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Abstract – Key components of current cybersecurity methods are the Intrusion Detection Systems (IDSs), where different
techniques and architectures are applied to detect intrusions. IDSs can be based either on cross‑checking monitored events
with a database of known intrusion experiences, known as signature‑based, or on learning the normal behavior of the system
and reporting whether anomalous events occur, named anomaly‑based. This work is dedicated to the application of IDS to
the Internet of Things (IoT) networks, where also edge computing is used to support IDS implementation. Speci ic attention
is given to IDSs which leverage device classi ication at the edge. New challenges that arise when deploying an IDS in an edge
scenario are identi ied and remedies are proposed.
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1. INTRODUCTION
An Intrusion Detection System (IDS) is a software or
hardware component that identi ies malicious actions on
computer systems or networks, thus allowing security to
be maintained. Host‑based Intrusion Detection Systems
(HIDS) target a single computer system, while Network‑
based Intrusion Detection Systems (NIDS) target a whole
network. NIDS are devices or software components de‑
ployed in a network which analyze the traf ic generated
by hosts and devices [1]. NIDSs are the focus of this work
and from now on the term IDS will indicate NIDS.
The concept of IDS applied to the Internet of Things (IoT)
is not new andmany solutions have been proposed [2][3].
Traditional IoT‑oriented IDSs are placed at the device
level or at the gateway level, as shown in Fig. 1 and
in cases where operated by leveraging cloud computing.
However, recent advances in Edge Computing (EC) have
opened new possibilities of IoT that can be leveraged also
froma security point of view. Indeed EC extends the cloud
computing paradigm to the edge of the network. For ex‑
ample, edge computing devices, which are capable of in‑
telligent computing, can reduce the network latency by
enabling computation and storage capacity at the edge
network and this is particularly signi icant when dealing
with IoT. On the other hand, the presence of edge nodes
opens new breaches which could be exploited by mali‑
cious parties for their attacks. Edge nodes could be a vic‑
tim of unauthorized remote accesses or even of physical
tampering, especially those nodes which are deployed in
public areas. An attacker, gaining the control of an edge
node, could alter arbitrarily all the traf ic passing through
it. It could selectively‑forward some packets, or even in‑
jecting some new ones pretending to be a legitimate de‑
vice. If IDSs were placed on the device level or gateway

Fig. 1 – Network architecture of an edge‑enabled IoT system. Tradi‑
tional IoT IDSs are deployed at the device or gateway level (green boxes
in igure). These systems protect the network against attacks generated
by somemalicious IoT or non‑IoT devices in the speci ic network. How‑
ever, the network edge offers new attack surfaces to be exploited byma‑
licious parties. IDSs could be deployed at the network edge (red box in
igure). In this case new challenges arise and have to be solved, as a
consequence new IDSs speci ically designed for the edge should be im‑
plemented.

level, they would not have the possibility to detect such
attacks, since the intrusion takes place in a different net‑
work section. On the other hand, by deploying IDSs at the
network edge (red box in Fig. 1) new issues arise, which
hinder the reliability of such IDSs. For these challenges
to be solved, new IDSs speci ically designed for the edge
should be implemented.
In this framework, the goal of this work is threefold:

• to provide a taxonomy for IDSs and to discuss their
applications in the IoT ield;

• to present challenges and opportunities for the im‑
plementation of IDS at the edge;

• to discuss the open issues relevant to the adoption of
edge‑enabled architectures to IDS.
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The rest of the paper is organized as follows. In Section
2 we classify signature‑based and anomaly‑based IDSs.
Then, in Section 3, we discuss the application of IDS to
IoT environments while Section 4 speci ically addresses
edge‑enabled solutions. In Section 6 new challenges that
arise when deploying an IDSs in an edge environment are
identi ied. We illustrate how these challenge affects exist‑
ing IDS and propose possible remedies. Conclusions are
given in Section 7.

2. INTRUSIONDETECTION SYSTEMTAXON‑
OMY

The goal of an IDS is to prevent any unauthorized access
to an information system. Any access could pose a threat
to information con identiality, integrity or availability. An
IDS ful ills its duty by analyzing network traf ic and/or re‑
source usage and raising an alert when malicious activity
is identi ied.
The IDSs can be categorized into twomain families based
onwhich strategy the system follows to detect intrusions,
which can be either cross‑checking monitored events
with a database of known intrusion techniques or learn‑
ing the normal behavior of the system and reporting
whether some anomalous events are occurring. These
strategies are named signature‑based and anomaly‑based,
respectively.

2.1 Signature‑based IDS
Signature‑based IDSs are a class of systems that leverage
a database of signatures of known attacks. Signatures of
the current activities are extracted and matching meth‑
ods and/or protocol conformance checks are then used
to compare these signatures to the ones in the database.
If a match is found an alarm is triggered. They can oper‑
ate both in onlinemode, directlymonitoring the hosts and
raising alarms in real‑time, and of line mode, where logs
of the system activities are analyzed. This class of IDS is
also known in the literature as misuse detection, speci i‑
cation‑basedorknowledge‑baseddetection [4]. Themain
advantage of such an IDS is the high precision: if we have
well‑de ined signatures of known attacks, an IDS can re‑
liably raise alerts when they occur during operation. One
downside of the signature‑based approach is the extrac‑
tion of traf ic signatures, which may be a cumbersome
and lengthy task to carry out, depending on which and
how many traf ic “features” are considered. Indeed sig‑
natures are often manually‑crafted by experts having de‑
tailed knowledge of the exploits that the system is sup‑
posed to capture. Moreover, signature‑based IDSs cannot
cope with zero‑day attacks, which are attacks whose sig‑
nature is not in the IDS’s database. The rising rate of zero‑
day attacks [5] makes less effective the overall perfor‑
mance of a signature‑based IDS. For this reason anomaly‑
based IDSs were developed, a new class of IDSs which
model the nominal behavior of a computer system and
then reports any signi icant deviation from the baseline.

