
9. Supplementary material778

9.1. Adopted Deep Neural Network architectures779

We formulate sequence modelling as a regression task, i.e. lean to minimize the Eu-780

clidean distance between the true and the predicted values. Specifically, the sequence is781

a time series and the model needs to respect causality, i.e. in order to predict the out-782

put yt for some time t, we can only use those inputs that have been previously observed783

(xt−k, ..., xt−1). The problem faced in prediction (discussed in 3.2) is supervised because784

given the input to the model, we know the output that it should produce and therefore we785

can compute gradient and train the network to turn out the right output. The forecasting786

explored in 3.3 is also a regression problem, but learn self-supervisedly since we aim to787

predict the future from the past: the model needs to learn data representations to solve788

the task.789

We will briefly present here the theory behind the architecture adopted for this work.790

9.1.1. 1D-CNN791

Convolutional neural network (CNN) is a class of deep and supervised models that792

was introduced for the first time by LeCun et al. in 1998 for processing data that has793

a grid-like topology (e.g. images): this first CNN was applied to digit recognition, using794

MNIST dataset. CNNs get a dominant class of deep learning methods after the ImageNet795

competition for image recognition (Krizhevsky et al., 2012), which has then become pop-796

ular in the most varied applications. A typical architecture of a 2D convolutional network797

consists of a set of layers each of which contains several filters for detecting various fea-798

tures in the input image, the model performs convolutions using the chosen kernels and799

in doing this the procedure adds activation functions (i.e. activation when a feature is800

matched), constituting the so called feature map.801

With 1D-CNN we can do the same for a 1-Dimensional input, e.g. a temporal series.802

We have a 1-Dimensional array in input and some 1-Dimensional kernels that we use to803

perform convolution and extract features, as in the 2D case. This is indeed the main804

44



difference between 1D and 2D CNNs: 1D arrays replace 2D matrices for both kernels and805

feature maps. That result in a low computational complexity: O(k ∗ n ∗ d) for 1D CNNs,806

with respect to O(k ∗ n ∗ d2) of 2D CNNs. Where k is the kernel size of the convolution,807

d is the representation dimension or embedding dimension of a word, n is the sequence808

length.809

9.1.2. LSTM810

In the past years, LSTM (Long Short-Term Memory network) (Hochreiter and Schmid-811

huber, 1997) has been successfully applied to a number of sequence model tasks, e.g.812

speech recognition, language modeling and translation, image captioning, trajectory fore-813

casting and so on. In this work we apply it in geophysical problems.814

LSTM it’s a type of Recurrent Neural Network (RNN): RNNs are deep learning models815

that iteratively combines past informations with the present, to make them persist. In-816

deed, they have an “internal state” (hidden state) that can be seen as the memory: it is817

updated as a sequence is processed, by applying a recurrence formula at every time step,818

using function that combine the past information with the current input. In figure S4819

left is represented the RNN if we unroll the loop. In figure S4 right is represented one820

iteration of the RNN, where:821

ht = tanh(Whhht−1 +Wxhxt) =

= tanh(
[
WhhWxh

]ht−1

xt

) =
= tanh(W

ht−1

xt

)
here tanh() is the non-linear function, W are the parameters, ht and ht−1 are the hidden822

state at time t and t− 1 and xt is the input at time t.823

45



824

LSTM works, for many tasks, much better than the RNN standard version. They825

were introduced in 1997 (Hochreiter and Schmidhuber, 1997), and were improved and826

popularized by many people in following works. The main problem of the standard RNNs827

is the difficulty to access information from many steps back. LSTM instead is explicitly828

designed to avoid the long-term dependency problem: they are capable of learning long-829

term dependencies, thanks to some internal mechanisms, called gates, that can regulate830

the flow of information. These gates can learn which data in a sequence are important831

to keep or throw away. Another important feature of LSTM is the Cell ct that performs832

better in forward (direct connection with past element) and in backward (easy backward833

of the model and avoid gradient vanishing problem, that is a common problem of other834

