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Abstract. Several problems in applied sciences and engineering require reduction techniques
in order to allow computational tools to be employed in the daily practice, especially in iter-
ative procedures such as optimization or sensitivity analysis. Reduced order methods need to
face increasingly complex problems in computational mechanics, especially into a multiphysics
setting. Several issues should be faced: stability of the approximation, efficient treatment of non-
linearities, uniqueness or possible bifurcations of the state solutions, proper coupling between
fields, as well as offline-online computing, computational savings and certification of errors as
measure of accuracy. Moreover, efficient geometrical parametrization techniques should be de-
vised to efficiently face shape optimization problems, as well as shape reconstruction and shape
assimilation problems. A related aspect deals with the management of parametrized interfaces
in multiphysics problems, such as fluid-structure interaction problems, and also a domain de-
composition based approach for complex parametrized networks. We present some illustrative
industrial and biomedical problems as examples of recent advances on methodological devel-
opments.

1



F. Salmoiraghi, F. Ballarin, G. Corsi, A. Mola, M. Tezzele, and G. Rozza

1 Introduction and motivation: a synopsis

Recent research in Computational Science and Engineering aims at developing and consol-
idating the capabilities of computational reduction strategies for problems governed by para-
metrized Partial Differential Equations (PDEs). Parameters might be both physical (material
properties, nondimensional coefficients such as Reynolds or Prandtl numbers, boundary con-
ditions, forcing terms) and geometrical (i.e. quantities which characterize the shape of the
domain and of the system itself). This research fits into the fields of numerical analysis and
scientific computing, with a special interest in computational mechanics, and to applications in
the contexts of simulation, optimization and control. In the latter cases iterative minimization
procedures entailing several numerical solutions of PDEs (each time with different values of
control or design variables, or different physical and geometrical scenarios) are involved, thus
requiring high computational efficiency. For this reason, model order reduction techniques,
such as reduced basis methods [37, 73], are mandatory to achieve this goal. With the increasing
need of real time computing, Reduced Basis (RB) methods have known a remarkable develop-
ment in the last decade because they make possible a strong reduction of computational times
required when solving parametrized PDE problems, owing to a crucial decomposition of the
computational procedures. In an offline pre-processing stage, a suitable basis is stored by solv-
ing the original problem for a set of parameter values, properly selected in an automatic and
optimal way. During an online stage, for each new parameter value the solution is found as
a combination of the previously computed basis functions, by means of a Galerkin projection
[37, 79]. This problem has a very small size (related with the number of the selected bases,
which are typically very few). The resulting procedure is not only rapid and efficient but also
accurate and reliable, thanks to residual-based a posteriori error estimators. Research activities
in this field have led to a significant development of the reduced order methods for many dif-
ferent problems, and to applications of interest in several real-life scenarios [73]. Moreover, in
order to perform efficient numerical simulations in complex and variable geometric configura-
tions, as required for instance in engineering or medical applications, reduced order methods
need to be coupled with efficient parametrization techniques for curves and surfaces. Ongoing
research aims at deepening the theory and the methodology of reduced order methods for prob-
lems in fluid dynamics, characterized by very different physical and temporal scales, but also
complex nonlinear problems like bifurcations and instabilities. Another task is devoted in de-
livering ready tools for applications in naval, nautical, aerospace and mechanical engineering,
as well as in medicine (fluid-structure interactions between blood flows and arterial vessels in
the human cardiovascular system) [5, 6], biology (motility of cells and micro-organisms) [1, 3],
porous media (groundwater flows) [54], and also geophysics (simulation of the Earth’s mantle
dynamics). The developed methodologies could be properly combined and coupled with novel
techniques in data assimilation, uncertainty quantification for the solution of complex inverse
problems arising in the multidisciplinary fields previously mentioned. The work is organized
as follows: in Section 2 we give an overview about computational challenges to be tackled. In
Section 3, we summarize the main idea behind model order reduction with references therein to
deepen in the matter. Then, in Section 4, we show some industrial and biomedical applications
and challenges in reduced order methods for computational fluid dynamics problems. Finally,
in Section 5, some perspectives follow.
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Figure 1: Possible examples of CFD applications.

2 Computational Science and Engineering (CSE) challenges

Simulation-based sciences is a quickly emerging field for mathematics and computational
modelling. In every specialization of engineering such as aerospace, biomedical, naval, nau-
tical and more generally mechanical field, as well in applied sciences, such as medicine, it is
nowadays fundamental to run simulations to understand how a complex system behaves before
actually building or operating on it. Typically, these systems depends upon a certain number
of parameters, a priori unknown (e.g. to be optimized) or uncertain (e.g. due to experimental
errors), so that several simulations need to be run, each time changing the value of the parame-
ters. Present and future efforts consist in simulating complex problems in order to retain more
aspects of the reality, such as multiphysics problems, as well as systems characterized by mul-
tiple spatial and temporal scales (see Figure 1). This leads to the growing demand of efficient
computational tools for many query and real time computations, parametrized formulations,
simulations of increasingly complex systems with uncertain scenarios.