2.2 Anomaly‑based IDS
Anomaly‑based IDSs were developed to overcome the
limitations of signature‑based IDSs. Such IDSs usually
have a training phase, during which they build a model
of the nominal behavior of the system. When the IDS is
deployed, it monitors computer hosts and compares their
behavior with the nominal one. When a signi icant devi‑
ation between the hosts’ behavior and the model is ob‑
served, the IDS may raise an alert. Potentially, this strat‑
egy gives an anomaly‑based IDS the capability to capture
zero‑days attacks, since it does not perform any match‑
ing between the current hosts’ behavior and attack sig‑
natures in a database. Another advantage of an anomaly‑
based IDS, is that it is dif icult for an attacker to under‑
stand the normal behavior of a target host without doing
transactions with it, since communicating with a target
would likelymake the IDS raise an alert [6], [7]. Moreover,
anomaly‑based IDSs could be exploited not just for secu‑
rity purposes, but also as a system analysis tool. If the IDS
reports anomalies, it means that something is working
differently from the baseline conditions, which can be an
indication of not only an intrusion, but can also show the
presence of a bug in a device’s logic. A major limitation of
an anomaly‑based IDS, is the higher rate of false positives
when compared to a signature‑based IDS. Indeed, during
operation, the targeted system can slightly or drastically
change behavior without any intrusion taking place, and
if an anomaly‑based IDS is not aware of this possibility it
can raise false alerts.

2.2.1 Statistics‑based IDS

During the learning phase, an IDS based on statistical
techniques builds a probability distribution model of the
computing system during its nominal behavior. The
model is built by taking measurements of different pa‑
rameters and events taking place in the computing sys‑
tem. When the IDS is deployed, it evaluates the probabil‑
ity of all the monitored events of the system, and raises
alerts on low probability events. The simplest strategy
to build the statistical model is the so‑called “Univari‑
ate” strategy, and consists of considering each measure‑
ment independently from the others. An evolution of it
is the “Multivariate” strategy, which consists of identify‑
ing correlations and relationships between two or more
measurements. Hybrid approaches are also possible: Ye
et al. [8] proposed a hybrid univariate and multivariate
system, by building pro iles of each measurement indi‑
vidually, and then discovering multivariate correlations
to decrease the false positives rate. When dealing with a
high number of measurements, using multivariate statis‑
tics techniques on the raw data may produce a high level
of noise. To overcome this problem, systems in [9], [10],
[11], [12] used Principal Component Analysis (PCA), a
statistical technique which is used to reduce the dimen‑
sions of input vectors, before applying standard multi‑
variate statistical techniques.
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Another family of statistics‑based techniques to detect
anomalies takes advantage of time series data techniques
[13], which have also been applied to network anomaly
detection [14]. When calculating the probability of an
event occurring also the time is considered, and an alert is
raised if an event is unlikely to have happened in a speci ic
time. Zhao et al. [15] exploited techniques to mine fre‑
quent patterns in network traf ic, and applied time‑decay
factors to differentiate betweennewer andolder patterns.
This strategy helps such IDSs to update its system base‑
line, making the IDS able to cope with the highly dynamic
behavior of users. When developing a statistics‑based
anomaly IDS, and in particular an IDSworking on time se‑
ries data, attentionmust be given to data seasonality. Sea‑
sonality is the presence of variations in the data, which
occur periodically in a course of months, days or even
hours. It can be caused by “human” factors like holidays
and work‑hours or can be also in luenced by other fac‑
tors, like weather, depending on the application. Reddy
et al. [16] proposed an algorithm to detect outliers in
seasonality‑affected time series data using a double pass
of Gaussian Mixture Models (GMMs). During the learning
phase, they divide the time into seasonal time bins, GMMs
are trained and outliers are removed from data. To im‑
prove performance, another set of GMMs are built on the
cleaned data. Finally this second set of GMMs is used to
carry out the inal anomaly detection.

2.2.2 Machine learning‑based IDS
Machine Learning (ML) has been extensively applied in
the ield of cybersecurity [17]. Many of the special‑
ized branches of ML have been exploited to develop an
anomaly‑based IDS leveraging machine learning, includ‑
ing data mining [18], deep learning [19] [20], deep re‑
inforcement learning [21] and lately adversarial learning
[22]. ML‑based IDSs leveragemachine learningmodels to
automatically learn a representation of the normal condi‑
tions of the computing system.
When designing an ML system, the irst step is to identify
the features of the data to be analyzed, and an IDS makes
no exception [23]. Preliminary work is focused on eval‑
uating the goodness of traf ic features, by using publicly
available datasets and applying baseline ML algorithms.
Works from Khraisat [24], Bajaj [25] and Elhag [26] eval‑
uate the importance of dataset features via Information
Gain (IG), correlation attribute evaluation and by apply‑
ing genetic‑fuzzy rule mining methods. By exploiting this
evaluation, they clean out features that bring low IG or
carry the same information of another feature. They then
apply algorithms such as C4.5 Decision Tree, Naıv̈e Bayes,
NB‑Tree, Multi‑Layer Perceptron, SVM, and k‑means Clus‑
tering. Other techniques used for IDS feature selections
include Principal Component Analysis (PCA) [27], [28]
and Genetic Algorithms (GA) [29].
A machine learning model can be trained with or with‑
out ground‑truth labels. The learning techniques take the
name ”Supervised Learning” and ”Unsupervised Learn‑

