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A B S T R A C T   

In the present work, a micropolar continuum model is adopted to homogenise a heterogeneous 
porous model of Guided Bone Regeneration (GBR) meshes. GBR meshes are used in dentistry as 
mechanical barriers to isolate and protect the area of bone loss from the surrounding tissue while 
allowing new bone growth. The mechanical constants of the continuum are derived based on the 
strain energy equivalence of a periodic porous plate with its equivalent ortho-tetragonal micro-
polar model under prescribed boundary conditions. The effects of various architectural features 
such as pore shapes, patterns and sizes on the material parameters are investigated. The results 
show that the micropolar theory provides a better prediction of the response of the 2D porous 
geometries considered for the GBR mesh, compared to the classical Cauchy theory. The collected 
equivalent material parameters are further used for GBR mesh design, considering both me-
chanical and biomedical requirements. As an example, different materials and arrangements are 
analysed to find micropolar constitutive parameters that are comparable to bone parameters 
reported in the literature. This allows the GBR mesh to possess the mechanical performance that 
matches the adjacent bones.   

1. Introduction 

The use of Guided Bone Regeneration (GBR) mesh in dentistry is becoming increasingly popular. This technique uses a mechanical 
barrier, such as a membrane, to separate and protect the area of bone loss from the surrounding tissue so that new bone can grow in the 
designated area. GBR is reported to provide the best and most predictable results when used to fill peri‑implant bone defects with new 
bone. Research in the field of GBR is still ongoing, with evidence coming mainly from preclinical studies [1]. While various types of 
barriers have been used in GBR, the design and mechanical properties of the GBR mesh can greatly influence its effectiveness in 
promoting bone growth [2]. 

GBR meshes have different mechanisms to fulfil their bone regenerating function. Biologically, the soft tissue of the gingiva has a 
high tendency to proliferate, which can fill and replace the cavity caused by the bone loss. The aim of GBR is to shield the soft tissue 
from the bone defect with a barrier membrane, creating a relatively closed space that promotes the multiplication of bone cells. In 
addition, the space provided by the GBR mesh stores bone grafts and stimulating substances that induce the adjacent bone to produce 
new bone cells [2–4]. 

On the other hand, the mechanical shielding provided by the GBR mesh determines the morphology and boundary of the 
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regenerated bone. It also provides sufficient stiffness to bear the chewing pressure load and thus prevent undesired deformation of the 
newly regenerated bone cells [4]. 

To create a stable bone regeneration environment, an “ideal” barrier membrane must fulfil five basic principles [2,5]:  

1. Biocompatibility.  
2. Space preservation requiring sufficient stiffness to maintain the space and withstand the pressure of masticatory forces.  
3. Permeability or occlusivity which requires adequate porosity.  
4. Tissue integration to embedding in the surrounding host tissues.  
5. Clinical manipulation for ease of use and handling. 

As a first expectation, the membrane should have adequate stiffness to create and maintain a suitable space for the intended osseous 
regeneration. On the other hand, barrier occlusivity of a membrane may be at least as important as its space-maintaining properties in 
the regeneration of bone defects [6]. Appropriate pore size is reported to play a role in desirable occlusivity of GBR membrane [7,8]. 
The architecture of the porous structure in general, rather than just the type of material used, has been suggested to confer the bio-
logical activity of a material. The membrane pores facilitate the diffusion of fluids, oxygen, nutrients, and bioactive substances for cell 
growth, which is essential for bone and soft tissue regeneration while nonporous barrier membranes may delay bone regeneration [2]. 

However, there are some biomedical aspects of the porosity that remain controversial [9]: larger pore sizes will allow 
faster-growing cells to overpopulate the defect space and inhibit the infiltration and activity of bone-forming cells. They can also 
provide an easy pathway for bacterial contamination. On the other hand, if pores are too small, cell migration of all cells is restricted. A 
large pore size inevitably reduces the resulting surface area of the material, which could limit the important initial steps of cell 
adhesion onto the membrane [1]. Overall, a compromise must be found between porosity and stiffness when designing a GBR mesh. 
Biologically, higher porosity facilitates the diffusion of nutrients that promote cell growth, while mechanically, higher porosity reduces 
the stiffness and load-bearing capacity of the GBR. Therefore, the optimal mesh design should be a mechanically robust structure that 
also fulfils the biomedical requirements. 

Due to the latest achievements in additive manufacturing, precise microstructures with architectural features can be fabricated 
through 3D printing. Accordingly, precise, and individualised 3D scaffolds with a customizable pore size, pore density, and fully 
controlled architecture can be fabricated conveniently and quickly. The characteristics and performance of such barrier membranes 
can be optimized by adjusting their microstructures, given that their thickness, pore size, pore geometry and pattern affect their 
mechanical performance and are directly related to bone formation ability. Engineering modelling and simulation tools such as the 
finite element method can be used to optimise the design of the GBR mesh which can be further verified or adapted through clinical 
trials to meet biological requirements. 

To account for microporosity, macroporosity or a combination thereof in the design of the GBR mesh, the material can be treated as 
a heterogeneous medium with designed porous and architected cellular structure [10,11]. On the other hand, direct modelling and 
discretisation of such cellular materials can lead to cumbersome computations, necessitating the definition of equivalent constitutive 
laws that take microscopic properties into account. The mechanical behaviour of these materials can be analysed through two ap-
proaches: detailed discrete computation and equivalent continuum approximation, thorough homogenization theories based on the 
selection of a Representative Volume Element (RVE) of the material [12]. The discrete analysis, using analytical approaches [13] or 
numerical methods like FEM, needs great computational efforts [14]. Thus, an alternative regarding their effective mechanical 
properties have attracted significant attention [15]. Those effective properties can be predicted by computational methods [16] to 
define an equivalent continuum that properly considers the influence of the microstructure on the macro-scale behaviour with 
reference to shape, size, and texture of lower scale features [17,18]. 

