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Abstract: Glucosamine (GlcN) is a glycosaminoglycan (GAGs) constituent in connective tissues. It
is naturally produced by our body or consumed from diets. In the last decade, in vitro and in vivo
trials have demonstrated that the administration of GlcN or its derivates has a protective effect on
cartilage when the balance between catabolic and anabolic processes is disrupted and cells are no
longer able to fully compensate for the loss of collagen and proteoglycans. To date, these benefits are
still controversial because the mechanism of action of GlcN is not yet well clarified. In this study, we
have characterized the biological activities of an amino acid (AA) derivate of GlcN, called DCF001, in
the growth and chondrogenic induction of circulating multipotent stem cells (CMCs) after priming
with tumor necrosis factor-alpha (TNFα), a pleiotropic cytokine commonly expressed in chronic
inflammatory joint diseases. In the present work, stem cells were isolated from the human peripheral
blood of healthy donors. After priming with TNFα (10 ng/mL) for 3 h, cultures were treated for
24 h with DCF001 (1 µg/mL) dissolved in a proliferative (PM) or chondrogenic (CM) medium. Cell
proliferation was analyzed using a Corning® Cell Counter and trypan blue exclusion technique.
To evaluate the potentialities of DCF001 in counteracting the inflammatory response to TNFα, we
measured the amount of extracellular ATP (eATP) and the expression of adenosine-generating
enzymes CD39/CD73, TNFα receptors, and NF-κB inhibitor IκBα using flow cytometry. Finally, total
RNA was extracted to perform a gene expression study of some chondrogenic differentiation markers
(COL2A1, RUNX2, and MMP13). Our analysis has shed light on the ability of DCF001 to (a) regulate
the expression of CD39, CD73, and TNF receptors; (b) modulate eATP under differentiative induction;
(c) enhance the inhibitory activity of IκBα, reducing its phosphorylation after TNFα stimulation;
and (d) preserve the chondrogenic potentialities of stem cells. Although preliminary, these results
suggest that DCF001 could be a valuable supplement for ameliorating the outcome of cartilage repair
interventions, enhancing the efficacy of endogenous stem cells under inflammatory stimuli.