Fig. 2 –General taxonomyofmachine learning techniques applied to IDS
and their main requirements

ing”. An overview of the most used ML‑based approaches
and their requirements is in Fig 2. From the point of view
of the input knowledge needed to build theMLmodel, su‑
pervised learning techniques are the ones that require the
greatest input knowledge, since, in order to build an ef i‑
cient model, a great amount of data may be needed. On
the other hand, memory requirements tend to be higher
with the unsupervised models. Indeed, instance‑based
models such as k‑means or kNN require storing the entire
dataset to make predictions, while ANNs or SVMs need
only the trained model, which has a memory footprint
of orders of magnitude lower than the one of a dataset.
ANNs and SVMs require high complexity when building a
model, and, in case of ANNs, they may require also spe‑
cialized hardware e.g. GPUs. Instance‑based classi iers
on the other hand do not have any special requirement
for training, since there is not a real training phase where
a model is built. For this reason those classi iers have
high computational requirements when making predic‑
tions, since it is likely that, in order to predict a sample,
the algorithm has to go through the whole dataset. ANNs
and SVMs instead can make predictions easily, requiring
just some matrix multiplication operations.

2.3 Speci ication‑based IDS
Speci ication‑based IDSs fall into the category of the so‑
called expert systems. These systems leverage a knowl‑
edge source which represents the legitimate traf ic signa‑
ture. Every event that differs from this pro ile is treated
as an anomaly. This knowledge is, most of the times,
hand‑crafted, and could contain rules about the nominal
traf ic patterns of the systems as well as Finite State Ma‑
chines (FSMs) applied to Internet protocols such as IP,
TCP, HTTP, etc. to ensure the compliance of the host to
the aforementioned protocols. Ensuring protocol compli‑
ance via an FSM could be a hard task, since we have to
model our state machine on top of the targeted protocol,
which can be complex. If otherwise the communication
protocol is implemented via writing code, one should al‑
ways refer to existing implementations, e.g. open pro‑
tocol stacks found in the Linux kernel. Another down‑
side of speci ication‑based IDSs is that they may fail to
identify DoS attacks. In particular, these attacks may ex‑
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ploit messages and payloads that are foreseen by the pro‑
tocol standard, therefore respecting the speci ication of
the communication. For this reason, there could be no
violation of the IDS speci ication and no alerts could be
raised. These attacks may be more ef iciently countered
by anomaly‑based IDSs. Moreover, speci ication‑based
IDSs don’t scale well in a complex system formed by sev‑
eral distinct IoT protocols. In such a system, a different
speci ication‑based IDS needs to be installed for each IoT
communication protocol we want to cover. This could in‑
crease the complexity of the setup and operation of the
IDS.

3. IDS FOR IOT
As stated in Section 1, IDSs targeting the IoT can be
categorized into IoT‑speci ic and IoT‑agnostic. An IoT‑
speci ic IDS targets devices using a particular communi‑
cation technology, such as 6LoWPAN, BLE, LoRaWAN etc.
This class of IDS should be deployed on the same network
of the device. They usually carry out their predictions
basedonmessages sent by the IoTdevices leveraging con‑
trol information of the speci ic technology, such as check‑
ing protocol compliance. On the other hand, IoT‑agnostic
IDSs do not depend on a particular IoT technology. They
utilize information available regardless of which technol‑
ogy is currently used by the devices, such as TCP/IP traf‑
ic. This class of IDS is suitable to be used in an edge en‑
vironment, since it can deal with traf ic generated by het‑
erogeneous devices leveraging different communication
technologies.
An advantage of an IoT‑speci ic IDS over an IoT‑agnostic
one is the ability to detect low‑level attacks generated on
the device level. On the other hand, a single IoT‑agnostic
IDS is able to deal with many IoT devices, without the
need to deploy an IoT‑speci ic IDS for every communica‑
tion technology available.
An IoT‑speci ic IDS commonly operates on the network
section highlighted in green in Fig. 1, while an IoT‑
agnostic IDS on the one highlighted in red.
The main characteristics of IDS targeting IoT are de‑
scribed in Fig. 3. Starting from left to right, we can dis‑
tinguish the kind of device fromwhere the IDS runs. This
can be from fully implemented at the cloud server level to
a very peripheral part of the network, i.e. the end devices.
IDS may be designed targeting different access technolo‑
gies (short, medium or long range) and speci ic vulner‑
abilities that may exist. The adopted techniques, as de‑
scribed in Section 2, as well as the computing architec‑
ture may distinguish the impact of the IDS. Finally, differ‑
ent performance objectives exist. Some IDSs may be ori‑
ented to use devices’ energy as low as possible while oth‑
ers may target indicators like latency or quantity of data
exchanged.
Several IoT‑speci ic IDSs have been proposed for different
communication technologies. These systems are usually
expert systems which capture the traf ic between hosts
and check the compliance of each packet to technology‑

