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Abstract
In the hybrid Bayesian-frequentist approach to hypotheses tests, the power function,
i.e. the probability of rejecting the null hypothesis, is a random variable and a pre-
experimental evaluation of the study is commonly carried out through the so-called
probability of success (PoS). PoS is usually defined as the expected value of the random
power that is not necessarily a well-representative summary of the entire distribution.
Here,we consider themain definitions of PoS and investigate the power related random
variables that induce them. We provide general expressions for their cumulative dis-
tribution and probability density functions, as well as closed-form expressions when
the test statistic is, at least asymptotically, normal. The analysis of such distributions
highlights discrepancies in the main definitions of PoS, leading us to prefer the one
based on the utility function of the test. We illustrate our idea through an example
and an application to clinical trials, which is a framework where PoS is commonly
employed.

Keywords Assurance · Bayesian power · Bayes risk · Predictive power

Mathematics Subject Classification 35C05 · 65L10 · 65L12 · 65L20 · 65L70

1 Introduction

Evaluation of success is a crucial step of an experiment, especially at the design stage.
Under the standard frequentist approach to testing, success is evaluated by computing
the power function ηn(·), the probability of rejecting the null hypothesis, at a fixed
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(design) value of the parameter of interest. It is well known that this approach lacks
flexibility and does not account for uncertainty on the design value.

Conversely, under the hybridBayesian-frequentist paradigm, the parameter of inter-
est θ is considered as a random variable,�, with distribution π(θ), often called design
prior (in most of the cases a density). Consequently, the power function ηn(�) is a
random variable as well: we will refer to it as random power (but it is also known as
predictive power, see Spiegelhalter et al. 2004). In most of the cases, the experimental
success is evaluated by the expected value of the random power, commonly known as
probability of success (PoS). However, the concept of PoS has been highly debated
in the literature: Kunzmann et al. (2021) is a recent review paper that identifies even
17 different definitions of it. The computation of PoS is a routine component of study
planning and decision-making (Liu and Yu 2024) especially in clinical trials, where
it is employed for several reasons, such as, to support funding approval from spon-
sor governance boards (Crisp et al. 2018; Wang et al. 2013), to compute the optimal
sample size at the design stage (Kunzmann et al. 2021) or at interim analysis (Wang
2007), and to choose the clinical development plan (Temple and Robertson 2021).

However, PoS is just the expected value of a random variable, whose distribution
may not be well-represented by its mean; the perils of entrusting solely on averaging
are pointed out, for example, in Liu and Yu (2024) and Dallow and Fina (2011). Start-
ing from the seminal paper of Spiegelhalter et al. (1986), several authors suggested to
complement PoS with other alternative summaries (such as the median or other quan-
tiles, see for instance Huson 2009) or with the whole distribution that PoS summarizes
(Huson 2009; Rufibach et al. 2016; De Santis and Gubbiotti 2023). The latter, in fact,
provides an overall indication of the chance of success of an experiment: the basic
idea is that a test is well-designed if the distribution of the random power induced by
the design prior assigns high density to large values of the power (i.e. values as close
to one as possible). The whole density function of ηn(�) was studied in Rufibach
et al. (2016) with the objective of providing recommendations and guidelines on the
design prior choice, but Kunzmann et al. (2021), Liu (2010), Dallow and Fina (2011)
argued that by definition ηn(�) and its mean are misleading in explaining the success
of the experiment, since they represent the probability of rejecting the null hypothesis
regardless of it being true or not. Recently, in Kunzmann et al. (2021) and De Santis
et al. (2024), it was shown that PoS has essentially four main specifications, each
representing the expected value of a power-related random variable (PrRV) based on
a suitable function of ηn(�). Since PrRVs have the potential to provide an overall
indication of the success of an experiment, the goal of this paper is to investigate their
distributions.

We find out that the main definitions of PoS and the respective PrRVs are closely
interconnected and their discrepancies, albeit few, discern which definition accounts
for success more properly. This analysis also provides guidelines on prior choices,
methods to evaluate whether PoS is a well-representative summary, as well as alterna-
tive tools to obtain an overall pre-experimental evaluation of the designed experiment,
such as cumulative distribution functions (cdfs), probability density functions (pdfs)
and quantiles.

The outline of the article is as follows. We introduce notation, setup and literature
review on the main definitions of PoS in Sect. 2. In Sect. 3 we provide general results
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for the density functions of the PrRVs,whose closed-form expressions are drawn under
normality assumption of the test statistic. In addition, to illustrate our ideas, we repli-
cate an example of Spiegelhalter et al. (1986) in a clinical trial where the log-hazard
ratio is the endpoint. We show how the qualitative features of the PrRV densities can
be employed to set the design prior parameters. We also sketch a simulation algorithm
useful when explicit expressions are not available. An application to a two sample
confirmatory phase III trial is illustrated in Sect. 4, while we come to conclusions in
Sect. 5.

