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Abstract

Mergers and Acquisitions represent important forms of business deals, both because of the

volumes involved in the transactions and because of the role of the innovation activity of

companies. Nevertheless, Economic Complexity methods have not been applied to the

study of this field. By considering the patent activity of about one thousand companies, we

develop a method to predict future acquisitions by assuming that companies deal more fre-

quently with technologically related ones. We address both the problem of predicting a pair

of companies for a future deal and that of finding a target company given an acquirer. We

compare different forecasting methodologies, including machine learning and network-

based algorithms, showing that a simple angular distance with the addition of the industry

sector information outperforms the other approaches. Finally, we present the Continuous

Company Space, a two-dimensional representation of firms to visualize their technological

proximity and possible deals. Companies and policymakers can use this approach to iden-

tify companies most likely to pursue deals or explore possible innovation strategies.

Introduction

Mergers & Acquisitions (M&A) are one of the most popular forms of business development

and represent the subject of considerable research in financial economics [1]. Such operations

are used extensively as a financial instrument by firms of any region and size and constitute a

business that, only in 2019, has almost reached 4 trillion dollars (Source: Institute for Mergers,

Acquisitions, and Alliances (IMAA) https://imaa-institute.org). Despite the huge spread of the

phenomenon, from a statistical point of view it is recorded that, on average, a M&A does not

bring significant economic benefit to the involved companies [2]. There is, however, a strong

variance in the data, which includes both acquisitions of huge success as well as dramatic fail-

ures. Despite the various attempts, there is no agreement in existing academic research about

the right variables that decisively influence the realization and the outcome of an acquisition

[3, 4]. The complexity of the phenomenon under consideration, as an economic and social

process, is reflected in the heterogeneity of the studies carried out in this field, which lack com-

prehensive theoretical models and common variables [5]. In this work, we study M&A using
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tools and data from the Economic Complexity framework [6–9] and, in particular, the concept

of Relatedness [10–12], that we use to compare the patenting activity of companies.

Every year, hundreds of new technologies are developed, as processes and products become

increasingly complex. In such a rapidly changing environment, it is crucial for a company to

stay ahead and get a good position in the innovation race. Often, developing new technologies

in internal R&D environments is not enough or convenient in terms of time and costs. Because

of this, many companies seek to expand their technological horizon by undergoing an acquisi-

tion. Through a technological acquisition, the acquiring company can absorb the target’s inno-

vation capabilities, recombine technologies to produce further innovation, intensify internal

research and skills development [13], or launch products into a new market. In these terms, an

acquisition can be seen as an expansion of the acquirer’s knowledge and capability base. This

kind of subject has been widely addressed in the corporate strategy literature that focuses on

firms’ diversification, as discussed in the following. Here we restrict our study to deals in

which it is possible to individuate an acquirer and a target company. We refer to this set of

deals with the generic term “acquisitions”.

Several efforts have been done in researching a comprehensive theory on the diversification

of firms (both at productive and technological levels) since the early studies of Penrose and

Teece [14, 15]. Many authors took up these ideas to explain the reasons for the diversification

of firms, the way in which they expand, and the financial outcome (for a complete literature

review we refer to [16]). Beyond the concept of diversification as the simple scope of (both pro-

ductive and patenting) activities in which a firm is involved, recent research focused on the

key concept of the relatedness between these activities. A seminal work on this subject is the

one of Teece et al. [17]. The authors measure the similarity between activities by counting the

excess of their co-occurrences with respect to a suitable null model. Teece et al. show that

activities that are more related are also more frequently combined within the same company.

Teece’s relatedness metrics were taken up by several authors whose researches focus on the

internal coherence of firms’ technological portfolios, that is, the innovative sectors to which

their patents belong. This stream of literature substantially confirms Teece’s results also in the

technological field [18–20]. The patent-based approach offers various advantages such as the

wide geographical coverage and the richness of information that patents provide about inven-

tions (e.g. bibliographic data, citations, claims, technological fields impacted by the patents,

etc.) [21, 22]. Similar themes were also faced using the approach known as Economic Com-

plexity. This approach stands out for the use of tools from complexity science, such as co-

occurrence networks [11, 23] and machine learning algorithms [24, 25]. In [26] this approach

is used to study the technological diversification of firms and the relatedness between their

activities. The authors introduced the concept of coherent diversification and showed that

firms that diversify their patenting activity in a coherent manner, i.e. expanding in related sec-

tors, have on average higher levels of labor productivity. Relatedness measures between com-

panies and technological sectors can also be used to forecast the technological and productive

diversification of firms [27, 28]. In this paper, we argue that methods similar to the ones

described in these papers can be used to build relatedness measures to study the phenomenon

of Mergers and Acquisitions (M&A).

In the recent period, the literature concerning M&A has been expanding in various direc-

tions. IN a recent work, Liu et al. [29] provide guidance to companies in terms of the risks

involved in M&As by presenting success and failure cases. In [30], the authors seek to assess

efficiency indicators for the acquiring organization and determine the determinants of the

acquiring firm by examining the impact of ten listed companies in the sample that underwent

M&A between 2010 and 2017. In [31] the differential effects of foreign investor protection

(FIP) and domestic investor protection (DIP) on cross-border M&As are investigated, finding
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that the effects are stronger for M&As with larger shares, in target countries further from

home countries, and in target countries with better financial development. The research paper

[32] aims to investigate the impact of the pandemic COVID-19 on global M&A activity.

Ogendo and Ariemba [33] suggest that firms in emerging markets can use mergers and acqui-

sitions during a downturn to deliver superior value to shareholders. Novita and Rasyid [34]

analyze the company’s financial performance through financial ratios before and after M&A of

companies listed on the Indonesia Stock Exchange in a period covering the years 2016–2019.

This study indicates that there are differences before and after mergers and acquisitions in the

Return on Assets and Price Earning Ratios, but the other financial ratios tested did not show

any differences when studied. Finally, [35] review the study of M&A in the financial sector,

and in [36] the authors apply technology relatedness to study the M&A between Japanese Elec-

tric Motor firms.

Despite some sort of heterogeneity in the M&A economic literature, it is still possible to

identify some principles and recurring ideas. First of all, the concept of absorptive capacity
[37], is the ability of the acquirer company to assimilate knowledge and competencies of the

target firm. Extending this concept, good integration between acquirer and target companies

is thought to be linked to the relatedness between the two [38]. The concept of relatedness, and

in general the interaction between resources and capabilities of the companies involved in a

M&A process, is definitely the most widespread in the literature and is applied in many differ-

ent contexts. For example, it has been shown how geographical distance negatively influences

the probability of a M&A to occur [39, 40], and also how similarities in terms of the ownership

or the industrial sector can, on the contrary, increase such probability [41, 42]. In [43], analyz-

ing a large set of acquisitions and employing a similarity measure introduced by Teece et al. in

[17], a statistically significant correlation between the occurrence of a M&A and the industry
relatedness is found. As in the economic literature that focuses on diversification, in the last

two decades, a section of the M&A studies started to analyze acquisitions from the point of

view of the patenting activity of involved firms. This stream of literature focused on the simi-

larity between the companies’ knowledge bases, or in other words, their technological related-
ness. One of the first studies of this kind is the one of Ahuja-Katilia [44]. The authors

computed a measure of technological similarity between the acquirer and the target firms as

the overlap of the set of all patents produced and cited by those firms. This measure is found to

have an inverse parabolic behavior with the innovation performance after the acquisition. In

other words, the optimal post-acquisition performances are observed for an intermediate level

of technological similarity. In a similar fashion, many successive authors built different mea-

sures of technological relatedness and applied them to companies involved in M&A processes

and tried to link them to post-acquisition performances. Examples of this stream of literature

can be found in the work of Cloodt et al. [45], Cassiman et al. [46] and many others [47–51].