speci ic network protocols and/or search for known at‑
tack signatures. For Wi‑Fi, authors in [30] have devel‑
oped neural network‑based detection approaches and
they have tested it on the Aegean WiFi Intrusion Dataset
(AIWD) [31]. The proposed techniques reached high ac‑
curacies on three different attack types, namely injec‑
tion attacks, impersonation attacks and looding attacks.
For LoRaWAN, authors in [32] proposed a detection tech‑
nique for a well‑known vulnerability that ultimately dis‑
connects an end device from a LoRaWAN network per‑
manently. The proposed approach is based on the Ham‑
ming distance and on the Kullback Leibler Divergence
(KLD). The authors have also set up a testbed and they
have tested the systemon it, reaching high detection rates
with low false positives. Continuing with LoRaWAN, au‑
thors in [33] have developed an IDS which detects if a re‑
identi ication attack, which links the DevAddress and the
DevEUI of an end device, is possible. The proposed IDS
is based on pattern matching and it is able to scale well
with an increasing number of end devices. For ZigBee,
authors in [34] have proposed HANIDPS, which is a hy‑
brid speci ication‑based and machine learning‑based IDS
targeting the ZigBee protocol. The system leverages Q‑
learning to evolve the system with the interaction of the
environment, and is able to protect the devices to newand
unseen attacks. For Bluetooth, authors in [35] have devel‑
oped a machine learning‑based IDS which detects known
denial‑of‑service attacks in BLE networks. In order to test
their techniques and to overcome the limitation of the un‑
availability of a dataset for such attacks, the authors have
also developed a data collection system based on ESP32.
Advanced systems, can also detect attacks on the physical
network layer (PHY), e.g. jamming. Usually an attacker
sending a PHY attack sends bits not following the commu‑
nication protocol, preventing the data to be readable from
an external IDS and making the attack extremely dif icult
to detect. For example, authors in [36] propose an attack
on theBLEphysical layerwhich selectively jams the signal
on speci ic channels whenever a device tries to connect.
Instead of focusing on single protocols, other proposals
have focused on creating IDSs capable of working on uni‑
ied IoT environment. Authors in [37] have proposed a
framework for an IDS based on an Arti icial Immune Sys‑
tem (AIS). The IDS is distributed among IoT devices, edge
nodes and cloud nodes. On the IoT devices, lightweight
detectors are deployed. On the edge, alerts are analyzed
and processed using smart data concepts. Finally, the
cloud clusters the data and trains the detectors. In this
way the heavyweight detectors’ model training is done on
the cloudandonly a lightweight applicationof them is car‑
ried out by IoT devices.
As with all expert systems, IoT‑speci ic IDSs usually
achieve high accuracy and low false positive rates, and of‑
ten they are specialized into the detection of a speci ic,
well‑de ined attack. They are, however, unable to detect
zero‑days or unusual usage of the network resources by
the hosts. On the other hand, IoT‑agnostic IDSs work in‑
dependently on the communication technology between
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Fig. 3 – Classi ication of IDS targeting IoT devices

IoT devices. These IDSs could be deployed on IoT gate‑
ways, discarding PHY orMAC layer information, or also in
another subnetwork, where they leverage TCP/IP traf ic
features.
Speci ic and new security issues arising in the IoT ield
are the ones related to the network management and op‑
eration such as routing, topology control, and network
maintenance. As for the routing, new protocols for de‑
vices with constrained resources have been designed like
the Routing Protocol for LowPower LossyNetwork (RPL)
[38]. The message exchange is based on the Destination
Oriented Directed Acyclic Graph (DODAG), which is built
by the devices following the protocol, enabling point‑to‑
point, point‑to‑multipoint and multipoint‑to‑point com‑
munications. Many IDSs have been proposed to check the
correct execution of the RPL protocol by the end devices.
In RPL networks, there exists known attacks whose goal
is to make the devices ind a suboptimal route, which in
the end can shorten the lifespan of the devices, or to dam‑
age the routing of the network itself, e.g. black holing.
Mayzaudet al. [39] haveproposedan IDS targeting specif‑
ically RPL versionnumber attacks. Their solution is based
on a distributed monitoring architecture, on which sev‑
eral detection algorithms are deployed. Moreover, the IDS
is able to identify and locate the malicious node which is
carrying the attack. Authors in [40] have proposed an IDS
based on neural networks which targets version number,
worst parent and hello lood attacks. The novelty of such
an IDS, is that it considers not only routing‑layer features
but also link‑layer features. Link‑layer features are espe‑
cially useful by decreasing the false positives and when
considering version number attacks.

4. THE EDGE‑ENABLED APPROACH

Edge computing was proposed to enhance the charac‑
teristics and the reliability of traditional IoT applications
[41], [42] under several aspects. The IoT application
can of load computational tasks, storage or management
tasks to the edge nodes. Some of the expected quality