RNNs).835

Here there are two internal states: ct and ht that proceed in parallel, and represent836

respectively the long and the short term memory. There is a complex mechanism to837

manage memory, by using four gates:838

• Input gate (i): whether to write to cell839

• Forget gate (f): whether to erase cell840

• Output gate (o): how much to reveal cell841

• Gate gate (g): how much to write to cell842

In Figure 4a is represented one iteration of the LSTM. Details are provided by Formula843

1, where tanh() and σ = sigmoid() are the non-linear functions, W are the parameters,844

ht and ht−1 are the hidden state at time t and t− 1, ct and ct−1 are the cell state at time845

t and t − 1 and xt is the input at time t. The "forget gate" say how much we should846

be forgetting about the previous cell information (ct−1 is the memory of our system) and847

then, once decided what to forget we would be modulating with an "input gate" how848

much we want to memorize from the current input xt.849

46




i

f

o

g

 =


σ

σ

σ

tanh

W
ht−1

xt

 (1)

where :

ct = f � ct−1 + i� g

ht = o� tanh(ct)

To better understand the behavior of the memory, let’s assume we are at time t, then850

the LSTM memory explicitly consider all the information from time t− k to t. The best851

length of the long term memory (k) is not known a priori: we further analyse it in the852

dedicated section below 4.1.1.853

Here the computational complexity is: O(n∗d2), where d is the representation dimension854

or embedding dimension of a word, n is the sequence length.855

9.1.3. Transformer Network856

This model was introduced in 2017 by Vaswani et al. (2017) and it was born mainly857

for common natural language processing, but nowadays is successfully used in a variety858

of different sequence modeling tasks (e.g. video, audio and so on). It has an encoder-859

decoder structure where the encoder maps an input sequence of symbol representations860

(x1, ..., xn) to a sequence of continuous representations z = (z1, ..., zn). The decoder uses z861

to generates autoregressively an output sequence (y1, ..., ym) of symbols. The Transformer862

Network (TF) is implicitly autoregressive, in that we use the predicted output in the input863

of the next step (auto means that it feeds its own prediciton). In particular, in order to864

47



let the transformer deal with the input, this is embedded onto a higher D’-dimensional865

space using a linear projection with a matrix of weights. In the same way, the output is866

a D”-dimensional vector prediction, which is back-projected to the original 1-D space.867

Differently from RNNs that receive one input at a time, TF receives all inputs one-shot.868

The TF uses a "positional encoding" to encode time for each past and future time instant869

t. Positional encoding is necessary to give an ordered context to the non-recurrent archi-870

tecture of multi-head attention, because without it the model is permutation invariant.871

Sine/cosine functions are used to define positional encoding vector, that is: we represent872

the time in a sine/cosine basis.873

874

The Transformer has 3 fundamental modules (attention, fully connected, residual con-875

nections). The attention modules are 2: self-attention and encoder-decoder attention. The876

encoder (Figure 4c, left) has six identical layers, where each layer has two sub-layers: a877

multi-head self-attention mechanism and a position-wise fully connected feed-forward net-878

work. All the outputs have a dimension of dmodel = 512 . The decoder (Figure 4c, right)879

has six identical layers and it has an additional layer in addition to the two sub-layers880

already described in the encoder: this performs multi-head attention over the output of881

the encoder stack. Decoder uses both self-attention and encoder-decoder attention, but882

the self-attention sub-layer in the decoder uses a masking mechanism to prevent positions883

from attending to subsequent positions. This ensures that the predictions for position ti884

can depend only on the known outputs at positions before ti. To start forecasting it uses885

a special token that indicate the start of the sequence. It is shown with <S> in 4c. The886

"Add & Norm" layers in figure 4c refer to Residual Connections (that sum the output of887

each layer with the input, to avoid vanishing gradient problem) and Layer Normalization.888

889

The attention function maps a query and a set of key-value pairs to an output, where890

the query Q (dimension dN × dk, where dN is the number of element in the sequence and891

