)

where g
(0)
µν is the non-perturbed metric in Eq. (3.30) and φ(0) is the background dilaton field,

described by the expansion (3.35). Both the background quantities are computed analytically up to
the second order in the spin ā = J/M2 and to the sixth order in the dimensionless coupling constant
ζ = αGB/M

2. hpolµν , haxµν are small gravitational perturbations separated in polar and axial according
to the transformation properties under rotation. As usual, we can expand the perturbations in a
suitable basis of spherical harmonics – scalar, vector, tensor (see Appendix A). Assuming a time
dependence ∼ e−iωt, in the Regge-Wheeler gauge [153], and leaving the sum over lm implicit, we
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have

hpolµν (t, r, θ, ϕ)dx
µdxν =[

A(r)H lm
0 (r)dt2 + 2H lm

1 (r)dtdr +B−1(r)H lm
2 (r)dr2 +K lm(r)(dr2 + sin2 θdφ2)

]
Y lm(θ, ϕ)e−iωt

(6.3)

haxµν(t, r, θ, ϕ)dx
µdxν = 2(hlm0 (r)dt+ hlm1 (r)dr)× (Sθ(θ, ϕ)dθ + Sϕ(θ, ϕ)dϕ)e

−iωt (6.4)

δφ(t, r, θ, ϕ) =
1

r
Φlm(r)Y lm(θ, ϕ)e−iωt , (6.5)

with (Slm
θ , Slm

ϕ ) = (−(sin θ)−1Y lm
,ϕ , sin θY lm

,θ ). When we replace these expansions in the linearized
field equations (3.7)-(3.8), we find a set of partial differential equations in r, θ, since the t and ϕ

terms can be factored out and possibly simplified.
The gravitational and scalar perturbations are fully identified by the radial functions H lm

0 (r),
H lm

1 (r), H lm
2 (r), K lm(r), hlm0 (r), hlm1 (r), Φlm(r). We note that we have defined the tt and rr

components of the perturbation tensor, in Eqs. (6.3), with a factor A(r) and B(r) for convenience
since, being a radial factor, it does not affect the properties under rotation of H0 and H1.

Following the formalism of Refs. [159, 193, 285], if we call Eµν the Einstein equations and Eφ
the scalar field equation, the linearized equations (at second order in the spin) naturally separate
into three groups, thanks to the transformation properties of the perturbation functions [159, 193].
Defining Ylm(θ) ≡ Ylm(θ, ϕ)e−imϕ, the first group has the form

δE(I) ≡
[
A

(I)
lm + Ã

(I)
lm cos θ + Â

(I)
lm cos2 θ

]
Ylm(θ) + im

[
C

(I)
lm + C̃

(I)
lm cos θ

]
Ylm(θ) +m2E

(I)
lmYlm(θ)

+
[
B

(I)
lm + B̃

(I)
lm cos θ + imD

(I)
lm

]
sin θ Y ′

lm(θ) = 0 , (6.6)

where I = 0, 1, 2, 3, 4 correspond schematically to the components that behave as scalars under
rotation, namely tt, rr, rt, θθ + ϕϕ/ sin2 θ and the scalar field equation, respectively.
The second group, corresponding to the components of Einstein equations behaving as vectors under
rotation, is given by

δE(Jθ) ≡
[
α
(J)
lm + α̃

(J)
lm cos θ + α̂

(J)
lm cos2 θ

]
sin θ Y ′

lm(θ)− im
[
β
(J)
lm + β̃

(J)
lm cos θ + β̂

(J)
lm cos2 θ

]
Ylm(θ)

+
[
η
(J)
lm + η̃

(J)
lm cos θ

]
sin2 θYlm(θ) +

[
ξ
(J)
lm + ξ̃

(J)
lm cos θ

]
sin θXlm(θ)

+
[
γ
(J)
lm + γ̃

(J)
lm cos θ

]
sin2 θWlm(θ) = 0 , (6.7)

δE(Jϕ) ≡−
[
β
(J)
lm + β̃

(J)
lm cos θ + β̂

(J)
lm cos2 θ + ∆̃

(J)
lm sin2 θ

]
sin θ Y ′

lm(θ)

− im
[
α
(J)
lm + α̃

(J)
lm cos θ + α̂

(J)
lm cos2 θ +∆

(J)
lm sin2 θ

]
Ylm(θ)−

[
ζ
(J)
lm + ζ̃

(J)
lm cos θ

]
sin2 θ Ylm(θ)

−
[
γ
(J)
lm + γ̃

(J)
lm cos θ

]
sin θXlm(θ) +

[
ξ
(J)
lm + ξ̃

(J)
lm cos θ

]
sin2 θWlm(θ) = 0 , (6.8)

with J = 0, 1 corresponding to the components t, r.
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The third group

δE(θϕ) ≡
[
flm + f̃lm cos θ

]
sin θ Y ′

lm(θ) + im [glm + g̃lm cos θ]Ylm(θ) + klm sin2 θ Ylm(θ)

+
[
slm + ŝlm cos2 θ

] Xlm(θ)

sin θ
+
[
tlm + t̂lm cos2 θ

]
Wlm(θ) = 0 (6.9)

δE(−) ≡ [glm + g̃lm cos θ] sin θ Y ′
lm(θ)− im

[
flm + f̃lm cos θ

]
Ylm(θ) + k̂lm sin2 θ Ylm(θ)

−
[
tlm + t̂lm cos2 θ

] Xlm(θ)

sin θ
+
[
slm + ŝlm cos2 θ

]
Wlm(θ) = 0 (6.10)

corresponds to the components behaving as tensors, i.e. θϕ and θθ − ϕϕ/ sin2 θ.
We have defined Xlm(θ),Wlm(θ) as

Xlm(θ) ≡ 2 im

[
Y ′
lm(θ)− cos θ

sin θ
Ylm(θ)

]
(6.11)

Wlm(θ) ≡ −2
cos θ

sin θ
Y ′
lm(θ)− l(l + 1)Ylm(θ) + 2m2Ylm(θ)

sin2 θ
. (6.12)

The coefficients appearing in the equations above are linear combinations of the perturbation
functions hlm0 (r), hlm1 (r), H lm

0 (r), H lm
1 (r), H lm

2 (r), K lm(r), Φlm(r) and their derivatives, with
coefficients that depend on l but not on m. In the same way as the perturbation functions, they
can be divided into two sets according to their parity:

Polar : A
(I)
lm , Â

(I)
lm , C

(I)
lm , E

(I)
lm , B̃

(I)
lm , α

(J)
lm , α̂

(J)
lm , β̃

(J)
lm , η̃

(J)
lm , ξ

(J)
lm , γ̃

(J)
lm , ∆

(J)
lm , ζ

(J)
lm ,

flm, g̃lm, k̂lm, slm, ŝlm

Axial : Ã
(I)
lm , C̃

(I)
lm , B

(I)
lm , D

(I)
lm , α̃

(J)
lm , β

(J)
lm , β̂

(J)
lm , η

(J)
lm , ξ̃

(J)
lm , γ

(J)
lm , ∆̃

(J)
lm , ζ̃

(J)
lm , f̃lm,

glm, klm, tlm, t̂lm .

The coefficients

• A
(I)
lm , α(J)

lm , β(J)lm , slm, tlm contain both zeroth and second-order terms in the spin ā;

• Ã
(I)
lm , C(I)

lm , B(I)
lm , α̃(J)

lm , β̃(J)lm , η(J)lm , ξ(J)lm , γ(J)lm , ζ(J)lm , flm, glm are of order O(ā);

• Â
(J)
lm , C̃(J)

lm , E(J)
lm , B̃(J)

lm , D(J)
lm , α̂(J)

lm , β̂(J)lm , η̃(J)lm , ξ̃(J)lm , γ̃(J)lm ,ζ̃(J)lm , ∆(J)
lm , ∆̃(J)

lm , f̃ (J)lm , g̃(J)lm , k(J)lm , k̂(J)lm ,
ŝ
(J)
lm , t̂(J)lm are of second order in the spin.

Their explicit expansions in the coupling parameter ζ, up to O(ζ6), are given in the Supplemental
Material [322].

We decouple the angular dependence from the equations by integrating on the solid angle and
exploiting the properties of the spherical harmonics, as described in detail in Appendix F. In par-
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ticular, we shall compute the following integrals:

0 =
∑
l′m′

∫
dΩY ∗

lmδE l′m′

(I) (6.13)

0 =
∑
l′m′

∫
dΩ

[
∂θY

∗
lmδE l′m′

(Jθ)

sin θ
+ im

Y ∗
lmδE l′m′

(Jϕ)

sin2 θ

]
(6.14)

0 =
∑
l′m′

∫
dΩ

[
−
∂θY

∗
lmδE l′m′

(Jϕ)

sin θ
+ im

Y ∗
lmδE l′m′

(Jθ)

sin2 θ

]
(6.15)

0 =
∑
l′m′

∫
dΩ

[
W ∗

lmδE l′m′

(−) +
X∗

lm

sin θ
δE l′m′

(θϕ)

]
(6.16)

0 =
∑
l′m′

∫
dΩ

[
W ∗

lmδE l′m′

(θϕ) −
X∗

lm

sin θ
δE l′m′

(−)

]
, (6.17)

where we have made the sum over the harmonic indexes explicit. The orthogonality of the harmonics
removes the sum over all the indices l′m′ and isolates a single lm mode.
This procedure is valid for l > 1, while for l = 0, l = 1 some spherical harmonics previously defined
vanish, so that the corresponding perturbation functions do not require to be fixed with the gauge
as done in App. A. We can therefore use the residual gauge freedom to set to zero one or two
additional degrees of freedom (see e.g. [3, 193, 254, 329]).

6.1.1 First Order Equations

We expect the form of the perturbations equations at first order in the spin to have a similar
structure to the results of Ref. [193] for neutron stars. In the following sections, we shall factor
out the spin dependence from the coefficients in Eqs. (6.6)-(6.10) (while leaving the name of the
coefficient unchanged).

After the angular integration, from Eq. (6.13) we find

0 = A
(I)
lm + im āC

(I)
lm + ā Qlm

[
Ã

(I)
l−1m + (l − 1)B

(I)
l−1m

]
+ ā Ql+1m

[
Ã

(I)
l+1m − (l + 2)B

(I)
l+1m

]
.

(6.18)

From the integral (6.14) we get

0 = l(l + 1)α
(J)
lm − im ā

[
β̃
(J)
lm + ζ

(J)
lm − (l − 1)(l + 2)ξ

(J)
lm

]
+ ā Qlm(l + 1)

{
(l − 1)α̃

(J)
l−1m

− η
(J)
l−1m + (l − 2)(l − 1)γ

(J)
l−1m

}
+ ā Ql+1ml

{
(l + 2)α̃

(J)
l+1m + η

(J)
l+1m − (l + 2)(l + 3)γ

(J)
l+1m

}
(6.19)

while from (6.15)

0 = l(l + 1)β
(J)
lm + im ā

[
α̃
(J)
lm + η

(J)
lm + (l − 1)(l + 2)γ

(J)
lm

]
+ ā Qlm(l + 1)

{
(l − 1)β̃

(J)
l−1m − ζ

(J)
l−1m

− (l − 2)(l − 1)ξ
(J)
l−1m

}
+ ā Ql+1ml

{
(l + 2)β̃

(J)
l+1m + ζ

(J)
l+1m + (l + 2)(l + 3)ξ

(J)
l+1m

}
. (6.20)
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Finally, from Eqs. (6.16) and (6.17) we obtain

0 =l(l − 1)(l + 1)(l + 2)slm − im ā(l − 1)(l + 2)flm − ā Qlm(l − 1)(l + 1)(l + 2)gl−1m

+ ā Ql+1ml(l − 1)(l + 2)gl+1m (6.21)

0 =l(l − 1)(l + 1)(l + 2)tlm + im ā(l − 1)(l + 2)glm − ā Qlm(l − 1)(l + 1)(l + 2)fl−1m

+ ā Ql+1ml(l − 1)(l + 2)fl+1m , (6.22)

where we have defined

Qlm ≡
√
l2 −m2

4l2 − 1
. (6.23)

We can see that decomposing the perturbations of an axisymmetric spacetime –as the one of
a rotating DBH– on a sphere, using the spherical harmonics, comes with the cost of introducing
additional terms in the perturbation equations with couplings between different harmonic indices.

The general layout of these equations can be highlighted using the schematic notation

Plm + āmP̄lm + ā
(
QlmÃl−1m +Ql+1mÃl+1m

)
= 0 (6.24)

Alm + āmĀlm + ā
(
QlmP̃l−1m +Ql+1mP̃l+1m

)
= 0 , (6.25)

with Plm, P̄lm, P̂lm, (Alm, Ālm, Âlm) are combinations of the polar perturbation functions H lm
0 ,

H lm
1 , H lm

2 , K lm, Φlm (of the axial perturbation functions hlm0 , hlm1 ); the coefficients of these functions
in the combinations do not depend on the harmonic index m.

At zeroth order in the spin, the equations reduce to Plm = 0, Alm = 0, which can be recast in the
form of Eq. (5.9), describing the perturbations of static, spherically symmetric DBHs discussed in
Chapter 5. At first order in the spin, polar perturbations with l are coupled to axial perturbations
with l ± 1, and vice versa. Moreover, polar (axial) perturbations are coupled to perturbations
having the same l and the same parity; the latter couplings are proportional to m. We note that
the structure of these equations is in agreement with Kojima [193], as we expected.

6.1.2 Second Order Equations

In this section, factoring out the spin dependence, we call A(I)
2,lm, α

(I)
2,lm, β

(I)
2,lm, s2,lm, t2,lm the second-

order parts of the original coefficients A(I)
lm , α

(I)
lm , β

(I)
lm , slm, tlm.

Performing the angular integration of the perturbation equations and keeping all the terms up to
O(ā2), we get, from the first group in Eq.(6.6)

A
(I)
lm + ā2A

(I)
2,lm + ā2Â

(I)
lm

[
Q2

lm +Q2
l+1m

]
+ ā2B̃

(I)
lm

[
lQ2

l+1m − (l + 1)Q2
lm

]
+ im āC

(I)
lm + ā2m2E

(I)
lm

+Qlm

{
ā
[
Ã

(I)
l−1m + (l − 1)B

(I)
l−1m

]
+ im ā2

[
C̃

(I)
l−1m + (l − 1)D

(I)
l−1m

]}
+Ql+1m

{[
āÃ

(I)
l+1m − (l + 2)B

(I)
l+1m

]
+ im ā2

[
C̃

(I)
l+1m − (l + 2)D

(I)
l+1m

]}
+ ā2QlmQl−1m

[
Â

(I)
l−2m + (l − 2)B̃

(I)
l−2m

]
+ ā2Ql+1mQl+2m

[
Â

(I)
l+2m − (l + 3)B̃

(I)
l+2m

]
= 0 . (6.26)
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From the second group in Eqs. (6.7)-(6.8)

l(l + 1)α
(J)
lm + ā2l(l + 1)α

(J)
2,lm − im ā

[
β̃
(J)
lm + ζ

(J)
lm − (l − 1)(l + 2)ξ

(J)
lm

]
+ ā2

[
(l + 1)(l − 2)Q2

lm + l(l + 3)Q2
l+1m

]
α̂
(J)
lm +m2ā2∆

(J)
lm + ā2

[
lQ2

l+1m − (l + 1)Q2
lm

]
η̃
(J)
lm

+ ā2
[
2m2 +Q2

lm(l + 1)(l2 − l + 4)−Q2
l+1ml(l

2 + 3l + 6)
]
γ̃
(J)
lm

+Qlm

{
ā
[
(l − 1)(l + 1)α̃

(J)
l−1m − (l + 1)η

(J)
l−1m + (l − 2)(l − 1)(l + 1)γ

(J)
l−1m

]
− im ā2

[
2β̂

(J)
l−1m + (l − 1)∆̃

(J)
l−1m + ζ̃

(J)
l−1m − (l − 2)(l + 3)ξ̃

(J)
l−1m

]}
+Ql+1m

{
ā
[
l(l + 2)α̃

(J)
l+1m + lη

(J)
l+1m − l(l + 2)(l + 3)γ

(J)
l+1m

]
− im ā2

[
2β̂

(J)
l+1m − (l + 2)∆̃

(J)
l+1m + ζ̃

(J)
l+1m − (l − 2)(l + 3)ξ̃

(J)
l+1m

]}
+ ā2Ql−1mQlm

{
(l − 2)(l + 1)α̂

(J)
l−2m − (l + 1)η̃

(J)
l−2m + (l − 2)(l + 1)(l − 3)γ̃

(J)
l−2m

}
+ ā2Ql+1mQl+2m

{
l(l + 3)α̂

(J)
l+2 + lη̃

(J)
l+2m − l(l + 3)(l + 4) γ̃

(J)
l+2m

}
= 0 , (6.27)

l(l + 1)β
(J)
lm + ā2l(l + 1)β

(J)
2,lm + im ā

[
α̃
(J)
lm + η

(J)
lm + (l − 1)(l + 2)γ

(J)
lm

]
+ ā2

[
(l + 1)(l − 2)Q2

lm + l(l + 3)Q2
l+1m

]
β̂
(J)
lm + ā2

[
l2Q2

l+1m + (l + 1)2Q2
lm

]
∆̃

(J)
lm

+ ā2
[
lQ2

l+1m − (l + 1)Q2
lm

]
ζ̃
(J)
lm − ā2

[
2m2 +Q2

lm(l + 1)(l2 − l + 4)−Q2
l+1ml(l

2 + 3l + 6)
]
ξ̃
(J)
lm

+Qlm

{
ā
[
(l − 1)(l + 1)β̃

(J)
l−1m − (l + 1)ζ

(J)
l−1m − (l − 2)(l − 1)(l + 1)ξ

(J)
l−1m

]
+ im ā2

[
2α̂

(J)
l−1m − (l + 1)∆

(J)
l−1m + η̃

(J)
l−1m + (l − 2)(l + 3)γ̃

(J)
l−1m

]}
+Ql+1m

{
ā
[
l(l + 2)β̃

(J)
l+1m + lζ

(J)
l+1m + l(l + 2)(l + 3)ξ

(J)
l+1m

]
+ im ā2

[
2α̂

(J)
l+1m + l∆

(J)
l+1m + η̃

(J)
l+1m + (l − 2)(l + 3)γ̃

(J)
l+1m

]}
+ ā2Ql−1mQlm

{
(l − 2)(l + 1)β̂

(J)
l−2m − (l + 1)ζ̃

(J)
l−2m

− (l − 2)(l + 1)(l − 3)ξ̃
(J)
l−2m − (l − 2)(l + 1)∆̃

(J)
l−2m

}
+ ā2Ql+1mQl+2m

{
l(l + 3)β̂

(J)
l+2m + lζ̃

(J)
l+2m + l(l + 3)(l + 4)ξ̃

(J)
l+2m − l(l + 3)∆̃

(J)
l+2m

}
= 0 . (6.28)
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From the third group, according to Eqs. (6.9)-(6.10),

l(l − 1)(l + 1)(l + 2)
[
slm + ā2s2,lm

]
− im ā(l − 1)(l + 2)flm

+ ā2
[
2m2 +Q2

lm(l + 1)(l2 − l + 4)−Q2
l+1ml(l

2 + 3l + 6)
]
g̃lm + ā2

[
2m2 − l(l + 1)

+(l + 1)(l + 2)Q2
lm + l(l − 1)Q2

l+1m

]
k̂lm + ā2

{
8m2 − 2l(l + 1)