Since classical continuum theory cannot account for the internal length scale of cellular solids [12], non-classical (non-local [19]) 
continuum theories [20] that simultaneously use field description at the coarse level and preserve the memory of the material un-
derlying structure at the fine level, can overcome this limitation [21,22]. Non-classical theories can have different attitudes in 
retaining more information on the material’s internal structure. One approach, such as [23–25], use the primal field of classical 
elasticity, yet the governing equation of motions contain non-local operators. Another approach is to account for the material’s 
heterogeneity indirectly by considering extra degrees of freedom. Among non-classical theories belonging to the second approach, 
elastic micropolar (Cosserat) theory [26,27], has been successfully used in many applications [14,28] to describe heterogeneous 
materials [29,30], such as porous materials [31–35], cellular materials [36], composites [37–39], lattices [40] and foams [41–43] and 
even nanostructures [21,44]. In micropolar theory, in addition to the standard displacement, the rotation of the material point is 
introduced, which is called microrotation to be distinguished from macro-rotation (local rigid rotation). Also, a simplified version of 
micropolar theory, known as couple stress theory [45], were implemented for studying porous and functionally graded porous ma-
terials [46,47]. 

As some examples of work related to biomedical applications, micropolar models of bone were constructed in [48,49] to investigate 
microstructure-related scale effects on macroscopic effective properties. Lakes and co-workers [50–54], also conducted a series of 
experiments and studies on bones and found that micropolar theory provides better predictions of bone response than Cauchy elas-
ticity. Furthermore, in [55] the authors determined the micropolar elastic constants of bone using micromechanical analyses. It was 
assumed that bone tissue is an isotropic Cauchy-type elastic material at the microscopic level, while bone behaves as a homogeneous 
micropolar continuum at the macroscopic level. The effective elastic constants for the micropolar continuum were determined from 
the response of a bone sample. Knowing the mechanical properties of bone and considering the correct model, are of great importance 
for the development and use of prostheses that replace a bone or part of a bone, or in our case for GBR meshes that can perform better if 

A. Rezaei et al.                                                                                                                                                                                                         



Applied Mathematical Modelling 131 (2024) 737–763

739

they have a mechanical behaviour like bone. Generally, there are three main approaches to determine equivalent micropolar pa-
rameters. Experimental, where mechanical tests such as 3-point bending, torsion or vibration are conducted to measure the material 
response [53,56]. Analytical, in which mathematical models are developed to calculate the parameters based on the known material 
microstructure [57]. Numerical, in which by implementing finite element models, the parameters are determined from the response of 
various loading conditions on a detailed model [29]. 

In the current work, we highlight the advantages of micropolar elasticity description, in the design of dental GBR meshes as porous- 
cellular materials. The micropolar continuum is used to homogenise the heterogeneous porous model. The mechanical constants of the 
continuum are derived based on the strain energy equivalence of periodic porous plates with their equivalent ortho-tetragonal 
micropolar model under prescribed boundary conditions. The detailed porous structure and the equivalent micropolar model are 
simulated by the finite element method where the latter is developed using the PDE interface of COMSOL Multiphysics software. 
Through a parametric study, the effects of various architectural features such as pore shapes, patterns and sizes on the material pa-
rameters are investigated. The results show that the micropolar theory provides a better prediction of the response of the 2D porous 
geometries with significant pore size compared to the classical Cauchy theory. 

The developed mechanical model can provide a useful framework for GBR mesh design, considering both mechanical and 
biomedical requirements. As an example, we have investigated different materials and arrangements to find micropolar constitutive 
parameters that are comparable to bone parameters reported in the literature. This allows the GBR mesh to possess the mechanical 
performance that matches the adjacent bones. 

The alveolar bone is that part of the lower jaw (mandible) and upper jaw (maxilla) which supports the teeth. It consists of two layers 
of compact (cortical) bone and spongy (trabecular) bone (Fig. 1a). In some areas, the alveolar bone is thin and has almost no spongy 
bone [58,59]. 

As can be seen in Fig. 1b, the GBR mesh is in contact with the cortical (compact) bone. To seek an optimal mechanical behavior, we 
try to make the material parameters of the GBR mesh consistent with its adjacent bone and suggest matching the mechanical properties 
of the mesh with the cortical type of the bone. 

The paper is structured as follows: Section 2 presents details of the homogenisation procedure and the equivalent continuum model 
considered. It also gives a brief description of micropolar theory and introduces the geometric model for representing GBR meshes. The 
details of numerical implementation of the micropolar model using the PDE interface and FEM simulations are provided in Section 3. 
After, in Section 4 the results of the parametric study and the homogenisation of the 2D porous geometries are presented. This section 
also discusses the results and applicability of the proposed method to find GBR geometries with material parameters like bones. Finally 
concluding remarks are summarized in Section 5. 

2. Equivalent continuum model for 2D GBR mesh 

To develop a numerically efficient method for modelling the 2D porous GBR meshes with different microstructures (pores patterns), 
a multiscale approach is proposed in which an equivalent homogenised material represents the detailed heterogeneous structure. The 
equivalent material is described in the framework of micropolar theory. In this section, we first address the geometric model for 
representing GBR meshes and then describe the procedure to determine equivalent micropolar parameters for porous 2D plates. 

2.1. Parametrization of 2D GBR mesh model 

Currently, there are several types of GBR meshes available on the market (Fig. 2a). A common type that is widely used in dentistry is 
the titanium alloy (Ti6Al4V) [60] sheets with a perforated structure. Before implantation of the GBR, the required dimensions and 
overall shape are cut and formed by the surgeon (Fig. 2b). 

In the current work, GBR meshed are considered as a 2D square plates with overall side length of Lsheet where pores are distributed 
regularly. The pores can be modelled with various shape and size and with different spacing which leads to different pore densities. 