One strategy to solve these challenges is to use the brute force and rely on high performance
computing (HPC) platforms. However, for complex applications, such as the industrial ones,
the solution of the problem can require a great amount of time even in the HPC framework.
This leads to some limitations: in many query context, such as optimization, the computational
burden can become prohibitive; for on-spot decision one can not wait for the solution of the
problem more than a few minutes.

From the analysis of the physical systems surrounding us we can easily see that the behavior
of a system very often changes in a smooth way with respect to the value of the parameters.
Moreover, if we are interested only in some output of interest, it often happens that the system
itself behaves as a filter, smoothing the output according to changes in the parameter values.
This leads to the intuition that, instead of restarting from scratch for every new simulation, we
can evaluate the behavior of a system in an easy way exploiting the knowledge of the solution
for some (already computed) solutions. This is the rationale that drives all the reduced order
models and methods formulations [20].

Thus, the master idea is to create a cooperation and a synergy between high performance
computing and reduced order methods (see Figure 2). This leads to the well known offline-
online splitting: during the offline stage we rely on HPC platforms to compute some very
accurate solution for properly selected values of the parameters, and store them in a database of
basis functions; during the online stage, we just need to combine basis functions in the database
to evaluate the solution at new values of the parameter.

Although in the last decades several efforts have been spent in this field, a lot of challenges
still need to be tackled in order to face and overcome limitations of the state of the art. Reduced
order methodologies should be improved for more demanding applications in industrial, medi-
cal and, in general, applied sciences settings. In particular, multiphysics and coupled problems
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Figure 2: The main idea behind reduced order model: offline-online splitting of computational
phases.

shall be considered, as well as a tighter integration with a pre-existing industrial/clinical pipeline
(e.g. in data acquisition), in order to export numerical simulations and scientific computing in
fields where there is still little exploitation of computational methods. The whole computa-
tional science community will need to cooperate to reach these goals, training a new generation
of computational scientists. For this reason, SISSA mathLab has released the RBniCS open-
source library [10] containing the implementation of several reduced order techniques, based
on FEniCS [47].

3 Reduced Order Methods in a nutshell

We present a brief summary about the construction of a reduced order method (ROM) for a
general problem at hand, written as:

F(u(µ);µ) = 0, (1)

where the parameters are represented by µ, the state solution is denoted by u(µ) and F is the
operator holding the state equation.

Following the paradigm shown in the previous section, let us denote as uN (µ) the truth
solution, obtained by solving

FN (uN (µ);µ) = 0, (2)

querying an high-fidelity solver characterized by a large number N of degrees of freedom.
The solver can be of very different type, depending on the application and the know-how

gained in the past. For applications related reduced order models based on a finite element
high-fidelity discretization see [71, 32, 88, 81, 74, 41]), as well as finite volume [34, 35, 28,
52], finite difference method [29, 17, 51], spectral element method [77, 70], extended finite
element method [18, 64], boundary element method [53, 83], isogeometric analysis [53, 84]
and discontinuous Galerkin methods [43, 2, 67].

Thus, after having solved (2) for some, properly selected values of the parameter, to build a
reduced space, we perform a Galerkin projection over the reduced space and obtain the (general)
reduced order model:

FN(uN(µ);µ) = 0, (3)

where uN(µ) is the reduced order solution and N � N is the dimension of the reduced system
to be solved. Several numerical recipes are being studied in the community to guarantee the
quality of the approximation and enhance the computational speedup of the evaluation, such as
efficient assembly of problem operators [13], efficient treatment of nonlinearities [72], stability
of the solution [80, 7], error bounds [88, 81, 62], efficient parametrization of extended systems
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Figure 3: An example of wave pattern simulation around a hull geometry taken from a CAD
file.

and complex networks [41, 40], sampling [37] and references therein. After addressing these
issues for the particular problem at hand, we obtain an extremely fast system to be solved, which
can be queried to obtain real-time input-output evaluation of relevant quantities of interest with
an accuracy which is comparable to the high-fidelity solver.

In the following section we will provide a brief overview about some methods and applica-
tions we are treating in order to apply ROMs to some real life problems.

4 Some ROM challenges in CFD

In this section we show some, indeed very different, insights about problems arising in the
industrial and clinical fields. Moreover, we also provide some ideas on the integration of these
frameworks in the context of model order reduction. We first tackle the problem of ship per-
formances prediction using real CAD geometries (Section 4.1), then the problem of the geo-
metrical parametrization (Section 4.2) and the exploitation of isogeometric analysis (Section
4.3) in view of a complete integration of the three aspects in a single pipeline: from geometri-
cal modification of a CAD file to the fast prediction of the wave resistance, thanks to reduced
order methods. Moreover, we show new possibilities in parameter studies (Section 4.4) and a
multiphysics example regarding fluid-structure interaction (Section 4.5). Finally we provide an
insight in biomedical applications (Section 4.6).