Keywords: glucosamine; TNFα; TNF receptors; cartilage; inflammation; CD73; IκBα

1. Introduction

Glucosamine (GlcN) (179.17 g/mol) comprises modified glucose with an amine group
replacing the hydroxyl group on carbon two [1]. It is distributed throughout the human
body (i.e., skin, tendons, ligaments, and cartilage) as an essential component of glycopro-
teins, proteoglycans, and glycosaminoglycans [2]. It is synthesized via the hexosamine
biosynthetic pathway from fructose 6-phosphate and glutamine [3] and then metabolized
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into GlcNAc for the synthesis of glycosylated proteins and lipids [4,5]. In addition to
biochemical functions and significant contributions to tissue structural scaffolding, cell
hydration, and cell signaling [6], GlcN and its acetylated derivatives represent one of
the most popular over-the-counter (OTC) dietary supplements to prevent or treat a wide
variety of inflammatory diseases of the central nervous system [7] and the connective
tissues [8,9]. Indeed, Grigorian et al. [7] demonstrated that N-acetylglucosamine inhibits
T-helper 1 (Th1) and T-helper 17 (Th17) responses and attenuates the clinical severity of
myelin-oligodendrocyte-glycoprotein-induced experimental autoimmune encephalomyeli-
tis (EAE) when administered after disease onset. Moreover, although the efficacy of GlcN
in the treatment of chronic cartilage inflammation is still a controversial issue, glucosamine
is included in the class of symptomatic slow-acting drugs for osteoarthritis (OA) and is
recommended by most European scholarly societies to provide some pain relief in people
with osteoarthritis of the knee [9–13]. To date, the common forms of GlcN supplements
comprise glucosamine hydrochloride, glucosamine sulfate, and N-acetyl glucosamine [14].
They are usually prepared from chitin via chemical and enzymatic hydrolysis and microbial
production [15–22]. Furthermore, the production of these amino sugars from microbial
fermentation processes is also performed using fungi or genetically modified bacteria [23].
Pharmacokinetic studies have shown that very large doses of glucosamine (1500 mg/day,
~23 mg/Kg) could be administered orally without evidence of toxicity, but the required
therapeutic concentration to inhibit cartilage inflammation is not always reached in plasma
and tissue [9,24–27]. To resolve the stability issues associated with GlcN and GlcNAc, dif-
ferent formulations of this dietary supplement have been developed [25,28,29] to enhance
its gut absorption and bioavailability. When administered as a nutraceutical [25], GlcN
uptake in cells occurs upon insulin stimulation [30] and via glucose transporters (GLUT1, 2,
and 4) [31]. Thus, GlcN is phosphorylated into GlcN-6-phosphate by hexokinases and con-
verted into uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) via the hexosamine
biosynthetic pathway [31]. Thereafter, UDP-GlcNAc is used as a donor substrate by O-
linked-N-acetylglucosamine (O-GlcNAc) transferase (OGT), which catalyzes the transfer of
O-GlcNAc to a hydroxy group of serine and threonine residues in the target proteins [32].
It is known that O-GlcNAc modification is one of the principal post-transcriptional modifi-
cations, and it is observed in several cellular functions, including gene expression, signal
transduction, and the subcellular localization of proteins [33]. Under chronic inflammation,
the altered form of amino sugars or the depletion of proteoglycans due to the excessive
production of matrix metalloproteinases (MMPs) may cause tissue repair defects and
pathologies [34,35]. For instance, the lack of proteoglycan precursors has been correlated
with the structural and functional defects of skeletal joints [36]. Notably, in the gut mucosa,
the alteration of matrix GAGs is frequently observed in bowel diseases, such as ulcers,
colitis, chronic proctitis, and Crohn’s disease [37]. Since it is a component of hyaluronic
acid, which is largely expressed in cartilage, connective tissue, and synovial fluid, GlcN
is estimated to maintain the structure and function of joints [36,37]. In vitro and in vivo
settings have demonstrated that GlcN and its derivates exert both anti-inflammatory and
chondroprotective effects [7,22,26,38–42]. In particular, they have been shown to suppress
the production of inflammatory mediators in vitro (i.e., nitric oxide, prostaglandin E2, and
interleukin (IL)-1β and IL-8) in both chondrocytes [43–46] and synovial cells [47]. Sim-
ilarly, under in vivo settings, the oral treatment with GlcN alone [5,9,11,26,48–50] or in
combination with chondroitin sulfate [51,52] or the treatment with glucosamine sulfate
combined with etoricoxib [53] was demonstrated to modulate the inflammatory process,
decrease collagen degradation by inhibiting the synthesis of MMPs (i.e., MMP13) [39,40],
and contextually stimulate the production of cartilage structural components (i.e., collagen
II, aggrecan, and sulfated GAG) [38,54], thus limiting the degradation of tissue extracel-
lular matrix. To date, the detailed mechanism by which GlcN downregulates cartilage
inflammation is still under evaluation. Several studies suggest that the antioxidant and
anti-inflammatory activities of glucosamine are mostly exerted by (i) the modulation of
NF-κB by IKKalpha kinase inhibition [26,43] or (ii) the regulation of TNFα signaling [44].
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The regulation of the NF-κB inflammatory pathway is mediated by inhibitors belonging to
the IκB family, such as IκBα [55]. IκB is an intrinsically unstable protein [56] that exists as
two distinct pools in cells: The larger IκB pool binds and retains NF-κB in the cytoplasm
at an inactive state, and the minor pool remains as a “free” protein. In resting cells, basal
IKK activity phosphorylates bound IκBα and targets it for ubiquitin-dependent degra-
dation. In addition, free IκBα is continuously synthesized and degraded in an IKK- and
ubiquitin-independent mechanism, keeping NF-κB from being activated under resting cell
conditions. Upon TNFα stimulation, it is rapidly degraded following the phosphorylation
mediated by IKKalpha kinase at serine residues 32 and 36, translocates to the nucleus,
and binds to target gene promoters, including IκB [57]. Compared to other IκB proteins,
IκBα responds most rapidly to stimuli and mediates a powerful negative feedback loop
that terminates NF-κB transcriptional activity [55]. Accumulating evidence implicates
a pivotal role of the transcription factor NF-κB in the regulation of cell growth and the
differentiation of mesenchymal stem cells (MSCs) [58–60]. Pro-inflammatory cytokine
TNFα is largely expressed during cartilage inflammation and interferes with the healing
process of chondral and osteochondral defects, increasing the expression of aggrecanase
and decreasing the expression of proteoglycans [61,62]. Studies investigating the biological
effects of anti-TNFα drugs demonstrated that the inhibitors of TNFα have substantial chon-
droprotective activity [63,64] in mesenchymal stem cells and non-stem cell populations.
MSCs are known to contribute to the structural and functional restoration of injured tissues
by counteracting the inflammatory activity of TNFα [65]. The site-specific administration of
MSCs to patients affected by chronic inflammatory diseases or the mobilization of endoge-
nous stem cells to damaged sites are effective anti-inflammatory strategies at disease onset
but could fail to alleviate symptoms during disease progression [64]. It has been demon-
strated that MSCs are susceptible to environmental changes, and the exposure to TNFα
could cause their conversion from an immunosuppressive to pro-inflammatory status [66].
Sitcheran et al. [67] reported that NF-κB activated by TNFα inhibits mesenchymal stem
cells to undergo chondrogenesis. Interestingly, glucosamine stimulated MSCs to acquire the
chondrogenic phenotype and inhibited extracellular matrix degradation [39], suggesting a
negative interaction with the NF-κB pathway.