−Q2
lm(l + 1) [4(l − 2)− l(l + 1)(l + 4)]−Q2

l+1ml [4(l + 3)− l(l + 1)(l − 3)]
}
ŝlm

−Qlm

{
ā(l − 1)(l + 1)(l + 2)gl−1m + im ā2

[
(l − 3)(l + 2)f̃l−1m − 2(l + 2)kl−1m

+4(l − 2)(l + 2)t̂l−1m

] }
+Ql+1m

{
ā l(l − 1)(l + 2)gl+1m − im ā2

[
(l − 1)(l + 4)f̃l+1m

+2(l − 1)kl+1m + 4(l − 1)(l + 3)t̂l+1m

] }
+ ā2Ql−1mQlm(l + 1)(l + 2)

{
− (l − 2)g̃l−2m + k̂l−2m + (l − 3)(l − 2)ŝl−2m

}
+ ā2Ql+1mQl+2ml(l − 1)

{
(l + 3)g̃l+2m + k̂l+2m + (l + 3)(l + 4)ŝl+2m

}
= 0 , (6.29)

0 = l(l − 1)(l + 1)(l + 2)
[
tlm + ā2t2,lm

]
+ im ā(l − 1)(l + 2)glm

+ ā2
[
2m2 +Q2

lm(l + 1)(l2 − l + 4)−Q2
l+1ml(l

2 + 3l + 6)
]
f̃lm + ā2

[
2m2 − l(l + 1)

+(l + 1)(l + 2)Q2
lm + l(l − 1)Q2

l+1m

]
klm + ā2

{
8m2 − 2l(l + 1)

−Q2
lm(l + 1) [4(l − 2)− l(l + 1)(l + 4)]−Q2

l+1ml [4(l + 3)− l(l + 1)(l − 3)]
}
t̂lm

−Qlm

{
ā(l − 1)(l + 1)(l + 2)fl−1m − im ā2

[
(l − 3)(l + 2)g̃l−1m − 2(l + 2)k̂l−1m

+4(l − 2)(l + 2)ŝl−1m]
}
+Ql+1m

{
ā l(l − 1)(l + 2)fl+1m + im ā2 [(l − 1)(l + 4)g̃l+1m

+2(l − 1)k̂l+1m + 4(l − 1)(l + 3)ŝl+1m

]}
+ ā2Ql−1mQlm(l + 1)(l + 2)

{
− (l − 2)f̃l−2m + kl−2m + (l − 3)(l − 2)t̂l−2m

}
+ ā2Ql+1mQl+2ml(l − 1)

{
(l + 3)f̃l+2m + kl+2m + (l + 3)(l + 4)t̂l+2m

}
, (6.30)

These extremely involved equations can be schematically written as

0 =Pl m + ām P̄l m + ā2P̂l m + m2 ā2 ¯̄P l m + ā
(
Ql mÃl−1m +Ql+1mÃl+1m

)
+ ā2

(
Ql−1mQl mP̆l−2m +Ql+1mQl+2mP̆l+2m

)
+mā2

(
Ql mǍl−1m +Ql+1mǍl+1m

)
(6.31)

0 =Al m + ām Āl m + ā2Âlm + m2 ā2 ¯̄Al m + ā
(
Ql mP̃l−1m +Ql+1mP̃l+1m

)
+ ā2

(
Ql−1mQl mĂl−2m +Ql+1mQl+2mĂl+2m

)
+mā2

(
Ql mP̌l−1m +Ql+1mP̌l+1m

)
, (6.32)

where Plm, P̄lm, P̂lm, ¯̄P l m, P̃l m, P̆l m, P̌l m, (Alm, Ālm, Âlm, ¯̄Al m, Ãl m, Ăl m, Ǎl m) are, as in the
previous case, combinations of the polar perturbation functions H lm

0 , H lm
1 , H lm

2 , K lm, Φlm (of the
axial perturbation functions hlm0 , hlm1 ). We remark again that the expressions Plm,Alm, etc. do not
depend explicitly on the harmonic index m.
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We see that at the second order in the spin, perturbations with harmonic index l are coupled to
perturbations with the same parity and harmonic indices l± 2, and (when m ̸= 0) to perturbations
with opposite parity and harmonic indices l ± 1 [159, 278, 285].

6.2 Quasinormal Mode Spectrum

The QNMs, i.e. the characteristic oscillation modes of BHs or other compact objects when excited
by non-radial perturbations, can be found, as explored in the previous chapters, by solving the
perturbation equations with outgoing waves boundary conditions at infinity and ingoing waves at
the horizon (see e.g. Sec. 2.5). At the horizon and at infinity, the scalar (Φlm(r)) and gravitational
(H lm

1 (r)/r, K lm(r), etc.) perturbation functions behave as

Alm
in e

−ikHr∗ +Alm
oute

ikHr∗ (r → rH)

Alm
in e

−iωr∗ +Alm
oute

iωr∗ (r → ∞) , (6.33)

where r∗ is a properly defined tortoise coordinate for the background spacetime g(0)µν (see App. E),
and

kH = ω −mΩH with ΩH = − lim
r→rH

gtφ
gφφ

. (6.34)

Explicitly,

kH =ω − ā
m

rH

[
1

2
+ ζ2

7

512
+ ζ3

1664323

212889600
+ ζ4

9739215491

1549836288000
+ ζ5

12749793916691

2293076459529000

+ ζ6
1223834433730571723849

230905828521227059200000

]
+O

(
ζ7
)
. (6.35)

At the horizon and at infinity the perturbation equations can be written as two second-order dif-
ferential equations with the following asymptotic structure (with Z lm being either Φlm or K lm, for
example)

Z lm
,r∗r∗ + k2HZ

lm = O(r − rH) (r → rH)

Z lm
,r∗r∗ + ω2Z lm = O

(
1

r2

)
(r → ∞) , (6.36)

with the Sommerfeld boundary conditions

Z lm ∼ e−ikHr∗ at (r → rH)

Z lm ∼ e iωr∗ at (r → ∞) . (6.37)

that are satisfied by the discrete and infinite set of QNMs.
As already described in Sec. 2.6.3, both the equations (6.31)-(6.32), which include the first

order case of Eqs. (6.24)-(6.25), and the boundary conditions for QNMs (6.37) are invariant under
the transformation (ā,m) → (−ā,−m) (note that ΩH ∝ ā), as long as axial perturbations change
sign and polar perturbations remain the same. Therefore, the solution and the frequencies of the
quasi-normal modes are invariant under this transformation as well. This implies that the O(ā)
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corrections in the spin are odd in m, while the second-order corrections are even. Since the equations
are at most quadratic in m, we shall make the following ansatz, verified a posteriori, for the QNM
spectrum in the slow rotation limit

ω(ā, ζ) = ω0(ζ) + āmω1(ζ) + ā2
[
ω2a(ζ) +m2ω2b(ζ)

]
+O(ā3) , (6.38)

where ωr (r = 0, 1, 2a, 2b) do not depend onm. The nonrotating part of the spectrum, corresponding
to ω0 has already been discussed in Chapter 5.

6.2.1 First-order Corrections: ω1

The only rotating terms in the perturbation Eqs. (6.25)-(6.24) that can contribute to the spectrum
at first order ω = ω0 + āmω1 are the ones proportional to m, namely Ā, P̄, since the remaining
terms do not have the same dependence on the azimuthal number and would contribute to higher
orders. This means that, in order to compute the QNM spectrum at first order in the rotation, we
can simply consider the reduced set of equations given by

Alm + ām Ālm = 0 (6.39)

Plm + ām P̄lm = 0 . (6.40)

Applying these considerations, equations (6.18)-(6.22) become

0 = A
(I)
lm + im āC

(I)
lm (6.41)

0 = l(l + 1)α
(J)
l − im ā

[
β̃
(J)
l + ζ

(J)
l − (l − 1)(l + 2)ξ

(J)
l

]
(6.42)

0 = l(l + 1)β
(J)
l + im ā

[
α̃
(J)
l + η

(J)
l + (l − 1)(l + 2)γ

(J)
l

]
(6.43)

0 = l(l − 1)(l + 1)(l + 2)sl − im ā(l − 1)(l + 2)fl (6.44)

0 = l(l − 1)(l + 1)(l + 2)tl + im ā(l − 1)(l + 2)gl , (6.45)

with I = 0, 1, 2, 3, 4 and J = 0, 1. This set of equations can be separated according to the parity of
the perturbation functions involved, so we shall have a polar set, corresponding to Eq. (6.40), given
by Eqs. (6.41),(6.42),(6.44), and an axial set, corresponding to (6.39), given by Eqs. (6.43), (6.45).
Being the two sets completely separated, we can focus on the polar sector (as we did for the static
case), which includes the coupling of the dilaton field with the curvature and is described by the
perturbation functions K,H0, H1, H2,Φ.

Manipulating the perturbation equations, we can find H0 and H2 as algebraic expressions in
terms of H1 and K, thus reducing the number of degrees of freedom involved. Defining the vector
quantity

Ψlm ≡


H1 lm

Klm

Φlm

Φ′
lm

 (6.46)
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we can cast our equations as a set of first-order ODEs in the form

d

dr
Ψlm + V̂lmΨlm + ā m ÛlmΨlm = 0 . (6.47)

with V̂ , Û two four-dimensional matrices. Using an appropriate definition of the tortoise coordi-
nate r∗ (see Appendix E), the perturbation functions behave at the horizon and an infinity as in
Eq. (6.33); however, if ω is a QNM, then it will satisfy purely ingoing boundary conditions at
the horizon (∼ e−ikHr∗) with kH given in Eq. (6.34), and purely outgoing boundary conditions at
infinity (∼ eiωr∗).

We define a square matrix X̂ with the same dimension as V̂ , Û and whose columns are two
independent solutions satisfying the QNM boundary conditions at the horizon (superscript (H)),
and two independent solutions satisfying the boundary conditions at infinity (superscript (∞)):

X̂ =


H

(H)
1a H

(H)
1b H

(∞)
1a H

(∞)
1b

K
(H)
a K

(H)
b K

(∞)
a K

(∞)
b

Φ
(H)
a Φ

(H)
b Φ

(∞)
a Φ

(∞)
b

Φ′(H)
a Φ′(H)

b Φ′(∞)
a Φ′(∞)

b

 (6.48)

in which we omitted the indices lm. The QNMs ωnlm are found by imposing the condition

detX̂(ωnlm) = 0 (6.49)

at a matching point r = rm. Our first goal in to determine the rotational corrections ωnl
1 (ζ) =

ωnl
1R(ζ) + i ωnl

1 I(ζ) in the spectrum

ωnlm(ā, ζ) = ωnl
0 (ζ) + āmωnl

1 (ζ) +O(ā2) (6.50)

by studying the ā→ 0 limit of the QNMs. Explicitly, we look at

mωnl
1R,I(ζ) = lim

ā→0

ωnlm
R,I (ā, ζ)− ωnl

0R,I(ζ)

ā
. (6.51)

In practice, from the condition (6.49) we find the modes ω(0, ζ) andω(ā, ζ) for small values of ā and
for different values of ζ ≲ 0.4, so that we can extrapolate the limit of the ratio in (6.51) and find
analytical fits in ζ.

As discussed Sec. 5.3.2, in modified gravity theories with a scalar field coupled to the metric
perturbations two classes of gravitational QNMs exist [3, 330]: the gravitational-led modes and the
scalar-led modes, whose frequencies tend, in the ζ → 0 limit, to those of gravitational and scalar
QNMs in GR, respectively. In a realistic physical scenario, only the gravitational-led modes are
expected to be excited significantly and thus be relevant for gravitational spectroscopy (see e.g.
Refs. [3, 109], where this was demonstrated by studying the excitation of both the gravitational-led
and scalar-led modes following a radial plunge of point particles). Therefore, we shall only study
this class of modes.

For gravitational-led modes we recover, for ζ → 0, the values of ωnl
1 corresponding to the

rotational corrections of QNMs in Kerr spacetime, e.g. ω02
1R(ζ = 0) = 0.0629, ω02

1 I(ζ = 0) = 0.00099
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Figure 6.1: Real (left panel) and imaginary (right panel) parts of the first-order correction ω1(ζ) to the
QNM spectrum for l = 2, l = 3

[279, 289].
In Fig. 6.1 we show the real and imaginary parts of ω1 for the fundamental (n = 0) modes with

l = 2, 3, as functions of the dimensionless coupling parameter 1 ζ.
The analytical fits for ω02

1 , ω
03
1 , together with the second-order results, are presented in the

results section 6.2.5. We provide further details on the numerical integration in Sec. 6.2.4.

6.2.2 Second-order Corrections: ω2a, ω2b

Now we proceed to the computation of QNMs at second order in the spin and apply the same
considerations of Sec. 2.6.3 to the EdGB case. We have found that the field equations (3.7),
(3.8), linearized in the perturbations and to second order in the spin, yield the system of ordinary
differential equations (6.26)-(6.30), with the general structure (6.31), (6.32). We have seen that
the equations couple perturbations with different parity, and with different values of the harmonic
index l.

As discussed in the previous section, the couplings of the perturbations with index l to those
with index l ± 1 can be neglected in the computation of the QNM spectrum to first order in the
spin. Similarly, we will show that we can neglect the couplings between perturbations with index l
and with index l ± 2 in the computation of the QNMs to second order in the spin.

Expanding any generic polar perturbation Plm (= H lm
0 , H lm

1 , ...) and any generic axial pertur-
bation Alm (= hlm0 , hlm1 ) to second order in the spin as

Plm = P
(0)
lm + ā P

(1)
lm + ā2 P

(2)
lm (6.52)

Alm = A
(0)
lm + ā A

(1)
lm + ā2A

(2)
lm , (6.53)

and assuming that the source of the perturbations excites only a given polar l mode, we shall have,

1Our numerical integration has convergence issues for ω1R at ζ ≳ 0.4 (where the sixth order expansion ζ is no
longer enough [3]), and for ω1 I at ζ ≳ 0.3, due to the smaller values of ω1 I (which can be two orders of magnitude
smaller than the real part). Therefore, in Fig. 6.1 we show the real part of the rotational correction for ζ ∈ [0, 0.4],
and the imaginary part for ζ ∈ [0, 0.3].
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using the arguments of Sec. 2.6.3,

A
(0)
lm = A

(0)
l′m = P

(0)
l′m = 0 , (6.54)

where l′ ̸= l, so that the only perturbations present at this order are P (0)
lm . Axial parity perturbations

with index l ± 1 are excited at first order in the spin

Al±1m = āA
(1)
l±1m + ā2A

(2)
l±1m , (6.55)

while polar parity perturbations with index l ± 2 are excited only at second order in the spin

Pl±2m = ā2P
(2)
l±2m . (6.56)

Putting all the information together and focusing on the polar-led sector, i.e. the one in
which only polar perturbations are non-vanishing in the nonrotating limit, neglecting O(ā3) terms,
Eqs. (6.31), (6.32) reduce to

Pl m + ām P̄l m + ā2P̂l m + m2 ā2 ¯̄P l m + ā
(
Ql mÃl−1m +Ql+1mÃl+1m

)
= 0

Al+1m + ām Āl+1m + ā Ql+1mP̃l m +mā2Ql+1mP̌l m = 0

Al−1m + ām Āl−1m + ā Ql mP̃l m +mā2Ql mP̌l m = 0 . (6.57)

Analogously, one can find a set of equations belonging to the axial-led sector, which are sourced by
an axial perturbation with a given l (see Sec.2.6.3 for the explicit expression). As in Chapter 5, we
shall not consider axial-led perturbations, since in the nonrotating case axial QNMs are closer to
GR than the polar ones [3], and we expect this general trend to remain in presence of rotation.

While not all of the solutions of the full Eqs. (6.31), (6.32) might be included in the polar-
and axial-led classes of QNMs, any solution of the system (6.57) that satisfies the QNMs boundary
conditions is also a solution to the original set of equations and belongs to the eigenspectrum up to
second order in the spin [278].

Applying the structure of Eq. (6.57) to the equations (6.26)-(6.30), we can write the polar-led
sector of perturbation equations as

A
(I)
lm + ā2A

(I)
2,lm + ā2Â

(I)
lm

[
Q2

lm +Q2
l+1m

]
+ ā2B̃

(I)
lm

[
lQ2

l+1m − (l + 1)Q2
lm

]
+ i ā mC

(I)
lm + ā2m2E

(I)
lm

+Qlmā
[
Ã

(I)
l−1m + (l − 1)B

(I)
l−1m

]
+Ql+1mā

[
Ã

(I)
l+1m − (l + 2)B

(I)
l+1m

]
= 0 , (6.58)

l(l + 1)α
(J)
lm +l(l + 1)ā2α

(J)
2,lm−im ā

[
β̃
(J)
lm + ζ

(J)
lm −(l − 1)(l + 2)ξ

(J)
lm

]
+ ā2

[
(l + 1)(l − 2)Q2

lm + l(l + 3)Q2
l+1m

]
α̂
(J)
lm

+m2ā2∆
(J)
lm + ā2

[
lQ2

l+1m − (l + 1)Q2
lm

]
η̃
(J)
lm

+ ā2
[
2m2 +Q2

lm(l + 1)(l2 − l + 4)−Q2
l+1ml(l

2 + 3l + 6)
]
γ̃
(J)
l

+ āQlm(l + 1)
{
(l − 1)α̃

(J)
l−1m − η

(J)
l−1m + (l − 2)(l − 1)γ

(J)
l−1m

}
+ āQl+1ml

{
(l + 2)α̃

(J)
l+1m + η

(J)
l+1m − (l + 2)(l + 3)γ

(J)
l+1m

}
= 0 , (6.59)
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(l + 1)(l + 2)β
(J)
l+1m + im ā

[
α̃
(J)
l+1m + η

(J)
l+1m + l(l + 3)γ

(J)
l+1m

]
+ āQl+1m(l + 2)

{
lβ̃

(J)
lm − ζ

(J)
lm − (l − 1)lξ

(J)
lm

}
+ im ā2Ql+1m

[
2α̂

(J)
lm − (l + 2)∆

(J)
lm + η̃

(J)
lm + (l − 1)(l + 4)γ̃

(J)
lm

]
= 0 , (6.60)

l(l − 1)β
(J)
l−1m + im ā

[
α̃
(J)
l−1m + η

(J)
l−1m + (l − 2)(l + 1)γ

(J)
l−1m

]
+ āQlm(l − 1)

{
(l + 1)β̃

(J)
lm + ζ

(J)
lm + (l + 1)(l + 2)ξ

(J)
lm

}
+ im ā2Qlm

[
2α̂

(J)
lm + (l − 1)∆

(J)
lm + η̃

(J)
lm + (l − 3)(l + 2)γ̃

(J)
lm

]
= 0 , (6.61)

l(l − 1)(l + 1)(l + 2)(slm + ā2s2,lm)− im ā(l − 1)(l + 2)flm + ā2
[
2m2 +Q2

lm(l + 1)(l2 − l + 4)

−Q2
l+1ml(l

2 + 3l + 6)
]
g̃lm + ā2

[
2m2 − l(l + 1) + (l + 1)(l + 2)Q2

lm + l(l − 1)Q2
l+1m

]
k̂lm

+ ā2
{
8m2 − 2l(l + 1)−Qlml

2(l + 1) [4(l − 2)− l(l + 1)(l + 4)]−Q2
l+1ml [4(l + 3)− l(l + 1)(l − 3)]

}
ŝlm

−Qlm

{
ā(l − 1)(l + 1)(l + 2)gl−1m

}
+Ql+1m

{
āl(l − 1)(l + 2)gl+1m

}
= 0 , (6.62)

l(l + 1)(l + 2)(l + 3)tl+1m + im ā l(l + 3)gl+1m − ā Ql+1m

{
l(l + 2)(l + 3)flm

}
+ im ā2Ql+1m

[
(l − 2)(l + 3)g̃lm − 2(l + 3)k̂lm + 4(l − 1)(l + 3)ŝlm

]
= 0 , (6.63)

(l − 1)(l − 2)l(l + 1)tl−1m + im ā(l − 2)(l + 1)gl−1m + ā Qlm

{
(l − 1)(l − 2)(l + 1)flm

}
+ im ā2Qlm

[
(l − 2)(l + 3)g̃lm + 2(l − 2)k̂lm + 4(l − 2)(l + 2)ŝlm

]
= 0 . (6.64)

We remark that since some of the tensor spherical harmonics identically vanish for l = 0, 1, it is
possible to exploit the residual gauge freedom to set to zero the axial perturbations (see e.g. [3]).
Therefore, Eqs. (6.58)-(6.64) are valid for l ≥ 2 and, in the case l = 2 (in which polar perturbations
with index l are coupled with axial perturbations with index l ± 1), the axial perturbations with
index l − 1 can be set to zero 2 .

