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Abstract. The present paper provides a general method to deal with nonlinear in-
tegro-
proach. In this context, the elastic metamaterial is characterised by long-range non-
local interactions besides a nonlinear short-range constitutive relationship. Results
are analytically obtained and unveil the birth of unconventional propagation.
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1 Introduction

This work is aimed at presenting a general approach to nonlinear and long-range con-

tion that enable the investigation of the dispersion relationship. Eventually, a simple
example is introduced to show a first digression about the potential application of the
method.
Metamaterials enjoy widespread attention due to the unexpected results they produce
in many applications. In electromagnetics, metamaterials are frequently related to
anomalous dissipation and diffraction properties of electromagnetic media that lead to
negative group velocity, light stopping and fast light [1]. Superluminal propagation
has been observed through an acoustic experimental setup [2-3]. In mechanics, met-
amaterials change the connectivity scheme of a structure and induce micropolar,
higher-gradient and nonlocal elasticity. In this context, metamaterials are thought as
conventional elastic materials equipped with long-range interactions, the source of
integral contributions and nonlinear constitutive relationships. The effect of these
long-range interactions has been investigated in [4-7], but never tackling the nonline-
arity. Long-range interactions change the topology of the connections and represent a
breakthrough in the conventional concept of particle-particle interaction between
closest neighbours, which leads to classical wave propagation. When the connection
is extended either to one-to-all particles or to all-to-all particles, the introduced modi-
fication becomes source of a more sophisticated propagation behaviour. Similar ef-
fects have been noticed only in quantum physics [8-9 10]. An-
other remarkable example is in acoustics, where long-range electrical interactions can
control the acoustic fields and well-known examples are plasmas and charged gases.
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In any case, the relation between nonlocality and wave propagation has not been in-
tensively developed, and unconventional propagating phenomena are not as common
as those appearing in electromagnetic applications.
Statistical linearization is a known procedure [11-13], often applied to random and
complex systems [14]. An example is the analysis of a catenary anchor leg mooring
(CALM) systems [15]. The chance to obtain analytical solutions is achieved by the
definition of a specific kernel for the long-range interactions: indeed, they are mod-
elled as elastic connections between far particles; however, the range of interaction is
limited by a rectangular window, as in [7], but here analysed for its one-dimensional
counterpart.
equation [16] and the dispersion relationship is calculated accordingly. Remarkable
insights can be derived: i) the applied random force affects the propagation character-
istics, namely the background noise modifies the phase and group velocity of the
waveguide, ii) after stochastic linearization, the system shows periodic variation of
the elastic parameters along the waveguide axis, iii) the nonlinear properties generates
the wavenumbers coupling.

2 Prototype equation and statistical linearization

A mathematical model, based on the nonlocal elasticity theory of Eringen, is consid-
ered. For a three-dimensional, continuous, unbounded medium, equipped with long-
range interactions, the Navier-Cauchy equation of motion becomes:

(1)

The long-range interaction appears as an integral term. It represents the summation of
the long-range interaction forces, exerted on the particle originally at , due to all the
particles at . resembles the possible sources of local nonlinearities and has
differential nature.
Nonlinear equations can be attacked by the statistical linearization-SL approach
[11,12]. Equation (1) can be written as:

(2)

where and are a linear integro-differential and a nonlinear differential operator,
respectively, is the displacement of the elastic system, a random external
force. The SL approach replaces the nonlinear term term with an equivalent
linear operator , leading to:

. (3)

The vector is a set of parameters that can be suitably selected to make equation (3)
as close as possible to equation (2). A direct comparison between (2) and (3) produces
the error equation:

(4)
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The SL requires the minimization of the mean-square of the error equation in
terms of the parameters :

. (5)

The solution of this last equation determines the optimal vector and one can analyse
the equivalent linear integro-differential equation , instead
of the nonlinear integro-differential equation (2).

3 Statistical linearization of the Navier-Cauchy equation with
long-range forces

The analysis in the previous section leads to equation (5) the form of which is specifi-
cally investigated here under some simplified assumptions.
The equation of motion, for a one-dimensional system, with kernel satisfying
the action-reaction principle, i.e. , and decaying with the dis-
tance, namely , is of the form:

(6)

meaning:

(7)

(8)

where indicates the convolution operation, and we assume:

(9)

resembles the stiffness modulation of the elastic connections. About the form of the
kernel , it is not necessary at the moment to introduce any further specification.
The nonlinear term is derived considering a nonlinear stress-
strain relationship:

(10)

It is apparent then that the error equation is:

(11)

and it is immediate to evaluate the parameter through equation (5), which leads to:

(12)
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The complete characterization of the parameter requires the definition of the coeffi-
cients and , which becomes simpler when it is reasonable to assume
those variables equipped with a Gauss-like type of probability density function. For
this reason, we limit our attention to the case is a random force with flat power
spectral density and a Gauss-like distribution. Additionally, it is assumed to be a
point force applied at the origin of the axis.
A modal expansion of the solution helps in finding simpler results. Without loss of
generality we assume , including only one single mode. Under
these conditions, equation (12) provides .
Therefore, equation (3) assumes the form:

. (13)

To evaluate the coefficient , the following expression can be considered [17]:

(14)

with the variance of , the power spectral density of , the com-
plex frequency response of the system at when the input force is at . The fre-
quency response can be easily obtained by equation (13). Eventually, equation (14)
appears to be an equation in terms of the variance .