2 Setup and notation

In this section we formally introduce power and utility functions of a test, whose
definitions are needed to discuss PoS and its specifications. Consider the statistical
model (X , fn(·, θ), θ ∈ �) for which θ ∈ �, � ⊆ R, is a parameter of interest,
X is the sample space, fn(·|θ) the probability mass or pdf of the random sample of
independent and identical distributed (iid) random variables Xn = (X1, X2, . . . , Xn),
and xn an element ofX (i.e. observed values ofXn).We denotewithPθ (·) andEθ (·) the
probabilitymeasure and the expected value with respect to the sampling distribution of
fn(·|θ), respectively. Given �i ⊂ �, i = 0, 1 a partition of �, consider the following
testing problem on θ :

H0 : θ ∈ �0 vs H1 : θ ∈ �1. (1)

We here focus on the one-sided hypotheses �0 = (−∞, θ0] and �1 = �C
0 =

(θ0,+∞), but implementation of the reversed one-sided test is straightforward. Let
X0 and X1 be the two elements of a partition of X , representing the acceptance and
the rejection regions of H0, respectively. The power function of the test is formally
defined as:

ηn(θ) = Pθ (Xn ∈ X1). (2)

In order to define the utility function of a test we adopt a decision-theoretic perspective,
under which a test statistic is a decision function dn(xn) = ai IXi (xn), i = 0, 1, where
in general IA(·) is the indicator function of the set A, and ai means accepting Hi ,
i = 0, 1. The utility function evaluates the quality of the random decision dn(Xn) and
it is defined as:

Un(θ) = 1 − Eθ [L(θ, dn(Xn))],
where L(θ, ai ) = I� j (θ) is the 0 − 1 loss function of ai , i = 0, 1. Note that
Eθ [L(θ, dn(Xn))] is the risk function of the decision.

Un(θ) and ηn(θ) are related in the following way:

Un(θ) = [1 − ηn(θ)]I�0(θ) + ηn(θ)I�1(θ). (3)

A graphical representation of ηn(θ) and of Un(θ) is provided on the top panels of
Fig. 1. We comment on that in the next section.
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Table 1 Main definitions of PoS with the corresponding PrRV, cdf and pdf

PoS definition PrRV cdf pdf

eP = Eπ [ηn(�)] Pn = ηn(�) FP (·) fP (·)
eJ = Pπ (Xn ∈ X1,� ∈ �1) Jn = ηn(�)I�1 (�) FJ (·) f J (·)
eC = Pπ (Xn ∈ X1|� ∈ �1) Cn = ηn(�)|� ∈ �1 FC (·) fC (·)
eU = Eπ [Un(�)] Un = Un(�) FU (·) fU (·)

2.1 Main definitions of PoS

According to the hybrid Bayesian-frequentist approach, the unknown parameter of
interest is a random variable �, thus power and utility functions are random variables
as well.

We respectively denote with Pπ (·), Fπ (·) and Eπ (·) probability measure, cdf and
expected value with respect to π(·), the design prior density of �.

As discussed in the Sect. 1, our starting point is the specification of the main
definitions of PoS, ei = ei (n, π), with i ∈ {P, J ,C,U }, identified in Kunzmann
et al. (2021), De Santis et al. (2024), which are the expected values of some PrRVs.
Table 1 reports these definitions and notation.

The specifications of PoS and the related PrRVs are deeply dependent on the choice
of the design prior, and they all coincide when the design prior assumes values only
on the alternative hypothesis. As the design prior assigns positive probability masses
to θ values in �0, differences in the definitions of PoS are not negligible and in Sect. 3
we show that eU ≥ eC ≥ eP ≥ eJ .

To facilitate the understanding of how the PrRVs vary from each other, in Fig. 1 we
plot ηn(θ), ηn(θ)I�1(θ), ηn(θ)|θ ∈ �1 andUn(θ) as functions of θ deterministic. We
refer to the setting of an example discussed in Spiegelhalter et al. (1986) and further
developed in Sect. 3.1.1. We now provide comments on the main definitions of PoS.

• The value eP (where P stands for power) is mostly known with the name of
assurance (O’Hagan and Stevens 2001; O’Hagan et al. 2005), and according to
Kunzmann et al. (2021) this is the most used definition of PoS. It is the expected
value of the random power Pn , according to which the experiment success is the
rejection of H0, no matter of its truth. In other words, Pn treats the occurrence of
a type I error as a success; hence, its expected value averages the power with an
error, which reduces the chance of success.