As in the O(ā) and O(ā2) cases, with appropriate combinations of the perturbation equations,
we can find H lm

0 and H lm
2 as algebraic expressions in terms of H lm

1 and K lm. The difference in the
second order in the spin is that we now have to keep the axial perturbation functions, even when

2We stress that this is the case when l = 1 is excited by a polar l = 2 mode, it does not mean that the axial-led
l = 1 mode is zero in general.
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considering the polar-led sector. Defining

Ψlm ≡



H1,lm

Klm

Φlm

Φ′
lm

h0,l+1m

h1,l+1m

h0,l−1m

h1,l−1m


(6.65)

we can cast our equations (for given values of l,m) in the form

d

dr
Ψlm + P̂lmΨlm = 0 , (6.66)

where P̂lm = P̂
(0)
lm + āP̂

(1)
lm + ā2P̂

(2)
lm is now an eight-dimensional square matrix. In the l = 2 case,

since axial perturbations with l = 1 can be set to zero, we shall have a different dimensionality of the
problem, as Ψ2m ≡ {H1,2m,K2m,Φ2m,Φ

′
2m, h0,3m, h1,3m} and the matrix P̂lm is six-dimensional.

To find the complex QNM frequencies, we define the eight-dimensional (six-dimensional for l = 2)
square matrix X̂ whose columns are four (three) independent solutions satisfying the QNM boundary
conditions at the horizon (superscript (H)), and four (three) independent solutions satisfying the
boundary conditions at infinity (superscript (∞)), evaluated at a matching point rm. For l = 2, we
can write

X̂ =
(
Ψ

(H)
1a Ψ

(H)
1b Ψ

(H)
1c Ψ

(∞)
1a Ψ

(∞)
1b Ψ

(∞)
1c

)
. (6.67)

When ω is a QNM, we have
detX̂(ωnlm) = 0 . (6.68)

Similarly to the definition given in Sec.5.3.2 for the nonrotating case, also the polar-led QNMs of
rotating dilatonic black holes will be divided in gravitational-led modes (which reduce to the QNMs
of a slowly rotating Kerr BH when ζ = 0) and scalar-led modes (which reduce to the QNMs of a
scalar field in a slowly rotating Kerr BH when ζ = 0); as usual, we will only focus on the former
class.

Once the perturbation equations have been integrated to build X̂ and the QNM ωnlm up to the
second order in the spin has been found from the root of Eq.(6.68) for different values of (ζ, ā), we
can isolate the contributions at each order ω1, ω2a, ω2b in Eq. (6.38). In particular, computing ω1

from Eq. (6.51), we can compute the total contribution at second order ωnlm
2 ≡

[
ωnl
2a(ζ) +m2ωnl

2b(ζ)
]

from

ωnlm
2 (ζ) = lim

ā→0

ωnlm(ζ, ā)− ωnl
0 (ζ)− āmωnl

1 (ζ)

ā2
. (6.69)

The numerical implementation of this limit would consist in calculating this ratio for smaller and
smaller values of ā, until the result does not depend on the spin (within the accuracy). However,
we have found this estimation method not to be the most robust for two main reasons: firstly, it
relies on a previous estimation of ω1 (which is inevitably affected by some error), thus ω2 cannot be
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computed directly from the data in a single operation; secondly, when the values of ā are extremely
small, i.e. the region we are most interested in, the ratio in Eq. (6.69) might diverge since we
are considering discrete points and we are limited in the numerical precision. For these reasons, to
compute ω2, it was easier to work with continuous functions, obtained by interpolating the discrete
differences between the data points of ωnlm and then taking the first derivative with respect to the
spin (corresponding to taking the second derivative of the original data).

After having computed the second-order term ωnlm
2 in the quasinormal mode spectrum, we can

find the m-independent quantities ωnl
2a, ω

nl
2b considering the QNMs for different values of m. Namely,

if we use for example the modes with m ≥ 0, we find, for l = 2,

ωn2
2a = ωn20

2 =
4ωn21

2 − ωn22
2

3
(6.70)

ωn2
2b = ωn21

2 − ωn20
2 =

ωn22
2 − ωn20

2

4
=
ωn22
2 − ωn21

2

3
, (6.71)

while for l = 3,

ωn3
2a = ωn30

2 =
4ωn31

2 − ωn32
2

3
=

9ωn31
2 − ωn33

2

8
=

9ωn32
2 − 4ωn33

2

5
(6.72)

ωn3
2b = ωn31

2 − ωn30
2 =

ωn32
2 − ωn30

2

4
=
ωn32
2 − ωn31

2

3
=
ωn33
2 − ωn31

2

8
=
ωn33
2 − ωn32

2

5
=
ωn33
2 − ωn30

2

9
.

(6.73)

Padé Resummation

As already explained in the previous sections, the QNM frequencies at second order in the spin (see
Eq. (6.38)) can be written as the Taylor expansion

ωnlm(ā, ζ) = ωnl
0 (ζ) + āmωnl

1 (ζ) + ā2
[
ωnl
2a(ζ) + m2ωnl

2b(ζ)
]
+O(ā3) , (6.74)

where ωnl
0 (ζ) is the QNM frequency in the static case. Resumming this expression using Padé

approximants, we can improve the convergence of the QNM spin expansion, as we verified in GR
(see Sec. 2.6.3).

We apply the resummation procedure discussed for GR to the second-order expansion of the
EdGB QNM spectrum (6.38). Up to this order, the two choices of Padé approximants are

P [1, 1](ā, ζ) =
mωnl

0 (ζ)ωnl
1 (ζ) +

[
m2 ωnl

1
2
(ζ)− ωnl

0 (ζ)ωnlm
2 (ζ)

]
ā

mωnl
1 (ζ)− ωnlm

2 (ζ)ā
(6.75)

and

P [0, 2](ā, ζ) =
ωnl
0

3
(ζ)

ωnl
0

2
(ζ) + ā2m2ωnl

1
2
(ζ)− āωnl

0 (ζ)
[
mωnl

1 (ζ) + āωnlm
2 (ζ)

] , (6.76)

where ωnlm
2 = ωnl

2a +m2ωnl
2b. For the QNMs with n = 0, l = 2, 3 we shall use P [1, 1]; for m = 0, for

which Eq. (6.75) reduces to a constant, and for the imaginary parts of the modes with m = ±1, for
which P [1, 1] has a pole close to the considered spin interval, we shall use P [0, 2].

As we discuss below, our analysis in GR (see Sec. 2.6.3) provides an indication that, by employing
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the Padé resummation, the error due to truncating the spin expansion at second order is limited,
leading to an accurate estimate of the QNMs for BH spins as large as ā ∼ 0.7.

6.2.3 Boundary Conditions

The numerical implementation of the boundary conditions is analogous to the one for the static
case discussed in Chapter 5, except for the introduction of the spin and of the axial perturbation
functions, which now may contribute to the polar-led class of QNNs.

Calling Nā the order of the spin considered (either 1 ord 2 in this chapter), when Nā = 2,
we have to include the axial perturbation functions h0, h1, which is not needed when Nā = 1, as
the couplings with these functions do not contribute to the QNM spectrum at this order (see Sec.
6.2.1). Furthermore, we will have an additional set of expansion coefficients at the boundaries for
each order in the spin considered.

Explicitly, at the numerical horizon r = RH ∼ rH we will have

Klm(ω, r ∼ rH , ζ) = e−ikHr∗
Nā∑
j=0

NH∑
i=0

ājkHl,ij(ω, ζ)(r − rH)i (6.77)

H1l(ω, r ∼ rH , ζ) = e−ikHr∗
Nā∑
j=0

NH∑
i=0

ājhH1l,ij(ω, ζ)(r − rH)i−1 (6.78)

Φl(ω, r ∼ rH , ζ) = e−ikHr∗
Nā∑
j=0

NH∑
i=0

ājϕHl,ij(ω, ζ)(r − rH)i (6.79)

Φlm
′(ω, r ∼ rH , ζ) = e−ikHr∗

Nā∑
j=0

NH∑
i=0

ājξHl,ij(ω, ζ)(r − rH)i−1 (6.80)

h0l(ω, r ∼ rH , ζ) = e−ikHr∗
Nā∑
j=0

NH∑
i=0

ājηH0l,ij(ω, ζ)(r − rH)i (if Nā > 1) (6.81)

h1l(ω, r ∼ rH , ζ) = e−ikHr∗
Nā∑
j=0

NH∑
i=0

ājηH1l,ij(ω, ζ)(r − rH)i−1 (if Nā > 1) , (6.82)

while at the numerical infinity r = R∞,

Klm(ω, r → ∞, ζ) = eiωr∗
Nā∑
j=0

N∞∑
i=0

āj
k∞l,ij(ω, ζ)

ri
(6.83)

H1l(ω, r → ∞, ζ) = eiωr∗
Nā∑
j=0

N∞∑
i=0

āj
h∞1l,ij(ω, ζ)

ri−1
(6.84)

Φlm(ω, r → ∞, ζ) = eiωr∗
Nā∑
j=0

N∞∑
i=0

āj
ϕ∞l,ij(ω, ζ)

ri
(6.85)

Φlm
′(ω, r → ∞, ζ) = eiωr∗

Nā∑
j=0

N∞∑
i=0

āj
ξ∞l,ij(ω, ζ)

ri
(6.86)
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h0l(ω, r → ∞, ζ) = eiωr∗
Nā∑
j=0

N∞∑
i=0

āj
η∞0l,ij(ω, ζ)

ri−1
(if Nā > 1) (6.87)

h1l(ω, r → ∞, ζ) = eiωr∗
Nā∑
j=0

N∞∑
i=0

āj
η∞1l,ij(ω, ζ)

ri−1
(if Nā > 1) , (6.88)

where, as usual, the asymptotic behavior can be verified a-posteriori from the perturbation equa-
tions, once these expansions have been substituted. At the second order in the spin, since we are
focusing on the polar-led sector, some of these coefficients, such as ηH,∞

0l±1,i0, η
H,∞
1l±1,i0, are zero, as these

perturbations are not excited. In the end, when solving the equations order by order in ā, r − rH

and 1/r, we find that the solutions will be identified only by four constants 3.

6.2.4 Stability and Truncation Error

By performing the numerical integration explained in Sections 6.2.1-6.2.2, with the boundary con-
ditions of Sec. 6.2.3, we find the functions ωnl

r (ζ), where r = 0, 1, 2a, 2b (see Eq. (6.74)) for the
gravitational-led modes in the polar-led sector. We have computed the fundamental (i.e., n = 0)
QNMs with l = 2, 3. Furthermore, we have verified that computing ω1 both in the first-order and
the second-order frameworks produces the same results, as expected. As already mentioned when
discussing the limitation of the direct integration method (see Sec. 2.5), it was not possible to
consider n > 0 QNMs because, due to the larger values of the imaginary parts, our integration
approach is not suited to capture with enough accuracy the overtones [97], and thus extracting the
EdGB correction.

Numerical Stability

We now investigate the numerical stability of our results with respect to the integration parameters,
as done for the static case in Sec. 5.3.2. We find that, also for the rotating case, the choice of
the matching point rm where X̂ is evaluated is less relevant than the other parameters, as the
results are completely stable when RH < rm < R∞. For the choice of the expansion orders at
the boundaries NH , N∞ in Eqs.(6.77)-(6.87), we find, after testing smaller and larger values, that
NH = 11, N∞ = 13 lie in a stable range of values, as greater orders do not affect significantly the
results for the fundamental modes.

Finally, the most important parameters to be cautious about are the choice of the numerical
horizon RH = rH(1 + ϵ), where rH is the physical horizon in Eq. (3.39) and ϵ is a small deviation
parameter, and of the numerical infinity R∞, with the latter being the most relevant, due to the
intrinsic divergence of the integration method at infinity (see Sec. 2.5).

We define the relative difference with respect to a specific choice of numerical infinity R̄∞ as

δωi R,I(R∞, ϵ, ζ, R̄∞) ≡
|ωi R,I(R∞, ϵ, ζ)− ωi R,I(R̄∞, ϵ, ζ)|

|ωi R,I(R̄∞, ϵ, ζ)|
(i = 1, 2) . (6.89)

In Fig. 6.2 we plot the first-order case δ1R,I for (nl) = (02) and a range of R∞ ∈ [20, 80]M and ϵ ∈

3All the other free constants remaining can be reabsorbed in these four. For example, the leading order constant
terms in the r − rH and 1/r expansions at first and second order in the spin (j = 1, 2) can be reabsorbed in the
non-spinning constant term (j = 0).
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Figure 6.2: Real (left panel) and imaginary (right panel) parts of the relative difference of ω1 for n = 0, l = 2,
for different values of R∞ and ϵ with respect to R̄∞ = 40M and for a fixed value of ζ = 0.2
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Figure 6.3: Real (left panel) and imaginary (right panel) parts of the relative difference of ω2 = ω2a+m
2ω2b

for l = m = 2, for different values of R∞ and ϵ with respect to R̄∞ = 40M and for a fixed value of ζ = 0.2

[10−5, 10−1], while in Fig. 6.3 we show the stability of the second-order coefficient ω2 = ω2a+m
2ω2b

for (nlm) = (022). We see that, while the results do not vary much for different values of ϵ, R∞

plays a crucial role, especially for the imaginary part, since the EdGB correction (represented as a
dotted black line in the plots) is smaller in this case. In our code, we fixed ϵ = 10−2 and R∞ = 35M ,
since the results with these values lie in a stable range – any difference with other options is smaller
than the EdGB correction to the QNM.

Expansion in the Spin

Since we do not have the exact QNM spectrum in EdGB gravity to compare our results to, in
order to assess the accuracy of the expansion in the spin, we take as a reference the slow-rotation
expansion for rotating BHs with ζ = 0 studied in Sec. 2.6.3 (a similar approach has been followed
in Ref. [66]). In particular (see Fig. 2.5), for the modes (nlm) = (022), (033), we found that the
discrepancy of the first-order Taylor expansion (6.50) with respect to the Kerr QNM is smaller than
1% as long as ā ≲ 0.22; when we include the second-order correction in Eq. (6.74), the discrepancy
is smaller than 1% for ā ≲ 0.4. Applying the Padé resummation improved the agreement with the
Kerr values of the QNMs, which become accurate to ∼ 1% for ā ≲ 0.6 and to ∼ 2% for ā ≲ 0.7.
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Figure 6.4: Truncation errors at order s ≤ 5 for ω1(ζ) for the (nl) = (02) QNM. The real and imaginary
parts are shown in the left panels and right panels, respectively. The truncation error is always smaller than
the relative correction due to EdGB modifications (solid curves) for s > 2 .

These considerations provide an indication that a second-order computation of QNMs may be
accurate for ā ≲ 0.4 (ā ≲ 0.7 with Padé resummation) for EdGB gravity as well. In the following,
then, we shall mostly consider values of the spin in the range ā ∈ [0, 0.7].

Expansion in the Coupling Constant

To estimate the accuracy of the expansion in the dimensionless coupling ζ, we have computed
the functions ωnl(s)

r (ζ) that appear in (6.74), by expanding the background and the perturbation
equations up to order s in ζ and up to second order in ā; we have repeated the computation for
s = 2, . . . , 5, denoting the functions computed in this way as ωnl(s)

r (ζ). We then define the truncation
error at order s of ωnl

r (ζ) as

ε
nl(s)
r R,I(ζ) =

∣∣∣ωnl(s+1)
r R,I (ζ)− ω

(s)
r R,I(ζ)

∣∣∣∣∣∣ωnl(s)
r R,I(ζ)

∣∣∣ , (6.90)

where r = 0, 1, 2a, 2b and the subscripts R, I refer to the real and imaginary parts of the complex
frequencies. The truncation error gives an estimate of the error committed when stopping at order
s instead of going to order s + 1. Since we considered only up to order O(ζ6), we can compute
the truncation error between s = 5 and 6, but assessing the error due to stopping the expansion at
s = 6 would require the computation at O(ζ7). Nevertheless, the truncation error at s = 5 provides
an upper limit estimate, since we expect εnl(6)r ≲ ε

nl(5)
r . The r = 0 case has been discussed in Sec.

5.3.2, here we shall focus on r = 1, 2a, 2b. The truncation error of (nl) = (02) for r = 1 is plotted
in Fig. 6.4, while the r = 2a, 2b cases are presented in Figs. 6.5-6.6.

We see that, for any r, the expansion in ζ is accurate at least within 1% as long as ζ ≲ 0.4 for
the real parts of the modes, and ζ ≲ 0.3 for the imaginary parts. Thus, to be sure to limit the effect
of the truncation in the coupling constant expansion, we shall consider these ranges of ζ. In Figures
6.4-6.6 the relative shift between the functions ωnl

r in GR and in EdGB gravity is also shown as a
reference, plotted as a black curve; we can see that the truncation error εnl(s)r at s = 5 is always
significantly smaller than the EdGB contribution 4.

4As seen in the right panel of Fig. 6.4, if we only considered an expansion up to O(ζ2), we would not be able to
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We note that, especially for r = 2a, 2b, for ζ ≲ 0.1 the expansion in ζ is in some cases poorly
convergent. We think that this is due to the truncation error becoming subleading with respect
to the numerical precision of the integration, which becomes significant for small values of the
coupling. However, the truncation error is still smaller than the EdGB relative correction to the
modes, therefore we think that our approach is reliable even for small values of the coupling constant.
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Figure 6.5: Truncation errors at order s ≤ 5 for ω2a(ζ), for the (nl) = (02) QNM. The real and imaginary
parts are shown in the left panels and right panels, respectively. The truncation error is always smaller than
the relative correction due to EdGB modifications (solid curves).
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Figure 6.6: Truncation errors at order s ≤ 5 for ω2b(ζ), for the (nl) = (02) QNM. The real and imaginary
parts are shown in the left panels and right panels, respectively. The truncation error is always smaller than
the relative correction due to EdGB modifications (solid curves).