enhancements include the minimization of the latency,
real‑time network management and better data manage‑
ment. In this context, also security applications, such as
an IDS, could be ”migrated” on the edge (see the red box
in Fig. 1). An IDS could bene it from this transition, hav‑
ing more computational resources available, enabling it
to use more complex algorithms, and also more storage
capabilities, in order to store systems logs to be later ana‑
lyzed or to carry out memory‑intensive procedures. Also
an edge node could offer lower latency than the cloud,
which is crucial for real‑time IoT applications. More‑
over, an IDS deployed on the edge, should be IoT‑agnostic,
meaning that it does not dependon speci ic IoT communi‑
cation technologies. If such an IDS is used, it can deal with
many heterogeneous devices using different communica‑
tion technologies in a uni ied manner, without having to
deploy a single IoT‑speci ic IDS for every subnetwork of
devices.
Eskandari et al. [43] developed Passban IDS, a system
which is able to apply a protection layer on IoT devices
which are directly connected to it. The attacks targeted
by the system are TCP/IP‑oriented, not including IoT
technology‑dependent ones, such as Port Scanning, HTTP
and SSH brute force and SYN lood. The system does not
require intensive calculations and canbedeployed also on
cheap edge devices and/or IoT gateways, such as Rasp‑
berry Pis or equivalent. While the IDS aims to protect de‑
vices against a relatively low number of attacks, the sys‑
tem shows a very low false positive rate and high accu‑
racy. A positive note about the system, is that is one of the
few fully‑implemented IDSs, from the detection algorithm
to the alerting system leveraging a web user interface.
Terenzi et al. [33] have developed an IDS architecture tar‑
geting LoRaWAN devices. Such IDSs have the goal to alert
the network operator in case an attacker is able to ind
the DevEUI of a device only by observing application traf‑
ic and the DevAddr carried inside the packets. The pro‑
posed technique assumes that devices transmit applica‑
tion packets with some periodicity, then exploits tempo‑
ral linking of the application and join requestmessages to
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ind the exact matching between a DevAddr and DevEUI.
Such IDSs can operate on the LoRaWAN gateways, which
represent the network edge in the context of LoRaWAN.
Moreover, the IDS does not require to decrypt packets and
bases its predictions only on the timings of the arrival of
packets.
Authors in [44] have investigated the identi ication ofma‑
licious edge devices. Indeed, edge devices are privileged
for storing and processing data produced by potentially
hundreds or thousands of IoT devices. For an attacker to
gain control over such an edge node, would mean a po‑
tential control over the data sent by attached IoT devices.
The authors proposed a framework which exploits a two‑
stage Markov Model, an anomaly‑based IDS and a Virtual
Honeypot Device (VHD). When an alert is raised by the
IDS, it is forwarded to the two‑stage Markov Model. The
irst stage categorizes the speci ic fog node and the sec‑
ond one predicts whether or not the VHD should be at‑
tached to the edge node for which the alert was raised.
The VHD stores logs of all attached edge nodes, which can
be later investigated by experts.
Authors in [45] introduced a system to improve the detec‑
tion accuracy of an IDS by deploying fuzzy c‑means and
ANNs in the edge. They compared their approach with
classic ANN techniques, and show high accuracy also on
attacks with a low frequency.
Hafeez et al. [46] proposed a system to perform anomaly
detection at the network edge gateways. The system rep‑
resents the traf ic with features that are agnostic with
respect to the IoT communication technology, but only
depends on TCP/IP features which can be observed by
the edge. The advantage of this approach is that sev‑
eral systems, each one having heterogeneous IoT commu‑
nication technologies, can be attached to the same IDS.
As for the dataset, they have collected IoT data from a
real‑world testbed. They have also studied the distribu‑
tion of the various considered features, and they have
observed that the majority of them are well itted by a
heavy‑tailedGaussian. The inal anomaly detection is per‑
formed through the use of fuzzy clustering. On their cus‑
tom dataset, they have achieved high accuracy and low
false positive rate.
Schneible et al. [47] et al. proposed a framework to per‑
form a distributed anomaly detection on edge nodes. The
systemconsists of deploying auto‑encodermodels on sev‑
eral edge nodes positioned in different network regions.
The anomaly detection is carried out using the classic
auto‑encoder approach. The system also shows some de‑
gree of adaptivity: while deployed the edge nodes update
their models based on new observations, identifying new
trends in network traf ic. An edge node then sends to
a central authority its updated model, which aggregates
them and sends the updates to the other edge agents. The
authors observed that this approach reduces the over‑
head bandwidth, since the only generated network traf‑
ic carries the models of the auto‑encoders instead of all
observed data. In this context auto‑encoders were lever‑
aged to detect anomalies as well as an automatic system

to extract features compressing observed data, to reduce
traf ic between edge nodes and the central authority.
While edge nodes have superior computing capabilities
with respect to IoT devices, they could not provide re‑
sources to perform intensive tasks such as heavyweight
ML model training. Previous work has foreseen this is‑
sue proposing systems which don’t require intensive op‑
erations. Sudqi et al. [48] have proposed a host IDS run‑
ning on energy‑constraineddevices. Sedjelmaci et al. [49]
have proposed a more advanced system which makes a
trade‑off between energy consumption and detection ac‑
curacy. Their system is composed of a signature‑based
IDS, which is more energy ef icient but may yield a high
number of false positives, and an anomaly‑based IDSs,
which requires more power to operate but performs
a more accurate analysis. During operation, only the
signature‑based IDS is active. When an alert is raised, it
is forwarded to the anomaly‑based IDS, which can con‑
irm or discard it. Moreover, the system is formulated
as a security game model, where the anomaly‑based IDSs
carry out its predictions based on the Nash Equilibrium.
A drawback is that the cloud must be always up and run‑
ning for the system to work correctly. Anomaly detection
techniques could be used not just to detect network intru‑
sions, but could also be used as ameans of detecting bugs
in devices’ irmware or deviations from the normal state
of a system. In the context of Industrial IoT (IIoT), work
has been proposed to detect such anomalies.
Utomo et al. [50] develop a system performing anomaly
detection onpower grids sensor readings. Anomaly alerts
could be used not only as an indication of an illegal intru‑
sion, but also as a means to ensure grid safety prevent‑
ing failures and blackouts. To perform the anomaly de‑
tection, due to the high non‑linearity of the readings, an
ANN based on Long‑Short Term Memory (LSTM) cells is
used. LSTM neural networks belong to the family of Re‑
current Neural Networks (RNNs), a class of ANN architec‑
ture which excels in processing data in sequence, such as
a sequence sensor readings or a sequence of words in the
ield of Natural Language Processing (NLP).
Niedermaier et al. [51] found that a single IDS running
on the network perimeter could not be able to monitor,
capture and analyze all the events. They proposed a dis‑
tributed IDS based on multiple IIoT agents’ edge devices
and a central unit which uni ies the logs produced by
them. At its core, the IDS performs anomaly detection
using one‑class classi ication techniques: the authors as‑
sume that they know the normal behavior of the system,
which can be learned by the agents. The IDS is suitable to
be run on low‑power microcontrollers, since it does not
require any intensive calculation. The authors have also
developed a proof‑of‑concept implementation of the sys‑
tem, which is not usually done in similar work.
Hafeez et al. [52] proposed a lightweight technique,
named IOT GUARD, to distinguish betweenmalicious and
benign IoT traf ic, using a semi‑supervised approach.
Their approach is almost completely unsupervised, but it
requires a small portion of labels to be veri ied by hand,
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which makes the algorithm technically semi‑supervised.
It is based on Fuzzy C‑Mean (FCM) clustering. To im‑
prove performances, the authors performed aggregation
of same‑host and same‑service features of devices. This
aggregation strategy is not based on packet timestamps,
but over the 𝑛 latest device connections. This brings an
advantage since time‑based aggregation aggregates fea‑
tures over a de inite time, e.g. number of connections
made in last 𝑡 seconds between two devices 𝐴 and 𝐵.
The time‑based aggregation strategy is not suited for de‑
tecting attacks where an attacker introduces a time de‑
lay between successive connection attempts. In contrast,
connection‑based aggregation techniques aggregate fea‑
tures over last 𝑛 connections i.e. out of last 𝑛 connections
made by A how many terminated at device 𝐵. This tech‑
nique accommodates the time delay added to successive
connections. The evaluation was carried out using a pri‑
vate dataset which was not made available to the public.
The achieved accuracy is good, however practical com‑
parison with other existing solutions or any baseline al‑
gorithm was not made.