4.1 Ship performances: towards the optimization of sea keeping

In the last few years, numerical fluid dynamic simulations have become an increasingly
common tool in ship and yacht design. The growing computational resources available have
significantly improved the quality of the results obtained. This has naturally generated, among
design engineers, the desire to explore new design configurations. Researchers are then faced
with the challenge to develop models of higher complexity, which can provide fast and yet
accurate prediction of unsteady and nonlinear hydrodynamic loads on the hull, and reliable
computations of nonlinear wave-induced ship motions.

SISSA mathLab is currently involved in the development of a model for three dimensional
simulations of naval hydrodynamics based on potential flow theory (see Figure 3).

Despite the simplifying assumptions upon which the potential flow theory is based, adopting
fully nonlinear free surface boundary conditions on the water free surface makes this reduced
model extremely accurate in predicting both water elevation field and hull resistance [58]. In ad-
dition, the governing Laplace equation allows for a spatial discretization based on the Boundary
Element Method (BEM), which only requires computational grids covering the the flow domain
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boundaries. Such surface grids in three dimensions are ideal for the front tracking free surface
treatment at hand, as they massively reduce the problems related to mesh deformation and gen-
eration. The solver described has been implemented in a stand-alone C++ application, which is
only based on open source software libraries. In particular, the deal.II library [11, 12] is used
for the spatial BEM discretization of the equation, and the IDA package of the Sundials library
[38] is used to time advance the resulting Differential Algebraic Equations (DAE) system. Ex-
ploiting the relative simplicity of the surface quadrilateral grids required by BEM, an automatic
mesh generation module has been developed to complement the flow solver [59]. Making use
of the classes of open source C++ library OpenCASCADE [66], such module is able to import
the CAD file describing the hull geometry and use it to generate the computational grid [57, 24].
After its most recent development, the model is also accounting for the rigid ship motions. To
this end, the three dimensional rigid body equations of motion for the hull, have been strongly
coupled to the fluid dynamic solver, so as to obtain a Fluid Structure Interaction (FSI) model
able to compute hydrodynamic equilibrium position and orientation of the ship. At every time
instant, the CAD model of the hull is displaced in the current position, and is used to compute
the correct positioning of the water nodes in contact with the ship surface.

The model described is able to provide accurate estimations of hull resistance, sink and trim
[60] at a computational cost which is significantly lower with respect to models based on the
solution of Navier–Stokes equations, such as RANS or LES. For this reason, a very stimulating
development of the model would be that of including the effect of non-calm sea conditions on
the ship resistance and motions. On one hand, this would allow for the estimation of the added
resistance component due to waves characterized by different wave lengths. On the other hand,
it would open the door towards time domain manoeuvring and seakeeping simulations able to
assess the ship stability and the hydrodynamic loads on the hull in presence of waves. Moreover,
considering specific historic databases for local wave conditions, it would be possible to design
a hull shape in order to minimize wave resistance, wave loads and motions given the specific
sea conditions on the route in which the ship will operate. Naturally, this intriguing scenario
requires an extremely high number of calls to the FSI solver, to test the effects of variations
of both parameters related to the hull geometry and to the wave field encountered. Thus, the
application of reduced order methods to the – already reduced – fully nonlinear potential fluid
dynamic solver is currently under study. A first example of reduced order methods applied to
BEM has been presented in [83, 53].

4.2 Efficient and accurate geometrical parametrization techniques: the free-form defor-
mation setting

Shape optimization is nowadays a major field of interest in the design community. In this
framework, we need to change some (possibly a few) geometrical parameters, compute the
output of interest (cost functional) and iterate till we obtain the optimal geometry. To per-
form these operation, we need to rely on efficient and accurate geometrical parametrization
techniques. Among many possibilities [82, 8, 5], we employ the free-form deformation (FFD)
[44, 86]. This techniques is made up by three steps, summarized in Figure 4. First of all, the
physical domain is mapped to a reference one. Then, design variables are varied (by moving
few control points) and the deformed configuration is mapped back to the physical domain.

FFD can be applied to a CAD file or to the mesh directly. Both the approaches have some
pros and cons. On the one hand, the application to the CAD allows an intuitive and easy use
of the tool by engineer and designers; on the other hand, however, it requires the meshing step
for each new configuration. This step can be computational expensive for some, very complex,
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Figure 4: FFD in action: initial configuration, creation and modification of the lattice, final
configuration.

Figure 5: FFD in action: application to a CAD file (left) and a mesh (right) for a simple aero-
nautical geometry.

engineering problems. In Figure 5 we depict two applications of FFD corresponding to the two
different approaches.