It is known that TNFα exerts its biological activities via two receptors: TNFR1 and
TNFR2 [68]. Stem cells, including CMCs, express both receptors and exert immunosuppres-
sive and reparative activities via cell–cell contact and paracrine mechanisms [66,69]. TNFR1
is expressed ubiquitously, interacts with the membrane (mTNFα) or soluble TNFα (sTNFα),
triggers cell apoptosis, or regulates the adaptive immune system, promoting the generation
of regulatory T cells (Tregs) or repressing the functions of T effector and B effector cells.
Inversely, TNFR2 is expressed in immune cells, endothelial cells, mesenchymal stem cells,
and neural cells [66]. It preferentially binds to mTNF and mediates anti-inflammatory
effects, activating pro-survival genes via NF-κB, ERK, JNK, and p38 MAPK pathways.
In cardiac models, the ablation of the TNFR1 gene blunts injury and improves survival,
whereas the ablation of the TNFR2 gene exacerbates tissue injury and reduces cell sur-
vival [70]. This has led to the important appreciation that TNFα may have beneficial or
detrimental effects depending on which of its receptors is activated. Thus, targeting TNFα
signaling could be of great therapeutic value for the development of stem-cell-based thera-
pies for cartilage repair in osteoarthritis and related orthopedic conditions. Chondrocytes
and mesenchymal stem cells secrete numerous bioactive molecules, including adenine
nucleotides and nucleosides [71]. Native articular cartilage is challenged by synovial fluid
flow during normal joint motion, and ATPs released together with adenosine production
are transiently increased in the joint microenvironment. Following shockwave trauma or
excessive joint motion, cartilage homeostasis is drastically altered, resulting in excessive
ecto-5′-nucleotidase/CD73 production, adenosine accumulation, a disproportionate activa-
tion of adenosine A2B receptors, and a significant release of pro-inflammatory mediators.

In this study, we assessed an in vitro model of chondrogenesis based on human cir-
culating multipotent cells to evaluate the potentiality of an amino acid (AA) derivate of
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GlcN, called DCF001, in counteracting the detrimental effects of TNFα on cell viability, ATP
release, TNFα receptors, CD73 expression, and the chondrogenic potentialities of human
circulating multipotent stem cells cultured under proliferative (PM) or chondrogenic (CM)
conditions. The preparation of DCF001 was performed according to Katritzky and col-
leagues [19,20], which demonstrated that conjugation with AA increases the bioavailability
of GlcN and enhances its pharmaceutical activity.

2. Results
2.1. In Vitro Model

The biological effects of DCF001 were investigated in CMCs expanded up to the
fifth passage. As shown in Figure 1, cell populations exhibited a typical fibroblast-like
morphology and characteristic stem cell markers, including CD90 (45 ± 1.1%), CD44
(100 ± 1.7%), and CD105 (97 ± 2.5%). Furthermore, the expression of enzymes related
to ATPase activity, including CD73 (ecto-5′-nucleotidase) (100 ± 1.8%) and CD39 (ecto-
ATPase) (35 ± 0.8%), was also demonstrated. As expected, CD45 and HLA-DR, which are
typically expressed in mature hematopoietic cells, were not detected.
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Figure 1. (A) Optical microscopy of CMC cells. Bar: 10 µm. (B–H) Flow cytometry analysis of
subconfluent cultures. IgG control (grey peak); target protein (black peak). Data were normalized to
the peak height (number of events), resulting in relative percentages (%) ± standard deviation (SD).
The analysis was performed using FlowJo™ v10.8.1 Software (Ashland, OR, USA).

2.2. Cell Viability and ATP Release

DCF001 showed its ability to preserve cell growth and the differentiative potential
of CMCs under experimental inflammation. As observed in Figure 2A, TNFα decreased
cell proliferation in PM cultures (p < 0.05), and this response was not affected by DCF001.
In contrast, in CM cultures, the administration of DCF001 upregulated (p ≤ 0.01) the cell
growth rate (Figure 2B), and this mitogenic effect (p≤ 0.01) was stronger in cells pre-treated
with TNFα. In parallel, to investigate whether DCF001 alters stem-cell-growth-modulating
ATP signaling, we collected the culture medium of all experimental groups and measured
the extracellular ATP content (eATP). As shown in Figure 2C, DCF001 and/or TNFα
promoted a significant reduction in eATP (p < 0.05) under proliferative conditions. In
contrast, the samples cultured with chondrogenic factors (Figure 2D) responded to the
stimulation with DCF001 or TNFα by accumulating eATP (p≤ 0.05). This effect significantly
increased when DCF001 was added after TNFα priming (p ≤ 0.05) (Figure 2D).
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Figure 2. Cell viability analysis on CMCs pretreated with TNFα (10 ng/mL) for 3 h and then stimu-
lated for a further 24 h with DCF001 (1 µg/mL) in a proliferative (A) or chondrogenic (B) medium.
Data were expressed as a percentage (%)± SD of viable cells detected using cell counting with the try-
pan blue exclusion of dead cells. In parallel, extracellular ATP (eATP) in PM (C) and CM (D) cultures
was evaluated using the CellTiter-Glo® Luminescent Cell Viability Assay. Luminescence was read
with a VICTOR® Nivo™ Plate Reader (PerkinElmer, Waltham, MA, USA) and then reported in
relative light units (RLU). * p: vs. control; ◦ p: vs. DCF001-induced cells; ˆ p: vs. TNFα-primed cells.