• The joint probability to reject H0, eJ (with J standing for joint probability), is
developed in Brown et al. (1987) and Ciarleglio et al. (2015). Similarly to the
random power, the random variable Jn assumes that the test success is only related
to the proper selection of H1, but not to the proper rejection of it. Consequently, eJ
averages the power values when θ ∈ �1 and 0 when θ ∈ �0 reducing the chance
of success.

• The expected conditional power eC (where C stands for conditional) is introduced
in Spiegelhalter et al. (2004): the concept of success is only related to the proper
rejection of the null hypothesis, thus conditional on H1 being true. Consequently,
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Fig. 1 Power and power-related functions of θ deterministic for n = 10 under the setting of the example in
Sect. 3.1.1, which is when Xi |θ ∼ N (θ, σ 2) iid i = 1, ..., n,σ 2 = 4, α = 0.05, θ0 = 0

the pdf fC (·) is the density of the random power when � is restricted on the
alternative hypothesis. Note that eC can be also seen as Eπ [ηn(�)I�1(�)/π1],
where π1 = Pπ (� ∈ �1) and ηn(�)I�1(�)/π1 is a linear transformation of Jn .
However, the support of this random variable is ( α

π1
, 1

π1
), where 1

π1
≥ 1: this

implies that its interpretation as an overall representation of the probability of
success does not make sense. For this reason, we will consider only the definition
of eC as expected value of Cn provided in Table 1.

• The Bayes utility eU (where U stands for utility) has been formally introduced in
De Santis et al. (2024) as uPoS. Its advantages over ei , i ∈ {P, J ,C}, discussed
in the aforementioned contribution, follow from the fact that the random variable
Un generalizes the concept of probability of success by considering successful the
proper rejection of H1 and of H0.

As discussed by Spiegelhalter et al. (2004) and Kunzmann et al. (2021), since the
objective of a test is the rejection of H0, the design prior is usually almost fully concen-
trated on the alternative hypothesis, thus differences between ei , i ∈ {P, J ,C,U } and
their related distributions are negligible. Nonetheless there are cases where account-
ing for a design distribution which assigns not negligible probability masses to �0
is inescapable: this happens for instance in Temple and Robertson (2021), where the
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design prior is a mixture of two normals defined on �0 and �1, respectively, or in Liu
and Yu (2024) and Dallow and Fina (2011) where, instead of a design prior, a data
driven design posterior is used in the interim analysis of a clinical trial. In fact, in these
cases, discrepancies between the PrRVs under study and consequently in results, can
not be ignored.

3 The power related random variables

We here provide the general expressions of the pdfs fP (y) and fi (y), i ∈ {J ,C,U }
as functions of fP (y).

Theorem 3.1 Given the hypotheses in (1) and a size-α test with monotone increasing
power function ηn(θ), the density functions of the PrRVs in Table 1 are:

fP (y) = π
(
η−1
n (y)

)
∣∣∣
∣
d

dy
η−1
n (y)

∣∣∣
∣ I[0,1](y)

f J (y) = δ0(y) + fP (y)I(α,1](y)

fC (y) = fP (y)

π1
I(α,1](y)

fU (y) = fP (y)I(α,1](y) + fP (1 − y)I(1−α,1](y)

where η−1
n (·) is the inverse function of ηn(·) and δ0(y) is the Dirac delta function at 0.

Proof We start the proof deriving the expression of the cdf of the random power, which
support is [0, 1]. Since Pn is assumed monotone increasing, FP (y) can be written as:

FP (y) = Pπ [Pn ≤ y] = Pπ [ηn(�) ≤ y] = Pπ

[
� ≤ η−1

n (y)
] =

= Fπ [η−1
n (y)].

Thepdf fP (y) is obtainedbyderivingFP (y)wrt y. Recall that d
dx f −1(x) = 1

f ′( f −1(x))
,

where f ′(x) = d
dx f (x). We have:

fP (y) = d

dy
FP (y) = π

(
η−1
n (y)

)
∣∣∣∣
d

dy
η−1
n (y)

∣∣∣∣ .
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From (3) it follows that the generic expression of the cdf of Un is:

FU (y) = Pπ [Un ≤ y] =
= Pπ [Un ≤ y,� ∈ �0] + Pπ [Un ≤ y,� ∈ �1] =
= Pπ [Pn ≥ 1 − y,� ∈ �0] + Pπ [Pn ≤ y,� ∈ �1] =
= Pπ

