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ABSTRACT
In the last few years, automatic extraction and classification of animal 
vocalisations has been facilitated by machine learning (ML) and deep 
learning (DL) methods. Different frameworks allowed researchers to 
automatically extract features and perform classification tasks, aiding in 
call identification and species recognition. However, the success of 
these applications relies on the amount of available data to train 
these algorithms. The lack of sufficient data can also lead to overfitting 
and affect generalisation (i.e. poor performance on out-of-sample 
data). Further, acquiring large data sets is costly and annotating them 
is time consuming. Thus, how small can a dataset be to still provide 
useful information by means of ML or DL? Here, we show how con
volutional neural network architectures can handle small datasets in 
a bioacoustic classification task of affective mammalian vocalisations. 
We explain how these techniques can be used (e.g. pre-training and 
data augmentation), and emphasise how to implement them in con
cordance with features of bioacoustic signals. We further discuss 
whether these networks can generalise the affective quality of vocalisa
tions across different taxa.
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1. Introduction

In recent years, the field of bioacoustics has embraced computational methods. Initially, 
approaches relied on the use of machine learning algorithms that learned from manually 
extracted data features, enabling them to make informed decisions or predictions. Although 
this seemed useful due as this allowed us to interpret these features, these methods have 
difficulties with more complex data, as is the case with animal vocalisations. Therefore, deep 
learning (DL) became the preferred choice, as it allows handling diverse arrays of problems, 
ranging from automatic (or semi-automatic) classification of animal vocalisations (Stowell 
et al. 2018) to sound event detection in soundscape recordings (LeBien et al. 2020). One the 
most common application of DL in bioacoustics is the sound detection and classification in 
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animals, typically within the same taxon. Specifically, birds are the most studied species 
(Stowell et al. 2018; Joly et al. 2021), but other groups also attract attention such as marine 
mammals (Frazao et al. 2020) or anurans (Hassan et al. 2017). Other studies explored within- 
species classification, attempting to classify different vocalisation types (Bergler et al. 2019) to 
differentiate sex and strain (Ivanenko et al. 2020) or behavioural states (Wang et al. 2021).

Many DL techniques and methods can be used in bioacoustics (Stowell 2022). Early 
approaches relied on the use of basic multi-layer perceptron (MLP) architectures (Hassan 
et al. 2017). However, recent advances in efficient architectures led to applications using 
Convolutional Neural Networks (CNN). Convolutional networks are inspired by biolo
gical processes (Hubel and Wiesel 1968; Fukushima 1980) such that a connectivity pattern 
between neurons can resemble the organisation of the visual cortex in animals. Within 
DL, CNNs are typically used for image recognition, classification, and processing. In 
audio processing, raw acoustical data (or lightly processed data) are first converted into 
time-frequency representation before being served as input (Xie et al. 2019). Now, CNNs 
are standard tools in bioacoustic classification and rely on off-the-shelf architectures 
(Lasseck 2018; Guyot et al. 2021)

DL approaches require large data sets as paucity of training data can otherwise 
negatively affect accuracy (Tsalera et al. 2021). Performance is also affected by datasets 
with skewed class proportion (i.e. imbalanced datasets) (Sun et al. 2009). One possible 
solution is to generate additional data points, by applying transformation on existing 
training data, which then become additional ‘fabricated’ input. This technique, known as 
Data Augmentation (DA) can improve the performance of algorithms with small datasets 
(Zhao et al. 2022), including unbalanced ones (Arnaud et al. 2023).

An alternative to DA in dealing with small data is Transfer Learning (TL), in which the 
neural network is initialised with pre-trained as opposed to random weights. In TL, the 
network is pre-trained with a larger, usually more general (i.e. environmental audio) dataset, 
and the resulting network is re-trained for a specific task (i.e. animal vocalisations) using the 
small dataset. The underlying assumption is that the two training tasks are related enough 
and hence share some features, so that the new network can take advantage of previously 
learned features and only needs to fine-tune the weights. TL has been applied in bioacoustic 
classification tasks, particularly on sounds produced by whales (Zhong, Castellote et al. 2020; 
Zhong, LeBien et al. 2020), fish (Guyot et al. 2021), and birds (Kahl et al. 2021).