6.2.5 Discussion of the Results

After performing the integration for both the first-order and second-order case, we have fitted the
functions ωnl

r (ζ) defined in Eq. (6.74) with sixth-order polynomials in ζ (considering ζ ∈ [0.0.4]

for the real parts, ζ ∈ [0, 0.3] for the imaginary parts, as explained in the previous section). The

identify properly the EdGB correction to ω1,I , which is a quite small value to begin with (it goes to zero for larger
values of l, as seen using the geometric correspondence in GR).
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functional form of the fits is then

M ωnl
r (ζ) =

6∑
i=0

ζiCnl
r i , (6.91)

where the coefficients for the (gravitational-led, polar-led) fundamental modes with l = 2, 3 are
shown in Tables 6.1-6.4 (for further details on the computation of ωnl

0 see Chapter 5). Since for
gravitational-led modes the EdGB correction is of O(ζ2), we have set Cnl

r 1 = 0 [3]. As in the other
chapters, we have estimated the relative error of the fit (6.91), δf , as the mean over 100 attempts
of the relative difference between the fit, computed from randomly selected 80% of the data points,
and the remaining 20% of the data. For l = 3 and r = 2a, 2b, the functions have been fitted
with fourth-order polynomials, because the error δf is smaller. The Padé-resummed QNMs with
(nlm) = (022), (033) obtained from the second-order spectrum, are shown in Fig. 6.7, as functions
of the spin, for different values of ζ. We can see that, while at low values of the spin the EdGB
corrections induce an increase (in modulus) in both the real and imaginary parts of the QNMs,
when the spin is larger the EdGB effect is to increase the real parts of the modes, while decreasing
the imaginary parts.

In order to isolate the modifications to the spectrum induced by the EdGB corrections, it is
useful to define the relative differences between the QNMs in EdGB gravity and in GR

∆ωnlm
R,I (ā, ζ) =

ωnlm
R,I (ā, ζ)− ωnlm

R,I (ā, 0)

ωnlm
R,I (ā, 0)

, (6.92)

where R, I refer to the real and imaginary parts, respectively. These quantities are plotted in
Fig. 6.8, for different values of ζ, as functions of ā, and in Fig. 6.9 for different values of ā, as
functions of ζ. We show the spin expansions at the first and second order (dashed and continuous
line respectively), and resummed using Padé approximants (dotted line); in Fig. 6.9 only Padé
approximants are presented for clarity.

We can clearly see that the O(ā2) terms enhance the EdGB corrections to the QNMs 5; moreover,
the modifications are further enhanced by the Padé resummation: for ā = 0.7, the (real) frequency
of the l = m = 2 fundamental mode is shifted of ∼ 0.5% for ζ = 0.2, and of ∼ 2.5% for ζ = 0.4. We
also note that the EdGB relative corrections to the imaginary parts change sign for large values of
the spins; this explain the overall trend of the EdGB modification discussed above.

From Fig. 6.9 we note that when ā ∼ 0.7 and ζ ≲ 0.3, the contribution of the GR deviations
to the QNMs is typically smaller than 2%, which is the error we expect from the slow-rotation
expansion (see Fig. 2.5). However, since in Eq. (6.92) we are taking the difference of modes both
affected by the slow rotation error, we expect the GR part of the error to cancel away and leave
terms of order O(āζ2), which should be smaller than the ones shown in Fig. 2.5. In other words,
to minimize the error due to the slow rotation expansion, we can take the (non-perturbed) Kerr
modes to compute the GR part of the spectrum (O(ζ0)), and add the EdGB corrections (O(ζ2))
found here in this work. In this way, the error due to the truncation at the second order in the spin

5We remark that this is expected due to symmetry reasons because, by comparison with GR, the first order
corrections in the spin only change the gtϕ component of the metric, affecting only the frame-dragging effect, while
all the other relevant observational effects (such as in the horizon radius and quadrupole moment) emerge at the
second order. However, as it happens in GR, we expect the higher order terms, such as the cubic order, to not be
dominant over the quadratic effects.

Lorenzo Pierini 90



6.2. Quasinormal Mode Spectrum

would only affect the EdGB part of the modes.
Finally, in Fig. 6.10 we show the EdGB relative corrections for the fundamental modes with

l = 2, 3, for different values of m.
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Figure 6.7: Real (upper panels) and imaginary (lower panels) parts of the (nlm) = (022) (left panels)
and (nlm) = (033) (right panels) QNMs, evaluated using Padé approximants, as functions of the spin, for
different values of ζ.
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Figure 6.8: Real (left panels) and imaginary (right panels) parts of the relative difference of EdGB QNMs
with respect to GR, as a function of ā. We consider the (nlm) = (022) (upper panels) and (nlm) =
(033) (lower panels) QNMs computed up to the first order in the spin, up to second order, and with Padé
resummation.
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Figure 6.9: Same as Fig. 6.8, as a function of ζ, with QNMs computed with Padé resummation.

Table 6.1: Coefficients of the fit 6.91 of ω0l
r for gravitational-led, polar-led modes, with r = 0, l = 2, 3, up

to i = 6. In the last line we show the relative error of the fit, δf .

Re (l = 2) Im (l = 2) Re (l = 3) Im (l = 3)

C0 0.37367 −0.08896 0.59944 −0.09270
C2 −1.406 · 10−2 −4.70 · 10−3 −5.453 · 10−2 −7.19 · 10−3

C3 −7.53 · 10−3 −6.10 · 10−3 −3.093 · 10−2 −1.098 · 10−2

C4 1.35 · 10−3 −3.22 · 10−3 6.419 · 10−2 1.001 · 10−2

C5 7.09 · 10−3 −1.61 · 10−3 2.417 · 10−2 2.158 · 10−2

C6 −2.03 · 10−3 −2.8 · 10−4 −5.215 · 10−2 −3.345 · 10−2

δf 2 · 10−9 3 · 10−8 10−7 2 · 10−7

Table 6.2: As in Table 6.1, with r = 1.

Re (l = 2) Im (l = 2) Re (l = 3) Im (l = 3)

C0 0.06289 0.00100 0.06737 0.00065
C2 −1.048 · 10−2 2 · 10−5 −2.156 · 10−2 1.18 · 10−3

C3 −1.074 · 10−2 −2.69 · 10−3 −2.056 · 10−2 −3.19 · 10−3

C4 −1.53 · 10−3 −9.86 · 10−3 4.465 · 10−2 3.9 · 10−4

C5 −2.40 · 10−3 8.90 · 10−3 2.341 · 10−2 −1.224 · 10−2

C6 1.433 · 10−2 −3.773 · 10−2 −6.800 · 10−2 1.056 · 10−2

δf 5 · 10−8 2 · 10−5 10−6 10−4
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Figure 6.10: Real (left panels) and imaginary (right panels) of the relative difference of EdGB QNMs with
respect to GR as a function of ā, for ζ̄ = 0.2 and different values of m. We consider (nl) = (02) (upper
panels) and (nl) = (03) (lower panels) QNMs.

Table 6.3: As in Table 6.1, with r = 2a. The fit for l = 3 stops at fourth order in ζ.

Re (l = 2) Im (l = 2) Re (l = 3) Im (l = 3)

C0 0.03591 0.00638 0.04755 0.00659
C2 1.348 · 10−2 6.50 · 10−3 2.941 · 10−2 1.857 · 10−2

C3 1.051 · 10−2 8.48 · 10−3 2.354 · 10−2 8.93 · 10−3

C4 1.051 · 10−2 5.06 · 10−3 −2.391 · 10−2 −2.78 · 10−3

C5 4.85 · 10−3 1.402 · 10−2 − −
C6 1.037 · 10−2 −2.24 · 10−3 − −

δf 7 · 10−7 2 · 10−6 10−4 10−3

Table 6.4: As in Table 6.3, with r = 2b.

Re (l = 2) Im (l = 2) Re (l = 3) Im (l = 3)

C0 0.00896 −0.00031 0.00661 0.00006
C2 −8.37 · 10−3 3.13 · 10−3 −9.95 · 10−3 7.0 · 10−4

C3 −1.201 · 10−2 2.95 · 10−3 −4.90 · 10−3 −2.27 · 10−3

C4 2.67 · 10−3 −1.046 · 10−2 4.78 · 10−3 −1.57 · 10−3

C5 −5.926 · 10−2 3.088 · 10−2 − −
C6 8.254 · 10−2 −6.819 · 10−2 − −

δf 5 · 10−6 5 · 10−4 2 · 10−4 4 · 10−2
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Chapter 7

Tests of General Relativity with ParSpec

In this Chapter, we are going to outline two simple examples of possible tests of GR, one theory-
agnostic and one theory-specific that uses our computation of the EdGB QNMs, posing as the
first steps towards a more detailed spectroscopic analysis [194, 195]. Both methods rely on the
ParSpec (Parametrized Ringdown Spin Expansion Coefficients) framework [175], an observable-
based parametrization of the ringdown of spinning black holes beyond General Relativity.

Its features can be summarized as the following:

• The QNM spectrum is expanded in a bivariate series in terms of the fundamental parameters
(mass and spin) characterizing BH dynamics in GR;

• The expansion parameters take into account the fact that modifications of GR are controlled
by coupling constants, which can either have specific dimensions or be dimensionless;

• By combining several observations, it is in principle possible to map the deviation parameters
to specific modified theories of gravity for which QNM may be available, like dynamical Chern-
Simons (dCS) and EdGB. As soon as large enough values of SNR will be achievable in the
ringdown (especially with future detectors), this approach holds the promise of allowing us to
constrain several parameters or identify deviations.

• Differently from other parametrizations of the ringdown used by LIGO and Virgo, where the
deviation parameters depend on the mass and spin of the BH and thus are specific for each as-
trophysical source, the ParSpec formalism is inherently a source-independent parametrization
[132];

• The ParSpec framework, even if perturbative in the spin, can be made arbitrarily precise
through high-order spin expansions.

We shall follow the notation of Refs. [132, 175] and denote with M the mass of the remnant
BH resulting from the coalescence of a binary compact object system and with χ = J/M2 its spin.

7.1 ParSpec Framework

As seen in Chapter 2, we can model the ringdown waveform as a superposition of damped sinusoids.
Calling the complex QNMs ω̃lmn = ωlmn+i/τlmn, with ωnlm the (real) frequencies, τlmn the damping
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7.1. ParSpec Framework

times, and introducing the mode amplitudes A+,−
lmn and their phases ϕ+,−

lmn, we can write the waveform
as

h+(t) + ih×(t) =
M

DL

∞∑
l=2

+l∑
m=−l

∞∑
n=0

(h+lmn + h−lmn) , (7.1)

with

h+lmn = A+
lmnSlmn(ι, φ)e

i[(t−tlmn)ω̃lmn+ϕ+
lmn]

h−lmn = A−
lmnSl−mn(ι, φ)e

−i[(t−tlmn)ω̃lmn+ϕ−
lmn] , (7.2)

where Snlm are the spin-weighted spheroidal harmonics [331], tlmn = t0 is a reference start time, ι is
the inclination of the final spin with respect to the observer’s line of sight, and φ corresponds to the
azimuthal angle of the line of sight in the BH frame. When the progenitors in the binary system have
spins aligned with the orbital angular momentum, the two (complex) amplitudes +/− are related
by reflection symmetry through a factor (−1)l, effectively halving the degrees of freedom per mode.
In our analysis, since we are not interested in inferring the physical value of the amplitude Almn –
we just check that it is not zero when the mode is excited – we shall use the spherical harmonics
Ylm instead of the spheroidal harmonics Slmn and reabsorb any factors inside the amplitude.

If one wanted to parametrize GR deviations in the QNM spectrum, a straightforward option
would be

ωlmn = ωKerr
lmn (1 + δωlmn)

τlmn = τKerr
lmn (1 + δτlmn) , (7.3)

where the "Kerr" superscript denotes the Kerr values computed in GR.
As already mentioned, although completely general, this parametrization has the drawback that

the deviations δωlmn, δτlmn will depend on the specific mass and spin of the BH. One could still
repeat the analysis for multiple sources and study the distribution of the GR deviations across a
population; but undoubtedly a source-independent approach, as the one of ParSpec, would be more
straightforward to combine constraints from multiple observations. Furthermore, considering an
explicit dependence of the spectrum on the mass and spin, such as a perturbative expansion, would
improve the parametrization efficiency.

A model that encapsulates these requirements is the bivariate expansion

ω
(J)
i =

1

Mi

D∑
k=0

χn
i ω

(k)
J

(
1 + γiδω

(k)
J

)
τ
(J)
i =Mi

D∑
k=0

χn
i τ

(k)
J

(
1 + γiδτ

(k)
J

)
, (7.4)

where J = 1, 2, ..., q labels the mode (nlm) considered, i the source; Mi and χi ≪ 1 are the detector-
frame mass and spin of the i-th source; D is the order of the spin expansion, γi is the dimensionless
coupling constant that might depend on the source but not on the QNM 1. ω(k)

J and τ
(k)
J are the

1We note that γi might not directly correspond to fundamental coupling constants in an underlying Quantum
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dimensionless coefficients of the spin expansion for a Kerr black hole in GR, while δω(k)
J and δτ

(k)
J

are the beyond-Kerr corrections. Since all the source dependence is inside γi, these corrections are
now universal dimensionless numbers, unlike the ones in Eq. (7.3). We are assuming perturbative
corrections, so we must have γiδω

(k)
J ≪ 1 and γiδτ

(k)
J ≪ 1.

If we consider the deviations as free parameters to be constrained, we can extract Mi and χi

assuming GR, i.e. either from the full inspiral-merger-ringdown GR waveform or from a measure-
ment of the fundamental ℓ = m = 2 mode with a standard GR ringdown template. Therefore, in
this case, the corrections γiδω

(k)
J and γiδτ

(k)
J also include the shift between Mi, χi and the physical

mass and spin (see the Appendix of Ref. [175]). However, if one chooses to fix the beyond-GR
parameters to the specific prediction of a modified theory of gravity, then Mi and χi would be the
physical mass and spin found assuming that theory, which in general would differ from the values
found assuming GR.

The corrections induced by a general modified theory of gravity to the QNM spectrum can be
broadly divided into three cases:

• Scale-free corrections. It corresponds to the case in which the theory is described by a dimen-
sionless constant, which can be absorbed in the δω(k), δτ (k) if we are performing inference on
them. The spectrum will be described by P = 2(D + 1)q parameters, with q the number of
modes considered, and D the spin truncation order. Theories that belong to this category are
for example Einstein-Aether and Horava gravity (to leading order) [18];

• Single dimensionful coupling. In this case, the theory is described by a dimensionful coupling
constant α (equal for all the sources) that will have dimensions [α] = Mp, with p fixed by the
theory and M the typical length mass/scale of the system (we are working in geometric units).
For BHs the characteristic length scale is fixed by the source frame mass M s (as measured
within GR), which is related to the mass in the detector frame Mi through the redshift zi. At
leading order (γi ≪ 1), we can identify

γi =
α

(M s
i )

p
=
α(1 + zi)

p

Mp
i

, (7.5)

where zi is the redshift of the i-th source, which can be estimated from the amplitude of
the inspiral waveform (assuming that the modified theory does not change significantly the
standard cosmological model). In the case in which the deviation parameters are not fixed,
we can reabsorb α inside δω(k), δτ (k), making them dimensionful. However, all the source-
dependent information is still inside γi, while the deformation parameters remain source-
independent. Since p is fixed, also in this case the number of parameters will be P = 2(D+1).
In this category, we find, with p = 4, Einstein-scalar Gauss-Bonnet, which includes EdGB
studied in this Thesis (α = α2

GB), and dynamical Chern-Simons [18].

• Individual Charges. This is the case when the GR-deviations are due to an extra charge Qi

that is a primary hair, i.e. not depending on the mass and spin of the BH. We shall have

γi =
Q2

i

(M s
i )

2
, (7.6)

Field Theory, but, in general, will be non-trivial functions of them.
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with N additional parameters, due to the charges of each source. Hence the QNM spectrum
would be described by P ′ = P+N = 2(D+1)q+N parameters. Kerr-Newman BHs, which can
be used to describe modified theories of gravity with additional charges due to fundamental
fields, belong to this category.

In Section 7.3, we shall consider the first case (p = 0) and perform a null test of GR by inferring
the posterior probabilities for the deviation parameters δω(k)

J , δτ
(k)
J using multiple sources and next

generation detectors.
In Section 7.4, instead, we shall fix the deviation parameters to the values predicted by EdGB

(see Tab. 7.1), corresponding to the p = 4 case, and perform inference on the coupling constant of
the theory through the beyond-GR parameter ℓ =

√
αGB. Focusing on a single GW event detected

by LV, we adopt a time-domain analysis of GW150914 implementing the ParSpec parametrization
in the pyRing package.

In the rest of the Chapter, we will not consider the third case discussed above, corresponding
to N individual charges.

Table 7.1: Values of the coefficients for the ParSpec spin expansion for fundamental modes with ℓ = m = 2,
ℓ = m = 3 and ℓ = 2,m = 1. In the upper section, the coefficients ω(k)

J ω
(k)
J are computed up to order

DGR = 6 by performing a slow rotation expansion of the Kerr QNMs. In the lower section, there are
deviation coefficients at the leading order EdGB correction found from the analysis of Ch. 6.

spin order k ω
(k)
022 τ

(k)
022 ω

(k)
033 τ

(k)
033 ω

(k)
021 τ

(k)
021

0 0.37367 11.2407 0.59944 10.7871 0.37367 11.2407
1 0.12578 0.2522 0.20206 0.2276 0.06288 0.1261
2 0.07178 0.6650 0.10717 0.8238 0.04487 0.7701
3 0.04800 0.5840 0.06890 0.7345 0.02183 0.4026
4 0.03601 0.6420 0.04841 0.6744 0.01642 0.3563
5 0.01389 0.0733 0.05295 0.5408 0.00590 1.2600
6 0.13021 3.9385 −0.11339 1.3153 0.05859 0

spin order k δω
(k)
022 δτ

(k)
022 δω

(k)
033 δτ

(k)
033 δω

(k)
021 δτ

(k)
021

0 −0.03773 −0.0528 −0.09112 −0.0778 −0.03773 −0.0528
1 −0.16679 −0.0802 −0.32149 2.4495 −0.16679 −0.0176
2 −0.27788 3.9141 −0.56101 2.6150 0.11256 1.4773

7.2 Statistical Tools

We now illustrate and recap briefly some of the fundamental quantities used for the statistical
analysis in the following sections [332].

7.2.1 Bayesian Parameter Estimation

Considering a ringdown model described by some parameters θ, which possibly contains the beyond-
GR deviations, the posterior probability distribution of the parameters θ conditioned on the avail-
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able data d is, according to Bayes’ theorem,

P (θ|d,H, I) = P (θ|H, I)L(d|θ,H, I)
P (d|H, I)

, (7.7)

where H represents the specific parametric template describing the data and I represents all the
available background information (in the following sections we shall omit it). P (θ|H, I) is the prior
probability distribution, which quantifies our information about the parameters before analyzing
the data and is modified by the observations through the likelihood L(d|λ,H, I), describing the
probability of observing the data assuming that the hypothesis H, identified by the parameters
θ, is true; finally P (d|H, I) is the evidence of the model H, acting as a normalization factor and
representing the probability that the data d can be explained by the considered model.

The evidence plays an important role when comparing the agreement with the data of two
competing models H1,H2:

P (H1|d, I)
P (H2|d, I)

=
P (H1|I)P (d|H1, I)

P (H2|I)P (d|H2, I)
≡ P (H1|I)
P (H2|I)

B1
2 , (7.8)

where we have defined the Bayes Factor B1
2 in terms of the evidences ratio, while P (H1|I)/P (H2|I)

represents the ratio of prior probabilities of the models.