The choice of which strategy is the best depends mainly on the specific case. For example,
if the high-fidelity software adopted takes as input the CAD file (and performs the mesh step
automatically) and it is used as a black-box code, the FFD should be applied to the CAD file
itself. Still, if one does not have any particular constraint, and can deeply modify the software,
the strategy of applying FFD to the mesh is more efficient and also more suitable for the model
reduction. Moreover, starting from this general paradigm, specialized shape parametrization
techniques can be tailored for each application [5, 6].

4.3 From CAD to real-time evaluation: isogeometric solvers coupled with ROMs

One of the emerging fields in computational fluid dynamics is the use of isogeometric solvers.
These present several features that are very attractive, especially for industrial problems. In fact,
all the Computer Aided Design (CAD) geometries, the standard tool for industrial design, are
nothing but NURBS patches. The idea is to employ the basis functions describing the geometry
also for the analysis of the problem in a fully integrated framework [23]. Isogeometric analysis
(IGA) offers also very interesting features from the geometrical parametrization point of view,
thanks to its direct interface with CAD files structure. Unfortunately, real CAD files are very
complex and contain patches with different parametrization of the geometry, trimmed surfaces
and other features difficult to be treated efficiently. The full integration of geometry and anal-
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Figure 6: Isogeometric aircraft wings.

Figure 7: Example of an isogeometric exhaust gasses device.

ysis of the problem is still an open problem, although much work has been done to overcome
this gap. See, for instance, Figures 6 and 7 for the case of an isogeometric aircraft wing and
exhaust gasses device.

The integration of IGA with reduced order methods is a challenge that can bring together all
the aspect of design procedures in an easier way: from the modification of the CAD file to the
real time evaluation of the solution for the new configuration.

The work carried out in this field, is intrinsically connected to what has been proposed in
section 4.2: both methods treat, from a different point of view, the direct interface with complex
geometries, and these two steps can be coupled together to form a complete pipeline from CAD
file to ROM solution. For some applications to the ROM-IGA coupling, see [83, 84, 53, 25].

4.4 New opportunities in parameter studies: active subspaces

In many cases the dimension of the parametrized problem is only artificially high. To tackle
this problem there are several techniques. One of them is manifold learning technique, that is
a general cap for many different method (see [46]). They try to represent the manifold of the
snapshots from the high fidelity solver in a reduced way, for instance unfolding the manifold
along particular directions. Manifold Learning can be thought of as an attempt to generalize
linear frameworks like Principal Component Analysis to be sensitive to non-linear structure in
data. Though supervised variants exist, the typical manifold learning problem is unsupervised:
it learns the high-dimensional structure of the data from the data itself, without the use of prede-
termined classifications. Engineering applications include manufacturing processes (see [45],
where a manifold walking algorithm is used, and [76]) and mechanical tests [56], and structural
optimization problems [75]. Among other we mention its application in natural science, for
instance [3].

Another emerging idea is the active subspaces method. The active subspaces approach rep-
resents one of the emerging ideas for dimension reduction in the parameter studies. The concept
was introduced by Constantine in [21] and employed in different real problems. We mention,
among others, aerodynamic shape optimization [50], the parameter reduction for the HyShot II
scramjet model [22] and active subspaces for integrated hydrologic model [42].
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Several recent model reduction techniques attempt to compute comparable predictions at
reduced costs for the same inputs [78]. However, using ROMs in a parameter study gives
answers for the reduced order model instead of the actual model.

A characteristic of the active subspaces is that instead of identifying a subset of the inputs as
important, they identify a set of important directions in the space of all inputs. This is done by
exploiting the information given from the gradients of the output function. If the simulation’s
prediction does not change as the inputs move along a particular direction, then we can safely
ignore that direction in the parameter study. We call subspace-based dimension reduction the
dimension reduction with linear combinations of inputs. In Figure 8 it is possible to capture the
main idea behind the active subspaces approach: we try to rotate the inputs domain in such a
way lower dimension behavior of the output function are revealed. When you identify an active
subspace for your problem of interest, then it is possible to perform different parameter studies
such as response surfaces, integration, optimization and statistical inversion.

Moreover, this method seems to have great potentiality in the model reduction when the input
space is very large, for instance with geometrical parameters (see section 4.2) or in shape opti-
mization problem [27]. Moreover it can be coupled with many optimization problems linking
together different but correlated outputs.

(a) Original output function (b) Intermediate rotation (c) Output function with re-
spect to the active variable

Figure 8: Example of a bivariate output function (a), intermediate rotation of the domain (b),
and the final state (c), where we can see the variation of the function along the active variable.