2.3. Effect of DCF001 on CD39 and CD73 Expression

We tested the hypothesis that DCF001 modulates the expression of CD39 and CD73,
two ectoenzymes known to convert extracellular ATP to AMP (CD39) and AMP to adeno-
sine (CD73). As reported in Figure 3, in comparison to unstimulated cells, CMCs pre-treated
with TNFα and thus cultured for 24 h in a PM medium showed an upregulated expression
(p < 0.05) of both CD39 (Figure 3A) and CD73 (Figure 3B), as expected under inflammatory
conditions. In contrast, when TNFα-primed cells were cultured in a CM medium, we only
observed the upregulation (p < 0.05) of CD39 (Figure 3C) while CD73 was unchanged or
barely increased (Figure 3D). These effects were reversed (p ≤ 0.05) by DCF001 in both PM
and CM. When added to the chondrogenic medium, DCF001 caused a significant reduction
(p < 0.05) in the expression of both CD39 and CD73.
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Figure 3. Detection of CD39 (A,C) and CD73 (B,D) expression in CMC cells. The samples were
pretreated with TNFα (10 µg/mL) for 3 h and thus cultured for a further 24 h with a proliferative
(PM) or chondrogenic (CM) medium supplemented with DCF001 (1 µg/mL). Unstimulated cells
(control) or samples treated with only DCF001 or TNFα were used as references. The analysis
was performed by flow cytometry using direct staining, and data were reported as representative
histograms and relative MFI values (Rel. MFI = target MFI/Isotype IgG MFI). * p: vs. control; ˆ p: vs.
TNFα-primed cells.

2.4. Effect of DCF001 on TNFα Receptors

We tested the hypothesis that DCF001 exerts protective effects during the chondro-
genesis of mesenchymal stem cells by modulating the expression of TNFR1 and TNFR2,
which, under inflammatory conditions, mediates pro-inflammatory and anti-inflammatory
activities, respectively. As shown in Figure 4, a higher expression of TNFR1 (40.74 ± 3.78%)
and TNFR2 (16.55 ± 1.25%) was observed in PM cultures. Following TNFα priming, a
significantly (p ≤ 0.05) increased expression level of TNFR1 (69.09 ± 5.12%) and TNFR2
(23.93 ± 2.08%) was observed. This response was partially inhibited (p ≤ 0.05) by DCF001,
as suggested by the reduced expression of both TNFR1 (53.13 ± 4.42%) and TNFR2
(8.45 ± 1.03%). In contrast, under differentiative conditions, the expression of TNFR1
and TNFR2 was not affected by TNFα stimulation. Interestingly, CMCs primed with TNFα
and then cultured for 24 h in a CM medium supplemented with DCF001 significantly upreg-
ulated (p < 0.05) TNFR2 expression (52.21± 2.33%) compared to the control (41.65 ± 2.23%)
and TNFα-primed cells (38.75 ± 2.91%).

2.5. Effect of DCF001 on IκBα

In resting cells, NF-κB-bound IκBα is subject to slow degradation by both IKK phos-
phorylation and ubiquitination. In contrast, free IκBα turnover is caused intrinsically
by sequences in its C terminus [56]. In the present study, the anti-inflammatory activity
of DCF001 was studied by investigating the percentage expression of phosphorylated
(p-IκBα) and unphosphorylated IκBα and the p-IκB/IκB ratio. As observed in Figure 5,
unstimulated CMC cells showed a low expression of total IκBα and a high (p ≤ 0.05)
p-IκBα/IκBα ratio (0.96 ± 0.01), thus suggesting a high rate of free protein degradation
and NF-κB at an active state. Upon chondrogenic induction, an increased amount of total
IκBα but with a significantly decreased (p ≤ 0.05) p-IκBα/IκBα ratio (0.76 ± 0.02) was
observed and considered indicative of negative regulation of NF-κB. These results were
consistent with the literature reporting NF-κB inhibition during the differentiative com-
mitment of MSCs [60]. When CMCs were stimulated with TNFα, p-IκB was upregulated
in a chondrogenic medium (p-IκB/IκB ratio: 1.17 ± 0.02, p ≤ 0.05) but not in cells kept
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in a proliferative medium (p-IκB/IκB ratio: 0.75 ± 0.01, p ≤ 0.05). Showing a potential
inhibitory effect on NF-kB under proliferative (p-IκBα/IκBα ratio:0.22± 0.01; p≤ 0.01) and
chondrogenic conditions (p-IκBα/IκBα ratio: 0.60 ± 0.01; p ≤ 0.05), DCF001 counteracted
(p ≤ 0.05) the biological effects of TNFα independently of culture conditions (p-IκBα/IκBα
ratio: 0.53 ± 0.01 in the PM; p-IκBα/IκBα ratio: 1.05 ± 0.01 in CM).
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2.6. Gene Expression