4

Once equation (14) is solved, the value can be substituted into equation (13). Re-
placing in it , and for a rectangular window on length , around
the origin, we obtain:

(15)

This is a linear integro-differential equation. However, the term
exhibits a parametric dependence on . This can be regarded as an extra-stiffness

that superimposes to . For example, if is the first mode,
then is a square of a sinusoid, and it perturbates the constant stiffness , as in
Fig. 1.
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Fig. 1 Effective stiffness

We present here to approach
equation (15). Applying the Fourier transform both in space and time, we obtain:

(16)

where for the chosen window. For any we have the homo-
geneous integral equation:

(17)

whose explicit form is:

. (18)

The discretization of the previous equation leads to:

(19)

namely,

, where , with

(20)

We are interested in non-trivial and not identically to zero solutions. This technically
happens if the Fredholm determinant associated to vanishes, from which we can
derive the dispersion relationship.
The condition for the determinant to vanish does not lead to equations independent for
each and the wavenumbers mix up. Given a value for the frequency, the vanishing

determinant condition does not imply each ik is determined. The determinant expres-

sion is:

(21)
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This means that, assigned a value for and , the values for the wavenumbers
are not uniquely determined. Rather, one can select arbitrarily wavenumber
values and determine consequently the value for the N-th remaining wavenumber.
Since, at any frequency, the values for the N-1 wavenumbers can be arbitrarily as-
signed, the N-th can range in a set, describing a segment at each frequency.
The dispersion relationship depends on: i) the presence of due to long-range inter-
actions, ii) the presence of as an effect of the background noise in the structure.
From equation (21) we can learn what follows: firstly it is not possible to excite indi-
vidual and independent wavenumbers with a given frequency, and this is reminiscent
of nonlinear systems (e.g super-harmonics and sub-harmonics); secondly, the level of
the random excitation affects the propagation characteristics since it alters the value
of the coefficient by . Accordingly, Fig. 2 shows the effect of this coefficient on the
parametric stiffness .

Fig. 2 Effect of on

A last consideration can be extrapolated by both Fig. 1 and Fig. 2. The effective stiff-
ness , taking into account both the standard elastic modulus and its modulation
due to the nonlinearities, is a periodic function. This suggests a localization phenome-
non, namely the Anderson localization, related to stop band, low pass and high pass
behaviours.

5 Homogenization of the stiffness and parametric dispersion
relationship

To complete the investigation, we report here the analysis of the dispersion relation-
ship associated to equation (15). The aim is to highlight the effect of the random ex-
ternal force on the propagation characteristics. It is then reasonable to consider the
homogenised value of the effective stiffness , i.e. its average value , deduced by
Fig. 1. Using the same type of long-range interactions, the non-dimensional disper-
sion relationship is:

(22)

where is the non-dimensional frequency, the non-dimensional
wavenumber and is the non-dimensional parameter comparing the effect
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of the long-range interactions and of the nonlinearities. The advantage of such type of
formulation stands in the chance to discuss the dynamic behaviour in terms of the
parameter only. Fig. 3 shows the trend of the dispersion relationship varying with ,
compared with the standard one. All curves start with a very high slope to converge,
for high values of the non-
propagation. Since the derivative of the dispersion relationship is the group velocity,
this implies that the steeper the slope, the higher the group velocity, disclosing super-
fast propagation of the envelope, till the limit of superluminal propagation when the
curve has a vertical tangent, i.e. the case of . Moreover, since is a function of the
random force, through the coefficient , it can be discussed also in terms of : the
higher the value of , the higher the homogenised stiffness and the higher the
value of , the closer is the behaviour to the standard propagation. Eventually, the
smaller is , the higher is the group velocity.

Fig. 3 Non-dimensional dispersion relationship

6 Conclusions

In this paper, the case of a one-dimensional waveguide, in which the presence of
long-range interactions together with the nonlinear nature of the constitutive law, is
investigated. The long-range interactions are modelled as elastic connections occur-
ring between distant particles but only within a delimited region of length . The
nonlinear constitutive law accounts not only for the first order of the strain but it in-
cludes also the third. The resulting equation of motion, approached with the statistical
linearization process, has space-dependent coefficients. To analyse the obtained par-

approach is applied and by solving the associated
determinant the dispersion relationship is found. It depends on the nature of the long-
range interaction, through the term , and of the nonlinearity, related to the coeffi-
cient . This brings to light important insights: i) the level of the random excitation
directly affects the propagation characteristics, ii) as recurring of nonlinear systems, it
is not possible with a single frequency to excite independent and individual wave-
numbers. Moreover, the shape of the equivalent stiffness unveils Anderson localiza-
tion and thus, possible wave-stopping phenomena.
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