4.5 Towards multi-physics: an example of fluid-structure interaction problem

Coupled problems are often encountered in the industrial practice, involving different phys-
ical system each described by a set of PDEs. An example are fluid structure interaction (FSI)
problems, where a mutual interaction between a fluid flow and a deformable structure occurs
(see Figure 9). The structural motion or deformation caused by the fluid action is significant,
so that it will in turn affect the fluid flow. Such a behavior has to be modeled with proper
coupling conditions that need to be treated with adequate numerical techniques. The classic
example of fluid structure interaction problem that is most often encountered in the scientific
literature is the interaction between an incompressible fluid flow and an hyperelastic solid. In-
dustrial problems, however, often require coupling to further equations to describe a complex
multiphysics scenario, characterized for instance by turbulent flows (with boundary layers that
need to be accurately solved), thermal analysis, multiphase flows, free surfaces or chemical re-
actions. Each additional coupled problem severely increases the computational time required
for the simulation. Thus, even though complex multiphysics problems are the most challenging
for reduced order methods, effective reduction techniques will pave the way to striking compu-
tational speedups [4].
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Figure 9: Snapshot taken from the simulation of the Hron and Turek FSI benchmark, proposed
in [87].

As an additional source of complexity multiple regions, and thus multiple interfaces, can
be present (see for example Figure 10). If multiple couplings have to be solved, it is seldom
sufficient to simply concatenate them and solve each interaction sequentially. If the mutual
interactions are strong, convergence will not be achieved, and a simultaneous solution of the
different interfaces is required [16].

Figure 10: Example of multi-fields problem: a solid plate divides two fluid domains. In this
particular example, computations were performed with a finite volume code [61].

At the high-fidelity level, the solution approaches to FSI problems can be classified in two
broad categories: partitioned approach (flow and structure equations are solved in sequence)
[85], and monolithic approach (the continuum is discretized and solved as a whole) [39]. Re-
duced order methods built on both approaches should be considered.

The partitioned approach is the most broadly used in the industrial context, because it allows
the coupling of existing solvers, treating them as black boxes if the access to the code is not
possible. Thus, the already optimized solvers, along with their preconditioners can be readily
employed. A partitioned approach often requires to iterate the solution process within each
time step of the simulation. This is due to the strength of the coupling as well as the known
problem of the artificial added mass [31], that introduces further instabilities. This means that
the systems of equations might have to be solved several times every time step. Thus, the
computational costs can quickly become prohibitive unless efficient iterative methods to ensure
a low number of iterations are employed. Quasi-Newton methods (for example [26]) have
proven quite efficient to this regard. In this context, reduction techniques, prove very useful to
make the iterative method as efficient and fast as possible. In particular, the reuse of information
coming from the results at previous iterations (and previous time steps) has to be optimized.
Reusing more iterations allows for a better approximation of the system’s Jacobian, but at the
expense of the conditioning. The interaction of a fluid and slender structures is an example of a
case where the numerical treatment of the problem is very challenging [68]. Proper Orthogonal
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Decomposition has been used to preserve the convergence rate of the iterative method when a
lot of previous iteration are reused [14]. Singular Value Decomposition is also a very robust
method to deal with the ill conditioning (and possible rank-deficiency) of the linear system to
be solved in an iterative method [30]. In this latter case, the errors due to ill conditioning can
be directly bounded by choosing how many singular values to retain from the decomposition
(setting the smaller ones to a zero value).

Monolithic solvers, on the other hand, are more robust for strongly coupled problems. Gener-
ally, their performance, in terms of computational times, is superior to that of segregated solvers.
Indeed, it has been shown that the monolithic approach can be competitive even for problems
that feature a weak coupling, and thus would require a low number of iterations for the segre-
gated approach [36]. For these reasons, preliminary investigation of monolithic reduced order
models for FSI problem have been investigated in [9].

4.6 Biomedical applications: from patient-specific clinical data to real-time simulation

Computational fluid dynamics applications in biomedicine, in particular related to haemo-
dynamics, are another example of fields where reduced order methods are required to propose
a more widespread usage of mathematical modelling in the daily practice. Indeed, for instance
in cardiovascular applications, several studies have shown that computational fluid dynamics
indicators actually correlate with relevant medical questions, so that it is nowadays agreed that
numerical simulation could, in principle, support medical decisions [49]. Two main require-
ments are usually identified by clinical partners in order for computational approaches to be
really useful in the daily practice: integration with clinical data and real-time simulations. The
former takes into account the personalization of the numerical simulation, starting from patient-
specific clinical data on the disease (e.g. MRI or CT scans of the organ) or on flow conditions
(e.g. flow rate measurements). The latter is dictated by the short time span available to take
clinical decisions, especially in cases where the disease may impair the health of the patient.
Under these constraints, it is natural to turn to reduced order modelling to provide fast and re-
liable simulations. We refer to [55, 33, 15, 63, 64, 65] for some applications of ROMs in a
biomedical problems. A description of the full reduced order pipeline for the sensitivity anal-
ysis of patient-specific configurations of coronary artery bypass grafts (CABGs) is provided in
[5, 6].