Although several studies recur the idea of this inverse parabolic behavior between relatedness

and performances, results are not yet conclusive. Indeed, for now, there is not yet a standard,

recognized, and effective method to build robust performances [49] or relatedness measures

[52], and as shown in [49], results may vary on metrics definitions. In general, the majority of

the M&A literature that builds relatedness measures between acquirers and target firms

focuses on correlating such measures with successive performances and not on using them for

predictions. However, as pointed out in [25], we believe that a forecast constitutes an impor-

tant test to compare the goodness of relatedness assessments. Notable forecast exercise

includes [53], in which an ensemble learning algorithm is trained on a set of relative features

between companies, built using patent data, to predict future acquisitions, and the attempt to

M&A prediction in [54]. In this latter work, a very large set of M&A features is built employing

PLOS ONE Prediction and visualization of Mergers and Acquisitions using Economic Complexity

PLOS ONE | https://doi.org/10.1371/journal.pone.0283217 April 3, 2023 3 / 27

https://doi.org/10.1371/journal.pone.0283217


financial, geographical, industrial, and patent data of firms. Then a tree-based algorithm is

trained for M&A prediction.

In short, although the importance of relatedness between acquirer and target in an acquisi-

tion is now recognised, there is not yet a standard method for calculating and, most impor-

tantly, evaluating the goodness of such relatedness measures. There is, also, a fundamental lack

of studies that compare different relatedness measures in a systematic way. In this heteroge-

neous context, we propose our M&A prediction study. We build upon a capability view of

firms and follow the methods and ideas of the Economic Complexity stream of literature.

Starting from patent data we define different relatedness measures between firms to exploit

their technological affinity. These metrics are then used to make predictions on possible M&A

pairs of companies and results are evaluated as in a machine learning classification problem.

In this way, we can study in a systematical way the degree to which the considered relatedness

measure is able to discriminate between pair of companies that complete an acquisition and

randomly assembled pairs. We find that both the technological and the industrial affinity play

a role and that cosine similarities outperform the others. Finally, we believe that it is also fun-

damental to have a simple visual representation of results for a straightforward interpretation,

an effort lacking in the present literature. To fill this gap, we adapt the concept of Continuous

Projection Space [24, 27] to our case, building a 2D space in which related companies are close

to each other.

Results

Our investigation consists of four steps: i) we compute different measures that quantify how

much a company, a possible target of an acquisition, is related to the present technological

activity of the acquirer company; ii) we use these relatedness measures to forecast whether a

deal will happen or not; iii) we quantify our ability to forecast the deals using different related-

ness and performance measures; iv) we represent the deals in a two-dimensional plane. Before

discussing our findings, we briefly introduce our methodology and data. More details are pro-

vided in the Methods section.

Data and testing procedure

The results of this work are based on the patent data coming from the PATSTAT database

(www.epo.org/searching-for-patents/business/patstat) that contains information about over

40000 patents and their technology sectors of belonging. These are classified by the use of

technology codes that are encoded using IPC’s 6 digits classification (https://www.wipo.int/

classifications/ipc/en/). From now on we will refer to these technology codes as “technologies”.

Subsequently, this information is matched with the AMADEUS database (https://amadeus.

bvdinfo.com), which covers over 20 million firms with European registered offices. Finally, the

M&A information comes from two different databases: Crunchbase (https://www.crunchbase.

com) and Zephyr (https://login.bvdinfo.com/R0/zephyrneo). The final set of deals used for the

analyses presented in this paper is made up of 8737 companies of which 913 are involved in

547 M&A deals. We select these companies because we can assign to them a univocal industrial

sector, based on Crunchbase data on industrial sectors. Complete information on data pro-

cessing and Crunchbase name matching, and industrial sectors classification can be found in

the Methods section and in the S1 File. With these data, we can associate patents, and more

specifically the technologies, with the companies involved in M&A; in particular, we build

temporal bipartite networks connecting patenting companies with their technologies.

This temporal network is represented by 13 yearly adjacency matrices My, one for each year

y from 2000 to 2012 that link 8737 companies to 7132 technologies. The matrix elementMy
ft
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represents how much a technology t is present in the patenting activity of firm f in year y: spe-

cifically, given a year y, we assign to each patent one unit of weight; this is then divided into

equal shares between all the observed (firm f-technology t) pairs and, finally, the matrix is built

by summing element-wise these contributions. This procedure takes into account that, usually,

more than one code is present in each patent, and rarely a single patent is submitted by more

than one applicant firm.

Moreover, assuming that a patent filed in a certain year is representative of the firm’s inno-

vation capabilities also in the following years, we will also consider the matricesMY
ft , each

defined as the sum ofMy
ft over the years from 2000 to Y.

The MY matrices can be used to train different algorithms to calculate our predictions

about possible M&A. In particular, we use MY to calculate the similarity between each pair of

companies; such similarity is assumed to be related to the probability that two companies will

have a M&A in the year Y.

Measures of similarity between companies

Our predictions of M&A events are based on various measures of business affinity, based

using only patent data with adding in some cases information related to the company’s indus-

try sector. We give here a brief description of these metrics, referring the interested reader to

the Methods section for a more detailed explanation. We will call a metric of similarity if it is

computed between elements of the same type, for example between two companies, or two

technologies. Instead, we will refer to metrics of relatedness if they are computed between dif-

ferent elements, such as a company and a technology. We divide our metrics into three differ-

ent categories:

• Direct measures. These metrics are based on the construction of a similarity measure

between firms. In this case, we can think of firms as vectors in a technology codes’ space

with coordinates ðMY
f 1; . . . ;MY

ft ; . . . ;MY
fnÞ, where n = 7132 is the number of technologies,

that is the dimensionality of the space in which the firm-vectors are defined. We use as direct
measures:

• Common Tech, the scalar product between two firm-vectors, which provides the number

of technologies that co-occur in both companies, possibly fractional, since M elements can

be fractional;

• Jaffe, the cosine of the angle between two firm-vectors, introduced by Adam Jaffe in [55]

and adopted in this context in [48];

• Euclidean Distance (EU): the inverse euclidean distance between two firms;

• Jaffe + Sectors (J+S): we incorporate the information on technological portfolios (given

by the Jaffe measure) with the information regarding the companies’ industrial sector. In

formula:

Pf f 0 ¼ aSf f 0 þ ð1 � aÞJf f 0 ;

where Jff0 represents the Jaffe measure between the firms’ technological portfolio, Sff0 is
equal to 1 if both firms f and f0 belong to the same sector and equal to 0 otherwise, and

finally the parameter α can be tuned according to the goodness of the prediction on M&A

processes. We find that the optimal value of a ¼ â depends on the class imbalance of

the prediction exercise; a detailed investigation is presented in the Methods section.

All these measures can be also interpreted as a projection of the company-technology
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bipartite network onto the company layer; this can be accomplished by using the method

of co-occurrences and different normalizations [52].

• Indirect measures. Here we assess the distance between firms by performing two steps of

computation. First, we build relatedness metrics between technologies and firms and second

we evaluate the relatedness between firms. We employed two different ways to build the

relatedness between firms and technologies: one is based on co-occurrences networks, and

the other on Machine Learning.

• Networks: Following the standard co-occurrence approach [17], we projected the bipartite

network onto the technology layer using two different normalizations, obtaining two sym-

metric matrices Btt0. We refer to these two normalizations as Technology Space (TS) [11]

and Micro-Partial (MP), based on the work of Teece et al. [17]. Finally, we compute the

prediction scores, called coherence, as gYft ¼
P

t0 M
Y
ft0Btt0 .

• Random Forest: The second approach to the construction of a relatedness measure

between firms and technologies is based on the use of a machine learning algorithm. Fol-

lowing [27], we employ the Random Forest classifier [56], trained on patent data, and

tested in [27] to predict the technologies that will be patented by firms in the future. The

output of this classifier is a score RFYft which represents the likelihood that the linkMY
ft is 1.

These scores represent an optimal measure of the relatedness [24, 25], in this case, between

a company and a technology. The functioning of RF, including training and testing, is

explained in more detail in the Methods section.