In the current study, we used typical off-the-shelf convolutional pre-trained networks to 
classify mammalian vocalisations across two conditions (affiliative and non-affiliative), com
paring the performance between them by using both data augmentation and transfer learning 
strategies. We specifically address how to properly apply both techniques to these human and 
non-human vocalisations, and how they differ from other types of audio classification tasks. 
We discuss the capacity of the network to generalise affective calls across four species, and the 
implications that these generalisations can have in identifying acoustic cues that are common 
in mammalian vocalisations.

2. Methods

See Table 1 for a glossary of terms related to Machine Learning and Deep Learning.
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2.1. Dataset

In the present study, we used a dataset consisting of vocalisations from four mammalian species. 
These species were human infants, dogs (Canis familiaris), chimpanzees (Pan troglodytes), an 
tree shrews (Tupaia belangeri), and their vocalisations were recorded in natural contexts. 
Vocalisations were divided into two categories (affiliative and non-affiliative/agonistic), with 
24 vocalisations per category, resulting in a total of 192 sound files. Each vocalisation contained 
either a single call or a sequence of 5 to 8 calls, depending on the species.

Vocalisation duration was variable, with a mean of 0.76 ± 0.14 seconds, lasting at most 1  
second. Sound intensity was normalised to 60 dB using PRAAT (Boersma and Weenink  

Table 1. Glossary of key terminology in machine learning, based on definitions from James et al. 
(2013) and Goodfellow et al. (2016).

Term Definition

Artificial Neural Network 
(ANN)

Set of algorithms inspired by biologically plausible brain networks in which data flow 
through a set of interconnected neurons, allowing the system to learn from 
observations. Learning occurs by modifying values in the connections of the neurons 
(weights), in a similar way to biological neurons.

Convolutional Neural 
Network (CNN)

Specialised type of artificial neural networks for processing data that have a known, grid- 
like topology. The name comes from the use of convolutions, a particular type of linear 
operator.

Cross-validation Resampling technique that uses portions of available data to train and test a machine 
learning model over several iterations. Cross-validation is used to estimate how 
accurately the model would perform in practice. Depending on whether all 
combinations of testing and validation sets are considered, cross-validation methods 
can be exhaustive or not.

Deep Learning Set of AI methods based on artificial neural networks that allow algorithms to learn 
abstract representations based on observed data. The term “Deep” is used to 
emphasise the hierarchical structure of the network layers as deeper layers learn more 
abstract and complex features.

Data Augmentation Technique to artificially increase the size of a training set by applying transformations to 
data, creating modified copies that can be used to boost performance in training.

Dense Layer The most common type of neural network layers, in which all neurons are connected to 
every neuron in its preceding layer. This layer is referred to as being deeply connected 
to the preceding layer.

Generalisation Ability of a machine learning model to adjust to unknown data, taken from the same 
distribution used to create the model. A model that can generalise implies that it can 
extrapolate learned features into unseen data.

K-fold Cross Validation A method in which an original sample is randomly partitioned in k subsamples (folds) of 
equal size. On each iteration, one of the subsamples is retained for validation, while the 
others are used for training. This method is non-exhaustive, as not all possible 
subsamples are tested.

Leave-p-out Cross 
Validation

An exhaustive method of cross-validation in which, out of the total number of samples, 
p are used for validation. This is repeated until all combinations of training and 
validation sets are tested. A particular case is when p=1, referred to as Leave-one-out 
cross-validation.

Overfitting Phenomenon that occurs when a machine learning algorithm learns characteristics in 
training data that are too specific and cannot generalise. A direct consequence is that 
an overfitted model cannot adapt to new data drawn from the same data distribution 
that was used for training.