Fig. 1. a. Anatomy of the tooth and components of alveolar bone b. Use of a porous GBR mesh.  
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Fig. 2. a. Perforated titanium sheets with different patterns b. The required dimensions and overall shape are cut and formed by the surgeon.  
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Fig. 3. A parametrized GBR sheet with rectangular shape pores.  
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Fig. 4. The parametrization used for GBR mesh with circular pores.  
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Here, the pores’ geometry and pattern are parametrized by two variables, the pore size (named ‘Lpore ’) and the number of pores 
(‘Npore’) in a row. Accordingly, wall thickness (t) will be a dependent variable and calculated as: 

t =
Lsheet

Npore
− Lpore (1) 

A parametrized GBR sheet with rectangular shape pores is shown in Fig. 3 as an example. 
One of the most common patterns for GBR porous titanium mesh that are already available on the market, is the one with regular 

circular pores. This pattern can be parametrized using pore diameter as the indicator of pore size (Lpore) and the number of pores (Npore) 
as a measurement of pore density (Fig. 4). 

2.2. Multiscale homogenisation procedure 

For the determination of the constitutive parameters of the equivalent model, the primary hypothesis is that the strain energy 
stored in the detailed structure (micro-level) under prescribed boundary conditions is equal to that of the equivalent continuum 
description (macro-level). In the current work, two different continua are used to describe the material at the macro- and micro-levels. 
At the macro-level, the micropolar continuum is chosen as it has been shown to be very suitable to describe materials with internal 
structures, while at the micro-level the classical Cauchy continuum is used. 

2.3. Micropolar theory 

In the micropolar theory, in addition to the standard displacement, the material particles that comprise the continuum are endowed 
with an additional degree of freedom as microrotation, which leads to the following linearized kinematic equations: 

εij = ui,j + eijkϕk  

μkj = ϕk,j (2) 

Where ui and ϕk stand for the components of displacement and micro-rotation vectors, εij and μkj denote the components of strain 
and curvature tensors with eijk being the usual third order permutation symbol. 

If body forces (pi) and body couples (qk) are also considered, the equilibrium equations take the following form: 

σij,j + pi = 0  

μkj,j − eijkσij + qk = 0 (3) 

Where σij and μkj are the components of the non-symmetric stress and couple-stress tensors, respectively. 
Here, we consider 2D plane stress formulations to model GBR sheets. In the linearized 2D framework of micropolar, there are two 

displacements and one rotational component, so the generalized displacements will be: 

uT = [ u v ϕ ] (4)  

and the strain vector is: 

εT = [ ε11 ε22 ε12 ε21 κ1 κ2 ] (5)  

where ε11, ε22, ε12, ε21 are the in-plane normal and shear strains and κ1,κ2 are the micropolar curvatures. Note that the strain com-
ponents are no longer symmetric ε12 ∕= ε21 in the micropolar theory. 

The stress vector is also represented as: 

σT = [ σ11 σ22 σ12 σ21 μ1 μ2 ] (6)  

where σij (i, j = 1, 2) represents the normal (i = j) and shear stress (i ∕= j) components and μ1, μ2 are the micro-couples. In micropolar 
theory, the stress components are not reciprocal, σ12 ∕= σ21 and the couple stress components μ1, μ2 must be introduced to satisfy the 
moment equilibrium of the micropolar body. 

The micropolar anisotropic constitutive equations can be represented as: 

σ = Cε (7) 

Where C is the constitutive stiffness matrix. Due to hyper-elasticity, the constitutive matrix C is symmetrical [61]. This matrix is 
obtained by an energetic homogenisation technique presented in [62]. 

The geometries considered here for porous GBR mesh are symmetric with respect to a 90◦ rotation. These symmetries in the 2D 
model, implies a special kind of orthotropic material named as “ortho-tetragonal” [38]. In such material model, some constitutive 
perceptions exist that are presented in [62]. The constitutive equations for these materials can be presented in Voigt’s notation as: 
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(8) 

Therefore, the stiffness matrix in the current work contains five independent micropolar material parameters. These five param-
eters are A1111, A1122, A1212, A1221, D11. 

It is worth mentioning that in case of an isotropic 2D micropolar model, the number of independent material parameters will 
decrease to four [26,63,64]. 

Further, we adopt a different description of the micropolar shear deformation components to directly recognize the first three 
components of strain as the in-plane Cauchy ones (ε11, ε22, εSYM

12 ). Thus, the micropolar strain ε will be expressed as: 

ε =
{

ε11 ε22 εSYM
12 θ κ1 κ2

}T (9)  

where εSYM
12 = ε12 + ε21 is the symmetric shear strain component and θ = ε12 − ε21 = 2(ω − ϕ) is antisymmetric shear strain component 

(or rotational deformation, representing two times the difference between the rigid rotation ω and the microrotation field ϕ) where: 

ω =
1
2

(
∂v
∂x

−
∂u
∂y

)

(10) 

In the case of the couple stress theory and the Cauchy theory, the shear strain is symmetric and θ is equal to zero so that the classical 
kinematic relations are restored [65]. 

The work conjugates of these two shear strain measurements, can be defined as: 

σSYM
12 =

1
2
(σ12 + σ21)

σASM
12 =

1
2
(σ12 − σ21)

(11) 

Where σSYM
12 and σASM

12 are symmetric and antisymmetric components of the shear stress. 
Finally, we can rewrite Eq. (8) in terms of εSYM

12 and θ: 

Fig. 5. RVE Geometry: a. Micro (detailed porous) model, b. Macro (homogenized equivalent micropolar) model.  
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(12) 

Since micropolar and Cauchy continua use different degrees of freedom, a kinematic map is required to link the two levels of 
description. Here, we followed the mapping proposed by Forest and Sab [29] for a square representative volume element (RVE). 