48



dk the latent dimension), keys K (dimension dN × dk), values V (dimension dN × dv), and892

output are all vectors. Q is related with what we encode (it can be output of encoder893

layer or decoder layer); K is related with what we use as input to output; V is related894

with input, as a result of calculations, and it is a learned vector. The output is computed895

as a weighted sum of the values, where the weight assigned to each value is computed by896

a compatibility function of the query with the corresponding key.897

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

Instead of performing a single attention function, the model linearly project the queries,898

keys and values h times with different, learned linear projections to dk, dk and dv dimen-899

sions, respectively, then performing the attention function in parallel for each projected900

query, key and value. This allows the model to jointly attend to information from different901

representation subspaces at different positions: those are the heads, and we need more902

than one because each of these capture specific characteristic of the features.903

For TF the computational complexity is: O(n2 ∗ d), where d is the representation dimen-904

sion or embedding dimension of a word, n is the sequence length.905

9.1.4. Transformer Network not pretrained forecasting results906

As explained in 4.2.4, TF is good in learning the aperiodicity and the singularities,907

however the common feature of all the experiments is the oscillatory behaviour of the908

signal. Without the pretraining with the sine wave, TF can’t predict properly the target.909

Moreover TF is the most complex among the tested model in optimization and training910

and it requires a lot of data and computing to start working. We have quite small dataset911

though, that are not enough in training properly the model. As shown in Table S4, the912

results of TF not pretrained are always worst than the pretrained TF. Some windows of913

example for the three experiments are in Figure S5.914

49



9.2. Networks training details915

We train the model for 120 epochs in the case of prediction and for 30 epochs in the916

case of forecasting. In both cases we use the validation dataset to pick the best epoch917

and use it in testing phase, in order to avoid overfitting.918

The size of each batch is 256 or 32 for prediction or forecasting, respectively.919

As optimizer we use NAdam in the case of prediction: this is like Adam optimizer920

with the difference that it uses Nesterov momentum. In the case of forecasting we use921

Noam: this is like Adam optimizer with the difference that it increases the learning rate922

linearly for the first steps, and decreases it after that proportionally to the inverse square923

root of the step number (Vaswani et al., 2017).924

Table S2 summarizes the number of data samples we have for each experiment, for925

training, validation and testing datasets. As explained in subsections 4.1.2 and 4.2.1, we926

adopt different dataset splits. This is because we use different frameworks (i.e. TensorFlow927

and PyTorch), which means different preimplemented functions. TensorFlow allows the928

user to select the validation part from the training data (so we take 10% from the 70%929

of the dataset used as training data). With PyTorch we can explicitly set train, val, test930

datasets sections (so we choose 70%, 10%, 20%, respectively). The reason why we use931

two different framework is that the model from LANL competition was in TensorFlow,932

then we keep this choice. Then we move to Pytorch for the forecasting part, since it’s933

more straightforward and it makes model and functions editing easier.934

50



9.3. Supplementary tables935

Exp p4581 Exp p5198 Exp p4679
Length Shift Length Shift Length Shift

One-point prediction 1.0 0.1 1.0 0.1 0.01 0.003
Sequence forecasting 1.0 0.1 1.0 0.1 1.0 0.1

Table S1: Data preprocessing is done using overlapped moving windows to calculate statistical features
from the original data. Here, "Length" refers to time in seconds of the windows length and "Shift" is the
time in seconds by which windows are shifted. Acoustic data are recorded at 4 MHz, thus a 1 s window
with a 0.1 s shift means that we produce 10 statistical features per second. We varied window size for
each experiment and chose values that produced optimum results. "One-point prediction" refers to the
first part of our work where we use LSTM+CNN model to predict one point at a time based on the prior
signal variance. "Sequence forecasting" refers to the second part of the work where we use AR models
(LSTM, TCN or TF) to forecast a sequence of values at future times in an auto-regressive fashion.