As shown in Figure 6, a statistically significant increase in COL2A1 (p < 0.05) was
observed in PM and CM cultures stimulated with TNFα. In contrast, RUNX2 expression
was downregulated (p < 0.05). After TNFα priming, DCF001 improved the transcription of
COL2A1 (p < 0.05) in PM cultures (Figure 6A) while modulating the expression of RUNX2
and MMP13 (p < 0.05). In parallel, the cells maintained in the CM medium and DCF001
(Figure 6B) showed increased transcription of RUNX2 and MMP13 (p ≤ 0.05). The lower
expression of the COL2A1 gene (p ≤ 0.05) was observed compared to the references.
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chondrogenic (B) conditions. Cell cultures were challenged with TNFα (100 ng/mL) for 3 h before
stimulation for a further 24 h with DCF001 solubilized in a PM or CM medium. Total RNA was
extracted using the TRI Reagent solution and analyzed by quantitative real-time polymerase chain
reaction (RT-qPCR). Data were reported as a relative fold increase in gene expression. * p: vs. control;
ˆ p: vs. TNFα-primed sample.

3. Discussion

Preclinical studies have demonstrated that TNFα release is impaired with respect to
symptomatic cartilage defects [72] or inflammation [73–75]. Acting as a catabolic factor, it
affects chondrocyte viability, promotes the production of metalloproteinases, and inhibits
chondrogenic differentiation [61,76]. These biological activities are dose-dependent and
involve the inhibition of transcription factor SOX9 via NF-κB signaling [77]. As MSCs ex-
press limited proliferation or differentiation when exposed to inflammatory factors [78,79],
TNF inhibitors could potentially be beneficial in clinics and could improve the efficacy of
the therapeutical treatment of inflammatory diseases [66,80–82]. In the present study, we
demonstrated that a derivate of glucosamine coupled to tryptophan (DCF001) counteracted
the inflammatory effect of TNFα on circulating mesenchymal stem cells (CMCs) via the
regulation of cell viability, the accumulation of eATP, and the expression of TNFα receptors
and NF-κB inhibitor IκBα. In accordance with the variable effects that TNFα could exert on
the fate of MSCs when used alone or combined with differentiation-inducing factors [78],
all biological effects of DCF001 were dependent on cell culture conditions after TNFα prim-
ing. Li et al. [83] reported that the exposure of MSCs to TNFα during in vitro expansion
could be beneficial for cell proliferation, migration, and osteogenic capacity, but these
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effects are reported to be reversed upon TNFα withdrawal [84]. In contrast, TNFα could
exhibit significant inhibitory activity upon stem cell chondrogenesis [62,79] or stimulate
a pro-chondrogenic effect when administered before differentiative induction [84]. Our
data point towards the role of DCF001 in stem cell differentiation under inflammation
that involves extracellular ATP accumulation and the regulation of purinergic receptors
CD39/CD73 and TNF receptors [66]. In our study, TNFα priming promoted a significant
reduction in cell viability under regular growth conditions while stimulating prolifera-
tion under chondrogenic induction. In the absence of differentiation-inducing factors,
DCF001 did not affect cell viability nor reversed the inhibitory effect induced by TNFα.
In contrast, when administered with chondrogenic factors, glucosamine stimulated the
growth of CMCs, with further increased activity in cells primed with TNFα. These data
are consistent with the literature reporting that a proliferogenic effect is induced by GlcN
in stem cells [39,85] and chondrocytes [39,86]. Because the entry of glucosamine into cells
involves glucose transporter systems and this transport is stimulated by insulin, which
is a factor added to the chondrogenic medium of CMCs, we hypothesized that DCF001
is more effective when administered with chondrogenic factors because of its increased
uptake [24,31]. In our study, the proliferogenic effect of DCF001 correlated with an increase
in extracellular ATP, which is a known purinergic controlling mediator of physiological
functions [87–90] via Ca2+ signaling [91]. Our data are consistent with studies reporting
that, during the chondrogenic maturation of mesenchymal stem cells, the release of ATP
occurs in order to shift the cell’s fate from a transient growth phase [92] to chondrogenic
differentiation [93]. Kwon et al. [94] demonstrated that ATP is released periodically due to
oscillatory secretion during prechondrogenic condensation, and these oscillations are me-
diated by the P2X4 receptor and intracellular cAMP/PKA pathway. Previously, Iwamoto
et al. [93] reported that Pannexin 3 (PANX3), which is a member of the gap junction pan-
nexin family, is expressed in cartilage and functions to shift the chondrocyte’s cell fate
from proliferation to differentiation, promoting ATP release into the extracellular space
and inhibiting parathyroid hormone (PTH)-mediated cell proliferation, the intracellular
levels of cAMP, and the phosphorylation of CREB. Upon inflammatory insults, extracellular
ATP could exert pro-inflammatory effects, and MSCs expressing CD39, which catabolizes
ATP into AMP, and CD73, which hydrolyzes AMP into adenosine, could transform pro-
inflammation into anti-inflammation [95,96], preserving cartilage homeostasis [71]. Based
on our results, DCF001 could contribute to chondrogenesis, causing the accumulation of
eATP by the desensitization of CD39 and CD73 after activation. Instead, the protective
effects of DCF001 against TNFα could involve a modulatory activity on the expression of
TNF receptors and the activation of NF-κB. It is known that TNFα affects MSC efficacy in a
dose-dependent manner. At higher concentrations, the interaction of TNFα with TNFR1
is known to mediate pro-inflammatory effects via NF-κB activation [97] and reduce MSC
efficacy by inhibiting the production of immunosuppressive molecules and growth factors.
In contrast to the dual effects of TNFR1, the interaction between TNFα and TNFR2 is effec-
tive in only evoking anti-inflammatory effects and cell survival via TNFR-associated factor
(TRAF) 1 and 2 proteins [98,99]. While transmembrane TNFα activates both TNFR1 and
TNFR2 signaling with high efficacy, soluble TNFα interacts only with TNFR1 in strong and
general receptor activation [100]. Compared with wild-type controls, murine BM-MSCs
with TNFR2 knockout showed less or no myocardial functional recovery in a rat model of
acute ischemia accompanied by the increased production of pro-inflammatory factors [66].
When CMCs were treated with TNFα under proliferative conditions, DCF001 affected the
expression of both TNFR1 and TNFR2, suggesting that this GlcN derivate could interfere
with the TNFα pathway by lowering the synthesis of its cell surface receptors. These data
are in accordance with Scotto et al. [44], who reported a preventive activity exerted by
glucosamine on TNFα-induced transcriptional activation in human chondrocytes. Beldi
et al. [98] also demonstrated that the TNFα–TNFR2 axis is a crucial regulator of MSC
immunological and regenerative functions. In the present study, we demonstrated that
DCF001 combined with chondrogenic stimuli promoted an increased expression of TNFR2
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in TNFα-primed cells, suggesting that it can stimulate immunosuppressive activity in
mesenchymal stem cells. Moreover, due to evidence reporting the involvement of TNFR2
in cell differentiation [61], its increased expression, which is promoted by DCF001, the
increase in cell viability and eATP, and the reduced expression of CD39 and CD73 could be
indicative of promoted chondrogenesis under inflammation, as previously demonstrated
for other molecules, i.e., Atsttrin [99]. The anti-inflammatory effect of DCF001 was further
confirmed by the inhibited phosphorylation of IκBα, while its differentiative potential
was demonstrated by the expression of chondrogenic gene markers COL2A1, RUNX2,
and MMP13 [101].