5. DEVICE CLASSIFICATION AT THE EDGE
Recently, efforts have been made to identify and classify
IoT devices based on their network traf ic ingerprint. Us‑
ing network packets, classi iers could be built to cate‑
gorize devices based on their device class (e.g. motion
sensors, security cameras, smart bulb and plugs, etc.)
or to learn device signatures. The construction of such
signatures are a prerequisite for building an IDS, since
they serve, for example, as ground truth when compar‑
ing known signatures to the ones extracted during oper‑
ation. In this way, if unauthorized devices connect to the
network or existing devices abruptly change their behav‑
ior signature, an IDS can promptly raise alerts. Detecting
intrusions based only on network traf ic is a requirement
for IDSs designed to be deployed on the edge.
In this context, the signature or ingerprint of a device is
a representation of the traf ic generated by the device it‑
self. Several combinations of features could be leveraged
to construct the signature. To understand which features
are more suitable than others, Desai et al. [53] developed
a feature‑ranking system for IoTdevice classi ication. The
utility of each feature is based on statistical methods. In
order to extract features from traf ic lows, they consid‑
ered time windows of 15 minutes, and a sub‑portion of
them, which they named ”activity period”, corresponding
to the time passing from the reception of the irst packet
to the reception of the last packet device‑wise. Based on
the class of the device, this activity period can assume dif‑
ferent lengths. In their testing, they trained classi iers us‑
ing both all of the features and only the top‑𝑘 ranked ones.
They found that classi iers trained using only top‑𝑘 fea‑
tures with 𝑘 = 5, show only a relative ≈ 6% drop in ac‑
curacy, meaning a great reduction in computational tasks
can be achieved without impacting the accuracy.
Thangavelu et al. [54] proposed a distributed device in‑

gerprinting technique, named DEFT, which recognizes
IoT device ingerprint. In the system, the IoT gateways
extract features from devices’ traf ic sessions. These fea‑
tures are then sent to central edge nodes, which gather
them and train ML models and classi iers. These clas‑
si iers are then sent back to the gateways, which per‑
form the inal identi ication of the device. The system
does not need to know in advance traf ic signatures of
the connected devices, since it can autonomously recog‑
nize new devices based on the extracted ingerprint. In
particular, when a new device is connected to the net‑
work (or an existing device changes its usual traf ic e.g.
due to a irmware update) the classi ier on the gateways
marks its traf ic as low‑probability. In this case the gate‑
way sends the captured features to the edge node. When
another device belonging to the same unknown class (i.e.
with the same traf ic signature) connects to another gate‑
way, this one also sends features to the edge node. Now
the edge node is able to clusterize and to identify the
new device category. If there is not a second device con‑
necting to another gateway this strategy does not work.
The whole system can be controlled as a Software De‑
ined Network (SDN) function. The classi ication is car‑
ried out not packet‑wise, which can be expensive in terms
of resources, but low‑wise, selecting a ixed timewindow
frame. This technique could be used for extracting inger‑
prints of IoT devices and ultimately as a building block for
an anomaly‑based IDS. Such an IDS could be deployed on
the edge of the network, since the inal application of the
trained models is done at the gateway level.

Bai et al. [55] propose a device classi ication technique to
identify new and unseen devices. This is a novelty when
compared to the majority of other works, which in order
to recognize a device they must have had some sort of
training on that exact device. This technique is particu‑
larly useful to IDSs which have the objective of tracking
and alerting when new or unauthorized devices connect
to the network. The classi ication is done using infor‑
mation streams generated by devices and then using an
LSTM‑CNN model leveraging time dependencies of net‑
work traf ic. First, for each captured packet features such
as timestamp, length, and various addresses are saved.
Then features are extracted dividing the traf ic into time
windows of length 𝑇 seconds. The authors do not spec‑
ify the value of 𝑇 that they used in their experiments and
it seems to be ixed, non‑adaptive. They extracted fea‑
tures differentiating between incoming or outgoing pack‑
ets and user (TCP, UDP, MQTT, HTTP) or control packets
(ICMP, ARP, DNS). Various statistics of the packets are ex‑
tracted. Finally, the processed data is given to an LSTM
network learning an encoding of the data. The LSTM is
then attached to a CNN network which learns the inal
classi ication. The network is trainedwith standard back‑
propagation algorithms. The achieved results are quite
good in accuracy, even if there is room for improvement.