Given these different methodologies to assess the relatedness between firms and technolo-

gies, we compute the similarity between acquirer and target firms in a M&A deal as the

mean relatedness between the acquirer and all the technologies in the target’s portfolio. In

the following, we will globally refer to these indirect measures as Mean Coherence: �g f ;f 0

and �RFf ;f 0 . So the measures we test are Mean Coherence Technology Space (MC TS),

Mean Coherence Micro Partial (MC MP), and Mean Coherence Random Forest (MC RF).

Due to their definition, �g f ;f 0 and �RFf ;f 0 are, in general, highly correlated with the diversifica-

tion of the firm f, i.e. the number of technologies to which f is linked, which, in our case, is

the acquirer firm in the deal. Acquirers are often highly diversified firms and thus we want

to asses if such a correlation can be leveraged to improve the results of our forecast exer-

cise. In order to do so, we rescaled these two measures between 0 and 1. In this way, we

will have rescaled Mean Coherence Technology Space (MC TS resc), rescaled Mean

Coherence Micro Partial (MC MP resc), and rescaled Mean Coherence Random Forest

(MC RF resc). Thanks to this rescaling the correlation between our relatedness measures

and the diversification of firms significantly reduces. For example, the Spearman correla-

tion between MC RF and diversification, after the rescaling, decreases from 0.65 to 0.42.

More details on the rescaling effect and the correlation between Mean Coherence and

diversification are given in the S1 File.

• Continuous Company Space (CCS): These two measures of similarity between firms refer

to the construction of the Continuous Projection Space (CPS) [24, 27]. CPS represents a way

to visualize the similarity between the nodes of one layer of a temporal bipartite network. In

this case, we will represent companies in a two-dimensional space. In particular, we build

the Continuous Company Space (CCS) starting from two measures of distance between

companies, based respectively on Jaffe (we will refer to it as CCS Jaffe) and the Jaffe +

Sectors model (we will refer to it as CCS J+S). CPS is instead usually built starting from the

PLOS ONE Prediction and visualization of Mergers and Acquisitions using Economic Complexity

PLOS ONE | https://doi.org/10.1371/journal.pone.0283217 April 3, 2023 6 / 27

https://doi.org/10.1371/journal.pone.0283217


prediction scores of a machine learning model [24]; here we build the CPS only using the

best-performing measures. As we will show in the following, CCS has a minor predictive

power than the original distances due to the loss of information in the dimensionality reduc-

tion process. Nevertheless, it represents an optimal way to visualize similarities between

companies.

Visualization on CCS

In Fig 1, we present the CCS computed starting from the Jaffe + Sectors model with the param-

eter α fixed to 0.1. We decided to show the CCS computed also with the industrial sector infor-

mation to give an easy visualization of the effects of the last. Here each point represents a

company, and the relative distances are a low-dimensional representation of the distances pro-

vided by the Jaffe + Sectors model, obtained using the t-SNE algorithm [57]. On the upper

panel, we colored the companies according to the respective industrial sector. As expected,

since we are using also the information on companies’ industrial sectors to build the similarity

measure, we find a clear clustering among the firms that belong to the same sector. However, a

relatively high number of companies end up in a cluster different from the one they should

belong to according to the exogenous classification. This is the case, for instance, of many Inte-

grated Control Technology (ICT) companies (light blue), which are spread into different com-

munities on the leftmost side of the plot. These companies have a patenting activity much

Fig 1. CCS Jaffe + Sectors (α = 0.1). In the CCS (Continuous Company Space) representations above each point

represent a company. On the upper panel, points are colored according to companies’ industrial sectors. The effects of

the information on the industry are visible from the clustering of firms of the same color. On the lower panel, we

represent on the CCS some acquisitions performed by three large companies as arrows from the acquirer firms to the

targets. This is an example of how acquisitions are likely to be done locally in this space.

https://doi.org/10.1371/journal.pone.0283217.g001

PLOS ONE Prediction and visualization of Mergers and Acquisitions using Economic Complexity

PLOS ONE | https://doi.org/10.1371/journal.pone.0283217 April 3, 2023 7 / 27

https://doi.org/10.1371/journal.pone.0283217.g001
https://doi.org/10.1371/journal.pone.0283217


similar to Marketing companies (black) and Software and Gaming (dark green). We recall that

in the CCS the similarity between the two companies is given by their spatial closeness in this

space. As a consequence, our testing assumption is that the closer two companies are in the

CCS, the greater the likelihood of a deal between them.

A direct consequence of the company’s disposition can be observed in the M&A behavior.

On the lower panel, we show what M&A processes look like in this space. We draw arrows

from 3 big acquirer companies (Pfizer, Microsoft, and Kinder Morgan) in three different sec-

tors to their target firms. As can be seen, acquisitions are likely done locally in this space,

meaning that the similarity measure provided by the CCS can be connected with firms under-

going a merger or acquisition process. Obviously, a company may also decide to perform a

deal related to a target that is not close in this space. This is a strategic choice: companies may

want to enter into a different area of the CCS and drastically diversify their technological activ-

ity. Also, in this case, the CCS provides a map to navigate the innovation space.

Predictions

In this section, we present the results of our forecast exercise. We employ all the measures of

relatedness between companies described before to predict which companies will take part in a

M&A process. The idea is that it is on average more probable that a deal will happen between

closer companies. We will use this assumption to compare the different possible measures of

relatedness.

We adopted the Best-F1 score to compare the different methods in terms of the goodness of

their predictions. The Best-F1 represents the maximum value that can be obtained by finding

the optimal threshold used to compute the F1 score [58, 59] (this metric is discussed in detail

in the Methods section). The F1 score is defined as the harmonic mean between precision and

recall. The highest possible value of F1 is 1, which indicates that both precision and recall are

equal to 1, and the lowest possible value is 0 if one of the precision or recall is zero. Other per-

formance metrics are discussed in the S1 File. For each acquirer-target pair, we calculate our

similarity measures and then we rearrange them to an array of predictions s, whose elements

and size will be discussed in the following. Then we compare these predictions with the array �s
whose elements are 1 or 0, if the pair is a positive example, i.e. the pair completes an acquisi-

tion, or not. To evaluate the goodness of our predictions, we compare s and �s computing the

Best-F1. Finally, to show more easily interpretable results, we compute a normalized version of

the Best-F1 metric, based on the method used in [54]. For each prediction, we divide the actual

Best-F1 value with the one computed shuffling the �s array. In this way, a normalised Best-F1

value equal to 1 will correspond to a random prediction, while values greater than 1 will

increasingly indicate more significant predictions.

The forecast can be formulated in two different exercises, that lead to different prediction

arrays even if the measure is the same:

• Pair Prediction: Given a set of companies, we want to predict which pairs of firms will

undergo a M&A process. This is the prediction task investigated in [54]; here the point of

view is of an external observer who compares all the possible pairs.

• Target Prediction: Given an acquirer company, we want to predict which firm is likely to be

its target. Here the point of view is of the acquirer: this firm compares all possible targets

with its technological portfolio.

Since our prediction exercise is a classification problem, we need both positive and negative

samples. Therefore, for each true acquisition, we extractN random examples, with the parame-

ter N controlling the class imbalance of the problem. Because of this the shape of s and �s will
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depend on the class imbalance and will be equal to Ntrue × (1 + N). Specifically, in the Pair Pre-

diction case, we extract random pairs of companies, while in the Target Prediction case, we

extract only the target firms. We repeat this exercise for each class imbalance 20 times, so

extracting different sets of negative samples, and calculating the Best-F1 mean and standard

deviation. Notice that, as a robustness check, we evaluated our predictions also using other

performance measures than the Best F1 score. Since the results were fully compatible with the

ones shown by the Best F1, we decided to present these in the main text and the others in the

S1 File.

In Fig 2, we show the Best F1 of the prediction tasks for 3 different values of negative sam-

ples, and so of class imbalance (1 VS 1, 1 VS 20, and 1 VS 200) both for the Target and Pair pre-

diction. With each of the three colors, we refer to the three different types of categories of

metrics: direct, indirect, and CCS measures.