7.2.2 Markov Chain Monte Carlo

We use a Markov Chain Monte Carlo (MCMC) method [333] to infer the posterior distributions
on the beyond-Kerr parameters θnGR. If we call θ̄ the set of free parameters we want to infer,
and d̄ the set of ringdown observations considered, the MCMC algorithm allows us to obtain a
sequence of random samples from the unknown posterior probability distribution by exploiting the
proportionality with the likelihood, assumed known,

P (θ̄|d̄,H) ∝ L(θ̄|d̄,H)P (θ̄|H) , (7.9)

which follows from Bayes’ theorem (7.7).
An example of MCMC is the Metropolis-Hastings algorithm, which consists of the following

main steps:

1. An arbitrary point θ̄t is selected as a first sample;

2. The proposal density Q(θ̄x|θ̄y), which controls whether to choose the next sample value θ̄x

given the previous one θ̄y, is chosen;

3. For each iteration t:

• Generate a candidate θ̄x′ from the distribution Q(θ̄x′ |θ̄t)

• Compute the acceptance ratio A = L(θ̄x′ |d̄,H)/L(θ̄t|d̄,H), which, given the proportion-
aly in Eq. (7.9), can also be expressed in terms of the posteriorsA = P (θ̄x′ |d̄,H)/P (θ̄t|d̄,H).

• After picking a uniform random number r ∈ [0, 1], accept the candidate θt+1 = θx′ if
r ≤ A, or reject the candidate θt+1 = θt if r > A.
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The acceptance ratio describes how probable the new proposed sample is with respect to the current
sample, taking into account the information of the posterior distribution P (θ̄|d̄,H). The more this
probability decreases, the more we will reject the new sample; in this way, we will tend to have
a larger number of samples in the high-density regions of the posterior, while only occasionally
visiting the low-density regions. Thus, we expect the algorithm to return samples that follow the
desired unknown posterior distribution.

7.2.3 Fisher Matrix

The uncertainties on the template parameters can be computed using a Fisher Matrix approach
[334], which is able to provide accurate estimates of the statistical errors in the high-SNR limit with
Gaussian noise (and without systematic errors in the waveform) [335].

Given a waveform h(t) such as the one in Eq. (7.1), described by some parameters θ the Fisher
matrix is defined as

Fij =

(
∂h

∂θi

∣∣∣∣∣ ∂h∂θj
)

θ=θ̂

, (7.10)

where θ̂ are the theoretical (injected) values, and the scalar product is defined as

(
h1
∣∣h2) = 4Re

∫ fmax

fmin

h̃∗1(f)h̃2(f)

Sn(f)
df , (7.11)

with Sn(f) the detector spectral density and h̃ the Fourier transform of the waveform.
The statistical error on the i-th parameter can be found from the diagonal elements of the Fisher

matrix as

σθi =
√
Σii , (7.12)

where Σ = F−1 is the covariance matrix.

7.2.4 Time Domain Analysis

When we perform a theory-specific test of GR, fixing the beyond-GR parameters in the waveform
model to the EdGB values in Tab. 7.1, our goal is to constrain the characteristic length ℓ =

√
αGB.

In order to do that, we use pyRing [129, 131, 269, 336], a publicly available Bayesian parameter
estimation python [337] package, which focuses on the ringdown part of the GW signal formulating
the problem in a fully time-domain framework, both in the likelihood and in the waveform.

A time domain analysis framework, in our case restricted to the post-merger part of the signal,
solves several technical issues of a frequency domain approach and avoids contamination from earlier
stages of the coalescence (see [129, 132]). For an observed strain d(t), given a GW signal h(t), the
log-likelihood function is

logL(d|θ̂,H) = −1

2

∫ ∫
dtdT

[
d(t)− h(t; θ̂)

]
C−1

[
d(t+ T )− h(t+ T ; θ̂)

]
, (7.13)

where C(T ) =
∫
dtdT n(t)n(t+ T ) is the two-point autocovariance function, estimated from 4096s

Lorenzo Pierini 100



7.3. Theory-Independent Null Test of General Relativity

of data surrounding the event, n(t) is the noise. The likelihood function is determined assuming
that the error on the numerical data is distributed as a zero-mean gaussian with a conservative
standard deviation estimate of 10−5.

The pyRing package uses a nested sampler algorithm called CPNest [338] to infer the parame-
ters’ posterior distributions and uses the LALInference library [339] to compute projections onto
detectors. The Nested-Sampling algorithm [332] is able to reconstruct multi-dimensional, strongly
correlated posterior distributions, and is now part of the routine merger-ringdown analysis of LIGO-
Virgo collaborations [15, 33]. pyRing implements state-of-the-art merger-ringdown-only analytical
waveform templates [265, 268, 340, 341] and utilizes other standard IMR waveforms through the
LALSimulation library [342]. All the internal waveform and likelihood computations are carried
out in cython [343].

7.3 Theory-Independent Null Test of General Relativity

In this section, we perform a theory-agnostic test of GR, working under the hypothesis that GR is
the correct description of gravity, and using Bayesian parameter estimation to infer the posterior
probability distributions of the deviation parameters δω(k)

J , δτ
(k)
J .

Our goal is to understand, considering future detectors such as Cosmic Explorer (CE) and
Einstein Telescope (ET), how many sources are needed to put meaningful bounds, which beyond-
GR parameter would be constrainable in the future, and to which level.

This next-generation of ground-based interferometers, CE (in the United States) and ET (in
Europe), will improve by one order of magnitude the sensitivity of currently available detectors and
will extend the bandwidth towards both low and high frequencies [36, 344, 345].

While in Ref. [175] the authors used uniform distributions for masses and spins of the BHs, we
repeat their analysis focusing on a realistic distribution of sources, using a population of BBHs with
mass and spin distributed according to Power Law + Peak and Default models, respectively, which
are currently favored in the latest LIGO-Virgo-KAGRA (LVK) catalog [13]. The redshifts follow
the distribution of the model in Ref. [346]. We shall consider two catalogs of 105 binary sources:
"Model I" has only positive values of spins between [0, 1], while "Model II" allows for negative
values in the range [−1, 1].

GivenN sources, we shall have O observables that we can use to fix P parameters. The minimum
number of sources needed to infer these parameters depends on the way we extract the mass and
spin of the BH, whether from the full IMR waveform or only from the ringdown part.

In the former case, using the information about the binary progenitors’ masses and spins, we
can evaluate the remnant BH’s mass and spin using NR semianalytical fits. Thus, for N sources we
shall have O = 2N q observables: q frequencies and q damping times for each source. To constrain
P = 2(D + 1)q parameters, we must have N ≥ D + 1, with D the maximum spin order considered
in the ParSpec expansion (7.4).

Instead, if we examine only the ringdown signal, we must use two parameters for each source
(e.g. one frequency and one damping time) to extract the mass and spin of the remnant BH. Thus,
we are left with O = 2N q− 2N = 2N(q− 1) observables. The minimum number of sources, in this
case, is then N ≥ q(1+D)/(q− 1). We note that we must have at least two modes to constrain the
GR modifications, meaning q > 1, since the first mode is used to determine the mass and the spin.
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Setup

In our analysis, we consider the masses and spins determined from the whole IMR waveform and
assume that the (nlm) = (022), (033), (021) modes are detectable – we leave more realistic investi-
gations, considering which modes are more excited depending on the characteristics of the binary
sources, to future works.

In order to sample the posterior probability distributions of each beyond-GR deviation parameter
using Bayesian analysis, we need to choose the likelihood in Eq. (7.9). For each event we fix it to
a Gaussian distribution and, given the "quasi-orthonormality" of the QNMs [170], the combined
function can be written as the product of Gaussian distributions

L(d|θ,H) =
N∏
i=1

Li(d|θ,H) =
N∏
i=1

q∏
J=1

N
(
µ
(J)
i ,Σ

(J)
i

)
, (7.14)

where µ
(J)
i is a two-components vector related to the difference between the observed J = 1, ..., q

modes and the parametrized mode templates in Eq. (7.4),

µ⃗
(J)
i =

(
ω
(J)
i − ω

(J)
i,obs

τ
(J)
i − τ

(J)
i,obs

)
, (7.15)

and Σi is the covariance matrix that includes errors and correlations between the frequencies and
damping times of the i-th source. Given the properties of QNMs, in this case it is a block-diagonal
matrix with each block corresponding to the J-th mode.

The values of (ω(J)
i , τ

(J)
i ) in Eq. (7.15) are assumed to be the QNMs of a Kerr BH, while the

measured values (ω
(J)
i,obs, τ

(J)
i,obs) that we inject in our analysis are evaluated in the following way.

We extract N sources from the original catalog by requiring that the SNR ρ for the (022) mode
is greater than a certain threshold, namely ρ > 12, considering the detectors CE and ET 2. There
are currently different design options being considered, as shown in Fig. 7.1, among which we select
a length of the interferometer arms of 20 km for CE and 15 km for ET, assuming for the latter two
identical L configurations built in the Netherlands and in Sardinia, Italy (the final project is still in
the works [347]). The range of frequency in Eq. (7.11) is set to [3, 5000]Hz.

The SNR ρ is computed as

ρ2 = (h
∣∣h) = 4Re

∫ fmax

fmin

h̃∗(f)h̃(f)

Sh(f)
df , (7.16)

where h̃(f) is the Fourier transform of the waveform, and Sh(f) is the noise spectral density of the
detector.

2We focus on these detectors, instead of LISA or LVK, because the next step of this analysis will be to constrain
EdGB, whose dimensionful coupling constant introduces a scale and inevitably makes certain sources (and conse-
quently certain detectors) more relevant than others. The EdGB deviation is controlled by α2

GB/M
4 ≪ 1, this is why

lower mass compact objects, such as stellar-origin BHs, are more important to constrain the theory; these sources
are among the main targets of ET and CE [136].
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The SNR can be expressed in terms of the GW energy spectrum dE/df ,

ρ2 =
2

5π2r2

∫ fmax

fmin

1

f2Sn(f)

dE

df
df , (7.17)

related in turn to the radiation efficiency ϵRD,

ϵRD =
1

M

∫ fmax

fmin

dE

df
df , (7.18)

which controls the amount of energy released by the (n, l,m) mode.
Here we use the semi-analytic formula determined in [348] to compute ϵRD for a given (n, l,m)

combination:
ϵRD = [alm + blmχ+ + clmχ−]

2 , (7.19)

where alm, blm and clm are functions of the binary mass ratio q = m1/m2 ≥ 1, and of the spin
parameters:

χ± =
m1χ1 ±m2χ2

m1 +m2
, (7.20)

which in turn depend on the masses m1,2 and on the dimensionless spins χ1,2 of the progenitors.
We plot in Fig. 7.2 the radiation efficiency for the three modes (0, 2, 2), (0, 3, 3), (0, 2, 1) for the two
catalogs considered.

We find a maximum N = 13401 of sources with SNR above 12 using ET with the first catalog,
and N = 12280 in the second catalog. These numbers are compatible with the estimated detections
expected with ET in a year [347]. Instead, with CE we find N = 5104 within the first catalog of
sources and N = 2844 in the second one.

Once the N sources have been extracted, we compute the mass and spin of the remnant BH
following the BBH coalescence by using semianalytical relations based on NR in GR [349] that
relate the progenitors’ parameters to the ones of the outcome of the mergers.
In Fig. 7.3 we show the final masses and spins of the sources considered, while in Fig. 7.4 the
relative SNR values are plotted.

Given the final masses Mi and spin χi (i = 1, ..., N), we determine the measured frequencies and
damping times from the GR values in Tab. 7.1, while the uncertainties and correlations are found
with the Fisher matrix approach of Sec. 7.2.3, using the parameter basis (A, ϕ(J)i , ω

(J)
i,obs, τ

(J)
i,obs). The

distributions of the errors on the two measured modes for the two detectors are shown in Figs.
7.9-7.10, showing that the damping time is affected by greater uncertainty, as expected due to the
difficulty in measuring it [127].

As a first step of the analysis, we shall consider the deviation parameters only for one mode,
namely J = (nlm) = (022), which has higher SNR. We set the prior distributions on the beyond-
Kerr parameters to be uniform in the range [−5, 5].

We infer the posterior probability distributions of the non-GR parameters (δω
(k)
J , δτ

(k)
J ), whose

true value we assume to be zero, from the measured QNM values of the sources adopting the emcee

algorithm of Ref. [350], which is an advanced version of the Metropolis-Hastings algorithm described
in Sec. 7.2.2. We remark that in this case Mi and χi appearing in Eq. (7.4) are evaluated assuming
GR and that their possible corrections due to the modified theory are included into (δω

(k)
J , δτ

(k)
J ),

as well as the dimensionless coupling constant of the theory.
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7.4. Testing Einstein-dilaton Gauss-Bonnet with pyring and Gravitational Wave Data

We separate the order of the maximum spin expansion for the GR and the beyond-GR param-
eters: for the former, we choose DGR = 6, in order to get a better agreement with the Kerr values,
while for the latter we consider the cases DnGR = 0 and DnGR = 2. As shown in Ref. [175], a
sixth-order expansion for the GR part agrees with numerical Kerr values within 1% at χ ∼ 0.7 for
both the frequency and damping time.

We show in Fig. 7.5 the marginal posterior distributions of the beyond-GR parameters for the
case DnGR = 0 as a function of the catalog and number of sources considered.

From the marginal posterior distributions, which are nearly symmetrical around the peak and
centered around zero, we can define their width as half the corresponding η confidence interval:

σj =
1

2
(θmax

j − θmin
j ) , (7.21)

where j identifies the parameter (in this case δω0, δτ (0)) and θmax
j , θmin

j are found from the marginal-
ized posteriors ∫ θmax

j

θmin
j

P (θj)dθj = η . (7.22)

For the case DnGR = 2, the resulting bounds at η = 68% and η = 90% credible levels on the
constrainable beyond-GR parameters are shown in Fig. 7.6 for the first catalog (the results for the
second one are analogous). In Tab. 7.2 we report the width defined in Eq. (7.22), for η = 90%, of
the bounds for each deviation coefficient in the case DnGR = 2, showing only the cases in which it
is possible to impose a meaningful bound.

CE-20km

CE-40km

ET-10km

ET-15 km

ET-20 km

10 100 1000

1

10

100

f [Hz]

S
n
(f
)
[1
0-
24
×
H
z1

/2
]

Figure 7.1: Noise spectral density for the configurations of the Einstein Telescope and the Cosmic Explorer
considered in this Chapter.

7.4 Testing Einstein-dilaton Gauss-Bonnet with pyring and Grav-
itational Wave Data

Fixing the deviation coefficients of the expansion (7.4) to a specific theory, it is possible to directly
check the agreement of GW data currently available with that specific description of gravity. One
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-2.3 -2.2 -2.1 -2.0 -1.9 -1.8

(ℓ,)=(2,2)

model I

model II

-13.0 -11.0 -9.0 -7.0 -5.0 -3.0

(ℓ,)=(3,3)

model I

model II

-13.0 -11.0 -9.0 -7.0 -5.0

ϵRD

(ℓ,)=(2,1)

model I

model II

Figure 7.2: Distribution of the energy released in the l = m = 2, l = m = 3 and (l,m) = (2, 1) modes for
the ringdown events with signal-to-noise ratio of the fundamental QNM larger than 12, as observed by ET,
assuming both population models.

Figure 7.3: Distribution of the final detector-frame masses and spins obtained from the first (upper panels)
and second (lower panels) binary population catalogs, satisfying the requirement that the SNR of the (022)
mode is larger than ρ = 12. The color code identifies the redshift associated to the binary, for a specific
detector. Dashed lines lie at the mean values of the distribution.
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Figure 7.4: Signal-to-noise ratio as a function of the detector remnant mass for the ringdown events with
ρ ≥ 12 for the (22) mode, assuming ET (top panel) and CE (bottom panel), and the population model I.
The inset in each panel shows the SNR distribution of the whole catalogue, before applying the threshold
cut. After the selection we find N = 13401 and N = 5104 events for ET and CE, respectively. The SNR-
Mf distribution for model II is similar, although the number of events above the threshold is lower, with
N = 12280 and N = 2844 binaries for ET and CE.
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Figure 7.5: Posterior probability densities for the non-rotating corrections (δω
(0)
22 , δτ

(0)
22 ), as a function

of the number of sources analyzed. Results are derived following a single-mode analysis, in which only the
fundamental (2, 2) mode is taken into account. The top and bottom panels refer to the two population models.
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parameters model I model II
CE-20km δω

(0)
22 [−0.0281, 0.0275] [−0.0601, 0.0593]

δω
(1)
22 [−0.214, 0.217] [−0.391, 0.408]

δω
(2)
22 [−0.247, 0.242] [−0.401, 0.391]

δτ
(0)
22 [−0.179, 0.189] [−0.335, 0.322]

ET-15km δω
(0)
22 [−0.0122, 0.0121] [−0.0337, 0.0346]

δω
(1)
22 [−0.0945, 0.0934] [−0.225, 0.220]

δω
(2)
22 [−0.106, 0.108] [−0.210, 0.220]

δτ
(0)
22 [−0.079, 0.0779] [−0.0174, 0.0178]

Table 7.2: 90% confidence intervals for the marginalized distribution of the ParSpec parameters with
quadratic spin corrections, for the p = 0 scenario. These constraints are obtained by stacking the full
set of sources for both models.

Figure 7.6: Joint posterior distributions for the ParSpec parameters, with quadratic spin corrections. Solid
and dashed contours refer to 68% and 90% credible regions. Constraints are derived by stacking the full set
of N = 13401 events observed by ET above the threshold, assuming the spin distribution of model I.

way to do so is to compare the Bayes factor, introduced in Sec. 7.2.1, computed for a modified
theory of gravity with the one of GR to understand which theory better describes the data.

In this section, we apply this strategy to EdGB, including the corrections to the GR QNM
spectrum found in Chapter 6 into the ParSpec parametrization. We consider as a test case the first
GW observation, GW150914 [5]. This event, being well studied and understood, allows us to use
it as a case study, even though, due to the tiny GR modifications introduced by EdGB (especially
for such a massive source, since the correction is ∝ αGB/M

2) and the relatively low SNR in the
ringdown, we do not expect to constrain with high accuracy the theory with this single observation,
as already investigated in other studies – e.g. [118].

This is just the first step in our ongoing work [195], which will also study simulated signals with
arbitrary SNR and an appropriate choice of present or future detectors, to understand, for example,
which SNR will be necessary to detect the GR deviation if one assumes EdGB to be the correct
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theory of gravity.
At second order in the spin and for a single source, calling ℓ ≡ √

αGB (which has dimensions of
a length in geometric units), Eq. (7.4) becomes:

ωJ =
1

M

[
ω
(0)
J

(
1 +

ℓ4

(M s)4
δω

(0)
J

)
+ χω

(1)
J

(
1 +

ℓ4

(M s)4
δω

(1)
J

)
+ χ2ω

(2)
J

(
1 +

ℓ4

(M s)4
δω

(2)
J

)]
τJ =M

[
τ
(0)
J

(
1 +

ℓ4

(M s)4
δτ

(0)
J

)
+ χτ

(1)
J

(
1 +

ℓ4

(M s)4
δτ

(1)
J

)
+ χ2τ

(2)
J

(
1 +

ℓ4

(M s)4
δτ

(2)
J

)]
. (7.23)

We recall that J is the label that identifies the QNM, M,χ are the mass and spin of the remnant
BH in the detector frame, while M s = M/(1 + z) is the source-frame mass 3. The parameters
δω

(k)
J , δτ

(k)
J , k = 0, 1, 2, are fixed to the values in Tab. 7.1. These coefficients are obtained from the

data used in Ch. 6 by taking the leading order correction of a Taylor expansion around ζ = 0, which
is intrinsically different from the fits provided in Tabs. 6.1-6.4. The latter describes accurately the
functions ωnl

r (ζ), appearing in the spin expansion of the QNM spectrum in Eq. (6.74), in the range
ζ = αGB/M

2 ∈ [0, 0.4] (ζ ∈ [0, 0.3] for the imaginary part).
Since we are fixing the deviation coefficients, we shall infer the posterior probability distribution

of the characteristic length of the theory ℓ =
√
αGB.