Moreover, a parametrized formulation of the biomedical problem allows clinicians to com-
pare several different scenarios for what concerns both disease and medical treatment. For
instance, ROMs can be a support in decision of whether to pursue medical treatment, by pro-
viding accurate indicators of the disease starting from clinical data (e.g. precise identification
of degree of stenosis based on experimental pressure drop measurements in coronary arteries).
Moreover, when coupled with shape parametrization techniques (Section 4.2), ROMs can also
support the comparison of different surgical choices, which are usually reflected in geometrical
variations of the computational domain. Figure 11 shows an example of a complete framework
for a biomedical simulation. Finally, ROMs can also be used in the design of new medical
treatment devices. The efficient treatment of multiphysics problems (Section 4.5) will enhance
the applicability of ROM to a broader number of applications, e.g. considering reduced order
simulations of fluid-structure interaction phenomena in large arteries or coupling of reduced
CFD simulations to drug delivery treatments.
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Figure 11: Example of a reduced order framework for biomedical applications.

5 Perspectives

We have provided examples of research activities in industrial and clinical projects where
there is a certain degree of complexity and a certain need for the development of reduced models
and methods. It is time to better integrate Data, Modelling, Analysis, Numerics, Control, Opti-
mization and Uncertainty Quantification in a new parametrized, reduced and coupled paradigm
to be able to face more and more complex problems, representing complex systems. We need
to draw the attention to the fact that Science and Industry advance with Mathematics which is
a propeller for Innovation and technological transfer, as shown in some examples taken from
projects in naval and yachts engineering, as well as mechanical and biomedical engineering.
Integration of CAD tools and geometrical parametrization, as well as medical data with geomet-
rical reconstruction and exploration of parameter space are only few aspects of a much bigger
framework, including proper integration of high order methods and low order ones (IGA-ROM
is one of the possible examples).
Among other important issue under exploration, we mention the detection of flow bifurcations
and the study of flow stability in CFD problems with ROM techniques [70], with also important
applications in cardiovascular flows, such as the Coanda effect in Mitral valves [69]. Reduced
order methods for parametrized CFD problems characterized by turbulent patterns are also un-
der investigation for important industrial applications [48]. Last, but not least, we mention
important recent advances in model order reduction for uncertainty quantification, see [19] and
references therein for recent contributions and a wider framework.
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ical Analysis-Modélisation Mathématique et Analyse Numérique, 42(2):277–302, 2008.

[35] B. Haasdonk, M. Ohlberger, and Rozza. A reduced basis method for evolution schemes
with parameter-dependent explicit operators. Electronic Transactions on Numerical Anal-
ysis, 32:145–161, 2008.

[36] M. Heil, A. L. Hazel, and J. Boyle. Solvers for large displacement fluid-structure inter-
action problems: segregated versus monolithic approaches. Computational Mechanics,
43(1):91–101, 2008.

[37] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for
Parametrized Partial Differential Equations. Springer Briefs in Mathematics, 2015.

[38] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and
C. S. Woodward. Sundials: Suite of nonlinear and differential/algebraic equation solvers.
ACM Transactions on Mathematical Software, 31(3):363–396, 2005.

[39] J. Hron and S. Turek. A monolithic FEM/multigrid solver for an ALE formulation of fluid-
structure interaction with applications in biomechanics. In Fluid-Structure Interaction.
Modelling, Simulation, Optimisation, pages 146–170. Springer Berlin Heidelberg, 2006.

15



F. Salmoiraghi, F. Ballarin, G. Corsi, A. Mola, M. Tezzele, and G. Rozza

[40] L. Iapichino, A. Quarteroni, and G. Rozza. A reduced basis hybrid method for the coupling
of parametrized domains represented by fluidic networks. Computer Methods in Applied
Mechanics and Engineering, 221–222:63–82, 2012.

[41] L. Iapichino, A. Quarteroni, and G. Rozza. Reduced basis method and domain decompo-
sition for elliptic problems in networks and complex parametrized geometries. Computers
& Mathematics with Applications, 71(1):408–430, 2016.

[42] J. Jefferson, J. Gilbert, P. Constantine, and R. Maxwell. Reprint of: Active subspaces for
sensitivity analysis and dimension reduction of an integrated hydrologic model. Comput-
ers & Geosciences, 2015.

[43] S. Kaulmann, M. Ohlberger, and B. Haasdonk. A new local reduced basis discontinuous
galerkin approach for heterogeneous multiscale problems. Comptes Rendus Mathema-
tique, 349(23):1233–1238, 2011.