We also report all the Best-F1 values in Table 1 for a more quantitative comparison. Finally,

in the S1 File, the interested reader can find the results of the Target Prediction task obtained

by dividing the M&As on the basis of the industrial sector of the acquirer company. We find

thatHealthcare, Services and security, andMedical Research are the sector in which M&A deals

are mostly connected to our measures of technological relatedness. On the contrary, our meth-

ods show a relatively low prediction performance for Economy and Finance. This is clearly a

consequence of the different importance of patenting activity in these sectors.

General considerations. One first consideration is that, in general, the Best F1 values of

the Pair Prediction task are higher than the ones in the Target Prediction case. This suggests

that it is easier to predict which pair of companies are more likely to complete an acquisition

than which target will be chosen from a hypothetical acquirer firm. This effect could be a

direct consequence of how the tasks are defined. The two tasks differ mainly in the choice of

negative samples. In the Target Prediction task, we are comparing different possible targets

for the same acquirer and some of them can be similar to the acquirer company even if they

don’t undergo an acquisition process with it. On the other hand, in the Pair Prediction task,

we are comparing the M&A pairs with randomly assembled pairs of companies that, in most

cases, are quite different from each other. Moreover, as seen from the left panels of the Fig-

ures, if we consider a problem with only one negative example for each positive one, the

performances of all measures are quite similar to each other and not so far from random pre-

dictions. In this case, due to the low-class imbalance, even a random prediction achieves

non-trivial results, with a 50% chance of getting the prediction right. Increasing the class

imbalance, differences between metrics become more evident, since the prediction task

becomes harder. In both cases, the highest values of Best F1 are reached by the measure Jaffe

+ Sectors with the α values chosen a posteriori to maximize the performances at the given

class imbalance. As one can see, this measure represents a positive correction to the Jaffe

measure, which itself provides the second-best predictive performance among the similarity

metrics we studied. Note that in a high dimensional sparse space as the technologies’ one,

with 7132 dimensions, it is often recognised that metrics based on cosine similarity or scalar

product are a good choice [60].

The metric with the worst performance turns out to be the inverse euclidean distance EU,

which is computed in a technology codes’ space with 7132 dimensions. It is known that such a

metric loses much of its descriptive power when the dimensionality of the space increases [61].

This behavior is usually referred to as the “curse of dimensionality”: when the number of

dimensions is high, data become sparser and some distance measures (like for example the lk
ones, with k> 1) lose informative power. As suggested by the authors of [61], we tried differ-

ent measures with fractional k, however, we did not find any sensible improvement in the

results.
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Fig 2. Predictions evaluation of Target and Pair forecasts. Comparison between the prediction performances of the different

similarity metrics. We investigated different values of class imbalance, that is for each true M&A we extract 1, 20, and 200 negative

cases (random couples with no deals). In both figures, we use three different colors to distinguish the typologies of metrics. Blue

represents direct metrics, yellow indirect ones, and orange is the CCS ones. The error bars are computed by repeating the extraction

of random Target companies and/or Acquirer companies 20 times. A: Comparison among the Best F1 scores on Target Prediction

(fixed acquirer). B: Comparison among the Best F1 scores on Pair Prediction (both target and acquirer are not fixed). In both cases,

Best-F1 values are normalised to ones of random predictions. With this normalisation, a Best-F1 value around 1 will indicate a

random-like prediction, while values greater than 1 will correspond to more significant predictions. The Jaffe + Sectors metrics

outperforms all other approaches.

https://doi.org/10.1371/journal.pone.0283217.g002
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CCS results. Regarding the results relative to the CCSs, directly using these metrics for

predictions leads to worse results compared to the ones obtained employing Jaffe and Jaffe

+ Sectors. This is, in general, expected, since the construction of CCSs implies a dimensionality

reduction that usually implies a loss of information. Nevertheless, the predictive performance

of the CCS remains comparable with the other measures, especially in the 1 vs 1 and in the tar-

get prediction exercise.

Note that regarding the Jaffe + Sector measure, we performed an optimisation of the Best-

F1 with respect to α for the relative CCS metric. In this case, the maximum of the Best F1 is

less dependent on α and class imbalance than in the original measure. Moreover, best values of

α are in most cases around or less than 0.05: in the CCS only information on industrial sectors

is needed for optimal predictions. In Fig 2, among the other measures, we present the results

relative to the CCS Jaffe + Sector with the optimised value of α for each class imbalance. The

interested reader can find more details about the optimisation on α in the CCS’s case in the S1

File. An observation regards the difference between Target Prediction and Pair Prediction in

the CCS. While in the former the difference between the Best F1 of Jaffe and CCS Jaffe is only

25%, in the latter the difference rises to nearly 40%. This can be easily explained by saying that

in CCS it is easier to make a prediction if we fix the acquirer, i.e. if we use knowledge of who

will do the deal. In other words, if we do not fix the acquirer, CCS should be able to evaluate all

possible pairs of points (companies) on it; fixed the acquirer, on the other hand, it will go to

evaluate the proximity with a fixed point (acquirer companies) and the other points. Mathe-

matically if we suppose to have N companies/points on the CCS, in the pair prediction we

should evaluate N × (N − 1) pairs of companies, instead of the target one only N − 1 ones.

Rescaling effects. The performance of indirect measurements (yellow bars in the figure)

depends strongly on whether or not we rescale them between 0 and 1. Remember that we use

the rescaling to take into account the diversification of companies. On average, �g f ;f 0 and �RFf ;f 0
are strongly correlated with the diversification of the firm f. Here we refer to the diversification

of acquirers because, by construction, these measures refer to those companies.

With the rescaling, the �g f ;f 0 (i.e. “MC TS”! “MC TS resc” and “MC MP”! “MC MP resc”

columns in Fig 2) predictions clearly improve; the prediction performance of �RFf ;f 0 (i.e. “MC

RF”! “MC RF resc” columns in Fig 2), instead, increases on the Target Prediction exercise,

Table 1. Best-F1 values table of Fig 2. Jaffe + Sectors (J + S) constantly outperforms all the other measures on both Target and Pair Prediction and for all class imbalances.

On the other hand, Euclidean Distance (EU) is always the worst performing. Due to the normalisation with respect to the random case, the Best-F1 values increase with

the class imbalance, but the ranking of the different measures remains nearly the same.

Target Prediction Pair Prediction

1 vs 1 1 vs 20 1 vs 200 1 vs 1 1 vs 20 1 vs 200

Common Tech 1,05 2,34 4,09 1,17 4,56 12,76

EU 1,00 1,04 1,12 1,00 0,99 0,86

Jaffe 1,13 4,50 12,10 1,19 5,23 15,45

J + S 1,16 4,57 13,28 1,21 5,33 17,22

CCS Jaffe 1,08 3,45 9,84 1,05 3,28 9,69

CCS J + S 1,10 3,68 11,48 1,09 3,57 11,23

MC TS 1,01 1,22 1,89 1,15 4,00 8,43

MC MP 1,01 1,18 1,83 1,14 3,91 8,21

MC RF 1,01 2,13 3,02 1,12 4,96 14,96

MC TS resc 1,12 3,26 6,12 1,20 4,66 12,05

MC MP resc 1,12 3,28 6,09 1,20 4,78 11,71

MC RF resc 1,08 2,39 3,30 1,06 3,17 8,10

https://doi.org/10.1371/journal.pone.0283217.t001
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while decreases in the case of the Pair Prediction. When rescaling, we observe two different

effects on the performances that depend on the diversification of the acquirer companies.

After the rescaling, �g f ;f 0 loses most of its correlation with the diversification, while �RFf ;f 0
maintains it only for highly diversified firms (the interested reader can find the relative plots of

average coherence versus diversification in the S1 File).

If the diversification of the acquirers is the same in both positive and negative examples (i.e.

real and not real M&A), rescaling, especially for �g f ;f 0 , the predictive power of the metrics

increases. In fact, if the metrics are not correlated with the diversification we can avoid both

parts of False Positives and False Negatives. The first ones come from highly diversified ran-

dom extracted acquirers that have, on average, high values of γ, while the second ones come

from low diversified true acquirers that have, on average, low values of γ.