Pretraining Procedure in which a neural network is trained using a large dataset in a general task to 
re-use learned parameters from the model for a secondary, more specific (but usually 
related) task.

Training and Testing sets Training data refers to information or examples provided for a machine learning 
algorithm to enable it to learn, find patterns, and create new content. Testing data 
refers to information used to evaluate the performance of the algorithm.

Transfer learning Machine learning approach that takes an existing, pretrained model or representation 
and reuses it (or parts of it) in a new task. Learned representations and features are re- 
used to improve performance in a new task.
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2007). The sampling frequency was 44.1 [kHz] (16-bit, mono). Acoustic vocalisation 
characteristics like the average vocalisation duration in each condition and species, number 
of calls per vocalisation, mean fundamental frequency, etc., are reported in the original 
human classification study (Scheumann et al. 2014).

In the original study by Scheumann et al. (2014), the agonistic (or non-affiliative) and 
affiliative context categories were classified based on affiliative and non-affiliative con
texts, respectively. Non-affiliative context category calls were induced by conflict situa
tions that ended or changed an on-going interaction, whereas affiliative context category 
calls were produced by maintaining a current situation or interaction. Here, we simplify 
the use of an agonistic context category as the ‘negative’ condition, and the affiliative 
context category as the ‘positive’ condition.

In addition to this analysis, we conduct an acoustic characterisation of the dataset using 
Parselmouth (Jadoul et al. 2018). This involves extracting various acoustic parameters for 
each vocalisation that were included in the original study, including the duration of the 
vocalisation (VOC DUR), peak frequency (PEAK), mean fundamental frequency (MEAN 
f0), standard deviation of the fundamental frequency (SD f0), and percentage of voiced 
frames (%VOI). Additionally, measurements were taken for harmonic-to-noise ratio 
(HNR) and spectral centre of gravity (SPEC CENT). Mean values for these parameters 
are presented in a supplementary table in the Appendix. Utilising these measurements, we 
employed a statistical analysis (Generalised Linear Model) to examine the predictive 
capacity of these measures across different conditions, independent of species. The results 
of this analysis are also displayed in a supplementary table in the Appendix.

2.2. Neural network architectures

In the current study, we compared three pre-trained convolutional neural networks (CNN). 
These networks were chosen over other neural network architectures as they have consis
tently demonstrated their efficiency in terms of classification accuracy (Salamon et al. 2017; 
Knight et al. 2017). The first network is the VGG16, proposed by Simonyan and Zisserman 
(2014). This network became known for its impressive performance in the ImageNet 
Challenge 2014 (Russakovsky et al. 2015) and its good performance on datasets with limited 
labelled data. It has been successfully applied in bioacoustic tasks (Zhong, Castellote et al.  
2020). The second network is the ResNet (He et al. 2015) derived from “residual networks’’, 
a strategy that improves both optimisation times and accuracy. The third network is the 
VGGish network (Hershey et al. 2017), which was developed specifically to be trained with 
audio signals (i.e. mel-spectrograms of audio input). Specifications of the three networks used 
(e.g. number and type of layers, number of parameters, etc) are found in Table 2.

Table 2. Convolutional neural networks specifications. VGG16 and Resnet were both pre-trained in 
a natural image dataset, while the VGGish network was pre-trained on a dataset of audio sounds 
taken from YouTube. These audio signals are considered diverse enough to generalise a different 
range of sounds.

Network Conv. Layers Dense Layers N of Parameters Pretrained in

VGG16 13 3 138 million ImageNet
Resnet 49 1 25.6 million ImageNet
VGGish 8 3 72.1 million YouTube
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One advantage of using these networks is that pre-trained versions, obtained from 
training them on large datasets, are available. This enables the use of Transfer 
Learning (TL) approaches. (see Figure 1 in Box 1). With TL, feature detectors that 
are already learned by the network can be used in the new task, simplifying training. 
Here, the three networks were initialised with pre-trained weights. Particularly, 
VGG16 and ResNet were pre-trained with an image dataset (ImageNet), while 
VGGish was pre-trained using Google’s Audioset, which takes audio from YouTube 