[44] T. Lassila and G. Rozza. Parametric free-form shape design with PDE models and reduced
basis method. Comput. Meth. Appl. Mech. Engrg., 199(23-24):1583–1592, 2010.

[45] G. Le Quilliec, B. Raghavan, and P. Breitkopf. A manifold learning-based reduced or-
der model for springback shape characterization and optimization in sheet metal forming.
Computer Methods in Applied Mechanics and Engineering, 285:621–638, 2015.

[46] J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer Science &
Business Media, 2007.

[47] A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated Solution of Differential Equations
by the Finite Element Method. Springer, 2012.

[48] S. Lorenzi, A. Cammi, L. Luzzi, and G. Rozza. POD-Galerkin method for finite vol-
ume approximation of Navier-Stokes and RANS equations. Submitted. SISSA preprint
2016/MATE, 2016.

[49] F. Loth, P. F. Fischer, and H. S. Bassiouny. Blood flow in end-to-side anastomoses. Annual
Review of Fluid Mechanics, 40:367–393, 2008.

[50] T. Lukaczyk, F. Palacios, J. Alonso, and P. Constantine. Active subspaces for shape opti-
mization. In 10th AIAA Multidisciplinary Design Optimization Conference, 2014.

[51] Z. Luo, J. Chen, J. Zhu, R. Wang, and I. M. Navon. An optimizing reduced order FDS
for the tropical pacific ocean reduced gravity model. International Journal for Numerical
Methods in Fluids, 55(2):143–161, 2007.

[52] Z. Luo, H. Li, P. Sun, J. An, and I. M. Navon. A reduced-order finite volume element
formulation based on POD method and numerical simulation for two-dimensional solute
transport problems. Mathematics and Computers in Simulation, 89:50–68, 2013.

[53] A. Manzoni, F. Salmoiraghi, and L. Heltai. Reduced Basis Isogeometric Methods (RB-
IGA) for the real-time simulation of potential flows about parametrized NACA airfoils.
Computer Methods in Applied Mechanics and Engineering, 284:1147–1180, 2015.

16



F. Salmoiraghi, F. Ballarin, G. Corsi, A. Mola, M. Tezzele, and G. Rozza

[54] I. Martini, G. Rozza, and B. Haasdonk. Reduced basis approximation and a-posteriori
error estimation for the coupled Stokes-Darcy system. Advances in Computational Math-
ematics, 41(5):1131–1157, 2015.

[55] K. McLeod, A. Caiazzo, M. Fernández, T. Mansi, I. Vignon-Clementel, M. Sermesant,
X. Pennec, Y. Boudjemline, and J.-F. Gerbeau. Atlas-based reduced models of blood flows
for fast patient-specific simulations. In O. Camara, M. Pop, K. Rhode, M. Sermesant,
N. Smith, and A. Young, editors, Statistical Atlases and Computational Models of the
Heart, volume 6364 of Lecture Notes in Computer Science, pages 95–104. Springer Berlin
/ Heidelberg, 2010.

[56] L. Meng, P. Breitkopf, B. Raghavan, G. Mauvoisin, O. Bartier, and X. Hernot. Identifi-
cation of material properties using indentation test and shape manifold learning approach.
Computer Methods in Applied Mechanics and Engineering, 297:239–257, 2015.

[57] A. Mola and L. Heltai. The step-54 tutorial program. http://dealii.org/
developer/doxygen/deal.II/step_54.html, 2014.

[58] A. Mola, L. Heltai, and A. DeSimone. A stable and adaptive semi-lagrangian poten-
tial model for unsteady and nonlinear ship-wave interactions. Engineering Analysis with
Boundary Elements, 37(1):128 – 143, 2013.

[59] A. Mola, L. Heltai, and A. Desimone. A fully nonlinear potential model for ship hydro-
dynamics directly interfaced with CAD data structures. In The 24th International Ocean
and Polar Engineering Conference, 2014.

[60] A. Mola, L. Heltai, and A. Desimone. Ship Sinkage and Trim Predictions Based on a CAD
Interfaced Fully Nonlinear Potential Model, submitted. In The 26th International Ocean
and Polar Engineering Conference, 2016.

[61] F. Moukalled, L. Mangani, and M. Darwish. The finite volume method in computational
fluid dynamics. Springer international publishing Switzerland, 2016.

[62] N.-C. Nguyen, G. Rozza, and A. Patera. Reduced basis approximation and a posteriori
error estimation for the time-dependent viscous Burgers’ equation. Calcolo, 46:157–185,
2009.

[63] S. Niroomandi, I. Alfaro, E. Cueto, and F. Chinesta. Real-time deformable models of
non-linear tissues by model reduction techniques. Computer Methods and Programs in
Biomedicine, 91(3):223–231, 2008.

[64] S. Niroomandi, I. Alfaro, D. Gonzlez, E. Cueto, and F. Chinesta. Real-time simulation
of surgery by reduced-order modeling and X-FEM techniques. International Journal for
Numerical Methods in Biomedical Engineering, 28(5):574–588, 2012.