If the diversification of the negative cases’ acquirers is lower than the positive cases’ ones,

the best predictions are made with the metrics without rescaling. In fact, in these cases, the cor-

relation between the metrics and the diversification helps the prediction: not rescaling, we can

have more True Positives and True Negatives samples, with respect to the rescaling one. The

first ones come from highly diversified true acquirers that have, on average, high values of �g f ;f 0

and �RFf ;f 0 , while the second ones come from low diversified random extracted acquirers that

have, on average, low values of �g f ;f 0 and �RFf ;f 0 . These two effects have two different conse-

quences if we are treating Target or Pair prediction.

In the Target Prediction case, acquirers are always the same and so, their diversification

doesn’t change. We see from Fig 2a that rescaling the network-based indirect measures �g f ;f 0

leads to better performances, while the �RFf ;f 0 one doesn’t experience any strong change. In the

Pair Prediction case, we can see in Fig 2b a combination of the two described effects on predic-

tion. In fact, the diversification of random companies is lower than the one of acquirers, but

this difference is not so wide. As a consequence, for the network-based measures, it is still con-

venient to rescale the metrics, even if the difference between the Best F1 level in the rescaled

and not-rescaled case reduces, in comparison with the Target Prediction task. On the contrary,

leaving the �RFf ;f 0 measure without rescaling gives better results in predictions. For the sake of

completeness, in the S1 File, we also report the analysis done extracting the negative examples

among all companies in our dataset, and not extracting them from only the 913 final compa-

nies involved in the M&A.

Comparison between Jaffe and Common Tech. We remind the reader that, Jaffe is the

cosine angle between two firms in the space of technologies, while Common Tech is the scalar

product between them. In other words, Common Tech can be interpreted as the module of the

magnitude that determines the technological proximity between companies, while Jaffe repre-

sents the versor. For a definition, it is clear that Common Tech is correlated with the diversifi-

cation of the acquirers while Jaffe is not, and this is because the second is the normalized

quantity (versor) of the first, i.e. we can see it as a rescaling between 0 and 1. This reflects in

the fact that the difference in Best F1 values between the two measures is wider in the Target

Prediction than in the Pair Prediction. Jaffe’s better performance than Common Tech is telling

us that, in the space of technologies, information about the module is not as important as

information about the direction.

Discussion

Mergers and Acquisitions (M&A) represent a huge market, in which the innovative activity of

companies plays a major role. Building on the studies of Penrose and Teece [14, 15], which

concern the analysis of the diversification profiles of companies, we apply the Economic
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Complexity approach focusing on technological diversification [18–20] to determine future

M&A deals between companies. In particular, we compare different types of relatedness mea-

sures to assess the similarity between the acquiring companies and the target firms in terms of

their technology portfolios, determined by their patenting activity. Even if various authors

investigated how different similarity measures may be correlated to possible M&A deals [43–

47, 50, 51, 53, 54], there is still no standard method for comparing such measures by evaluating

their goodness. Our approach is to recast this issue as a classification problem, in which we

forecast future deals and we measure our prediction performance using the indicators typical

of machine learning tests.

To the best of our knowledge, this is the first attempt to assess the similarity between firms

using Economic Complexity methods. In order to compare the prediction performance of var-

ious measures of similarity, we analyze a database consisting of 8737 firms, of which 913 are

involved in 547 M&A deals, and 7132 technology sectors. We develop a forecasting exercise

using the assumption that, on average, a pair of firms will more likely sign a deal if they are

similar from a technological point of view. We find that the best performing metric uses the

Jaffe cosine similarity between the two technological portfolios combined with the information

about the industrial sector. This metric clearly outperforms the standard methodologies usu-

ally adopted in Economic Complexity, that is, networks of co-occurrences. Our results are

robust with respect to two different types of forecasting exercises: the Pair Prediction, in which

we want to find the most probable pair of firms; and the Target Prediction, in which we iden-

tify the “best” (in terms of similarity) target firm for a specific acquirer. Note that here we

are using the forecast exercise as a test to compare different possible measures of similarity

between firms; we are not claiming that a deal with a distant company is, in some sense, better

or worse. We are simply assuming, as a test hypothesis, that is more probable for a firm to

negotiate a deal with a close firm. A firm could perform a strategic jump and make a deal with

a distant company to attack, for instance, a new market. In this context, we expect the Contin-

uous Company Space (CCS) to be of practical help. The CCS is a visualization tool to represent

the proximity between firms in a two-dimensional plane. It can be used to inform strategic

M&A policies; for instance, to plan the expansion towards a relatively distant sector by acquir-

ing a target company specialized therein.

Conclusion

This paper applies Economic Complexity methods to the investigation of M&A deals from the

perspective of the technological activity (patenting) of companies. We illustrate various mea-

sures of the similarity between firms and we check if they are able to predict M&A deals. We

assume that on average similar firms make more deals than firms that are different in terms of

the sector and the technological scope. In this way we are able to compare the different mea-

sures by checking their prediction performance. We classified these measures into three types:

direct, that is measures by which the similarity between firms can be measured directly; indi-

rect, measures that start from the relatedness between firms and technologies, and then assess

the similarity between firms; and the CCS, a two-dimensional representation used to visualize

the similarity between firms as the vicinity of the points in a plane. To evaluate the effective-

ness of these measures, we presented two forecast exercises: the Target Prediction and the Pair

Prediction. In the first case, we fix the acquirer and we try to predict which company it will do

a deal with; in the second case, we try to predict the pair (both acquirer and target) of the deal.

The results presented show that our similarity measures are able to capture a M&A signal (i.e.,

perform better than a random prediction) only by using information about the technology

portfolio of companies. In this perspective, the best measure turns out to be a cosine similarity
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between the two technological portfolios combined with the information about the industrial

sector. Moreover, we introduced the CCS, a visualization tool in which companies are located

in a two dimensional plane according to the relative distances in terms of their technological

portfolios. The CCS may be a useful tool to design strategic policies of M&A.

The results presented in this paper may pave the way for several future works. Among

them, discriminating between successful and unsuccessful M&A. In particular, by leveraging

data on the financial performance of companies, the CCS or the other measures discussed here

can be used to study the outcome of deals as a function of the distance between the two firms.

Another issue may be to investigate the overlap between the geography and the technology

effect on M&A. This could be done using an “effective distance” (see [62, 63]) that can be mea-

sured by calculating the similarity between countries; the hypothesis being that the deals occur

more frequently between similar countries.

Materials and methods

In this Section, we describe in more detail the databases, the proximity measures, and the met-

rics used in the analysis.

Data

The information used to perform the analysis of the present paper can be obtained from four

databases. The two databases AMADEUS and PATSTAT contain the information used for the

construction of the bipartite company-technology networks. Zephyr and Crunchbase contain

information on the M&A. The companies’ industrial sectors are obtained from the Crunch-

base database.

Companies. The information regarding the companies was obtained from the AMA-

DEUS database (https://login.bvdinfo.com/R0/amadeusneo). This database contains informa-

tion about over 20M companies located mainly in Europe. AMADEUS is managed by Bureau

van Dijk Electronic Publishing (BvD), which specializes in providing financial, administrative,

and budget information relating to companies. The BvD includes the same patent identifiers

as the European Patent Office and this makes the AMADEUS and PATSTAT databases com-

patible with each other [26]. Although one of the most well-known problems of AMADEUS is

that large companies are fully covered while those with fewer than 20 employees are underrep-

resented [64], for the purposes of this paper this is not a relevant problem.

Technology codes. The source of data on technologies and patents is the Worldwide Pat-

ent Statistical Database (PATSTAT, https://www.epo.org/searching-for-patents/business/

patstat.html) of the European Patent Office (EPO), which aggregates and organizes data from

regional and national patent offices. The most important element of this database is the pres-

ence of a standardized code defined within the International Patent Classification (IPC), a

hierarchical classification system, internationally recognized, maintained, and updated by the

World International Patent Organization (WIPO). The codes are organized by levels of

increasing aggregation: the lowest level includes over 70,000 groups, while the highest includes

only 8 sections. This coding is used to classify each patent from a technological point of view.