Different chondrocyte phenotypes are identified during maturation based on their
collagen gene expression [102,103]. In the literature, it is reported that the supplementation
of the differentiation medium with glucosamine has an improved differentiative effect
on stem cells [104]. Chondroprogenitor cells are characterized by the expression of type
II collagen (COL2A1) [105,106], while mature chondrocytes express the typical cartilage
collagen types II (COL2B), IX, and XI as well as aggrecan [107–109]. Instead, hypertrophic
chondrocytes are characterized by the expression of type X collagen [110]. Among catabolic
factors, MMP13 is expressed at a low level in normal and early degenerative cartilage,
but it is strongly upregulated during inflammation [111] and contributes to cartilage
degeneration via Col2a1 degradation [75,112]. Derfoul et al. [39] demonstrated that GlcN
promotes chondrogenesis in mesenchymal stem cells, enhancing the expression of collagen
II and reducing cartilage matrix degradation via the inhibition of MMP13 expression. In
our study, under proliferative conditions, DCF001 reversed the TNFα-induced expression
of MMP13 and boosted the gene expression of COL2A1 and RUNX2, thus suggesting that
it is potentially able to contrast the chronic breakdown of the ECM in vivo but is unable to
promote terminal chondrogenic differentiation without chondrogenic inducers. In contrast,
due to promoted differentiation, DCF001 reversed the cellular response driven by TNFα,
increasing the chondrogenic capacity of CMCs, as suggested by the enhanced expression of
RUNX2 and MMP13 genes and the modulated transcription of COL2A1.

4. Materials and Methods
4.1. In Vitro Model

As previously published [113], multipotent stem cells were isolated from the human
peripheral blood of healthy volunteer donors (n = 20; age: ≤12 years) in accordance with
the Italian ethics committee’s authorization and after obtaining informed consent. Briefly,
blood samples (5 mL) were diluted (1:1) in an α-Minimum Essential Medium (αMEM;
Invitrogen Life Technologies, Carlsbad, CA, USA) and carefully layered onto Ficoll®Paque
(Sigma-Aldrich Corp. St. Louis, MO, USA) for density gradient separation. After cen-
trifugation (400× g, for 20 min, at 4 ◦C), the upper layer was collected and resuspended
in a proliferative medium (PM) prepared with αMEM supplemented with 16.5% heat-
inactivated fetal bovine serum (FBS; Invitrogen Life Technologies), 50 U/mL penicillin
(Invitrogen Life Technologies), 50 µg/mL streptomycin (Invitrogen Life Technologies), and
1% L-glutamine (Sigma-Aldrich). Samples were seeded onto tissue culture plates (BD
Falcon, Milan, Italy) and allowed to adhere for 24 h in a humidified atmosphere of 5%
CO2 at 37 ◦C. When fibroblast colony-forming cells were observed, the culture medium
was changed, and cell expansion was performed. Upon reaching 80% confluence, CMCs
were detached using 0.02% ethylenediaminetetraacetic acid (EDTA)/0.25% trypsin solution
(Sigma-Aldrich), and subcultures (104 cells/cm2) were prepared for immunophenotyping
and test analysis.