ITU Journal on Future and Evolving Technologies, Volume 3, Issue 2, September 2022

© International Telecommunication Union, 2022414



6. OPEN ISSUES FOR EDGE‑ENABLED AR‑
CHITECTURES

The edge network creates new attack surfaces to be ex‑
ploited by malicious parties. In Fig. 1 is illustrated the
architecture of an edge‑enabled IoT application. Tradi‑
tional IoT‑oriented IDSs are placed on the gateway level
or device level and their focus is to protect against ma‑
licious IoT devices. However, attacks may target speci i‑
cally the edge network, making an edge node becomema‑
licious. These could be caused by a remote attack of if the
node gets physically tampered with. Due to the pervasiv‑
ity offered by the edge, nodes could be deployed in pub‑
lic areas, which facilitates an attacker to tamper the de‑
vice. Any attacker in control of an edge node, could alter
all the traf ic passing through it. They can generate packet
streams in the edge pretending to be a legitimate IoT gate‑
way or device, or they can selectively‑forward packets of
interest and discard the others. The management of ma‑
licious edge nodes was considered in the literature, but
most of the time it is not an automatic process.
Already existing IDSs could be used and deployed in an
edge scenario, however some new challenges arise and
hinder the reliability of the intrusion detection system.
They include:

• Traf ic Encryption. The IDS can be deployed on IoT
gateways or more external edge nodes. If deployed
on edge nodes, the traf ic it observes is encrypted,
assuming that the IoT devices and the cloud com‑
municate through secure protocols. The same could
happen if the IDS is deployed on IoT gateways and
the IoT devices have a TCP/IP stack, i.e. they can
directly communicate with the cloud and the gate‑
way performs routing operations only. Packet en‑
cryption means that an IDS is not able to know the
contained information and it can only perform oper‑
ations based onnon‑encrypted ields, such as TCP/IP
headers, timestamp etc.

• High Resource Variability. IDSs can leverage several
techniques to carry out the detection, which can be
highly variable in terms of required computational
resources. However, also edge nodes showhigh com‑
putational resource variability, which could range
from a commodity PCwith specialized hardware to a
Raspberry Pi. The problem that may arise is that the
requested resources for the IDS to work are too high
for the edge nodewhich is running the system, which
could add communication latency and could block
the whole system execution. On the other hand, an
edge node that offers a lot of resources costs more,
and if the resources are not exploited by the IDS the
extra cost is wasted. Edge IDSs should be adaptive
to the available resources, using a variety of algo‑
rithms requiring different capabilities and selecting
them based on the current execution platform.

• Distributed IDS architecture on Edge/IoT. Due to the
resource variability between the IoT and the edge,

the execution of IDS for the network edge should be
somewhat distributed. A single IDS could be com‑
posed of many subsystems which cooperate for the
correct working of the system or to improve the
detection performance. The cooperation of differ‑
ent subsystems, however, brings distributed systems
challenges into the intrusion detection system, in‑
creasing its complexity.

• Aggregated traf ic. If the protocol stack of IoT de‑
vices and the protocol stack of the edge differ, it could
make an observer on the edge, including an IDS, un‑
aware of the source end device of a packet. This is
caused by IoT gateways which receive packets from
end devices using their speci ic IoT communication
technology and craft newpackets using the protocols
of the network edge, such as TCP/IP. This issue and
its aftermath will be illustrated in more detail in Sec‑
tion 6.1.

In order to develop communication schemes which are
resilient to malicious edge nodes theory of distributed
systems could be leveraged, treating edge nodes as po‑
tentially byzantine nodes [56] and treating each packet
that goes through the edge as a byzantine consensus
problem. However, theorems [56] state that, in a non‑
authenticated and partially synchronous communication
scheme, it must hold 𝑁 > 3𝑓 , where 𝑁 is the number of
parties and 𝑓 is themaximumnumber of tolerated byzan‑
tine nodes, in order for a byzantine consensus to be suc‑
cessful. This, however, would require a transmission of
the same packet from multiple edge nodes. Moreover, if
the packet was originated from an IoT device, it would re‑
quire the same device to send the same packet to multi‑
ple edge nodes, which is a waste of energy and network
resources.
A possible solution to the aforementioned problem is us‑
ing IPsec [57]. IPsec is a network protocol guarantee‑
ing network layer security, offering authenticity, integrity
(AH and ESP modes) and encryption (ESP mode only) to
the packet header and data. In this way malicious edge
nodes are no longer able to craft packets pretending to be
a legitimate user of the network. However, some issues
still persist:

• IPsec does not protect against traf ic rerouting or
selective‑forwarding. Attackers could decide which
packets to forward and which ones to discard
(selective‑forwarding). They could also route the
packets with additional delay, which can impact the
real time characteristic of the IoT application.

• IPsec fails to guarantee security speci ication in a
physical tampering scenario. If a device gets tam‑
pered, attackers have thepossibility to access thepri‑
vate keys of an edge node, compromising the whole
IPsec secure communication scheme for the device.

• IPsec increases fractional overhead. In a usual IoT
application, packets sent from IoT devices are a few
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Fig. 4 – An example of why the edge node may be able to observe only
the cumulative traf ic, thus being unable to identify the enddevicewhich
generated the observed packet. Some IoT devices send their data to the
cloud. They irst communicate to their gateway using their speci ic IoT
communication technology. The gateway then crafts packets which will
be sent to the edge and forwarded to the cloud, assuming using TCP/IP
as protocols. The packets crafted by the gateway will have the same
source IP, possibly the samedestination IP (the same application server)
and could use the same TCP ports. This causes any observer after the
gateway, including an edge node, to be unaware of the devices behind
the gateway. The edgenode is only able to observe the cumulative traf ic,
without being able to identify the source device of an observed packet.

(a) Unlabeled packets (b) Labeled packets

Fig. 5 – Consider three IoT devices. Each device produces packets with
its own mean length, its own mean time between them and own vari‑
ances. In the plots, each dot represents a network packet. As we said
in Section 6, the edge is not able to tell which IoT devices are connected
and therefore it cannot assign a packet to its most likely IoT producer
device. So what the edge observes is an ”unlabeled” low of packets, in
Fig. 5a, not knowing the source/destination device of a packet. Apply‑
ing anomaly detection strategies on the cumulative traf ic yields poor
performance, since toomuch variance is experienced by the algorithms.
In Fig. 5b is depicted the same traf ic but with packets labeled with
their producer device. Applying anomaly detection on the labeled low,
should help algorithms to improve detection accuracy.

bytes long, meaning a low ratio of payload data over
header data. The use of an additional control header
increases even more the payload data, making the
communication even more inef icient in terms of
fractional overhead.