For example, the code Axxxxx corresponds to the macro category “Human Needs” and Cxxxxx

to the macro category “Chemistry”; considering the following figures we have, for example,

with A01xxx the sector “Agriculture; Hunt”, and with A43xxx the “Footwear” sector. It is

important to note that classes “99” and subclasses “Z” are not considered in this work, as they

represent technologies classified in “other classes or subclasses”, and therefore are not well

defined. The interested reader can find more details about this data in the work of [65].
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Zephyr and Crunchbase. Merger & Acquisition data were acquired from two different

databases: Zephyr and Crunchbase. Zephyr (https://www.bvdinfo.com/en-us/our-products/

data/greenfield-investment-and-ma/zephyr) is a commercial database, maintained by the

Bureau van Dijk Electronic Publishing (bvd), that contains information on the operations of

M&A, IPO, Private Equity, Venture Capital and related Rumour worldwide. Specifically, in

this work, we used the section of the database that concerns companies operating in the bio-

pharmaceutical sector. This section includes information on nearly 4000 deals between 1997

and 2016 and over 3700 companies. Crunchbase (https://www.crunchbase.com) is another

commercial database, originally created to track start-ups, containing information on public

and private companies and related acquisitions, mergers, and investments, globally. Crunch-

base’s dataset is much larger than the Zephyr one, and contains information on over 100 thou-

sand acquisitions, from 1922, and over a million companies.

Data processing

In this Section, we briefly describe how we combined M&A data with the information on tech-

nological portfolios and the construction of our Industrial sectors classification.

M&A data processing. To study M&A processes in relation to the technological portfolios

of the companies involved, we linked the Zephyr and Crunchbase datasets to the AMADEUS-

Patstat one. As fully described in [26], the AMADEUS-Patstat data can be seen as a bipartite

network where each company, identified by its Bureau van Dijk ID (BVDID), is linked to the

technology codes of its patents. The weight of the link between a company and a technology

code is proportional to the share of patents, deposited by the company, that contain that tech-

nology code. The linking process between the M&A data to AMADEUS-Patstat is different for

each of the two datasets. In the Zephyr dataset, companies are identified with their BVDID, so

it was possible to directly associate them with a technological portfolio. Starting from a set of

3167 companies involved in M&A processes, we were able to link 430 of them to the relative

technological portfolios. Crunchbase’s data are not labeled by the BVDID, so we had to match

the names of Crunchbase’s companies to the AMADEUS ones in order to find for each firm

the associated BVDID. For a better match, companies’ names underwent a “cleaning” process

to remove symbols, punctuation, and companies’ acronyms. The full process of names’ clean-

ing and matching is described in the S1 File. After the cleaning process, we ended up with

28137 companies with a BVDID associated. From this set, we linked 12017 companies to the

relative technological portfolio. Sometimes, due to the cleaning of names, companies resulted

associated with multiple BVDIDs and thus multiple portfolios. These are occurrences in

which, for example, a multinational company has multiple BVDIDs associated with the various

national subsidiaries. In such cases, we merged all the technological portfolios associated with

that company. Finally, for each year, in both Zephyr and Crunchbase cases, we kept only the

M&A that happened between 2002 and 2012, whose acquirer and target companies deposited

at least one patent from 2000 to that year. With this constraint, we managed to build a data set

of 1279 M&A (126 from Zephyr and 1153 from Crunchbase), that involves 1974 companies

(145 from Zephyr and 1858 from Crunchbase, with 29 present in both).

Sectors classification. Crunchbase companies are organized, concerning their industrial

sector, in two levels of aggregation: the lower level counts 744 categories, while the upper

counts 43 category groups. This classification is not directly linked to the official ones (NACE,

NAICS, SIC, etc.) but was built independently by Crunchbase. In this classification, each com-

pany is assigned several category groups and thus many categories. Starting from this classifi-

cation we built another level of aggregation consisting of 13 sectors. In this way, we managed

to assign one univocal industrial sector to 8069 firms, nearly 70% of the Crunchbase
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companies that we had previously linked to their technological portfolio. To have at least a

sector linked to each company and a smaller number of sectors is fundamental for the con-

struction of our modified version of CCS and its visualization. Further details on how our clas-

sification was built can be found in the S1 File.

The main results presented in this paper were obtained working on a subset of the M&A

data set that includes only companies with univocal sectors assigned within our classification.

This subset counts 8737 companies and 547 M&A that involve 913 companies of the total

subset.

Data processing

Our final data can be used to construct 13 bipartite networks between companies and technol-

ogy codes, one for each year from 2000 to 2012. We can represent these networks, for each

year y, as a matrix with elementsMy
ft. Each matrix element represents the weight of the link

between the firm f and the technology code t, in the year y; this is equal to the (possibly frac-

tional) number of patents filed by f belonging to the technology t. Under the hypothesis that a

patent filed in a certain year is representative of the firm’s innovation capabilities also in the

following years, for the construction of our relatedness measures we consider a summed ver-

sion of the matrixMy
ft over the years. We defineMY

ft as the sum of allMy
ft from 2000 to the year

Y. From now, we drop the apex Y for simplicity, keeping in mind that all measures can be

defined for each year.

Direct measures

Common Tech and Jaffe. The Common Tech and Jaffe metrics consist of a direct projec-

tion onto the companies’ layer to measure the similarity between each company’s pair. We cal-

culate these two quantities by computing the equations:

Common Techf f 0 ¼
X

t

M ftMf 0t;

Jaffef f 0 ¼
P

tMftMf 0t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t M2
ft

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t M2

f 0t

q :

whereMft is the adjacency matrix that links firms to technologies. The element of these matri-

ces represents how much a technology t is present in the patenting activity of firm f. The for-

mer is a simple scalar product between the technological portfolio of the two firms. This is

correlated with the diversification of both f and f0. The latter is a cosine similarity between the

two portfolios, introduced in this context by Jaffe [55]. It is bounded between 0 and 1.

These measures represent a projection of the bipartite network onto the firms’ layer, so they

can be interpreted as the weight of a link that connects the companies f and f0 in a monopartite

network of firms.

Euclidean distance. To build a relatedness measure between companies based on the

euclidean distance we start from the matrixMft. Each row of this matrix can be seen as the list

of coordinates of each company in the space of technology codes. The relatedness measures

EU is just the inverse of the euclidean distance between companies in this space:

EUf f 0 ¼

 
X

t

ðMft � Mf 0tÞ
2

!� 1
2
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Jaffe + Sectors and best α identification. The Jaffe + Sectors scores are computed by con-

sidering not only the technological affinity between companies but also the industrial sector.

This leaves a degree of freedom (the relative weight) which we optimize as described in the fol-

lowing. The formula is:

Pf f 0 ¼ aSf f 0 þ ð1 � aÞJf f 0 ; ð1Þ

where Jff0 is the Jaffe measure between firms’ technological portfolios and Sff0 is 1 if both firms

belong to the same sector and 0 otherwise. The weight of these two pieces of information is

controlled by the parameter α, bounded between 0 and 1. The higher α, the greater the impor-

tance of the sectors’ similarity on the measures. To understand the behavior of this measure it

is useful to consider that the M&A pairs are distributed in 4 sets according to the respective

sectors and the relative distance:

• S1J1: M&A with Sff0 = 1 and Jff0 6¼ 0,

• S1J0: M&A with Sff0 = 1 and Jff0 = 0,

• S0J1: M&A with Sff0 = 0 and Jff0 6¼ 0,

• S0J0: M&A with Sff0 = 0 and Jff0 = 0,

Due to the fact that Sff0 can be only 0 or 1, while Jff0 2 [0, 1], for α> 0.5 all the Best F1 results

are independent of α and equal to the one at α = 0.5. In fact, for α> 0.5 the elements in the

four sets are bounded within their set: in S1J1, Pff0 > α, in S1J0, Pff0 = α, in S0J1, 0< Pff0 < (1 −
α) and in S0J0, Pff0 = 0. Certainly, items in S1J1 are classified as positives, while items in S0J0
are classified as negatives so the threshold that defines the Best F1 must lie among the elements

of S0J1 and S1J0. Finally, if we sort these elements in descending order, their order does not

depend on α, thus neither the threshold nor the Best F1 does. For this reason, we examine the

behavior of the measure for α� 0.5. Another factor that influences the performance of the

measure is the class imbalance, which is defined by the parameter N, namely the number of

negative examples per positive example. In Fig 3 we present the behavior of the Best F1 as a

function of α and the class imbalance N, both for the Pair Prediction and the Target Prediction.