4.2. Immunophenotyping

CMCs were immunophenotypically characterized by flow cytometry (FCM). The
expression of stem cell markers CD90, CD44, CD105, and CD73 and purinergic receptor
CD39 was determined using the antibodies reported in Table 1. In parallel, the expression
of hematopoietic marker CD45 and histocompatibility antigen HLA-DR was also evaluated
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(Table 1). For the analysis, cells were detached using a trypsin/EDTA solution, centrifuged
at 1200 rpm for 5 min, and then resuspended in phosphate-buffered saline (PBS) (Merck,
Darmstadt, Germany) and 0.2% bovine serum albumin (BSA) (Merck) (PBS-BSA). All
samples were fixed using BD Cytofix™ solution (BD Biosciences, San Josè, CA, USA)
following the manufacturer’s instructions. For staining, 1 × 106 cells were incubated in
100 µL of PBS and 10 µL of fluorochrome-conjugated primary antibodies (Table 1) in the
dark for 15 min at room temperature (RT). In parallel, isotype-matched controls (Table 1)
and unstained cells were included as negative controls. Data were acquired using a BD
FACSCanto™ II System (BD Biosciences) and FACSDiva™ software v6.1.3 (BD Biosciences).
Data were processed using FlowJo™ v10.8.1 Software (Tree Star Inc., Ashland, OR, USA).

Table 1. Antibodies used for flow cytometry analysis.

Primary Antibodies Manufacturing Company

Mouse anti-human CD39 Santa Cruz Biotecnology, Inc. (Dallas, TX, USA)
FITC mouse anti-human CD44 BioLegend, Inc. (San Diego, CA, USA)
PE mouse anti-human CD45 Santa Cruz Biotecnology, Inc.
PE mouse anti-human CD73 BioLegend, Inc.
FITC mouse anti-human CD90 Santa Cruz Biotecnology, Inc.
PE mouse anti-human CD105 Santa Cruz Biotecnology, Inc.
PE mouse anti-human HLA DR Santa Cruz Biotecnology, Inc.
Rabbit anti-human TNFRI Immunological Sciences (Rome, Italy)
Rabbit anti-human TNFRII Immunological Sciences
Mouse anti-human phospho-IκBα (Ser32/36) Cell Signaling Technology (Danvers, MA, USA)
Rabbit anti-human IκBα Cell Signaling Technology

Isotype controls Manufacturing Company

FITC Isotype Control Santa Cruz Biotechnology, Inc.
PE Isotype Control BD Biosciences (San Jose, CA, USA)

Secondary antibodies Manufacturing Company

Alexa Fluor® 488-conjugated anti-rabbit
secondary antibody

Invitrogen (Waltham, MA, USA)

Alexa Fluor® 488-conjugated anti-mouse
secondary antibody

Invitrogen

4.3. DCF001 Compound

Tetra-acetyl GlcN hydrochloride (Sigma-Aldrich) was functionalized with tryptophan
according to the previously reported procedure [114]. Briefly, hydrochloride salt, N-Cbz
tryptophan (Sigma-Aldrich), diisopropylethylamine, and TBTU were suspended in dry
DMF/dichloromethane 1:2 and stirred under an inert atmosphere at room temperature
overnight. HCl 1 N was added, and the mixture was extracted using dichloromethane;
the organic layers were dried, filtered, and evaporated under a vacuum, obtaining a
white solid that underwent a deprotection reaction by adding MeONa to a suspension in
methanol. After 30 min, H2SO4 was added, and the crude was evaporated under reduced
pressure and washed with boiling methanol, obtaining a yellow solid as a pure compound
(DCF001, molecular weight: 499.52). DCF001 was prepared in a culture medium at a final
1 µg/mL concentration.

4.4. Cell Treatments

CMCs were seeded (1 × 105 cells/cm2) on standard tissue culture plates (BD Fal-
con). After 24 h, cells were pretreated with TNFα (0.1 µg/mL) (ImmunoTools, Friesoythe,
Germany) in a PM medium for 3 h. Thus, they were cultured with DCF001 (1 µg/mL)
or the vehicle (control) for 24 h in PM or a chondrogenic medium (CM) prepared with
DMEM and Ham’s F12 Nutrient Mixture (Sigma Aldrich), 10% fetal calf serum (Biochrom-
Seromed, Berlin/Heidelberg, Germany), 0.4 µg/mL of hydrocortisone, 8 ng/mL of cholera
toxin, 5 µg/mL of insulin, 20 µg/mL of adenine, 10 µg/mL of transferrin, 10 µg/mL of
triiodothyronine, and 1 ng/mL of epidermal growth factor (all purchased from Sigma).
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4.5. Cell Viability Analysis

According to the manufacturer’s specifications, viable cells were counted using a
Corning® Cell Counter (Corning Inc., New York, NY, USA), and the trypan blue exclusion
technique was used. Data were reported as the mean value (%) ± standard deviation (SD)
(n = 10 samples/experimental group) from three independent experiments.