The RVE of the porous micromodel and associated u*, v* displacement field are shown in Fig. 5a. 
To replace a heterogeneous material by an equivalent micropolar medium, the local displacement field u*, v* in the micro model 

can be written in terms of the macroscopic displacements u, v, and micro-rotation ϕ as follows (Fig. 5b): 

u∗(x, y) = u(X,Y) − ϕ(X, Y)(y − Y)
v∗(x, y) = v(X,Y) + ϕ(X,Y)(x − X) (13)  

where (X, Y) are the coordinates of the centre of the RVE (Fig. 5). The best fit of u*, v* to the RVE real displacement field ureal and vreal 

can be achieved by the least-square minimization of the error over the surface: 

Δ =

∫

A

⃒
⃒ureal

i
(
xj
)
− u∗

i

(
xj
)⃒
⃒2dA

=

∫ x=X+L/2

x=X− L/2

∫ y=Y+L/2

y=Y − L/2

⃒
⃒ureal

i
(
xj
)
− ui

(
Xj
)
+ eimnϕm

(
Xj
)
(xn − Xn)

⃒
⃒

2

dxdy

(14) 

Which requires: 

∂Δ
∂u

= 0
∂Δ
∂ϕ

= 0 (15) 

By imposing the above conditions, the following relations between the macroscopic micropolar and the microscopic Cauchy 
displacement fields are derived [66]: 

u =
1
A

∫

A
u∗dA

v =
1
A

∫

A
v∗dA

ϕ =
6
L2

1
A

∫

A
[v∗(x − X) − u∗(y − Y)]dA

(16) 

As can be seen in Eq. (16), the macroscopic rotational degree of freedom, ϕ, is an average rotation calculated using microscopic 
translation degrees of freedom, u* and v* on the RVE. 

Further, a third-order polynomial expression is considered for the displacement field (u*, v*) and substituted in Eq. (16). As pointed 
out in [67], the assumption of polynomial form for the displacement field is an important localisation step which has been adopted 
commonly in the framework of higher-order homogenisation [68–71]. 

Then, by using the kinematic relations of Eq. (2) and imposing the invariance conditions described in [29] and [66], the following 
kinematic map is derived: 

u∗ = ε11x + εSYM
12 y −

κ2

2
y2 − κ1xy −

10
L2 θ

(
y3 − 3yx2)

v∗ = εSYM
12 x + ε22y +

κ1

2
x2 − κ2xy +

10
L2 θ

(
x3 − 3xy2)

(17) 

Eq. (17) expresses the microscopic displacement field within the RVE as a function of the macroscopic strain measures at the 
material point on the macro-level [72]. 

2.4. Identification of micropolar material parameters 

After determination of the kinematic map, to find the micropolar material parameters in Eq. (8), first we calculate the response of 
the porous plate subjected to various loadings. In each case, the corresponding micropolar material parameters are found so that the 
equivalent material stores the same strain energy density [18,72] when subjected to the identical loading, i.e.: 
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Fig. 6. Designed FEM tests for finding micropolar material parameters.  
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UFEM = UMicropolar (18) 

Where UMicropolar is the strain energy density of the equivalent micropolar continuum calculated using the following relation: 

UMicropolar =
1
2
[
ε11σ11 + ε22σ22 + εSYM

12 σSYM
12 + θσASM

12 + κ1μ1 + κ2μ2
]

=
1
2
[ε11(A1111ε11 + A1122ε22) + ε22(A1122ε11 + A1111ε22)+

εSYM
12

(
A1212 + A1221

2
εSYM

12

)

+ θ
(

A1212 − A1221

2
θ
)

+

κ1(D11κ1) + κ2(D11κ2)]

(19) 

And UFEMis the strain energy density of the porous plate calculated using the finite element method: 

UFEM =
1
2

∫

RVE

σp
ijε

p
ijdV (20) 

Where σp
ij and εp

ij are stress and strain in the porous structure. 
To evaluate the components of the micropolar stiffness tensor (A1111, A1122, A1212, A1221, D11), different boundary conditions (tests) 

are designed to represent uniaxial, biaxial, symmetric shear, bending and rotational deformations. The applied tests and the corre-
sponding material parameters obtained from each test are described in Fig. 6. 

The boundary conditions to create each test, are obtained using the micro-filed descriptions of u*, v* in terms of macro-field strain 
measures presented in kinematic map, i.e., Eq. (14). 

2.4.1. Test 1: uniaxial extension test to find A1111 
A uniform strain ε11 = 1 is applied on the porous plate so the boundary conditions can be described as follows: 

u∗ = x  

v∗ = 0 (21) 

And the equivalence of the elastic strain energy density in Eq. (16) will be: 

1
2
[ε11(A1111ε11)] = UFEM,1 (22)  

which gives: 

A1111 = 2UFEM,1 (23)  

2.4.2. Test 2: biaxial extension test to find A1122 
To apply bi-axial uniform strains ε11 = ε22 = 1 on the porous plate, the corresponding boundary conditions should be: 

u∗ = x  

v∗ = y (24) 

And the equivalence of the elastic strain energy density leads to: 

1
2
[ε11(A1111ε11 +A1122ε22) + ε22(A1122ε11 +A1111ε22) ] = UFEM,2 (25)  

giving: 

A1122 = UFEM,2 − A1111 (26)  

2.4.3. Test 3: symmetric shear deformation test to find A1212 + A1221 
To apply uniform shear strain εSYM

12 = 1 on the equivalent micropolar media, the corresponding boundary conditions for the 
micromodel (porous plate) should be: 

u∗ = y  

v∗ = x (27) 

Which results in the following elastic strain energy equivalence: 

1
2

[

εSYM
12

(
A1212 + A1221

2
εSYM

12

)]

= UFEM,3 (28) 
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2.4.4. Test 4: rotational deformation test to find A1212 − A1221 
To apply uniform rotational deformation θ = 1 on the equivalent micropolar media, the following should be the corresponding 

boundary conditions for the porous plate: 

u∗ = +
10
L2

(
y3 − 3yx2)

v∗ = −
10
L2

(
x3 − 3xy2)

(29)  

and the equivalence of strain energy density gives: 

1
2

[

θ
(

A1212 − A1221

2
θ
)]

= UFEM,4 (30) 