Setup

In this analysis, we use the template in Eqs. (7.1)-(7.2) with the QNMs given by the ParSpec model
in Eq. (7.23), under the assumption that the waveform amplitudes satisfy hlm = h∗l−m (which is
reasonable for GW150914, since there is no evidence for misaligned spins). We shall include up to
two modes, namely J = (nlm) = {(022), (122)}.

We fix the spin expansion coefficients ω(k)
J , τ

(k)
J in Eq. (7.23) to the GR values found in Ref.

[132] up to order DGR = 5 for the frequency (DGR = 9 for the damping time), guaranteeing an
accuracy of at least 1% (3%) in the whole range of spins [0, 0.9999]. The GR modification parameters
δω

(k)
J , δτ

(k)
J are fixed up to order DnGR = 2 to the values in Tab. 7.1, only for J = (022), since the

corrections to the first overtone are not available.
We have two options when considering the mass and spin in the expansion (7.23). The first one,

adopted in the null test in Sec. 7.3, is to fix their values to the ones measured assuming GR, and
include any modification into the deviation parameters δω(k)

J , δτ
(k)
J .

In the theory-specific case considered here, since we are no longer keeping the GR modifications
to the frequencies and damping times as free parameters, we cannot use them to reabsorb the
deviations to the mass and spin. However, one could still assume that, since the deviations are
perturbatively small, the values of mass and spin in EdGB are expected to still lie in the proximity
of the GR values.

Unlike the previous test, where we have always used the values of mass and spin of the remnant
BH from the full IMR waveform, we shall now consider also the case in which we extract the
values directly from the ringdown part of the signal. In particular, we will investigate both the
option in which we do not make assumptions about their values, namely choosing uniform priors
M ∈ [10, 100]M⊙, χ ∈ [0, 0.99], and the one where we assume near-GR values, fixing the priors to

3We assume a standard cosmological model, which is not significantly affected by modifications with dimensionful
coupling [114, 351].
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M ∈ [64.95, 70.70]M⊙ , χ ∈ [0.629, 0.709], corresponding to IMR-informed restrictions (assuming
GR) for GW150914.

As for the other parameters, we choose a flat prior on the natural logarithm of the luminosity
distance, logDL, to reproduce our lack of knowledge about the parameter and to avoid favoring
smaller scales and values of γ (and thus ℓ), since it depends on the redshift (see Eq. (7.5)) and con-
sequently on the luminosity distance, once a certain cosmological model is assumed. Furthermore,
since the waveform in Eq. (7.1), once the reflection symmetry of the amplitude is taken into account,
is proportional to AJ/DL, there is a certain degree of degeneracy in specifying AJ and DL; we can
fix to tighter constraints one between those two parameters, namely DL and let the other, AJ(DL),
span a larger (uniform) prior range, namely [0, 50]. We set log(DL/Mpc) ∈ [5.3867, 6.3204], which
includes the value found assuming GR (DL ∼ 440Mpc). The phase prior for each mode J is
ϕJ ∈ [0, 2π], while the angles of the spheroidal harmonics in Eq. (7.2) are set to cos ι = −1 φ = 0

rad (which is reasonable for GW150914, with a face-off orientation)4.
The strain measured by the GW detectors is hD(t) = F+h+(t) + F×h×(t), where F+,×(α, δ, ψ)

are the detector pattern functions (see e.g. [103, 170]), which depend on the right ascension α,
declination δ, and polarization ψ angles. We fix (α, δ) = (1.16,−1.19) rad, while we infer ψ from
the data, setting a uniform prior ψ ∈ [0, π] rad.

For the beyond-GR parameter ℓ =
√
αGB we consider two possible prior distributions, ℓ ∈

[0, 75]km and ℓ ∈ [0, 200]km, to allow for a broader exploration of the parameter space 5.
We fix the starting time of the analysis with respect to the Hanford detector to be tH1

start =

1126259462 s of GPS time, corresponding to the peak of h2+ + h2×, and then compute the one for
the Livingston interferometer tL1start from the sky position parameters.

When we consider only the fundamental (nlm) = (022) mode we add a time shift t0 = 10M

from the peak, which is put to zero when instead we include the first overtone (122). The first
overtone has been shown to improve the fit of a ringdown-only template with the full gravitational
waveform of perturbed BHs, enabling the analysis to start at earlier times[238, 246, 267, 352–354],
nonetheless its physical interpretation is still up for debate [131, 182]. Even though we do not
include any EdGB modification in the overtone, we will consider it in order to start the analysis
right from the peak and accumulate more SNR. We did not consider higher angular modes, since for
GW150914 they are believed to be less excited with respect to the l = m = 2 multipole [129, 130].

The examined cases are summarized in Tab. 7.3, where with "IMR bound" we refer to the
prior choice M ∈ [64.95, 70.70]M⊙ , χ ∈ [0.629, 0.709], which is based on GR. From the marginal
posterior probability distributions of ℓ, which is positively defined and approximately flat around
zero, we compute the upper bound at the 90% credible level σ90(ℓ)

σ90(ℓ) = ℓ90 , (7.24)

where ℓ90 is such that ∫ ℓ90

0
P (ℓ)dℓ = 0.9 . (7.25)

4In any case, the amplitude could be redefined to include any additional factors in the waveform template.
5However, one needs to keep in mind that we have to remain within the perturbative framework, γδωJ ≪

1, γδτJ ≪ 1: large values of ℓ must be excluded (either at the prior level or a posteriori)
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We write the results in Tab. 7.3.
We repeat the analysis in GR, switching off the EdGB corrections, for the different cases cor-

responding to the inclusion (or not) of IMR bounds and of the first overtone. Finally, we compute
the log-Bayes factor comparing each EdGB model of Tab. 7.3 with its corresponding GR case.

The evidence for each model, evaluated from the nested sampling algorithm CPNest, is affected
by a numerical uncertainty

√
H/η, with H the information gain, or negative entropy, related to

the algorithm [332], and η is the number of live points of the MCMC. The sampler settings used
correspond to 4096 live points, a maximum number of 10000 MCMC internal steps, and a pool size
composed of 100 walkers.

We report these results in the last column of Tab. 7.3, while we show two examples of corner
plots in Figures 7.7 and 7.8, corresponding with the cases 1 and 4, respectively.

Table 7.3: Cases considered for the time-domain analysis of GW150914, corresponding to different prior
choices for ℓ,M, χ and different modes included in the waveform. We note that the EdGB deviation is always
included only on the fundamental mode (022).

ℓ prior IMR bound mode (nlm) σ90(ℓ) (km) logBEdGB
GR

1 [0, 75]km ✓ (022) 64.2 0.025± 0.102
2 [0, 200]km ✓ (022) 67.3 0.295± 0.101
3 [0, 75]km ✗ (022) 68.4 1.158± 0.108
4 [0, 200]km ✗ (022) 87.5 1.217± 0.108
5 [0, 75]km ✓ (022), (122) 59.8 0.382± 0.130
6 [0, 200]km ✓ (022), (122) 60.1 −0.334± 0.132
7 [0, 75]km ✗ (022), (122) 64.8 0.437± 0.138
8 [0, 200]km ✗ (022), (122) 79.9 −0.143± 0.139

7.5 Results

In this section, we present first a discussion of the null, theory-agnostic test, and then of the theory-
specific, time-domain analysis.

Theory-agnostic Test

We have considered as a first case a nonrotating black hole, meaningDnGR = 0 in Eq.(7.4), assuming
the measurement of only the n = 0, l = m = 2 mode – thus we shall drop the index J identifying
the mode. The only deviation parameters to constrain are δω0), δτ (0), assuming that the masses
and spins are the ones measured within GR.

In Fig. 7.5 we show the marginal posterior probability distributions of these parameters, for
both CE and ET, for an increasing number of sources Ns considered and for the two catalogs under
consideration; we can see how, as expected, the posteriors become narrower as the value of Ns

grows.
We find that the general trend of the width of the distribution σj is ∼ N

−1/2
s . The second

model, with the distribution of sources shown in Fig. 7.3, seems to produce better constraints
on the frequency deviations δω(0)

22 with respect to the first scenario. The opposite happens for the
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damping time corrections δτ (0)22 . CE, which is able to detect a significantly smaller amount of sources
above the SNR > 12 threshold, inevitably performs worse than ET.

When considering a spinning BH, with spin corrections up to order DnGR = 2, we find that,
while we can put meaningful bounds on the frequency deviations δω(0), δω(1), δω(2), the same can be
done only for the zeroth order damping time coefficient δτ (0), even with a large number of sources.
Indeed, with δτ (1) and δτ (2), the perturbative regime γδτ (k) ≪ 1 is no longer guaranteed.

In Figure 7.6 we show the joint 90% credible regions for the parameters which can be bounded
by the data for the full set of Ns = 13401 ET sources in the first model. We can see, as expected,
that there is a correlation between the frequency coefficients δω(0), δω(1), δω(2), while they are not
correlated with δτ (0). As written in Tab.7.2, considering only the physically motivated first catalog
and the maximum number of sources above the SNR threshold, we find that the width for the zeroth
order coefficients is σ(δω(0)) ∼ 3 · 10−2 for CE and σ(δω(0)) ∼ 10−2 for ET; for the first order in the
spin deviation to the frequency we find σ(δω(1)) ∼ 2.1 ·10−1 for CE and σ(δω(1)) ∼ 9.4 ·10−2 for ET;
finally, for the second order correction we obtain σ(δω(2)) ∼ 2.5·10−1 for CE and σ(δω(2)) ∼ 1.1·10−1

for ET. As for the zeroth order correction to the damping time, we have σ(δτ (0)) ∼ 1.8 · 10−1 for
CE and σ(δτ (0)) ∼ 8 · 10−2 for ET. We have used the second model, which has remnant objects
with higher values of the final spin, to assess whether the spin can affect the final results. However,
the only case in which the second model yields stronger constraints is for δτ (0) measured from ET
observations, for which the width becomes σ(δτ (0)) ∼ 2 · 10−2.

As a general result, ET is expected to perform slightly better than CE.
Due to the additional information needed to resolve a larger number of correlated parameters,

the width of the zeroth order beyond-GR parameters is, as expected, larger than the corresponding
value for the nonrotating case.

We can conclude that with O(104) ringdown observations with ET of physically motivated BBH
populations6, as the one of the first model shown in Fig. 7.3, we will be able to constrain with good
precision up to the second order corrections in the spin to the Kerr QNM frequencies and up to the
zeroth order correction to the damping time. The same parameters can be constrained with O(103)

ringdown observations with CE, but with larger bounds.
We plan to extend this analysis to the case of dimensionful theories, where p = 4, both in a

theory-agnostic and theory-specific format. In this way, we will use the computation of the EdGB
modifications to the QNM spectrum in Ch.6 to check whether it is possible to put bounds on the
coupling constant of the theory using the measurement of the QNM spectrum.

This study will provide a broad overview of the achievable constraining power of future detectors
using ringdown observations.

Theory-specific Test

We have performed a time-domain analysis of the ringdown of GW150914, implementing the
ParSpec formalism in the pyRing package. We have fixed the beyond-GR parameters for the
(nlm) = (022) mode up to the second order in the spin to the values in Tab. 7.1, corresponding to
the gravitational polar-led QNMs in EdGB gravity.

A similar analysis has been carried out by Ref. [118] on two LIGO-Virgo detections by consid-

6We can expect ET to detect up to O(105) BBH merger events in one year with ET with SNR ∼ 10 [347] .
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ering the full IMR waveform corrected with ParSpec in the ringdown. The authors show how they
are not able to put constraints on EdGB. However, they focus on the axial modes and consider only
the leading order corrections in the spin. We believe that including the corrections up to the second
order could be crucial, since – as it happens also in GR – they could be dominant with respect to
the first-order coefficients for astrophysically relevant values of the spin χ ≳ 0.5.

In our study, we have considered both the case in which the mass and spin are free parameters
to be inferred from the data and the one where we fix them to be close to the IMR predictions in
GR. Furthermore, we have also examined the effect of including the first (GR) overtone to start the
analysis earlier and accumulate more SNR. Finally, we allowed the scale parameter of the theory ℓ
to span the interval [0, 200] km, in order to better understand the range covered by its posterior.

When we do not consider the IMR bound and the overtone, a prior ℓ ∈ [0, 75]km is not enough
to enclose the posterior distributions and it is necessary to increase its width, as it can be seen from
the larger values of σ90(ℓ) when ℓ ∈ [0, 200]km and from the marginalized posterior for ℓ in Fig.
7.8.

In all cases, given the low SNR (∼ 8 for one mode and ∼ 12 for two modes) in the ringdown,
we were not able to put meaningful constraints of the characteristic length ℓ of EdGB gravity. In
fact, as shown by the values in Tab. 7.3 of the upper bound on ℓ at the 90% credible level, the
most stringent constraint is ℓ ≲ 60km, which is almost near the limit of validity of the perturbative
approach and not competitive with currently available bounds (for a quick review see Sec. 1.3).
The inclusion of the overtone slightly improves the bounds, as expected by the moderate increase in
the SNR, thus we expect these results to improve with better SNR and by stacking multiple events.

Looking at the log Bayes factors in Tab. 7.3, we can see that most of them are slightly positive
values, even though when computing the evidence ratio of the two models considered in Eq. (7.8),
the one with more parameters, in this case EdGB, should be disfavored by the so-called Ockham
factor [332]. We believe that one reason behind these results could be the fact that the additional
parameter ℓ, spanning a broad range of values, could better accommodate and describe the noise
in the data with respect to the GR model.

We are currently further testing the numerical stability of these results – which could be relevant
due to the small values of Bayes factors – and investigating their possible causes. One way to do it is
by repeating the analysis for simulated signals, which are inherently noiseless, and the computation
of the Bayes factors. If in this case, the Bayes factors will not favor EdGB, it could be an indication
that our interpretation is correct.

Once we have access to simulated signals with arbitrary values of SNR, we will also be able
to understand what is the minimum value, assuming that EdGB is the right model, to detect the
deviations from GR. This analysis will be of great importance to determine the ability of future
detectors, such as the Einstein Telescope and Cosmic Explorer, naturally preferred to test EdGB,
to constrain the theory.

As the main objective of this analysis, which is still in the preliminary stage, we will investigate
how much these constraints will improve by stacking multiple observations, and how many of them
are necessary to reach high accuracy.

Finally, we will test whether alternative parametrizations, such as a Padé model (see Sec. 6.2.2,
could improve the results with respect to the polynomial one of Eq. (7.4), which is known to not
be optimal to describe the QNM spectrum (see e.g. [170, 355]).
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Figure 7.7: Corner plot containing the marginal posterior distributions of the considered parameters for
the case 1 in Tab. 7.3. From left to right the parameters are: polarization angle ψ, final mass M , final spin
χ, logDL, ℓ, A022, ϕ022.
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Figure 7.8: Corner plot containing the marginal posterior distributions of the considered parameters for
the case 4 in Tab. 7.3. From left to right the parameters are: polarization angle ψ, final mass M , final spin
χ, logDL, ℓ, A022, ϕ022.
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Figure 7.9: Relative percentage errors on the frequency and the damping time of the fundamental l = m = 2
for the binary systems described in Sec. 7.3. The color scheme identifies the SNR of the (2, 2) mode as detected
by ET (top row) and CE (bottom row).
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Figure 7.10: Relative percentage errors on the frequency and the damping time of the secondary modes,
(l,m) = (3, 3) and (ℓ,m) = (2, 1), for ET and CE. Black and red histograms refer to the two population
models we considered.
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Chapter 8

Conclusions

In this Thesis, after introducing the concept of Quasinormal Modes (QNMs) and their connection
with the underlying theory of gravity, we have computed the QNM spectrum up to second order
in the spin for a quadratic modified theory of gravity, Einstein-dilaton Gauss-Bonnet (EdGB), one
of the simplest theories that modify General Relativity (GR) in the large-curvature, strong-field
regime.

Starting from the cases of a test scalar field in EdGB gravity and of nonrotating Dilatonic Black
Holes, for which we found agreement with results present in the literature, we generalized our direct
integration method to compute the EdGB gravitational QNM spectrum in a slow-rotation framework
up to the second order in the spin. As suggested by a comparison with the general relativistic case,
the use of Padé approximants allows for a broader range of validity of the expansion: the QNMs
derived with this approach should be accurate within ∼ 2% up to spins ā ≲ 0.7.

Our analysis reveals that the second-order contribution yields a significant amplification of the
EdGB correction to the quasinormal modes. For instance, assuming a BH spin of ā = 0.7, the
real part of the (nlm) = (022) mode – which is typically excited with the largest amplitude in BH
ringdowns (see e.g. [178]) – gets a correction, with respect to the GR counterpart, estimated to be
of ≃ 1% at O(ā), while the same estimate at O(ā2) (with Padé resummation) is of ≃ 2.5%.

Our computation has been performed by expanding the background metric of the dilatonic black
hole and the field equations describing its perturbations in the dimensionless coupling constant ζ
up to the sixth order and in the spin ā up to the second order. An analysis of the truncation error
indicates that our results are accurate for ζ ≲ 0.4 for the real parts of the modes, ζ ≲ 0.3 for the
imaginary parts. As a result, we provided analytical fits of the QNMs valid in this range of the
coupling constant.

This computation will be useful, once full numerical simulations of BH coalescences in EdGB
gravity will be available [72, 73, 75], as a benchmark to test the numerical codes.

The mode corrections in specific extensions of General Relativity are a necessary ingredient for
the implementation of gravitational spectroscopy in the context of theory-specific tests of Einstein’s
theory. Since with the Padé resummation we were able to extend our QNM results up to physically
relevant values of the spin, they can be employed to perform such tests.

To this purpose, in the final part of the Thesis, we have explored two possible avenues to
construct ringdown tests with a parametrized framework called ParSpec. In the first approach,
relying on a Fisher matrix computation of the QNM errors and on an MCMC sampling algorithm
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of the posterior distributions, we performed a theory-agnostic null test of GR considering scale-free
corrections and inferring the GR-deviation parameters up to the second order in the spin. Focusing
on realistic sources detectable by Einstein Telescope and Cosmic Explorer, we have found that all the
spin expansion coefficients of the QNM frequency (at least) up to the second order can be bounded
with good precision with O(104) observations for the first detector and with O(103) observations
for the second, which are within the predicted amount of detections.

We plan on extending this test to theories characterized by a dimensionful coupling constant,
such as EdGB and dynamical Chern-Simons, and adapt it to a theory-specific framework by fixing
the deviation parameters to the values computed in this Thesis and in Refs. [66, 69].

In the second approach, consisting of a theory-specific test of GR, we have included the ParSpec
parametrization and the EdGB deviation parameters into the pyRing package to perform a time-
domain analysis of the ringdown signal of GW150914, considered as a first application of the method.
As expected, due to the currently available low Signal-to-Noise ratio in the ringdown, we were not
able to put meaningful constraints on the coupling constant of the theory. Although a computation
of the Bayes factor seems in general to slightly favor EdGB with respect to GR, we are currently
testing the numerical stability of the analysis and possible causes of this occurrence. The next steps
will be to consider simulated signals to better understand how the noise affects the results and what
level of SNR is needed to achieve stringent constraints on the theory.