To average out the possible fluctuations coming from the random extraction of negative exam-

ples, each point in the Figures reports the average Best F1 over 20 realizations of the prediction

exercise. Because the Best F1 is highly correlated with the class imbalance [66], for each value

of N we rescaled the Best F1 between 0 and 1. In this way, it is possible to better spot the rela-

tive maximum of Best F1 as a function of α, for each value of class imbalance.

From both the figures it emerges that if we increase the class imbalance, the maximum of

Best F1 moves [66] towards a higher value of α, especially in the Pair Prediction case. This sug-

gests that when choosing a M&A pair among a large pool of options, the similarity between

the companies from the point of view of the industrial sector plays a more important role. To

deepen the understanding of the model, we also considered the absolute value of Best F1, as it

is shown in Fig 4. In this plot, we show the Best F1 vs. α curves relative to the Target Prediction

case for some values of class imbalance; the number of negative samples corresponds to lines

of different colors. Since the Best F1 is highly correlated with the class imbalance the curves for

different values of N never touch each other and can be represented in a single figure. In this

case, the figures relative to Pair Prediction and Target Prediction were almost identical, so we

decided to show only one of the two.

From Fig 4, it is possible to identify 3 phases, divided by dotted lines, for the Best F1:

• Low α phase. Located on the left of the figure; the Best F1 is α-dependent. First, it increases,

reaches a maximum, and then decreases.
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• High α—Low class imbalance phase. Located at the top-right of the figure; it presents a

fixed value of Best F1 independent from alpha.

• High α—High class imbalance phase. Located at the bottom-right of the figure; it presents

a fixed value of Best F1 independent of alpha.

To understand this behavior we need to define some other sets in which the M&A examples

can be divided with respect to the measure Pff0. Specifically these are three subsets of S0J1, so

they have Sff0 = 0 and differentiate according to the Jff0 value:

• J+: M&A with (1 − α)Jff0 > α,

• J−: M&A with (1 − α)Jff0 < α,

• Jα: M&A with (1 − α)Jff0 = α. In this subset Ptt0 = α as in the S1J0 set, so in the subsequent

analysis, it will be considered jointly with this last one.

Now, if we consider the Pff0 values for each set in ascending order we have: S0J0 (i.e. M&A

with Sff0 = 0 and Jff0 = 0 in Eq 1) with Pff0 = 0, J− with 0< Pff0 < α; S1J0 (i.e. M&A with Sff0 = 1

and Jff0 = 0 in Eq 1) with Pff0 = α; J+ and S1J1 (i.e. M&A with Sff0 = 1 and Jff0 6¼ 0 in Eq 1) with

Pff0 > α. The observations on the behavior of the Best F1 are similar in style to the ones made

before for α> 0.5. In the upper-right side of Fig 4, in the High α—Low-class imbalance phase,

the Best F1 is independent of α because the relative threshold is always less than α. In this case,

the threshold lies between the elements of J−, whose order (in terms of the magnitude of Pff0) is

independent of α. On the contrary, in the Low α phase, the threshold is always above α. This

means that it lies among the elements of J+ and S1J1. If we order these elements according to

their Pff0 value, the two sets are, in general, mixed and the order of elements depends on α. So

the Best F1 is α dependent. This remains true until both α and the class imbalance become too

large. In this phase, the High α—High-class imbalance one, the J+ set becomes negligible to the

Fig 3. Dependence of maximum Best F1 on α and the class imbalance in the Jaffe + Sectors measure. For each value of class imbalance, we rescale

the Best F1 between 0 and 1 to better visualize the maximum as a function of α. The maximum F1 moves towards higher α values when the class

imbalance increases. This suggests that when choosing a M&A pair among a large pool of options, the industrial sector plays a more important role.

https://doi.org/10.1371/journal.pone.0283217.g003
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S1J1, and the threshold always falls between the elements of S1J1. Therefore, also in this phase,

the Best F1 is independent of α.

From a practical point of view, this means that, when looking for the best α to optimise

the prediction performances at fixed class imbalance, one should always search in the Low α
phase. In fact, only in that phase performance metrics like Best F1 are α dependent and can

reach a maximum.

Indirect measures

The idea of these measures is to compute firstly a measure of similarity between technology or

of relatedness between companies and technologies, and secondly a measure of similarity

between companies. Even if indirect, these approaches are discussed here because they use

well-known tools of both mainstream and Economic Complexity literature.

Network-based approaches. The network-based approach to the construction of a relat-

edness measure between companies starts from the observation that our data constitute a

bipartite network between companies and technology codes described by M matrices. The

described bipartite network can be naturally projected onto both the company layer and the

technology layer using the co-occurrences method. This gives us the possibility to construct

different measures of relatedness.

Fig 4. Behavior of Best F1 versus α for various class imbalance values in the Jaffe + sectors measure. Due to the correlation between Best F1 and

class imbalance the various curves never intersect. In this plot, three phases divided by dotted lines can be spotted: a Low α phase, at the bottom-left,

where there exists an α-dependent maximum for the Best F1, a High α—Low-class imbalance phase, at the top-right, and the High α—High-class

imbalance phase at the bottom-right, where the Best F1 is independent of α.

https://doi.org/10.1371/journal.pone.0283217.g004
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The construction of a relatedness measure based on the projection of the bipartite network

onto the technologies’ layer follows the work of Pugliese et al. [26]. Firstly, we build a measure

of relatedness between technologies, which is the weight of the link between technology codes

in their monopartite network. We employ two kinds of normalizations for this measure.

The first is the one introduced in [23] and normalizes the co-occurrences of two technology

codes in the same portfolio by the maximum of their ubiquity. We refer to this measure as

Technology Space.

BTStt0 ¼
1

maxðut; ut0 Þ

X

f

MftMft0 :

where ut = ∑fMft is called ubiquity. Normalizing by the maximum of the ubiquities allows us

to weigh less the co-occurrences between highly ubiquitous technologies. Moreover, this

normalization avoids undesirable effects caused by technologies patented by a single firm.

In fact, if the technology t is patented only by the firm f, for every other technology code t0,
∑f0Mf0tMf0t0 = 1.

The other type of normalization we make use of in this work was first introduced by Teece

et al. [17] in the context of firms’ diversification; it has been later employed in several other

studies on technological diversification [18–20]. We refer to this measure asMicro-Partial
because the null model hardly constrains one layer and randomizes everything else [52]. To

calculate the Micro-Partial measure we start from a matrix whose elements count the co-

occurrences between technology codes within companies’ portfolios Ctt0.

Ctt0 ¼
X

f

MftMft0 :

The Ctt0 matrix is then normalized with respect to a null model in which technologies are

randomly assigned to companies’ technological portfolios, keeping their ubiquity fixed. If we

call ut the ubiquity of the technology t and N the total number of companies, the random vari-

able xtt0, the number of companies innovating in technologies t and t0 in the random case, fol-

lows a hypergeometric distribution with average and variance:

mtt0 ¼
utut0
N

; s2
tt0 ¼ mtt0

ðN � utÞðN � ut0 Þ
NðN � 1Þ

:

We therefore define:

BMPtt0 ¼
Ctt0 � mtt0
stt0

;

which, in a similar fashion to a t-Student variable, measures the number of σtt0 the observed

value of Ctt0 deviates from μtt0. In other words, we are comparing the weight of the links in Ctt0
with the average values generated by a partial Microcanonical null model, in which only one of

the two layers, the technologies’ one, is fixed. Given these two measures of similarity between

technology codes, we define the coherence [26] between a firm f and a technology t as:

gft ¼
X

t0
Mft0Btt0 :

For our scope, we need a similarity measure between companies. Therefore, to study the

relatedness between the two firms involved in a M&A, we look at the mean coherence (Mean
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γ) between the acquirer firm f and technologies of the target company f0

�g f ;f 0 ¼
1

df 0

X

t2f 0
gft;

where df0 is the diversification of the target firm, i.e. the number of technologies in its portfolio.