Using the results of the rotational and symmetric shear tests (Eqs. (28) and (30)) together, A1212 and A1221 can be found 
individually: 

A1212 = 2
(
UFEM,3 + UFEM,4

)

A1221 = 2
(
UFEM,3 − UFEM,4

) (31)  

2.4.5. Test 5: uniform bending test to find D11 
Finally, for the uniform curvature κ1 = 1on the equivalent micropolar media, the corresponding boundary conditions will be 

applied on the porous plate: 

u∗ = − xy  

v∗ = x2/2 (32) 

Resulting in the following the elastic strain energy equivalence: 

1
2
[κ1(D11κ1)] = UFEM,5 (33)  

which leads: 

D11 = 2UFEM,5 (34) 

The boundary conditions applied in the FEM tests are according to the displacement field specified in Sections 2.4.1 to 2.4.5. These 
boundary conditions are consistent with the relations of the periodic boundary condition detailed in [71] and therefore, intrinsically 
implies periodicity. 

3. Finite element implementation 

The finite element method (FEM), implemented in COMSOL Multiphysics, is used to discretise the problem at both the macro and 
microlevels. The detailed porous structure was meshed using the first order (linear) triangular elements. The thickness of the GBR plate 
is considered as 1/100 of the length of the plate and therefore 2D plane stress formulation for linear elastic media was adopted. The 
convergence of the mesh size was studied based on the values extracted for strain energies (UFEM). The applied boundary conditions are 
the ones that are described in Sections 2.4.1. to 2.4.5. To implement the micropolar continuum numerically, we used the capability of 
COMSOL Multiphysics to apply the weak form to partial differential equations (PDE). The reason for this is that the FEM for the 
micropolar theory or other non-classical continua is not yet available in commercial FE codes. By using PDE modelling in COMSOL 
instead of traditional FE modelling, no user subroutines are required and various complex geometries, boundary conditions, and 
loadings can be applied in a user-friendly graphical interface. For the homogenous equivalent models, structured quadrilateral ele-
ments, and first-order (linear) discretization (for both displacements and micro-rotation) were applied. The formulation of the ele-
ments is described by the constitutive equations explained in 2.3. 

To develop the weak form [14], we start from the balance equations in Eq. (2) and multiply each of the two equations by the test 
functions corresponding to the unknowns ui and ϕ, denoted here as vu and vϕ, and integrate over the entire computational domain D 
and by using the divergence theorem and considering B as the surface boundary, the weak form PDE can be defined: 

−

∫

D

σijvui,j +

∫

B

σijvuinj +

∫

D

pivui = 0 (35)  

−

∫

D

μkjvϕ,j +

∫

B

μkjvuknj −

∫

D

eijkσijvϕ +

∫

D

qkvϕ = 0 (36) 
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The convergence of the implemented mesh was studied for each loading case where the study of the equivalent micropolar model 
showed that the minimum mesh size of 0.05 L was the proper value for achieving discretization independency. The maximum dif-
ference of the results for the magnitude of displacements was less than 0.1 % for the mesh size of 0.02 compared to the mesh size of 
0.05 L. 

Table 1 
Material properties for the simulations [60].  

Material Properties Unit Titanium alloy (Ti6Al4V) 

Young’s Modulus GPa 114 
Poisson Ratio – 0.3 
Density kg/m3 4500  

Fig. 7. Equivalent material parameters from micropolar homogenised model for GBR mesh with circular pores (each dataset shows results for a 
specific pore size and various number of pores). 
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The developed FEM micropolar model was tested with the available benchmarks from the literature to assess the accuracy and 
flexibility of the code. The results of the three patch tests introduced in [73] were consistent with the analytical solutions as benchmark 
values. The independence of the results from linear and bilinear discretization as well as from structured rectangular and triangular 
meshes (fine and coarse meshes) was also investigated. As a second check, the numerical study of a micropolar linear elastic plate with 
a circular hole under uniform tensile stress showed a good agreement with the stress concentration factors from [64]. Also, the 
displacement fields shown in [17] for an orthotropic micropolar FEM model matched the findings of this study. Such benchmarks are 
not reported here for the sake of conciseness and also because they are out of the scope of the present research work. 

The developed FEM micropolar model has some limitations and assumptions. The accuracy of the results may be influenced by the 
quality of the mesh and can be remedied through mesh convergence study. Material properties are assumed to be constant and ho-
mogenous throughout the structure. The accuracy of the results may be sensitive to the prescribed boundary conditions, which are 
simplified to be applicable within the weak form PDE framework. The weak form involves simplifying the strong form of the equations 
and 2D plane stress formulation is an approximation of the real 3D problem. Adjusting solver settings involves trade-offs between 
accuracy and computational cost. 

Fig. 8. Equivalent material parameters from micropolar homogenised model for GBR mesh with square pores (each dataset shows results for a 
specific pore size and various number of pores). 
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4. Numerical results and discussion 

In the following section, numerical results regarding parametric studies on GBR meshes with circular and rectangular pores are 
presented and discussed. 

The material properties assumed for the porous structure, is the common titanium alloy available as GBR mesh sheets in the market. 
The properties of this alloy are listed in the Table 1. 