For both methods, we plan to test an alternative parametrization template of the QNMs, given
by the Padé approximant, which might improve the constraining power with respect to the currently
used polynomial form.

This is the first computation, in a modified gravity theory, of the QNMs of BHs to second order
in rotation. Although EdGB gravity is an interesting theory by itself for several reasons, the analysis
carried out in this Thesis can be considered as a case study to understand which kind of deviation
we may expect in the ringdown signal and assess its detectability with current and future detectors;
the same procedure can be extended to other classes of possible GR deviations.
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Appendix A

Spherical Harmonics Decomposition

We define the metric of a 2-sphere as

γAB =

(
1 0

0 sin2 θ

)
, (A.1)

where the capital Latin indices refer to the angular coordinates (θ, ϕ).
The spherical harmonics are eigenvectors of the Laplacian operator on the sphere. Denoting

with ∇A the covariant derivative with respect to the metric γAB, the Legendre equation can be
written as:

γAB∇A∇BY
lm = −l (l + 1)Y lm . (A.2)

The perturbation tensor hµν in Eq. (2.11) is symmetric and has 10 components which transform
differently under rotation of the frame around the origin:

• 3 SO(2) scalars → h00, h01, h11 → hab

• 2 SO(2) vectors → (h02, h03); (h12, h13) → haA

• 1 SO(2) second-order symmetrical tensor →

(
h22 h23

h32 h33

)
→ hAB

in which the lower case indeces a, b run over (t, r) and the capital indeces A,B run over (θ, ϕ).
Scalar spherical harmonics have parity (−1)l since:

P̂ Y lm(θ, ϕ) = Y lm(π − θ, π + ϕ) = (−1)lY lm(θ, ϕ) . (A.3)

It is possible to expand the perturbation in a complete basis using suitably defined scalar, vector,
and tensor spherical harmonics either with the same parity of the spherical harmonics (−1)l, i.e. even
or polar quantities, or with the opposite parity (−1)l+1, i.e. odd or axial quantities [153, 249, 254].
We construct vector and tensor harmonics of a given parity in the following way:
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Chapter A. Spherical Harmonics Decomposition

• EVEN - POLAR

Y lm
A ≡ ∇AY

lm

U lm
AB ≡ γABY

lm

Y lm
AB ≡

[
∇A∇B +

1

2
l(l + 1)γAB

]
Y lm

(A.4)

• ODD - AXIAL

X lm
A ≡ ϵACγ

BC∇BY
lm = ϵA

B∇BY
lm

X lm
AB ≡ 1

2
(ϵA

C∇B + ϵB
C∇A)∇CY

lm (A.5)

where we have used the Levi-Civita tensor in spherical coordinates

ϵAB =

(
0 sin θ

− sin θ 0

)
. (A.6)

Any quantity can therefore be expanded in a function of t and r (that does not change the
property of transformation under rotation) multiplied by a suitable spherical harmonic (scalar,
vector, tensor) of a given parity. The same rule holds true for the perturbation components, which
are written as a multipole expansion as:

htt = A(r)
∞∑
l=0

l∑
m=−l

H0,lm(t, r)Y lm

htr =

∞∑
l=0

l∑
m=−l

H1,lm(t, r)Y lm

hrr =
1

B(r)

∞∑
l=0

l∑
m=−l

H2,lm(t, r)Y lm

htA =
∞∑
l=0

l∑
m=−l

[
q0,lm(t, r)Y lm

A + h0,lm(t, r)X lm
A

]

hrA =

∞∑
l=0

l∑
m=−l

[
q1,lm(t, r)Y lm

A + h1,lm(t, r)X lm
A

]

hAB = r2
∞∑
l=0

l∑
m=−l

[
Klm(t, r)U lm

AB +Glm(t, r)Y lm
AB + h2,lm(t, r)X lm

AB

]
.

(A.7)

For easier calculations, we factored out the metric functions A and B in the radial part of the
decomposition. We have defined functions of t and r such that H0, H1, H2, q0, q1, K and G

characterize even parity modes, while h0, h1 and h2 identifiy the odd parity modes.
Due to the diffeomorphism invariance of Einstein equations, it is always possible to perform a
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gauge transformation to set four coefficients to zero. In the Regge-Wheeler gauge, this freedom is
used to set q0 = q1 = G = 0 and h2 = 0 [153]. When l = 0, l = 1 some spherical harmonics vanish,
thus it is not necessary to fix to zero the corresponding radial functions; it is then possible to use
this residual gauge freedom to put different functions to zero.
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Appendix B

Schwarzschild Background Perturbation
Equations

In this Appendix, we review the steps that lead, from Einstein equations for a perturbed Schwarzschild
BH, to the Zerilli master equation for polar perturbations. From the tr component of Einstein equa-
tions at linear order in perturbation theory, δGtr, leaving the l index implicit, we find

(3M − r)

2Mr − r2
K(r)− il(l + 1)

2r2ω
H1(r)−

H2(r)

r
+K ′(r) = 0 . (B.1)

From δGtt (
l2 + l − 2

)
(2M − r)

2r3
K(r) +

(
l2 + l + 2

)
(2M − r)

2r3
H2(r)−

(r − 2M)2

r3
H2

′(r)

+
(5M − 3r)(2M − r)

r3
K ′(r) +

(r − 2M)2

r2
K ′′(r) = 0 . (B.2)

From δGtϕ

− irω

2M − r
[K(r) +H2(r)] +

2MH1(r)

r(r − 2M)
+H1

′(r) = 0 . (B.3)

From δGrr

(l − 1)(l + 2)(r − 2M)− 2r3ω2

2r(r − 2M)2
K(r) +

l2 + l

4Mr − 2r2
H0(r)−

2iω

2M − r
H1(r)

+
H2(r)

r(r − 2M)
+

(M − r)

r(r − 2M)
K ′(r) +

H0
′(r)

r
= 0 . (B.4)

From δGrθ(
1− 2M

r

)
H0

′(r) +
(3M − r)

r2
H0(r) + iωH1(r) +

(r −M)

r2
H2(r) +

(
2M

r
− 1

)
K ′(r) = 0 . (B.5)

From δGθθ − δGϕϕ/ sin
2 θ

1

2
[H0(r)−H2(r)] = 0 . (B.6)
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Chapter B. Schwarzschild Background Perturbation Equations

Finally, from δGθθ + δGϕϕ/ sin
2 θ

rω2

2M − r
K(r)− 2iω(M − r)

r(r − 2M)
H1(r) +

(
rω2

2M − r
+
l(l + 1)

2r2

)
H2(r)−

l(l + 1)

2r2
H0(r)

+
(M + r)

r2
H0

′(r) + 2iωH1
′(r) +

(r −M)

r2
H2

′(r) +
2(M − r)

r2
K ′(r)

+

(
1− 2M

r

)
H0

′′(r) +

(
2M

r
− 1

)
K ′′(r) = 0 . (B.7)

Having simplified the time dependence e−iωt, all of our equations are in the frequency domain
– the time derivatives have introduced the factors −iω.

From Eq. (B.6), which gives H0(r) = H2(r), it is already possible to see that not all the degrees
of freedom we have introduced in the perturbation tensor hµν are necessary to describe the dynamics
of the perturbation. Indeed, we already know that in GR the gravitational wave is described only
by two degrees of freedom.

We now manipulate these equations in order to obtain a set that only contains the relevant
degrees of freedom. The choice of the functions to describe the perturbation has some degree of
arbitrariness, and in our case, we will express all the quantities in terms of H1 and K. After some
substitutions, we get

K ′(r)−
4Ml(l + 1) + r

(
4r2ω2 + l4 + 2l3 − l2 − 2l

)
2r2ω (6M + r (l2 + l − 2))

iH1(r)

+
12M2 +Mr

(
l2 + l − 6

)
− 2r4ω2

r(2M − r) (6M + r (l2 + l − 2))
K(r) = 0 (B.8)

H1
′(r) +

(
12M2 +Mr(3l(l + 1)− 4)− 2r4ω2

)
r(r − 2M) (6M + r (l2 + l − 2))

H1(r)

−
2irω

(
9M2 + 2Mr

(
l2 + l − 4

)
+ r4ω2 − r2

(
l2 + l − 2

))
(r − 2M)2 (6M + r (l2 + l − 2))

K(r) = 0 . (B.9)

This set of coupled differential equations can be already solved in this form, as explained in
Section 2.5.1, but it is generally simpler to cast it in a single second-order differential equation.
This can be achieved introducing the Zerilli function Z(r)

Z(r) ≡ r2

Λr + 3M
K(r) +

r − 2M

iω(Λr + 3M)
, (B.10)

where we have defined

Λ ≡ 1

2
(l − 1)(l + 2) . (B.11)

From the definition of Z(r) and its derivative Z ′(r) we can find the inverse relations

K =
Λ(Λ + 1)r2 + 3ΛMr + 6M2

r2(Λr + 3M)
Z(r) +

(
1− 2M

r

)
Z ′(r) (B.12)

H1 =− iω

[
Λr2 − 3ΛMr − 3M2

(r − 2M)(Λr + 3M)
Z(r) + rZ ′(r)

]
. (B.13)
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Using the tortoise coordinate r∗ such that dr/dr∗ = 1− 2M/r, we evaluate

d2Z

dr2∗
=

(
1− 2M

r

)
d

dr

[(
1− 2M

r

)
Z ′(r)

]
(B.14)

and, substituting Eqs. (B.12)-(B.13), we finally find the Zerilli master equation

d2Z

dr2∗
+
(
ω2 − Vpolar

)
Z = 0 , (B.15)

with

Vpolar =

(
1− 2M

r

)
2Λ2(Λ + 1)r3 + 6Λ2Mr2 + 18ΛM2r + 18M3

r3(Λr + 3M)2
(B.16)

Starting from the other components of Einstein equations containing the axial perturbations, a
completely analogous result can be found for the axial sector, described by the Regge-Wheeler
function Ψ(r). In this case one finds the Regge-Wheeler master equation [153, 249]

d2Ψ

dr2∗
+
(
ω2 − Vaxial

)
Ψ = 0 (B.17)

Vaxial = −
(
1− 2M

r

)
2

r3
[3M − (Λ + 1)r] . (B.18)
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Appendix C

Physical Quantities

When using Hartle formalism [191] to find the spacetime of a slowly rotating black hole in GR, one
starts from the spherically symmetric case, described by a mass M0, and then adds the rotation-
induced deformations described by the radial functions in Eqs.(2.86)-(2.89). The final slowly ro-
tating object has a physical mass M and angular momentum J , while the "bare" mass M0 has no
longer a physical meaning.

Similarly, when computing the spacetime of a slowly rotating BH in EdGB gravity, as described
in Section 3.2.2, we work in a two-parameter perturbation theory framework:

1. We start from a nonrotating BH in GR, described by the mass M0;

2. We apply the slow rotation; the BH will have an angular momentum J̃0, while the bare mass
M0 will acquire spin corrections, which are then absorbed in the physical mass M̃0;

3. We apply the small coupling expansion in ζ; the mass and angular momentum M̃0, J̃0 will
both acquire EdGB corrections at each order in the spin, then reabsorbed in the physical mass
and angular momentum M,J , which describe the slowly rotating DBH.

The physical quantities are defined as the mass and angular momentum (and any additional
charge) measured by an observer at spatial infinity. Therefore, for a given metric, the physical mass
and the physical angular momentum can be found from the asymptotic behavior of

gtt → −1 +
2M

r
+ ... (C.1)

ω(r) → 2J

r3
+ ... (C.2)

where ω(r) is the gravitomagnetic function present in gtϕ. When there is a scalar charge D, it can
be found from

φ(r) → φ∞ +
D

r
+ ... (C.3)

as we have seen in Sec. 3.2.
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C.1. Nonrotating Case

C.1 Nonrotating Case

In this section, we shall see explicitly the corrections acquired by the bare mass M0, describing a
Schwarzschild BH in GR, when considering the EdGB corrections.

The ADM mass M of the nonrotating DBH found from the asymptotic behavior in Eq. (C.1)
is connected to M0 through the relation

M =M0 +
49α2

GB

1280M3
0

+
66319α3

GB

2419200M5
0

+
846414013α4

GB

39739392000M7
0

+
110088297441377α5

GB

6137351700480000M9
0

+
291982900495786588129α6

GB

18229407514833715200000M11
0

+O(α7
GB) (C.4)

which, when inverted, gives

M0 =M − 49

1280M3
α2
GB − 66319

2419200M5
α3
GB − 510561389

19869696000M7
α4
GB −

161613926636417α5
GB

6137351700480000M9

−
174818350006609772143α6

GB

6076469171611238400000M11
+O(α7

GB) (C.5)

We can find the dilaton charge D from the coefficient of the 1/r term in the asymptotic expansion
(C.3)

D =
αGB

2M0
+

73α2
GB

480M3
0

+
1249α3

GB

16128M5
0

+
13469327α4

GB

266112000M7
0

+
23528854133α5

GB

619934515200M9
0

+
603833469771007709α6

GB

19475862729523200000M11
0

+O(α7
GB) (C.6)

or, alternatively, using Eq. (C.5), in terms of the physical mass M and ζ = αGB/M
2

D

M
=
ζ

2
+

73ζ2

480
+

15577ζ3

161280
+

58039297ζ4

709632000
+

17461067857ζ5

221405184000
+

11230503805065163ζ6

136194844262400000
+O(ζ7) (C.7)

We can now see clearly that, as mentioned in Sec. 3.2, the scalar charge D is dependent on the BH
mass M and D/M ∼ ζ/2 for ζ → 0. Since this additional hair is dependent on the mass, it is called
a secondary hair.

The horizon of the dilatonic black hole in the small coupling limit, found from the largest root
rH of the equation gϕϕgtt − g2tϕ = 0 [324] is

rH
M

=2− 49

640
ζ2 − 66319

1209600
ζ3 − 510561389

9934848000
ζ4 − 161613926636417

3068675850240000
ζ5

− 174818350006609772143

3038234585805619200000
ζ6 +O(ζ7) (C.8)

C.2 Slowly Rotating Case

In the slow-rotating GR BH we described in Sec. 2.6.1, we found that the "bare" mass M0 of a
nonrotating case acquires corrections due to the angular momentum

M̃0 =M0 −
J̃2
0 δm

M2
0

+O(J̃3
0 ) (C.9)
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C.2. Slowly Rotating Case

When including the EdGB corrections, the asymptotic behavior (C.1) gives the definition of the
ADM mass M

M =M0 +
49α2

GB

1280M3
0

+
66319α3

GB

2419200M5
0

+
846414013α4

GB

39739392000M7
0

+
110088297441377α5

GB

6137351700480000M9
0

+
291982900495786588129α6

GB

18229407514833715200000M11
0

− J̃2
0

M2
0

(
δm + Ã2α

2
GB + Ã3α

3
GB + Ã4α

4
GB

+ Ã5α
5
GB + Ã6α

6
GB

)
+O(α7

GB) +O(J̃3
0 ) (C.10)

with Ãj (j = 2, ..., 6) integration constants. The angular momentum, found from Eq. (C.2), gets
corrections at each order in αGB starting from the second

J = J̃0

[
1 + C̃2α

2
GB + C̃3α

3
GB + C̃4α

4
GB + C̃5α

5
GB + C̃6α

6
GB +O(α7

GB)
]

(C.11)

with C̃j (j = 2, ..., 6) integration constants.
The expressions for the horizon and the scalar charge in the slowly rotating case are given in

the main text in Eqs. (3.39)-(3.40) and Tab. 3.1. They are plotted in Fig. 3.1 as a function of ζ
and for different values of spin ā.
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Appendix D

Static Equations

We write here the expression of the V̂l matrix in Eq. (5.9) up to order O(ζ2) for the nonrotating
case; we redirect to the Supplemental material [322] for the full lengthy expressions up to O(ζ6).
In the following we define

λ ≡ 1

2
(l2 + l + 2) , (D.1)

so that the matrix elements read

V11 =
−6M2 + (5− 3λ)Mr + r4ω2

r(2M − r)(3M + (λ− 2)r)
+

ζ2

480r7(r − 2M)2(3M + λr − 2r)2

[
172800M10

− 461760M9r + 479424M8r2 − 242888M7r3 + 71280M6r4 − 26880M5r5 + 13420M4r6

− 2670M3r7 − 120M2r8 + 85920M9rλ− 190368M8r2λ+ 155644M7r3λ− 52512M6r4λ

+ 11760M5r5λ− 8690M4r6λ+ 2865M3r7λ+ 120M2r8λ+ 6720M8r2λ2 − 19440M7r3λ2

+ 11376M6r4λ2 − 1050M5r5λ2 + 900M4r6λ2 − 765M3r7λ2 − 30M2r8λ2 + 29760M8r4ω2

− 47696M7r5ω2 + 19248M6r6ω2 + 546M5r7ω2 + 740M4r8ω2 − 935M3r9ω2

+ 12640M7r5λω2 − 9408M6r6λω2 + 132M5r7λω2 + 20M4r8λω2 + 490M3r9λω2

]
, (D.2)

V12 =−
irω

(
9M2 + 4Mr(−3 + λ) + r2

(
4− 2λ+ r2ω2

))
(−2M + r)2(3M + r(−2 + λ))

+
iωM2ζ2

480r5(−2M + r)3(3M − 2r + rλ)2{
− 4r2(−2M + r)

(
8720M5 − 5712M4r + 30M3r2 − 340M2r3 + 375Mr4 + 15r5

)
λ2

+ 2rλ
[
M
(
169920M6 − 193808M5r + 53936M4r2 − 5862M3r3 + 9730M2r4 − 2935Mr5

− 165r6
)
+ r4

(
5440M5 − 4656M4r + 96M3r2 + 150M2r3 + 260Mr4 + 15r5

)
ω2
]
+ 3M[

M
(
138720M6 − 157136M5r + 42444M4r2 − 3930M3r3 + 7570M2r4 − 2235Mr5 − 120r6

)
+ r4

(
8160M5 − 7376M4r + 204M3r2 + 550M2r3 + 290Mr4 + 45r5

)
ω2
]}

, (D.3)
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V13 =−
iMζω

(
−160M4 −Mr3 + r4 + 16M3r(5− 4λ) + 8M2

(
4r2λ+ r4ω2

))
4r3(−2M + r)2(3M + rλ)

− iMζ2ω

960r6(−2M + r)2(3M + rλ)

[
− 26240M7 − 73Mr6 + 73r7 − 2048M6r(3 + 5λ)

+ 240M4r3
(
41− 16λ+ 4r2ω2

)
+ 16M5r2

(
−591− 160λ+ 80r2ω2

)
+ 960M3

(
4r4λ+ r6ω2

) ]
,

(D.4)

V14 =−
iM

(
4M2 + 2Mr + r2

)
ζω

4r2(3M + rλ)

−
iMζ2ω

(
320M5 + 448M4r + 584M3r2 + 292M2r3 + 146Mr4 + 73r5

)
960r5(3M + rλ)

, (D.5)

V21 =−
i
(
(1 + λ)(2M + rλ) + r3ω2

)
r2(3M + rλ)ω

+
iM2ζ2

480r8(3M + rλ)2ω

{
M(1 + λ)

[
17280M5 − 440Mr4λ

+ 15r5λ− 90M2r3(8 + 7λ)− 96M3r2(15 + 13λ) + 80M4r(−36 + 89λ)
]

+ r3
[
− 17520M5 + 288M4r(9− 25λ)− 30r5λ+ 60M2r3(10 + 9λ) + 18M3r2(65 + 64λ)

+ 5Mr4(−9 + 80λ)
]
ω2
}
, (D.6)