[
� ≥ η−1

n (1 − y),� ≤ θ0
] + Pπ [� ≤ η−1

n (y),� > θ0] =

=

⎧
⎪⎪⎨

⎪⎪⎩

0 for y ≤ α

FP (y) − π0 for α < y ≤ 1 − α

FP (y) − FP (1 − y) for 1 − α < y ≤ 1
1 for y > 1

,

where π0 = Fπ (θ0) = Pπ (� ∈ �0). Note that FU (y) is differentiable for y 
= 1− α,
hence FU (y) admits density function fU (y), that is:

fU (y) = π
(
η−1
n (y)

)
∣∣∣∣
d

dy
η−1
n (y)

∣∣∣∣ I(α,1](y) +

+π
(
η−1
n (1 − y)

)
∣
∣∣∣
d

dy
η−1
n (1 − y)

∣
∣∣∣ I(1−α,1](y). (4)

Since FU (y) is not differentiable at y = 1 − α, then fU (y) has a jump discontinuity
at that point. Derivations of cdf and pdf expressions for Jn and Cn are available in
Appendix A. ��

Corollary 3.1 [Stochastic order of the PrRVs] Given the hypotheses in (1) and a size-α
test with monotone increasing power function ηn(θ), the PrRVs in Table 1 are in the
following stochastic order

Un 
 Cn 
 Pn 
 Jn,

that is, for any y ∈ R,

FU (y) ≤ FC (y) ≤ FP (y) ≤ FJ (y).

Proof The proof is provided in the Supplementary Material. ��

Remark 3.1 The stochastic order of the PrRVs implies that:

(i) eU ≥ eC ≥ eP ≥ eJ ;
(ii) qγ

U ≥ qγ

C ≥ qγ

P ≥ qγ

J , ∀γ ∈ [0, 1], where qγ

i = qγ

i (n, π), i ∈ {P, J ,C,U },
is the γ level quantile of the PrRV.
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3.1 Normal models

In this section, we apply Theorem 3.1 when the test statistic has normal distribution.
Following Spiegelhalter et al. (2004), consider the statistical model of Sect. 2 and
assume that Tn is the sufficient statistic and that, at least asymptotically, Tn|θ ∼
N (θ, σ 2

n ). Then, the size-α uniformly most powerful (UMP) test statistic is

W (Tn, θ0) =
√
n

σ
(Tn − θ0) ∼ N (0, 1) under H0. (5)

The random power of the test is:

Pn = ηn(�) = �

(
� − θ0 + σ√

n
zα

σ√
n

)

, (6)

where�(·), φ(·) and zγ = �−1(γ ) are the cdf, pdf and γ level quantile of the standard
normal. As it was shown in Rufibach et al. (2016),

fP (y) = π

(
θ0 + σ√

n
(zy − zα)

)
× σ√

n

√
2π exp

{
1

2
z2y

}
I[0,1](y). (7)

Details are available in Appendix B. From Theorem 3.1, the expressions of fi (y), i ∈
{J ,C,U } are straightforward. Following Rufibach et al. (2016), we use Eq. (7) and
Theorem 3.1 to derive closed-form expressions of fU (y) under three typical prior
choices: (i) normal, (ii) truncated normal, (iii) uniform.

(i) Normal design prior

Let � ∼ N

(
θd ,

σ 2

nd

)
, the pdf f NU (y) is:

f NU (y) = f NP (y)I(α,1](y) + f NP (1 − y)I(1−α,1](y) (8)

where, as in Rufibach et al. (2016),

f NP (y) = τφ(� + τ(zy − zα))[φ(zy)]−1 =
= τ exp

{
− 1

2
(� + τ(zy − zα))2 + 1

2
z2y

}
, (9)

where � = θ0−θd
σ√
nd

and τ =
√

nd
n .

(ii) Truncated normal design prior

Let � ∼ T N

(
inf = a, sup = b, θd ,

σ 2

nd

)
. The density f T N

U (y) is:

f T N
U (y) = f T N

P (y)I(α,1](y) + f T N
P (1 − y)I(1−α,1](y)
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Fig. 2 Cdfs of the PrRVs

where

f T N
P (y) = f NP (y)

�
(

b−θd
σ/

√
nd

)
− �

(
a−θd

σ/
√
nd

) I[ηn(a),ηn(b)](y).

Specifically, if the design prior of� is a normal truncated on the alternative hypothesis

(inf = θ0, sup = ∞), then f T N
P (y) = f NP (y)

1−�
(
θ0

) I(α,1](y).

(iii) Uniform design prior
Let � ∼ Uni f (a, b). The density f UN I F

U (y) is:

f UN I F
U (y) = f UN I F

P (y)I(α,1](y) + f UN I F
P (1 − y)I(1−α,1](y)

where

f UN I F
P (y) = 1

b − a

σ√
n

√
2π exp

{
1

2
z2y

}
I[ηn(a),ηn(b)](y).