4.1. Circular pores 

Fig. 7 presents the equivalent micropolar material parameters for a GBR mesh with circular pores. Each dataset shows the results for 
a specific pore size and various number of pores. For a better insight, the material parameters are shown with respect to the porosity, 
which is the ratio of the pores’ surface area to the total surface area and is calculated using the following relation: 

Porosity =

(
Npore

)2 ⋅
π
4

(
Lpore

)2

L2
(37)  

4.2. Square pores 

To evaluate the effect of pore geometry, Fig. 8 presents the equivalent micropolar material parameters for meshes with rectangular 
pores (Fig. 3). The pattern is parametrized using the rectangular pore side as the pore size, Lpore, and the number of pores, Npore. The 
porosity is calculated by the following equation: 

Porosity =

(
Npore

)2 ⋅
(
Lpore

)2

L2
(38)  

4.3. Size effect in the micropolar homogenised model 

By studying the porosity trends in Figs. 7 and 8, one can recognize that A1111 and A1122 depend only on the value of porosity and 
pore size has no significant effect. This means that the variation of these two material properties can be described by porosity as a single 

Fig. 9. The geometry, applied loading and boundary conditions applied on the equivalent micropolar model to evaluate the effect of A1221on the 
local rotation 2θ = (ω − ϕ) a. case 1: square-shaped pore with positive A1221, lp = 0.1L and Np = 5 b. case 2: square-shaped pore with negative A1221, 
lp = 0.1L and Np = 8. 
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variable. This can also be described by classical theories [18] according to which the stiffness of porous materials decreases with 
increasing porosity regardless of the characteristic length of the pores (see for instance, [74–77]). As a matter of fact, the A1111 and 
A1122 correspond to the same quantities of the constitutive matrix for an equivalent Cauchy material. 

However, for the other three material parameters corresponding to the micropolar theory, the pore size affects the material pa-
rameters even if the total porosity is the same, which means that it is no longer possible to describe the variation of the material 
parameters by a single variable such as porosity. The difference is more prominent as the pore size increases and the internal char-
acteristic length becomes comparable to the overall dimension of the plate. This observation is consistent with the inherent ability of 
micropolar theory to account for the internal structure and the size effects in the material. Some evidence from literature (ex. [75]) also 
has shown this observation. 

4.4. Negative A1221 for higher porosities 

According to Figs. 7 and 8, for higher porosities, values of A1221 for both circular and square pores become negative, which means 
that shear loading in one direction, counter clockwise for instance, (σ12Counter − clockwise, σ21 = 0, ε12Counter − clockwise), results in 
counter clockwise ε21.The behaviour toward shear loading can be analogous to what auxetic material (negative Poisson’s ratio) [78] 
exhibits with respect to axial loading. It can be concluded that the deformation mechanism changes for higher porosities (beginning at 
50–60 percent). At lower porosities, the deformation is controlled by the stiffness of the base material, but as the porosity increases and 
the volume of the material decreases, the pores take control of the deformation. 

According to Eq. (12), (A1212 − A1221)
2 is the coefficient related to the antisymmetric shear strain component, θ, and (A1212+A1221)

2 is the 
coefficient related to the symmetric shear strain, εSYM

12 . When the A1221 get negative, the value of (A1212 − A1221)
2 is still positive in rotational 

test while it is larger than (A1212+A1221)
2 from the shear test. Therefore, the sign of θ is not changed in rotation test and is always positive. 

However, when A1221 gets negative, the rotation mode (Asymmetric Shear) becomes dominant and θ is higher compared to similar 
loading and boundary condition for a porous structure with positive A1221. For a better demonstration, Fig. 9 shows the local rotation 
value (2θ = (ω − ϕ)) in a porous structure under shear loading for two cases of positive and negative A1221. 

As can be seen in Fig. 9, where A1221 is negative, the value and distribution of the local rotation is much more dominant, therefore 
micropolar effect is much more evident with respect to a Cauchy model that considers zero relative rotation. 

4.5. Effect of pore shape 

In the current work, two circular and square pore shapes with regular patterns are presented to point out the influence of pore 
geometry/pattern on the mechanical parameters of GBR meshes. Through the proposed procedure, a variety of different geometries 
and patterns (see Fig. 2b) can be considered and studied. 

By comparing the results of the circular and rectangular pore shapes (Figs. 7 and 8), it can be deduced that by choosing square shape 
pores leads to a wider range of possible porosities as they can provide a more compact arrangement. This can be helpful in meeting bio- 
medical porosity requirements while providing the desired stiffness. 

Despite the difference between the values of both pore shapes, the overall trend of the stiffness parameters can be well approxi-
mated by a parabolic curve with respect to the porosity. This observation is well consistent with the results for stiffness of closed-cell 
porous materials with constant wall thickness (see p. 196 of [15]). As an example, the fitted parabolic curves for the coefficient of A1212 
for both pore shapes are presented in Fig. 10 for the pore size of 0.07. 

Fig. 10. The comparison of the A1212 for circular and square pore shapes, as well as the fitted second order polynomials for each data set. (The 
curve-fitting value R2 =1 denotes a perfect fit.). 
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4.6. GBR mesh application 

An experimental estimate of the micropolar parameters of compact bone is shown in Table 2. These values are given in [79,80] 
based on the experimental tests in [51,54], where the material parameters for an isotropic micropolar model are obtained using the 
observed size effects in quasi-static bending of sample compact bone. 

For an ortho-tetragonal elastic micropolar material model (see [44,63]), considering the material parameters introduced in Eq. (8) 
and those reported in Table 2, the coefficients of stiffness matrix, can be found as presented in Table 3 for the bone when considered as 
a micropolar material. These values are shown as highlighted yellow regions in Fig. 11. 

Now the comprehensive data provided in Figs. 7, 8 allows us to find a configuration with the material parameters close to those 
reported in Table 3. For instance, as it can be observed in Fig. 7, the material parameters for the circular pores are beyond the required 
values. However, in case of rectangular pore patterns (Fig. 8) with a size of 0.13 ~ 0.15 and porosity about 0.7, a good agreement for 
A1122, A1212, A1221 can be achieved (see Fig. 11 in which the highlighted yellow area indicates the material parameter which corre-
sponds to the compact bone). 

From a mechanical point of view, to avoid stress shielding, it is important that bone scaffolds mimic the mechanical environment of 
the host bone. Therefore, according to the experimental data in Table 3 for the cortical bone and the parametric studies in Sections 4.1 
and 4.2, as a finding of the present study, we propose to use titanium membrane with rectangular pore patterns with a size of 0.13 L ~ 
0.15 L and porosity about 70 %. This pattern can lead to the micropolar parameters that are close to that of the compact bone measured 
experimentally. 