4.6. CellTiter-Glo® Assay

CellTiter-Glo® Luminescent Cell Viability Assay (Promega, Madison, WI, USA) was
used and adapted to measure the ATPs released by unstimulated or stimulated cells with
DCF001 and/or TNFα. Briefly, 50 µL of the culture medium of each sample was incubated
with an equal volume of CellTiter-Glo® Reagent in the 96-well opaque-walled plate. Lumi-
nescence was recorded 10 min after reagent addition using a VICTOR® Nivo™ Plate Reader
(PerkinElmer, Waltham, MA, USA) and reported in relative light units (RLU). Data were
expressed as the mean ± SD of four replicates for each sample. In parallel, wells containing
medium unconditioned by cells were used to measure background luminescence.

4.7. Flow Cytometry Analysis of CD39, CD73, and TNFα Receptors and IκBα

The analysis was performed by direct or indirect staining using the antibodies re-
ported in Table 1. Cultures stained with isotypic, or secondary antibodies were used as
references. Data were acquired using the BD FACSCanto™ II System and are expressed as
follows: (1) the relative MFI values (Rel MFI) (target MFI/Isotype IgG MFI) ± standard
error of the mean (SEM) for CD39 and CD73; (2) the mean value of the percentage of
positive cells ± SEM for TNFR1 and TNFR2. As for the analysis of IκBα, we reported the
percentage expression of phosphorylated (p-IκBα) and unphosphorylated (IκBα) proteins
and the p-IκB to IκB ratio. Assuming that a ratio equal to 1 is observed in the case of unde-
tectable differences between p-IκBα and IκBα, values greater or less than 1 were considered
indicative of an increased or decreased expression of p-IκBα. The analysis was performed
by flow cytometry as this technique enables the quantitative analysis of signaling events
with greater sensitivity and precision than a Western blot, which is traditionally used for
the analysis of protein expression but is limited to performing a multiparameter analysis of
subpopulations with specific signaling responses.

4.8. Gene Expression Study

Total RNA was isolated from the experimental groups and evaluated by quantitative
real-time PCR for the relative expression of COL2A1, RUNX2, and MMP13 mRNAs. Briefly,
RNA was prepared with a TRI Reagent solution (Zymo Research, Irvine, CA, USA) fol-
lowing the phenol–chloroform method. After the quantification of RNA by NANODROP
2000 (Thermo Fisher Scientific, Waltham, MA, USA), the samples were stored at −20 ◦C
until use. For the analysis, each reaction was performed with 10 ng of RNA, a one-step
RT-PCR kit (qPCR SyGreen 1-step Go Lo Rox, PCR Biosystems, UK), and Mic qPCR Cycler
(Bio Molecular Systems, Australia). Oligonucleotides for target genes and housekeeping
hypoxanthine–guanine phosphoribosyltransferase (HPRT) (listed in Table 2) were pur-
chased from Invitrogen Life Technology (Carlsbad, CA, USA). The relative gene expression
level was measured using the Livak and Schmittgen method [115], which is also referred to
as the 2−∆∆Ct method [116]. Each expression was calculated relative to human HPRT and
control samples in the growth medium.

4.9. Statistical Analysis

Each experiment was performed three times. Statistical significance was established
using a two-way analysis of variance (ANOVA) followed by Bonferroni’s multiple compar-
ison test. In all analyses, a p-value of <0.05 was considered statistically significant.
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Table 2. Oligonucleotides used for RT qPCR analysis.

Target Gene Acronym Sequence (5′–3′) Reference Sequence

Hypoxanthine
Phosphoribosyltransferase1 HPRT1 F: TGGACAGGACTGAACGTCTTGCT

R: TTGAGCACACAGAGGGCTACAATG NM_000194.2

Collagen type II alpha 1 chain COL2A1 F: CGGGCAGAGGGCAATAGCAGGTT
R: CAATGATGGGGAGGCGTGAG NM_001844.4

Runt-related transcription factor RUNX2 F: TCCGGAATGCCTCTTGCTGTTATGA
R: ACTGAGGCGGTCAGAGAACAAACT BC108919

Matrix metallopeptidase 13 MMP13 F: GTTGGTCCGATGTAACTCCTC
R: GAAGTCGCCATGCTCCTTAAT NM_002427

5. Conclusions

GlcN salts constitute a new class of nutraceutical components with putative chon-
droprotective activity. In our study, DCF001 demonstrably preserved cell viability and the
chondrogenic potentialities of circulating multipotent stem cells, suggesting significant
potentialities for in vivo targeting endogenous MSCs that are mobilized to damage sites
and participate in cartilage regeneration or repair. Further in vivo studies are necessary
to validate the observed chondroprotective effects of DCF001 during inflammation and
to provide a rational basis for the development of innovative therapies for degenerative
cartilage diseases.
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