3.1.1 Example on log-hazard ratio

As an example, we consider an application provided in Spiegelhalter et al. (1986),
whose main objective is the design of a clinical trial to compare a new treatment to the
standard one in terms of log-hazard ratio θ , with θ0 = 0, α = 0.05 and known variance
σ 2 = 4. The authors assume that a balanced trial is designed to have more than 0.8
of frequentist power at θd = 0.56, which is reached for n = 79. We now consider
a normal design prior N (θd , σ

2/nd) where nd = 9, which is the prior sample size
needed to obtain a prior with 0.20 probability that θ is less than zero, thus π1 = 0.80.
In Figs. 2 and 3 we respectively provide a graphical representation of Fi (y) and of
fi (y), i ∈ {P, J ,C,U }. Visual inspection of the PrRVs cdfs confirms the result of
Corollary 3.1. To complement cdfs and pdfs, we compute expectations ei and quantiles
qγ

i , which are available in Table 2. The PrRVsCn andUn , in comparison with the other
two, assign substantially higher densities to values of y close to 1,withmedians equal to
q0.5C = 0.947 and q0.5U = 0.981, while q0.5P = 0.798 and q0.5J = 0.798. As expected,
Un presents the highest density mass for high values of the power. Conversely, the
cdfs and pdfs of Pn and Jn coincide for y ∈ (α, 1], but they differ for y ∈ [0, α]:
consequently, their γ quantiles coincide when γ > α, but in terms of expected values,
eJ = 0.604 is slightly lower than eP = 0.606 as an implication of the fact that Jn is
null in [0, α].
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Fig. 3 Pdfs of the PrRVs

Table 2 Summaries of the
PrRVs i ei q0.25i q0.5i q0.75i

P 0.606 0.123 0.798 1.000

J 0.604 0.123 0.798 1.000

C 0.758 0.545 0.947 1.000

U 0.803 0.680 0.981 1.000

3.1.2 Qualitative features of fU(y)

As discussed in Sect. 3, the shape of the PrRVs pdfs indicates whether the experiment
is well-designed: a large density for values close to 1 corresponds to high chances
of conducting a well-designed experiment. The qualitative features of these density
functions depend on the sample size and on the design prior, therefore they provide
guidelines on the choice of the design prior parameters. We specifically focus on
fU (y) assuming a normal design prior � ∼ N (θd , σ

2/nd). From Eqs. (8) and (9), the
qualitative features of fU (y) can be summarized as follows.

Result 3.1 [Qualitative features of fU (y)]

• For y ∈ (α, 1 − α]:
– for nd = n (τ = 1):

1. fU (y) is strictly increasing for θd > θ�;
2. fU (y) is constant for θd = θ�;
3. fU (y) is strictly decreasing for θd < θ�;

– for nd 
= n (τ 
= 1):
1. fU (y) is strictly increasing for θd > θ�;
2. fU (y) is not strictly increasing for θd ≤ θ�.

• For y ∈ (1 − α, 1]:
– fU (y) is strictly increasing for θd > θ� when nd ≤ n (τ ≤ 1),

where θ� = θ0 + κ(n, nd) ∈ �1 and κ(n, nd) = σ√
nd

max{−zα;−2
√

nd
n zα}.

Proof The proof is provided in the Supplementary Material. ��
The interpretation as applied to the experiment success is that we get a well-shaped
density of the utility, thus a well-designed experiment, when θd > θ�. Since θ� is a
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decreasing function of n and nd , the choice of the design prior parameters is a matter
of finding the good trade-off between θd , nd , n. For instance, for low values of nd a
higher value of θd is required in order to ensure a good shape of the density. Note also
that the equation of θ� helps in the choice of the design value n or nd or θd , when the
other two are given. This is particularly useful for example in the design of clinical
trials when the prior sample size nd is the historical and/or external data sample size,
thus it is known at the design stage of the trial. Similar considerations about the shape
of the pdf of Un hold for the truncated normal design prior case.

Example on log-hazard ratio (continued) We consider once again the example of
Sect. 3.1.1 and we illustrate the qualitative features of fU (y) in Fig. 4, bottom panels,
for nd = 29, 79, 129 and for several values of θd chosen to be symmetric around the
θ� value. Moreover, for the same design values, we plot fP (y) in Fig. 4, top panels.