V22 =
−M(6M + r(−2 + λ)) + r4ω2

r(−2M + r)(3M + rλ)
+

M3ζ2

480r7(−2M + r)2(3M + rλ)2

[
6M2

(
− 12480M5

+ 13520M4r − 3792M3r2 − 450M2r3 + 140Mr4 + 135r5
)
+ r2

(
− 33600M5 + 38480M4r

− 11472M3r2 + 1470M2r3 − 1900Mr4 + 735r5
)
λ2 − 3r4

(
9920M5 − 7472M4r + 144M3r2

+ 270M2r3 + 260Mr4 + 15r5
)
ω2 + 2rλ

(
− 58800M6 + 65616M5r − 19082M4r2

+ 1392M3r3 − 2115M2r4 + 985Mr5 + 15r6 − r4
(
6320M4 − 4704M3r + 66M2r2

+ 10Mr3 + 245r4
)
ω2
)]
, (D.7)

V23 =−
Mζ

(
64M4 + 4Mr3 + 32M3r(−1 + λ)− 16M2r2λ+ r4

(
−1 + λ− 8M2ω2

))
4r5(−2M + r)(3M + rλ)

+
Mζ2

960r8(−2M + r)(3M + rλ)

[
10240M7 − 292Mr6 − 73r7(−1 + λ) + 384M6r(−9 + 5λ)

+ 960M3r4
(
λ+ r2ω2

)
+ 240M4r3

(
5− 9λ+ 4r2ω2

)
+ 64M5r2

(
−69− 26λ+ 20r2ω2

) ]
,

(D.8)

V24 =
Mζ

(
16M3 + r3 + 8M2rλ

)
4r4(3M + rλ)

+
Mζ2

(
3200M6 + 73r6 + 960M3r3λ+ 240M4r2(9 + 4λ) + 256M5r(9 + 5λ)

)
960r7(3M + rλ)

, (D.9)
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V31 = V32 = V33 = 0 , (D.10)

V34 = −1 , (D.11)

V41 =−
iM2ζ

(
M(1 + λ)(32M + r(−1 + 12λ)) + r3(4M + r)ω2

)
r5(3M + rλ)ω

− iM2ζ2

240r8(3M + rλ)ω

[
M(1 + λ)(

4960M4 − 73r4 + 32M3r(107 + 60λ) + 12M2r2(287 + 120λ) + 4Mr3(−73 + 360λ)
)

+ r3
(
800M4 + 896M3r + 876M2r2 + 292Mr3 + 73r4

)
ω2
]
, (D.12)

V42 =
M2ζ

(
−96M3 − r3λ+M2r(35 + 8λ) + r5ω2 +Mr2

(
−1 + 2λ(5 + 6λ) + 4r2ω2

))
r4(−2M + r)(3M + rλ)

+
M2ζ2

240r7(−2M + r)(3M + rλ)

[
− 14880M6 + 64M5r(−83 + 25λ)

+ 73r6
(
−λ+ r2ω2

)
+ 73Mr5

(
−1− 2λ+ 4r2ω2

)
+ 8M3r3

(
540 + λ(287 + 180λ) + 112r2ω2

)
+ 4M4r2

(
−1727 + 8λ(91 + 60λ) + 200r2ω2

)
+M2r4

(
−73 + 4λ(287 + 360λ) + 876r2ω2

) ]
,

(D.13)

V43 =
−2(−2M + r)(M + r + rλ) + r4ω2

r2(−2M + r)2
+

12M4ζ

r5(−2M + r)
+

M2ζ2

240r8(−2M + r)3(3M + rλ){
− 3r(−2M + r)

(
− 18720M6 − 3376M5r + 9972M4r2 − 390M3r3 − 930M2r4 − 45Mr5

+ 5r6
)
λ+ 2r2(−2M + r)

(
9680M5 − 5712M4r + 30M3r2 + 260M2r3 + 15Mr4 + 15r5

)
λ2

− r5
(
−2240M5 + 144M4r + 96M3r2 + 390M2r3 + 20Mr4 + 15r5

)
λω2 + 3M

[
14080M7

− 103520M6r + 108432M5r2 − 28996M4r3 − 5550M3r4 + 2370M2r5 + 55Mr6 + 5r7

− r4
(
−4800M5 + 2064M4r + 96M3r2 + 230M2r3 + 20Mr4 + 15r5

)
ω2
]}

, (D.14)

V44 =
2M

−2Mr + r2
+
Mζ2

1920

{
− 147

(−2M + r)2
+

1

r7(3M + rλ)

[
249600M6 + 4M3r3(1353− 2224λ)

+ 147r6λ+ 9Mr5(49 + 52λ) + 12M2r4(157 + 97λ) + 480M5r(−141 + 184λ)

− 32M4r2(834 + 665λ)
]}

. (D.15)
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Appendix E

Tortoise Coordinate for Stationary Black
Holes in Einstein-dilaton Gauss-Bonnet
Gravity

The tortoise coordinate r∗ is a redefinition of the radial coordinate r used to map the region outside
the BH horizon r ∈ [rH ,+∞] into r∗ ∈ [−∞,+∞]. Since the intrinsic geometry of a slowly rotating
BH in Hartle coordinates is nonspherical [208], a definition of the tortoise coordinate in terms of
mapping principal null geodesics to straight lines can become impractical and ambiguous. However,
we can proceed in another way by noting that, when using this coordinate, the vacuum equations
describing a perturbation Z(r) can be reduced to a second-order differential equation of the form

d2

dr2∗
Z + (ω2 − V )Z = 0 (E.1)

where the first derivative of Z is not present (see e.g. Sec. 2.3) and V possibly contains the spin
corrections. The asymptotic behavior is

Z lm
,r∗r∗ + k2HZ

lm = O(r − rH) (r → rH)

Z lm
,r∗r∗ + ω2Z lm = O

(
1

r2

)
(r → ∞) , (E.2)

where kH = ω −mΩH → ω (for ā → 0). By defining

dr

dr∗
= F (r) (E.3)

the function F (r), satisfying F (r) ∼ r − rH for r → rH and F (r) → 1 for r → ∞, can be found by
requiring that the perturbation equations reduce, at the horizon and at infinity, to Eq. (E.2).

In general relativity, F (r) = 1 − 2M/r = (r − rH)/r for Schwarzschild BHs (rH = 2M), and
F (r) = (r2 + a2 − 2Mr)/(r2 + a2) ∼ (r − rH) for Kerr BHs (rH = 2M − a2/(2M) +O(a4)), where
a = J/M .
We find the tortoise coordinate in EdGB gravity, by requiring the equation for a test scalar field
to have the form (E.2). This coordinate will define the boundary conditions for the gravitational
perturbations as well, since the null ingoing coordinate v = t + r∗ (with a similar redefinition of
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the azimuthal coordinate ϕ) regularizes the coordinate singularity at the horizon, regardless of the
nature of the perturbation.

Nonrotating Black Holes

The metric of a static BH in EdGB gravity is given by Eq. (3.11),

ds2 = −A(r)dt2 + dr2

B(r)
+ r2dΩ2 . (E.4)

The Klein-Gordon equation for a test scalar field, ∇µ∇µΦ = 0, after an expansion in spherical
harmonics, Φ =

∑
lm

1
rΦ

lm(r)Y lm(θ, ϕ)e−iωt, reads

ABΦlm′′
+

1

2
(A′B +B′A)Φlm′

+

(
ω2 − A′B +B′A

2r
−A

l(l + 1)

r2

)
Φlm = 0 (E.5)

where a prime denotes differentiation with respect to r. By defining the tortoise coordinate, in
analogy with Schwarzschild, as F (r) =

√
A(r)B(r) [3], Eq. (E.5) can be written as

Φlm
,r∗r∗ + (ω2 − V l)Φlm = 0 (E.6)

where V l = FF ′ − Al(l + 1)/r2, vanishing both at the horizon and at infinity (since F ′ ∼ r−2).
Since, for a nonrotating BH, kH = ω, Eq. (E.6) coincides with Eq. (E.2).

First Order in the Spin

At O(ā), the metric (E.4) acquires the extra term gtϕ = −r2 sin2 θϖ(r), where

ϖ(r) =
2J

r3

[
1− 147

960
ζ2
(
1 +O

(
M

r

))
+O(ζ3)

]
. (E.7)

Since gϕϕ = r2 sin2 θ,
ΩH = − lim

r→rH

gtϕ
gϕϕ

= ϖ(rH) . (E.8)

The equation for a test scalar field in this spacetime acquires the extra term −2mωϖ(r)

ABΦlm′′
+

1

2
(A′B +B′A)Φlm′

+

[
ω2 − A′B +B′A

2r
−A

l(l + 1)

r2
− 2mωϖ(r)

]
Φlm = 0 . (E.9)

Then, by defining the tortoise coordinate as in the nonrotating case F (r) =
√
A(r)B(r), the scalar

field equation near the horizon (neglecting O(ā2) terms) reads

Φlm
,r∗r∗ + (ω2 − 2mΩHω)Φ

lm = ϕlm,r∗r∗ + k2HΦlm = 0 , (E.10)

which is in agreement with Eq. (E.2).
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Second Order in the Spin

To define the tortoise coordinate we write F (r) as a generic expansion in powers of ζ, ā and 1/r,
such that F ∼ r − rH near the horizon and F (r) → 1 as r → ∞. There is some arbitrariness in
the exact final expression, but we have found that the coefficients of the expansion are uniquely
determined by requiring that the equation for a test scalar field at r → ∞ behaves as

Z lm
,r∗r∗ + ω2Z lm =

l(l + 1)

r2
Z lm +O

(
1

r3

)
which is slightly stronger than Eq. (E.2). The expression we find, available up to order O(ζ6) in
the Supplemental Material [322], is

F (r) =
(
1− rH

r

){
1− ā2

rH(r2 + rrH + r2H)

8r3
− ζ2

[ rH
3840r4

(147r3 + 117r2rH − 526rr2H + 263r3H)

+ā2
rH

30720r3
(375r2 + 435rrH + 343r2H)

]}
+O(ζ3) +O(ā3) . (E.11)

We have verified that other options of F (r), still satisfying Eq. (E.2), yield QNMs that differ only
in a negligible way.
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Angular Integration

Once the perturbation functions have been expanded in spherical harmonics, in order to remove
the angular dependence from the perturbation equations and obtain radial equations, we perform
an integration over the solid angle and exploit the orthogonality rules for the spherical harmonics∫

dΩY ∗
l′m′Ylm = δl′lδm′m (F.1)

and the results of the integrals∫
dΩ

(
dY ∗

l′m′

dθ

dYlm
dθ

+
m m′

sin2 θ
Y ∗
l′m′Ylm

)
= l(l + 1)δl′lδm′m (F.2)∫

dΩ

(
Y ∗
l′m′

dYlm
dθ

+
dY ∗

l′m′

dθ
Ylm

)
cos θ

sin θ
= δll′ . (F.3)

Using these relations we also find∫
dΩ

(
W ∗

l′m′Wlm +
X∗

l′m′Xlm

sin2 θ

)
= l(l − 1)(l + 1)(l + 2)δl′lδm′m (F.4)∫

dΩ [imW ∗
l′m′Ylm −X∗

l′m′∂θYlm] =

∫
dΩ [imY ∗

lmWl′m′ +Xl′m′∂θY
∗
l′m′ ]

= im(l − 1)(l + 2)δll′δm′m (F.5)∫
dΩ

[
W ∗

l′m′
Xlm

sin θ
−
X∗

l′m′

sin θ
Wlm

]
= 0 . (F.6)

Furthermore, from the definition of spherical harmonics, one finds the useful relations

cos θYlm = Ql+1mYl+1m +QlmYl−1m (F.7)

sin θ∂θYlm = lQl+1mYl+1m −Qlm(l + 1)Yl−1m (F.8)

where we have defined

Qlm ≡

√
(l −m)(l +m)

(2l − 1)(2l + 1)
. (F.9)

When substituting these formulas, possibly multiple times, inside the field equations at second order
in the spin, we get couplings with the harmonic indices l± 1, l± 2, while m remains unchanged. In
fact, since the ϕ dependence of the spherical harmonics is ∼ eimϕ, we always get

∫
dϕei(m−m′)ϕ ∼
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δm′m.
We define the operators that couple terms l with terms l± 1 as L±1

j . They will act on a generic
coefficient A, i.e. one of the coefficients appearing in the field equations, in the following way

L±1
0 A ≡

∑
l′m′

Al′m′

∫
dΩY ∗

lm cos θYl′m′ = QlmAl−1m +Ql+1mAl+1m (F.10)

L±1
1 A ≡

∑
l′m′

Al′m′

∫
dΩY ∗

lm sin θ∂θYl′m′ = (l − 1)QlmAl−1m − (l + 2)Ql+1mAl+1m (F.11)

L±1
2 A ≡

∑
l′m′

Al′m′

∫
dΩ∂θY

∗
lm sin θYl′m′ = −(l + 1)QlmAl−1m + lQl+1mAl+1m (F.12)

L±1
3 A ≡

∑
l′m′

Al′m′

∫
dΩ

(
∂θY

∗
lm∂θYl′m′ +

m m′

sin2 θ
Y ∗
lmYl′m′

)
cos θ

= (l − 1)(l + 1)QlmAl−1m + l(l + 2)Ql+1mAl+1m (F.13)

L±1
4 A ≡

∑
l′m′

Al′m′

∫
dΩ
(
im′∂θY

∗
lmYl′m′ + imY ∗

lm∂θYl′m′
)
sin θ = im(L±1

1 + L±1
2 ) (F.14)

L±1
5 A ≡

∑
l′m′

Al′m′

∫
dΩ

(
sin θ∂θY

∗
lmWl′m′ − imY ∗

lm

Xl′m′

sin θ

)
= (l − 2)(l − 1)(l + 1)QlmAl−1m − l(l + 2)(l + 3)Ql+1mAl+1m (F.15)

L±1
6 A ≡

∑
l′m′

Al′m′

∫
dΩ

(
sin θ∂θYl′m′W ∗

lm + imYl′m′
X∗

lm

sin θ

)
= −(l − 1)(l + 1)(l + 2)QlmAl−1m + l(l − 1)(l + 2)Ql+1mAl+1m (F.16)

L±1
7 A ≡

∑
l′m′

Al′m′

∫
dΩ (∂θY

∗
lmXl′m′ + imY ∗

lmWl′m′) cos θ

= im(l − 2)(l + 3) [QlmAl−1m +Ql+1mAl+1m] (F.17)

L±1
8 A ≡

∑
l′m′

Al′m′

∫
dΩ (X∗

lmWl′m′ −W ∗
lmXl′m′) sin θ

= 4im [(l − 2)(l + 2)QlmAl−1m + (l − 1)(l + 3)Ql+1mAl+1m] (F.18)

L±1
9 A ≡

∑
l′m′

Al′m′

∫
dΩ
(
im′W ∗

lmYl′m′ −X∗
lm∂θYl′m′

)
cos θ

= im(l − 3)(l + 2)QlmAl−1m + im(l − 1)(l + 4)Ql+1mAl+1m (F.19)

L±1
10 A ≡

∑
l′m′

Al′m′

∫
dΩ sin θ X∗

lmYl′m′ = 2im(l + 2)QlmAl−1m − 2im(l − 1)Ql+1mAl+1m (F.20)
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In a similar way, we define the operators L±2
j that introduce couplings with indices l ± 2 couplings

L±2
0 A ≡

∑
l′m′

Al′m′

∫
dΩY ∗

lm cos2 θYl′m′ = Ql−1mQlmAl−2m + (Q2
lm +Q2

l+1m)Alm

+Ql+1mQl+2mAl+2m (F.21)

L±2
1 A ≡

∑
l′m′

Al′m′

∫
dΩY ∗

lm sin2 θYl′m′ = −Ql−1mQlmAl−2m + (1−Q2
lm −Q2

l+1m)Alm

−Ql+1mQl+2mAl+2m (F.22)

L±2
2 A ≡

∑
l′m′

Al′m′

∫
dΩ∂θY

∗
lm sin θ cos θ Yl′m′ = −(l + 1)Ql−1mQlmAl−2m

+
[
lQ2

l+1m − (l + 1)Q2
lm

]
Alm + lQl+1mQl+2mAl+2m (F.23)

L±2
3 A ≡

∑
l′m′

Al′m′

∫
dΩY ∗

lm sin θ cos θ ∂θYl′m′ = (l − 2)Ql−1mQlmAl−2m

+
[
lQ2

l+1m − (l + 1)Q2
lm

]
Alm − (l + 3)Ql+1mQl+2mAl+2m (F.24)

L±2
4 A ≡

∑
l′m′

Al′m′

∫
dΩ∂θY

∗
lm sin2 θ ∂θYl′m′ =

[
l2Q2

l+1m + (l + 1)2Q2
lm

]
Alm

− l(l + 3)Ql+1mQl+2mAl+2 − (l − 2)(l + 1)QlmQl−1mAl−2m (F.25)

L±2
5 A ≡

∑
l′m′

Al′m′

∫
dΩ

(
∂θY

∗
lm∂θYl′m′ +

m m′

sin2 θ
Y ∗
lmYl′m′

)
sin2 θ = −(l − 2)(l + 1)Ql−1mQlmAl−2m

+
[
l(l + 1)− (l + 1)(l − 2)Q2

lm − l(l + 3)Q2
l+1m

]
Alm − l(l + 3)Ql+1mQl+2mAl+2m (F.26)

L±2
6 A ≡

∑
l′m′

Al′m′

∫
dΩcos θ

(
sin θ∂θY

∗
lmWl′m′ − imY ∗

lm

Xl′m′

sin θ

)
=

[
2m2 +Q2

lm(l + 1)(l2 − l + 4)−Q2
l+1ml(l

2 + 3l + 6)
]
Alm

+ (l − 2)(l + 1)(l − 3)Ql−1mQlAl−2m − l(l + 3)(l + 4)Ql+1mQl+2mAl+2m (F.27)

L±2
7 A ≡

∑
l′m′

Al′m′

∫
dΩ

(
sin θ∂θYl′m′W ∗

lm + imYl′m′
X∗

lm

sin θ

)
cos θ =

[
2m2 +Q2

lm(l + 1)(l2 − l + 4)−Q2
l+1ml(l

2 + 3l + 6)
]
Alm

− (l − 2)(l + 1)(l + 2)Ql−1mQlAl−2m + l(l + 3)(l − 1)Ql+1mQl+2mAl+2m (F.28)

L±2
8 A ≡

∑
l′m′

Al′m′

∫
dΩ

[
W ∗

lmWl′m′ +
1

sin2 θ
X∗

lmXl′m′

]
sin2 θ ={

Q2
lm(l + 1) [4(l − 2)− l(l + 1)(l + 4)] +

[
l2(l + 1)2 − 8m2

]
+Q2

l+1ml [4(l + 3)− l(l + 1)(l − 3)]
}
Alm − (l − 3)(l − 2)(l + 1)(l + 2)QlmQl−1mAl−2m

− (l − 1)l(l + 3)(l + 4)Ql+1mQl+2mAl+2m (F.29)

L±2
9 A ≡

∑
l′m′

Al′m′

∫
dΩsin2 θW ∗

lmYl′m′ =
[
2m2 − l(l + 1) + (l + 1)(l + 2)Q2

lm + l(l − 1)Q2
l+1m

]
Alm

+ (l + 1)(l + 2)Ql−1mQlmAl−2m + l(l − 1)Ql+1mQl+2mAl+2m (F.30)

For example, we obtain the expression of L±2
0 by considering cos θ applied once on Y ∗ and once on

Y , then applying the rule (F.8).
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