Regarding the morphology of the patterns, according to the experiments Van Bael et al. [81], the presence of corners in the pores 
can increase the cell growth [82], therefore we suggest that the choice of rectangular patterns is favourable over the circular ones. 

The choice of 0.13 L ~ 0.15 L (where L as the overall length of dental GBR mesh is around one centimetre) for the pore size allows 
for enough permeability for the nutrients. The value of 1.3 mm to 1.5 mm for the pore size is in favour with the experimental 
observation of Gutta et al. [8] where they reported that macro-pores of more than 1 mm in the titanium membrane promote better 
bone regeneration [3]. 

More studies on other materials (for example, bio-degradable materials such as PLA [83], PLA composites [84]) and other pore 
shapes and patterns can be helpful to find agreements for all the parameters. It should be noted that the material parameters presented 
in Table 3 are derived based on the experiments on samples of compact bone from the femur bone [51], and further experimental 
testing for the mandible bone can lead to finding much more reliable material parameters. In addition, real bone has the structure of a 
functionally graded material (FGM), and this could be considered for designing bimodal [85] or functionally graded [86–89] porous 
structures of GBR meshes. 

4.6.1. Cauchy homogenised model 
To evaluate the effectiveness of the micropolar theory in homogenising the porous structure and its superiority to the homogenised 

Cauchy model, the analogous approach is followed in the framework of Cauchy theory. 
The stress-strain relation for the two-dimensional ortho-tetragonal material can be written in Voigt notation as: 

Table 2 
Micropolar material characteristics for compact bone [50,51,79,80].  

Parameter Symbol Unit Value 

Shear Modulus G MPa 4000 
Poisson’s Ratio ν – 0.25 
Coupling Number N – 0.5 ~ 0.9 
Characteristic Length (Bending) lb m 0.00045  

Table 3 
Micropolar stiffness matrix components for bone extracted from experimental data 
(Table 2).  

Parameter Unit Value 

A1111 GPa 12.00 ~ 43.43 
A1122 GPa 4.00 
A1212 GPa 21.10 ~ 36.77 
A1221 GPa − 13.05 ~ 2.67 
D11 kN 3.24  
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ε22
γ12

⎫
⎪⎬

⎪⎭
(39) 

For which the Voigt stiffness matrix has three independent material parameters. Therefore, according to Eq. (39), the Cauchy model 
for the two-dimensional ortho-tetragonal material requires three independent material parameters, while according to Eq. (8) for a 2D 
ortho-tetragonal micropolar model, the number of independent constitutive parameters is five. 

An analogous procedure to the first three tests in Section 2.4 is followed to find equivalent Cauchy material parameters, which we 
avoid repeating for the sake of brevity. The three tests—uniaxial, biaxial, and shear—are carried out for the purpose of evaluating the 

Fig. 11. Equivalent material parameters from micropolar homogenized model. The yellow area indicates the compact bone equivalent parameters.  
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components of Cauchy stiffness matrix (C1111, C1122, C1212). These tests are presented in Fig. 12. 

4.6.2. The competence of micropolar theory to the Cauchy theory in describing GBR meshes 
There are two main reasons for using micropolar theory instead of Cauchy theory in the modelling and describing the physical 

response of porous GBR meshes: firstly, the presence of internal structure in the porous meshes can be better described with micropolar 
theory as it is able to preserve the memory of the material’s internal structure through internal scale parameters, ϕ. Particularly the 
difference between micropolar and Cauchy theories is more dominant when the size of the pores in the material becomes comparable 
to the size of the overall structure. To highlight this point, the indentation of a vertical load on a porous square plate (Fig. 13) is 
investigated for both circular and square pores with different pore sizes. The parameters used for the simulations are: 

p = 10, 000 L = 1 Lpore = 0.03L, 0.05L, 0.07L Npore = 12 a = L
/

10.

The magnitude of the displacement for the real porous structure, homogenised Cauchy model and the homogenised micropolar 

Fig. 12. Designed FEM tests for finding Cauchy material parameters.  

Fig. 13. The geometry, loading and boundary conditions to evaluate the homogenised micropolar model.  
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model are shown in Figs. 14 and 15. Also, for better comparison, the values of the displacements are labelled on the corresponding 
contour lines in Fig. 14b. As shown in Figs. 14 and 15, the displacement contour lines predicted by micropolar theory are placed deeper 
in height compared to the displacement contours predicted by Cauchy theory. Considering that the deeper prediction of micropolar 
theory is closer to the displacement of the real porous structure, the load penetration reflected in the displacement contours, is better 
captured by the micropolar theory. 

A comparison of Fig. 14a and b also shows that as the pore size increases, the difference between the micropolar and Cauchy 
predictions increases, indicating the preference for the micropolar theory when the size of the inner structure becomes comparable to 
the external structure. 

Besides, when comparing Figs. 14 and 15, it can be observed that the difference between the two theories is more pronounced for 
square patterns, which could be because the RVE is less sensitive to local rotation in circular patterns compared to square patterns. 

Finally, according to some experimental observations, the micropolar theory provides better predictions of the mechanical 
response of the bone than the Cauchy theory. Therefore, a bone implant is mechanically more consistent with the adjacent bone if it has 
the same micropolar constants as experimentally determined for the bone. 

4.7. Absolute size dependence of micropolar parameters 

In order to study the effect of microstructure absolute size on the determined parameters, in Fig. 16a and b, the variation of 
C1111(A1111 in micropolar), and A1212 are plotted with respect to the edge length (LUC) for the square-pore pattern. The number of 
squares (unit cells) in each direction are varied so that the porosity is kept constant to 42 % for all the RVEs (Fig. 18c). 

As seen in Fig. 16, the Cauchy effective modulus remains invariant when the dimension of the unit cell changes. This observation 
aligns with the characteristic of Cauchy elasticity, which lacks any inherent length scale and therefore the Cauchy parameter remains 
unaltered for self-similar unit cells with the same porosity [90] while, the micropolar effective moduli exhibit a variation with respect 
to the length of the unit cell which shows its capability in capturing microstructural feature. 