As discussed above, in general, for low values of nd a higher value of θd is required
to ensure a well-shaped pdf. We note that, according to findings in Rufibach et al.
(2016), in order to ensure a well-shaped fP (y), the design values may need to satisfy
hard-to-meet criteria. Conversely, the conditions that the design values need to satisfy
to ensure a well-shaped fU (y) are milder. For instance, when nd = 29 (thus for nd
realistically low) and θd = 0.51, fU (y) is substantially increasing (except for a very
small set of values of y) and q0.25U = 0.46, while fP (y) presents a bad-shape (u-
shape) and q0.25P = 0.31. As θd is reduced to 0.41, things for fP (y) go worst since
q0.25P = 0.17, while q0.25U = 0.38. Our point is that the u-shape of fP (y) is not solely
a consequence of the design prior choices: as largely debated in Sect. 2, Pn takes
values close to 0 (< α) with non-negligible probability (π0), leading to a u-shape of
fP (y) and therefore a reduced quantification of success even for realistic design prior
parameters choices. The employment of Un avoids this scenario.

3.2 Simulation algorithm

When closed-form expressions are not available, the PrRVs distributions can be simu-
lated. Let w1−α be the generic 1− α level quantile of the test statistic W (Tn, θ0). The
algorithm works as follows.
1: Draw M values θ(1), · · · , θ(k), · · · , θ(M) from π(·);
2: for each θ(k), k = 1, . . . , M , draw N values T (k)

n,1 , · · · , T (k)
n,i , · · · T (k)

n,N from the

sampling distribution of Tn|θ(k);
3: for each k = 1, . . . , M , compute W (k)

i = W (T (k)
n,i , θ0), i = 1, · · · , N ;

4: obtain M simulated values ηn(θ
(1)), · · · , ηn(θ

(k)), · · · , ηn(θ
(M)) from the empir-

ical distribution of the random power by computing:

ηn(θ
(k)) =

∑N
i=1 I(W

(k)
i > w1−α)

N
, k = 1, · · · , M;

5: obtain the empirical PrRV of interest:

• Pn ≈ {ηn(θ(k)), k = 1, · · · , M},
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Fig. 4 Qualitative features of fP (y) (top panels) and of fU (y) (bottom panels) for the example in Sect. 3.1.1
when nd = 29, 79, 129 (left, central and right panels, respectively) and for several choices of θd

• Jn ≈ {ηn(θ(k)) × I�1(ηn(θ
(k)), k = 1, · · · , M},

• Cn ≈ {ηn(θ(k)) : θ(k) ∈ �1, k = 1, · · · , M},
• Un ≈ {(1 − ηn(θ

(k)))I�0(θ
(k)) + ηn(θ

(k))I�1(θ
(k)), k = 1, · · · , M}.

From the empirical distributions of the PrRVs, it is easy to approximate their sum-
maries: for instance, eP � ∑M

k=1 ηn(θ
(k))/M . Note that if Tn|θ is exactly or asymp-

totically normal, steps 2, 3 and 4 are not necessary: once θ(1), · · · , θ(k), · · · , θ(M) are
drawn, the values ηn(θ

(k)), k = 1, · · · M can be computed using Eq. (6). The R code
is provided in the Supplementary Material. Note that the algorithm works also for the
reversed one-sided hypotheses test (ie �0 = [θ0,+∞)), point-null hypotheses test (ie
�0 = {θ0},�1 = {θ1}), and two-sided hypotheses test (ie �0 = θ0,�1 = �\{θ0})
under appropriate specifications of ηn(θ).

4 Application to a clinical trial

We here consider an application to a two samples confirmatory Phase III trial, which
aims to show efficacy of a drug in treating Restless Legs Syndrome. This example was
introduced in Muirhead and Soaita (2012) and discussed in Eaton et al. (2013). We
exclude from the study the pdf f J (y) as its behavior almost coincides with the one of
fP (y). It is assumed that Tn ∼ N (θ, 4σ 2

n ), where θ is the difference in treatment effects
and σ 2 is the common variance in the two groups. Superiority of the experimental
treatment is declared by rejecting H0 : θ ≤ θ0 = 0 when α = 0.025. The authors
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assume a known variance σ 2 = 64, and a clinically meaningful difference θd = 4. In
this case, ηn(θd) reaches the desired power value of 0.80 at n = 128. At the design
stage of the trial, wewant to obtain a pre-experimental evaluation of the trial supposing
three different prior beliefs about θ :

• neutral: � ∼ N (θd ,
4σ 2

nd
), with nd = 4. In this case, π1 = 0.69;

• pessimistic: � ∼ Uni f (a, b), with a = −3, b = 5. In this case, π1 = 0.625;
• optimistic: � ∼ T N (a, b, θd ,

4σ 2

nd
), with nd = 4, a = θ0 = 0, b = +∞. In this

case, π1 = 1.