Finally, as we mentioned in the Results section, the coherence γft is correlated with the

number of technologies f is linked to, i.e. the diversification df0 of the acquirer. To test if this

correlation has some effect on the results of our forecast exercise, we compute a rescaled ver-

sion of the coherence measure. We call ĝ f the vector of all the values of coherence between the

firm f and all the technologies (i.e. the f-th row of the matrix with elements γft) and we rescale

each of these vectors between 0 and 1:

ĝ 0f ¼
ĝ f � mintðĝ f Þ

maxtðĝ f Þ � mintðĝ f Þ
:

In this way, the coherence metric g0f is less dependent on the diversification of the acquirer

firm.

Random Forest. To compute the relatedness between companies and technologies, fol-

lowing [27], we use the Random Forest algorithm [56]. The Random Forest (RF) is a super-

vised machine learning algorithm based on decision trees. These are based on rules to divide

the input space and learn to classify the input data according to subsequent splittings of this

space. Although decision trees have several strengths, including high interpretability, little data

preparation, and low computational cost, they suffer from high variance and overfitting. RF

can correct these problems. As for the high variance, this indicates that if we take a tree and

train it using a training set, the result of the prediction on a subsequent test will be very differ-

ent from the same decision tree that has different training and a test (but still belonging to the

same database). RF solves this problem by averaging the results of multiple decision trees. The

overfitting problem is due to the adaptability of single trees to the training data. The RF solves

this problem by performing each division of each branch of the tree using only a part of the

complete input set.

In order to obtain a measure of the relatedness between a firm and a technology, we train

one model (one RF) for each target technology t.
In general, for supervised machine learning algorithms we have to quantify three quantities:

• The matrix of samples X. The rows represent the different samples (the technological portfo-

lios of companies); we have to identify correctly those that will become active in t. Each row

is a company in a given year and each column represents a feature (a technology). In our

case, X is the matrix obtained by concatenating vertically each matrix M with y 2 [2000,

2010] considering only companies with high diversification. In [27], the authors show that

training the RF with firms with higher diversification increases the forecast results.

• The vector of classes y: in a generic classification problem it is a vector to which the class of

the sample is associated. In our work, we associate the past technological portfolios of firms

with the possible future activity in technology t, that is y = [0, 1]. The size of this array is

equal to the number of companies multiplied by the number of years used in the training. So

for each RF y is a column (the one corresponding to the technology t) of the matrix My

shifted by two years with respect to the one used in the training, so y 2 [2002, 2012]. We

have binarized this matrix by setting the elements equal to 1 if that technology will be made

by the corresponding firm after two years, and 0 otherwise i.e. we put 1 if the element of the

matrix is different from 0, and if it is equal to 0, we leave it as it is.
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We use X and y to train our Random Forest, i.e. to learn how the features of the samples

(that is, the technologies of the companies) are associated with patenting/not patenting in the

target technology after two years.

• The matrix of samples Xtest: after the training, we provide samples that are never seen by the

RF in the training process, organized in a matrix Xtest. In our case, we use as Xtest the matrix

obtained by concatenating vertically each matrix with y 2 [2000, 2010] considering the com-

panies about which we have either sector or M&A information. The companies present in

Xtest and which would have been among the ones used in the training have been removed

from X to avoid overfitting problems.

As for the parameters, the number of trees, the min samples leaf (MSL), and the max depth

(MD) have been investigated and optimized. The first represents the number of trees in the

forest. This is a parameter that cannot be tuned in the classical sense but should be set high

enough [67]; we set it equal to 50 to avoid higher computational time. MSL represents the min-

imum number of samples required to be at a leaf node; we set it equal to 4. MD is the maxi-

mum depth of the tree; we set it equal to 40. We choose these values after a grid search

parameters test.

Finally, the output of the Random Forest is a matrix that contains the relatedness RFft
between companies and technology codes, that is how much the RF finds the technology t
close to the technological portfolio of firm f, where f corresponds to a row of Xtest. We can

interpret this measure as another form of coherence between firms and technologies and use it

in the same way. Therefore, to study the similarity between two firms involved in a M&A, we

look at the mean values of RFft, i.e. �RFf ;f 0 where f is the acquirer firm, and the average com-

puted on all the technologies of the target firm f0

�RFf ;f 0 ¼
1

df 0

X

t2f 0
RFft: ð13Þ

As for the coherence, also in this case the RFft is correlated with the number of technologies

f is linked to, and also in this case we rescale it by

R̂F 0f ¼
R̂Ff � mintðR̂Ff Þ

maxtðR̂Ff Þ � mintðR̂Ff Þ
;

where R̂Ff is the f-th row of the matrix with elements RFft.

Continuous Company Space (CCS)

To obtain a two-dimensional representation of the proximity between companies, and there-

fore to obtain a greater interpretability of the results, we introduce the Continuous Company

Space (CCS). Tacchella et al. have proposed in [24] the Continuous Projection Space by apply-

ing it to the exported products, and Straccamore et. al [27] have reformulated this concept by

applying it to technologies.

The construction of our CCS starts from a matrix of distances Dff0 between companies. In

particular, we consider the subset of 8079 companies to which it was possible to assign a sector

in our classification. We use two distance matrices. The first is derived from the Jaffe measure

between companies. Since Jaffe’s is a similarity measure, to obtain a distance we consider:

DJ
f f 0 ¼ 1 � Jf f 0 :
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The other distance measure is derived from the Jaffe + Sectors approach. In this case, we

consider:

DJS
f f 0 ¼ að1 � Sf f 0 Þ þ ð1 � aÞD

J
f f 0 :

where Jff0 is the Jaffe measure between firms’ technological portfolios and Sff0 is 1 if both firms

belong to the same sector and 0 otherwise.

The columns of the distance matrix can be seen as the coordinates in a high-dimensional

space for each company, with a dimension equal to 8079. Because it is impossible to visualize

these coordinates in this such a high dimensional space, we project it in a 2D space we call

CCS. Following [24], this operation consists of two steps. First, we reduce the number of

dimensions from 8737 to 150 using a Variational—Autoencoder Neural Network [68]. Then,

we reduce from 150 to 2 dimension using the t-SNE algorithm [57]. Within the 2D representa-

tion, the similarity between companies is simply given by the relative euclidean distance.

Prediction performance metric: Best-F1

To compare the algorithms and techniques used in this work we use as a performance metric

the Best-F1 [24, 25, 28, 69]. The F1 score is defined as:

F1 ¼ 2
1

precisionðtÞ
þ

1

recallðtÞ

� �� 1

ð2Þ

i.e. is the harmonic mean between precision¼
TPðtÞ

TPðtÞþFPðtÞ and recall¼
TPðtÞ

TPðtÞþFNðtÞ, where TP repre-

sents the number of True Positives (i.e. the elements equal to 1 that are correctly predicted)

and, analogously, FP are the False Positives and FN the False Negatives. These quantities

depend on the scores’ binarization threshold τ, that is, the number above which the prediction

score is associated with a predicted 1 (if the score is lower than τ, the measure predicts a zero).

The Best-F1 is the metric associated with the value of τ that maximizes the F1 a posteriori. The

highest possible value of Best-F1 is 1, which indicates that both precision and recall are equal

to 1, and the lowest possible value is 0 if one of the precision or recall is zero. Since the Best F1

depends on the class imbalance of the problem, we show the forecast results with respect to a

random prediction.
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