[65] S. Niroomandi, D. Gonzlez, I. Alfaro, F. Bordeu, A. Leygue, E. Cueto, and F. Chinesta.
Real-time simulation of biological soft tissues: a PGD approach. International Journal
for Numerical Methods in Biomedical Engineering, 29(5):586–600, 2013.

[66] Open Cascade S.A.S., OpenCASCADE technology, 2010. http://www.
opencascade.org.

17

http://dealii.org/developer/doxygen/deal.II/step_54.html
http://dealii.org/developer/doxygen/deal.II/step_54.html
http://www.opencascade.org
http://www.opencascade.org


F. Salmoiraghi, F. Ballarin, G. Corsi, A. Mola, M. Tezzele, and G. Rozza

[67] P. Pacciarini. Discontinuous Galerkin Reduced Basis Element methods for Parametrized
Partial Differential Equations in Partitioned Domains. PhD thesis, Department of Mathe-
matics, Politecnico di Milano, 2016.

[68] M. Paidoussis. Fluid-Structure Interactions: Slender Structures and Axial Flow. Aca-
demic Press, 2014.

[69] G. Pitton, A. Quaini, and G. Rozza. Computational reduction strategies for bifurcations
and stability analysis in fluid-dynamics: applications to Coanda effect in cardiac flows.
Submitted, 2016.

[70] G. Pitton and G. Rozza. A reduced basis method for bifurcation problems in incompress-
ible fluid dynamics. Submitted. SISSA preprint 55/2015/MATE, 2015.

[71] C. Prud’homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera, and
G. Turinici. Reliable real-time solution of parametrized partial differential equations:
Reduced-basis output bound methods. Journal of Fluids Engineering, 124(1):70–80,
2002.

[72] A. Quarteroni and G. Rozza. Numerical solution of parametrized Navier–Stokes equa-
tions by reduced basis methods. Numerical Methods for Partial Differential Equations,
23(4):923–948, 2007.

[73] A. Quarteroni and G. Rozza. Reduced Order Methods for Modeling and Computational
Reduction, volume 9. Springer Milano, MS&A Series, 2014.

[74] A. Quarteroni, G. Rozza, and A. Manzoni. Certified reduced basis approximation for
parametrized partial differential equations and applications. Journal of Mathematics in
Industry, 1(1):1–49, 2011.

[75] B. Raghavan, P. Breitkopf, Y. Tourbier, and P. Villon. Towards a space reduction approach
for efficient structural shape optimization. Structural and Multidisciplinary Optimization,
48(5):987–1000, 2013.

[76] B. Raghavan, G. Le Quilliec, P. Breitkopf, A. Rassineux, J.-M. Roelandt, and P. Villon.
Numerical assessment of springback for the deep drawing process by level set interpo-
lation using shape manifolds. International Journal of Material Forming, 7(4):487–501,
2014.

[77] O. Roderick, M. Anitescu, and Y. Peet. Proper orthogonal decompositions in multifidelity
uncertainty quantification of complex simulation models. International Journal of Com-
puter Mathematics, 91(4):748–769, 2014.

[78] C. Rowley. Model reduction for fluids, using balanced proper orthogonal decomposition.
International Journal of Bifurcation and Chaos, 15(03):997–1013, 2005.

[79] G. Rozza. Reduced basis approximation and error bounds for potential flows in
parametrized geometries. Comm. Comput. Phys., 9:1–48, 2011.

[80] G. Rozza, D. Huynh, and A. Manzoni. Reduced basis approximation and a posteriori
error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability
constants. Numer. Math., 125(1):115–152, 2013.

18



F. Salmoiraghi, F. Ballarin, G. Corsi, A. Mola, M. Tezzele, and G. Rozza

[81] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis approximation and a posteriori
error estimation for affinely parametrized elliptic coercive partial differential equations.
Archives of Computational Methods in Engineering, 15:1–47, 2008.

[82] G. Rozza, A. Koshakji, and A. Quarteroni. Free Form Deformation techniques applied to
3D shape optimization problems. Communications in Applied and Industrial Mathemat-
ics, 2013.

[83] F. Salmoiraghi. Reduced order models for potential flows past parametrized NACA air-
foils based on an isogeometric boundary element method. Master thesis, Aerospace En-
gineering, Politecnico di Milano. https://home.aero.polimi.it/quadrio/
it/Tesi/salmoiraghi/tesi-salmoiraghi.pdf, 2014.

[84] F. Salmoiraghi, F. Ballarin, L. Heltai, and G. Rozza. Isogeometric analysis-based reduced
order modelling for incompressible linear viscous flows in parametrized shapes. Submit-
ted. SISSA preprint 06/2016/MATE.
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