In Table 3 we provide values of ei and of qγ

i for γ = 0.25, 0.5, 0.75, i ∈ {P,C,U }
and n = 64, 128, 256. As the sample size increases, expected values and quantiles of
the PrRVs increase for each prior belief. As expected, regardless of the sample size,
the stochastic order of the PrRVs is never violated. For fixed n = 128, in Fig. 5 we
report priors (left panels) and induced PrRV densities (right panels). As a consequence
of Corollary 3.1, in the neutral and pessimistic scenarios, summaries of fP (y) and of
fC (y) assume lower values than the ones of fU (y). This can be also seen from their
pdfs, which are u-shaped. On the other hand, the u-shape of fU (y) is less marked. In
the optimistic scenario, the design prior is entirely concentrated on �1, ie π1 = 1.
As discussed in Sect. 2.1, this is the case where the definitions of the PrRVs (thus
including their cdfs, pdfs, expected values and quantiles) coincide.

Finally, we consider the normal neutral design prior and show expected value and
quantiles as functions of n in Fig. 6. This reveals interesting aspects. First, according
to Corollary 3.1, eU ≥ eC ≥ eJ and q

γ

U ≥ qγ

C ≥ qγ

J , γ = 0.25, 0.5, 0.75. Second, the
0.25 quantile of Pn never increases with n meaning that, even when the sample size
suddenly increases, the u-shape of fP (y) can not be avoided, thus Pn still presents
high probability masses for low values of the power. In conclusion, note that stochastic
order among the PrRVs also implies that sample sizes chosen using summaries of Un

would be less than or equal to those based on summaries of the others PrRVs.

5 Conclusion

In the hybrid Bayesian-frequentist approach to hypotheses testing, the probability of
success, PoS, is commonly employed to evaluate the design of an experiment. In its
simplest and most common definition, PoS is the expected value of the random power.
Two criticisms arise:

1. PoS is just the mean of an entire probability distribution, thus may not be a well
representative summary of it (Spiegelhalter et al. 1986; Huson 2009; Rufibach et al.
2016; Liu and Yu 2024);

2. the random power does not properly account for the success of the experiment, as it
is defined as the random probability of rejecting H0, being it true or not (Kunzmann
et al. 2021; De Santis et al. 2024).

To address criticism 1, in the seminal paper of Spiegelhalter et al. (1986) it is proposed
to complement PoS with other summaries of the random power (such as quantiles),
or with the whole distribution itself. This is accomplished in Rufibach et al. (2016),
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Fig. 5 Normal, uniform and truncated normal prior (left panels) and induced fi (y), i ∈ {P,C,U } (right
panels)
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Table 3 Expected values and
quantiles for different design
priors and sample sizes

n Design prior i ei q0.25i q0.5i q0.75i

64 Normal P 0.505 0.004 0.516 0.997

C 0.728 0.440 0.950 1.000

U 0.812 0.740 0.997 1.000

Uniform P 0.181 0.007 0.072 0.323

C 0.286 0.091 0.238 0.466

U 0.552 0.169 0.516 0.993

Truncated normal P 0.726 0.435 0.948 1.000

C 0.726 0.435 0.948 1.000

U 0.726 0.435 0.948 1.000

128 Normal P 0.560 0.002 0.806 1.000

C 0.810 0.730 0.999 1.000

U 0.866 0.952 1.000 1.000

Uniform P 0.283 0.004 0.104 0.564

C 0.451 0.141 0.424 0.756

U 0.654 0.290 0.809 0.996

Truncated normal P 0.810 0.730 0.999 1.000

C 0.810 0.730 0.999 1.000

U 0.810 0.730 0.999 1.000

256 Normal P 0.598 0.000 0.980 1.000

C 0.867 0.951 1.000 1.000

U 0.907 0.996 1.000 1.000

Uniform P 0.379 0.002 0.166 0.847

C 0.607 0.240 0.708 0.963

U 0.751 0.512 0.977 0.999

Truncated normal P 0.867 0.951 1.000 1.000

C 0.867 0.951 1.000 1.000

U 0.867 0.951 1.000 1.000

where the pdf of Pn is derived and studied under normality assumptions. To overcome
criticism 2, multiple alternative definitions of PoS have been proposed in the literature
(and deeply reviewed in Kunzmann et al. 2021). However, these alternative definitions
are still affected by criticism 1.

Here, our starting point are four main definitions of PoS identified in De Santis et al.
(2024), which can be seen as expected values of PrRVs. In the proposed analysis, we
aim to provide tools useful to avoid criticism 1 and, at the same time, we investigate
which definition of PoS overcomes criticism 2.