6.1 Aggregated traf ic
Another problem is that the edge may not have the pos‑
sibility to differentiate the traf ic lows coming from the
IoT devices, in other words it could only observe the ag‑
gregated traf ic generated by all the devices combined as
if it was generated by a single device. This issue veri ies
whether IoT devices and the edge have different protocol
stacks and the gateway has to translate the protocols used
by the IoT to the ones used by the edge/cloud. The obser‑
vation of the aggregated traf ic will cause both signature‑
based and anomaly‑based IDS to carry out unreliable pre‑
dictions.

Let us consider the scenario depicted in Fig. 4. We have
IoT devices connected to the gatewayswith some IoT spe‑
ci ic communication technology (BLE, LoRa, etc.) and the
gateways connected to the edge and the cloud via TCP/IP.
When the IoT devices send data to the cloud, they send
a packet to their gateway using their IoT communication
technology. The gateway then crafts a new TCP/IP packet
and forwards it to the edge and to the cloud. This newly
created packet by the gateway will have as source IP ad‑
dress the one of the gateway, regardless of which IoT
end device produced it. Moreover, these packets could
have the same IP destination address (same application
server) and could use the same TCP ports for every IoT
end device. This causes any observer beyond the gate‑
ways, including the edge nodes, to be unable to tell the
source device of an observed packet. Being unable to sep‑
arate the TCP lows, the edge node would regard the ob‑
served traf ic as it was generated by a single device, since
it has no means of knowing which devices are connected
beyond the gateways.
The aggregated traf ic poses problems for existing IDSs,
both signature‑based and anomaly‑based:

• Signature‑based IDSs cannot isolate packets coming
from or going to the same device. This causes the
inability to extract patterns from the observed traf‑
ic stream, thus making an IDS unable to recognize
an attack signature. Methods could be developed
to adapt existing signature‑based IDSs to solve this
issue, for example by mining patterns from the cu‑
mulative traf ic. However, since the observed traf ic
is the sum of the various traf ic streams generated
by each device, there could be cases where a signa‑
ture could be mistakenly marked as malicious. For
instance, let’s consider a pattern which is malicious
only if generated by a single device (e.g. a particu‑
lar exchange of messages between it and the server).
If two or more devices generate non‑malicious mes‑
sages, it could be that when mining attack patterns,
the sum of these lows generates a signature match.
This increases the ratio of false positives.

• Anomaly‑based IDSs will have to deal with the high
variance of the aggregated traf ic, since it is presum‑
able for the cumulative traf ic to have a higher vari‑
ance than the traf ic lows generated by each single
IoT device. To carry out anomaly detection, an IDS
has to learn the state of a system in a normal condi‑
tion i.e. without an anomaly taking place. Then an
anomaly is reported when the observed state devi‑
ates substantially from the expectation. If the nor‑
mal state is learned via the cumulative traf ic, too
much variance could be experienced by the anomaly
detection algorithm. The higher variance poses the
risk that malicious anomalies are marked as non‑
malicious oscillations of the expectation, since these
oscillations are acceptable given the variance of the
normal system state. This increases the ratio of false
negatives.
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IDS ap‑
proach

Effects of cumula‑
tive traf ic obser‑
vation

Result

Signature‑
based

Unable to reliably
extract signatures
from cumulative
traf ic

Increase of
false posi‑
tives.

Anomaly‑
based

Anomaly detection
algorithm expe‑
riences too much
variance

Increase of
false nega‑
tives.

Table 1 – Summary of the expected issues that causes the observation
of the cumulative traf ic on the edge by an IDS. In the case of signature‑
based IDSs, the system is not able to extract precisely patterns and signa‑
tures from the traf ic, ultimately increasing the ratio of false positives. In
the case of anomaly‑based systems, their algorithms would experience
too much variance during the learning phase. This will cause an inexact
anomaly report with a high ratio of false negatives.

Table 1 summarizes the effects of the cumulative traf ic
on existing anomaly‑based and signature‑based IDSs.
An example of anomaly detection on the aggregated traf‑
ic is illustrated in Fig. 5. An anomaly detection algo‑
rithm deployed in the edge, should learn the normal sys‑
tem behavior from the cumulative network traf ic instead
of device‑wise traf ic. However the cumulative traf ic
presents more variance than the traf ic split in a device‑
wise manner, which could drastically impact the perfor‑
mance of the anomaly detection strategy. One irst step to
improve anomaly detection in the edge, could be to split
the cumulative traf ic into lows, one for each IoT device.
Once this split is done, existing algorithms could be used
to learn the normal behavior of the system, not from the
cumulative traf ic but from the lows of each device. How‑
ever, this task could not be carried out by an edge node
alone, since it doesn’t have the knowledge of which IoT
devices are connected beyond the gateways.

7. CONCLUSIONS
This work presents intrusion detection systems for IoT,
both under the architectural perspective and under the
methodologies that are used to let them capture anoma‑
lies and cyber attacks. As for the architectural perspec‑
tive, while traditional IoT IDSs are deployed at the de‑
vice level or gateway level the strong interest in having
edge computing solutions offers new attack sides to be
exploited by malicious parties. We discussed these new
issues and present solutions that have been introduced
to face them. New IDSs, speci ically designed for the
edge, are addressed. We also focus on the adoption of
device classi ication techniques at the edge by discussing
methodologies that could be leveraged by new IDSs tar‑
geted to IoT.
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