Dataset Task p4581 p5198 p4679

Train Prediction 1829 1832 38237
Forecasting 17300 18100 18000

Validation Prediction 203 203 4248
Forecasting 1900 2100 2000

Test Prediction 902 903 19066
Forecasting 3800 4100 4000

Table S2: Training, validation and testing dataset sizes. For prediction this is the number of datapoints,
for forecasting this is the number of windows (each window includes past-input and future-output)

51



Target R2 p4581 p5198 p4679
Glass beads Quartz powder Quartz powder

Shear Stress LSTM+CNN 0.9254 0.9884 0.9574
XGBoost 0.73 0.83 —

Time To Start Of Failures LSTM+CNN 0.6317 0.9313 0.8229
XGBoost — 0.85 0.70

Time To End Of Failures LSTM+CNN 0.8721 0.9697 0.9200
XGBoost — — 0.86

Table S3: Comparison between our results obtained with NN model vs. available results from the
literature obtained with ML (XGBoost model) (Hulbert et al., 2018; Rouet-Leduc et al., 2017). For each
target we show R2, since RSME is not available from the literature. Our procedure outperforms the
state-of-the-art in all the available occurrences.

Model GOF p4581 p5198 p4679
Material Glass beads Quartz powder Quartz powder

TF pretrained R2 0.1172 0.8914 0.7940
RMSE 0.1460 0.0707 0.0738

TF not pretrained R2 −0.3410 0.6376 0.6061
RMSE 0.1510 0.1247 0.0997

Table S4: Experimental results for autoregressive forecasting. This is a comparison between the TF
models, when pretrained and when not. The goodness of fit (GOF) is an average computed among all
the tested windows. Figures for TF pretrained, together with all the tested models are in Figure 6.
Illustration for TF is in Figure S5.

52



9.4. Supplementary Figures936

(a) p4581

(b) p5198

(c) p4679

Figure S1: Full experiments, red box is for the subsection adopted in this work

53



Figure S2: Signals’ shape for experiment p4581, glass beads. For plot details see Figure 2

54



Figure S3: Variation in performance for different values of the LSTM memory length k. Each column
shows results for one experiment. Red line shows the optimum memory length time. For experiments
p4581 and p5198 the optimum is about k = 70, which corresponds more or less to one seismic cycle. For
experiment p4679 the optimum value is k = 2000 when the target is shear stress while it is k = 1100
when target is TTF. Here, one seismic cycle is about 1700 data points.

Figure S4: Recurrent neural network representation. The state-vector (ht) is recursively updated at each
t, including the new information coming from the current input.

55



10 s time (s)

p4581 p4679

time (s) time (s)

sh
ea

r s
tr

es
s 

(M
Pa

)
sh

ea
r s

tr
es

s 
(M

Pa
)

sh
ea

r s
tr

es
s 

(M
Pa

)

p5198

Figure S5: Results of forecasting models for the basic (not pretrained) Transformer Network. Each
column shows a separate experiment. Red lines show input data and black lines show ground truth data
for forecast testing. Green lines represent the output curves inferred from the model. X axis shows
relative time, and Y axes are the target compared with model output. The results are not too bad for
p5198 and p4679 and in general these results are worse than those for pretrained TF models.

56


	Introduction
	Laboratory Earthquake Experiments
	Prediction and forecasting models
	Input, output and model performance
	Prediction
	Problem definition
	Deep learning model

	Forecasting
	Problem definition
	Forecasting with LSTM
	Forecasting with Temporal Convolutional Networks (TCN)
	Forecasting with Transformer Network


	Results
	Prediction
	Best length for the past memory of LSTM
	Prediction dataset split
	Prediction results

	Experiments on Forecasting
	Forecasting dataset split
	LSTM forecasting results
	Temporal Convolution Network forecasting results
	Transformer Network forecasting results
	Forecasting results: model comparison and analysis


	Discussion
	Conclusions
	Tables
	Figures
	Supplementary material
	Adopted Deep Neural Network architectures
	1D-CNN
	LSTM
	Transformer Network
	Transformer Network not pretrained forecasting results

	Networks training details
	Supplementary tables
	Supplementary Figures