It should be noted that increasing the stiffness of the material when the internal structures become comparable to the external 
dimension is one the features of heterogenous materials that is conveniently captured through micropolar theory. 

On the other hand, surface-related mechanics suggests that the surface properties can affect mechanical response of a material 
where one of the consequences is the size dependence of effective mechanical properties [90]. For the structures shown in Fig. 16, the 
ratio of the pores’ free surface to the material’s volume changes from 58 to 4 and the change in this ratio is well reflected in the 
obtained micropolar mechanical parameters, whereas, the effect of surface/volume is not accounted for by Cauchy theory as it predicts 
the same value for all surface to volume ratios. 

4.8. Study of the result’s affecting parameters 

Fig. 17a describes the study of the dependence of the micropolar moduli with respect to the number of the unit cells (UC) in an RVE 
for the square pore pattern and the pore length of 0.05 L. The curves in Fig. 18b show the change of the obtained micropolar parameters 
with respect to the number of repetition of UCs. As can be seen, the constitutive parameters that are common in the micropolar and 
Cauchy theories (A1111, A1122) are almost invariant to the number of the UC, while the parameters related to the micropolar model 
(A1212, A1221, D11) are dependent especially before 3 repetitions of UCs. This observation is consistent with [69] where the effect of UC 
on the homogenised micromorphic parameters of a heterogenous periodic composite is studied. In the current work, we chose nine 
repetitions of UC to ensure a convergence of more than 99.5 %. 

In addition, several uncertainties may arise based on the assumptions in the current work: material properties, including their 
characterisation and the choice of constitutive models, introduce uncertainties that may affect the accuracy of the results. By con-
ducting a sensitivity analysis to assess the effects of variation of elastic properties of the texture material (Young’s modulus and 
Poisson’s ratio) on the obtained equivalent micropolar parameters, we observed that the sensitivity to changes in Poisson’s ratio is 
several orders of magnitude higher than that of Young’s modulus. However, this uncertainty can be dealt with by considering the 
limited range of Poisson’s ratio (− 1 ~ 0.5) and the reliable value of 0.3 for the metallic titanium alloy used in this work. (ASME B31.1, 
[60,91]) The boundary conditions can also lead to uncertainties. In this study, they are enforced by the primary dependent variables 
(displacements and micro-rotations) to achieve better control. 

5. Conclusions 

The main purpose of the current work was to demonstrate the effectiveness of the equivalent micropolar model to account for the 
internal structure in a porous plate without directly modelling the pores. A multi-scale homogenization procedure was presented for 

Fig. 14. The comparison of the total displacement magnitude for the homogenized micropolar and Cauchy models with the detailed porous 
structure for square pores (Npore = 12) with three different pore sizes; a. Lpore = 0.03L b. Lpore = 0.05L and c. Lpore = 0.07L. 
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two-dimensional porous media, used as GBR mesh in dentistry, based on the adoption of micropolar continuum that can account for 
microstructural features. The homogenization is based on the equivalence of strain energy of the porous micropolar model under 
specified boundary conditions. The influence of the porosity parameters, namely pore size, pore density and shape, on the obtained 
effective mechanical moduli has been analysed. 

The main findings can be summarized as listed below:  

• The micropolar homogenised model follows the real deformation of the porous structure better than the homogenised Cauchy 
model, especially near the load application.  

• Different material parameters are obtained with the same porosity and different pore size, especially when the pore size becomes 
comparable to the overall size of the structure. In this case, the variation of elastic moduli cannot be described by the porosity 
parameter alone. The overall trend of the micropolar moduli can be well approximated by a parabolic curve as a function of 
porosity. However, this curve also depends on the pore size for higher ratio of pore size to plate size.  

• Pore geometries that result in more compact patterns are a better choice for GBR meshes as they can provide a broader range of 
porosity leading to more flexibility in designing mechanical parameters.  

• To avoid stress shielding, it is important that bone scaffolds mimic the mechanical environment of the host bone. As a finding of the 
present study, we propose to use titanium membrane with rectangular pore patterns with a size of 0.13 L ~ 0.15 L and porosity 
about 70 %. This pattern can lead to the micropolar parameters that are close to that of the compact bone measured experimentally.  

• The equivalent micropolar mechanical constants can be used together with the bone parameter data available in the literature or by 
further experimentation on the mandibular bone samples to find a better design of GBR meshes that have similar mechanical 
parameters to the underlying bone.  

• This micropolar model was found to be effective to account for the internal structure in the porous plate without directly modelling 
the pores. The data provided here can be used to simulate the performance of porous GBR meshes in operation without incurring in 
unnecessary computational costs. 

Fig. 15. The comparison of the total displacement magnitude for the homogenized micropolar and Cauchy models with the detailed porous 
structure for circular pores (Npore = 12) with three different pore sizes; a. Lpore = 0.03L b. Lpore = 0.05L and c. Lpore = 0.07L. 

Fig. 16. The study the effect of microstructure absolute size on the determined parameters at the same porosity for the square-shape pores a. 
Variation of C1111 with respect to length of the unit cells b. Variation of A1212 with respect to length of the unit cells c. The edge length of the unit 
cells in the studied RVEs are changed so that the porosity remains constant. (The edge length, LUC, are normalised to the size of the RVE). 
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Fig. 17. The study of dependence of the micropolar to number of unit cells in the RVE for the square pore pattern and the pore length of 0.05 L. a. RVEs with different number of repetitions of unit cells 
b. Variation of the material parameters versus the number of UCs . 
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Future developments of the current work include the evaluation of other pore patterns and shapes as well as the consideration of 
functionally graded (FG) patterns [22] to optimize porosity and stiffness requirements with the ability to mimic the bone’s charac-
teristics [86]. Another direction to extend the results of the work would be to consider stochastic porous structures [92] and evaluate 
their mechanical properties using the homogenization method implemented here. 
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