Specifically, we provide general expressions of the cdf and pdf of the PrRVs under
investigation, as well as closed-form expressions under normality assumption of the
test statistic;moreover,we sketch a simulation algorithmusefulwhen explicit formulas
are not available. We show our ideas through an illustrative example on log-hazard
ratio and an application to a two arms Phase III clinical trial.
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Fig. 6 Expected values and quantiles as a function of n when the design prior is N (4, 4·64
4 )

When the design prior assigns null or negligible probability masses to �0 as, for
instance, in the optimistic design prior case of Sect. 4, the discrepancies between the
PrRVs are null or negligible. This is also noted inKunzmann et al. (2021), with specific
reference to the definitions of PoS, ie the expected values of the PrRVs.

On the other hand, when the design prior assigns not negligible probability masses
to �0, the use of Un to address the evaluation of the experiment success is crucial. In
fact, in this case we care about both rejecting H0 when it is false, and not rejecting H0
when it is true. Un accounts for both the aspects; conversely, when Cn is considered,
the interpretation of success is only related to the proper rejection of H0; finally, when
we consider Pn or Jn , the power of the test under �1 is mixed up with the type I error
and 0 values, respectively. This is debated in the application of Sect. 4 through the
pessimistic and neutral design prior cases, where graphical representations of fP (and
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consequently f J ) show that it never loses its u-shape. Not by chance, the 0.25 quantile
of fP tends to 0 as n increases.

Finally, we note that the PrRVs are likely to be skewed, thus the median is usually
a better representative summary of the entire distribution than the expected value.
Similar conclusions are drawn in Liu and Yu (2024) and Huson (2009) as well. This
has an impact on sample size determination (see De Santis et al. 2024).

Appendix A

Here, we continue the proof Theorem 3.1 deriving cdf and pdf of Jn and Cn .

1. The random variable Jn = ηn(�)I�1(�) is a mixture of a point mass distribution
on y = 0, and of the random power, that is an absolutely continuous random variable,
i.e.

Jn =
{
Pn if � ∈ �1
0 if � ∈ �0

.

The support of Jn is {0} ∪ (α, 1] and its cdf is:

FJ (y) = Pπ [Jn ≤ y] = Pπ [ηn(�)I�1(�) ≤ y, (0 ≤ y ≤ α) ∪ (α < y ≤ 1)] =
= Pπ [ηn(�)I�1(�) ≤ y, 0 ≤ y ≤ α] + Pπ [ηn(�)I�1(�) ≤ y, α < y ≤ 1] =

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 y < 0

π0 0 ≤ y ≤ α

FP (y) α < y ≤ 1

1 y > 1

It is straightforward to see that:

f J (y) = δ0(y) + fP (y)I(α,1](y),

where δ0(y) can be informally thought of as a probability density function which is
0 everywhere for y ∈ [0, α] except at y = 0, where it is 1 − ∫ 1

α
f J (y)dy (see, for

instance, Campbell and Gustafson 2023).

2. The PrRV Cn = ηn(�)|� ∈ �1 is a truncation of Pn on y ∈ (α, 1]. Its cdf is:

FC (y) = Pπ [ηn(�) ≤ y|� ∈ �1] =
= Pπ [ηn(�) ≤ y,� ∈ �1]

π1
=

= Pπ [ηn(�) ≤ y, α < y ≤ 1]
π1

=

= FP (y) − π0

π1
.

123



F. Mariani et al.

The pdf fC (y) can be either obtained from deriving FC (y) wrt y or by noting that
fC (y) is the pdf fP (y) truncated on (α, 1]. Thus it is:

fC (y) = fP|(α,1](y) = fP (y)
∫ 1
α

fP (y)dy
I(α,1](y)

where

∫ 1

α

fP (y)dy = Pπ [α < ηn(�) ≤ 1] =
= Pπ [η−1

n (α) < � ≤ η−1
n (1)] =

= Pπ [θ0 < � ≤ +∞] =
= π1.

Appendix B

From Eq. (6), it is easy to check that:

η−1
n (y) = θ0 + σ√

n
(zy − zα),

and since d
dy zy = d

dy�
−1(y) = [φ(zy)]−1,

∣
∣∣∣
d

dy
η−1
n

∣
∣∣∣ = σ√

n
[φ(zy)]−1 = σ√

n

√
2π exp

{
1

2
z2y

}
.

From the expression of fP (y) in Theorem 3.1, we obtain:

fP (y) = π

(
θ0 + σ√

n
(zy − zα)

)
× σ√

n

√
2π exp

{
1

2
z2y

}
I[0,1](y),

that is Eq. (7).
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