BOX 1. Transfer learning applied to acoustic classification tasks.
Transfer learning (TL) is a technique applied in machine learning and especially easy to apply in deep 
learning DL, in which a model trained on a task is reused to increase performance in another related task. In 
a DL system, knowledge transfer happens through using segments of a pretrained network in another 
network. The new network is trained for the new task, and benefits in the retraining process by not needing 
as much data as when it would be trained from scratch.
A typical TL approach is performed in two steps. First, the network is pre-trained for a task using a large 
dataset. Networks for this type usually consist of two segments, namely a feature detector (convolutional 
layers for the case of a CNN) and a classifier (in most cases, densely connected layers). After the network is 
fully trained, a feature transfer step occurs, in which the classifier at the end of the network (dense layers) is 
removed and replaced with a new untrained classifier (densely connected layers initialised with random 
parameters). Then, the layers in the feature detector are frozen and the new classifier is trained with the 
data for the new task. This is called retraining. Another approach is fine-tuning, in which some (or all) layers 
in the feature detector are retrained, but at a much slower rate with much smaller changes. However, fine- 
tuning requires larger amounts of data. To benefit from a TL approach, both tasks should be related, so that 
during retraining, the network will take advantage of already learned features from the original task.

Figure 1. Proposed transfer learning scheme. Pre-trained feature detectors (Convolutional segm- 
ents of a pre-trained network) are transferred to the new application, replacing the classifier 
segments with untrained densely connected layers. The new classifier is trained to identify the 
new labels, using learned features from the previous task.
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videos. Although intuitively it would make sense to transfer from a related task, that 
is, from an audio classification task instead of natural images, it is known that 
transferring from an image task to an audio task is feasible (Lasseck 2018). Here, 
we froze all convolutional layers for all networks, and replace the classifier layers of 
each network with two layers of densely connected neurons (N = 1024 per layer, reLU 
activation), connected to a final layer composed of two neurons (one per category, 
softmax activation).

2.3. Data processing

In the current study, each playback clip was converted into a time-frequency representa
tion before being used as input. Mel-spectrograms were computed, using standard 
settings (NFFT = 4048, Hop length = 256, ~32 ms). Intensities in the spectrogram were 
represented in decibels, and the number of mel-bins were adjusted to the height that the 
networks require (224). Finally, the width of the spectrogram (time dimension) was set to 
224 by padding with low values (i.e. ~-60 dB, background silence) until all inputs had the 
same size (i.e. 224 × 224).

A data augmentation approach was used to increase the amount of training 
data (see Figure 2 in Box 2). Each audio segment was manipulated using the 
Parselmouth library (Jadoul et al. 2018) to use pitch manipulation algorithms that 
are provided by PRAAT (Boersma and Weenink 2007). Parselmouth is a powerful 
tool for computational acoustics, including bioacoustic feature extraction and data 
pre-processing (Jadoul et al. 2023) as it integrates seamlessly with other 
computational frameworks available in Python, such as the deep learning libraries 
used here. Two types of transformations were applied to training sets. First, 
sound segments were manipulated to increase or decrease the pitch by half an 
octave. The PRAAT algorithm could extract and modify pitch even in unvoiced 
segments, providing a transformed version of vocalisations even in absence of an 
actual clear sound. Second, noise was added to create a noisy version of the 
original signal, with approximately 5%,10%, or 15% of the sound’s total energy. 
Adding noise is a useful way to prevent generalisation and has improved 
performance in speech recognition applications (Ko et al. 2015). It is generally 
suggested for audio classification tasks (Abayomi-Alli et al. 2022).

Another problem with small datasets is that a normal train/test split (e.g. 80/20) would 
yield a too small set (20% of the dataset, that is ~38 samples) to allow an accurate 
assessment of the model’s performance. A solution in this case is to use a resampling 
method that uses different subsets of the data to train and test the model on different 
iterations. Here, we performed a K-fold cross validation (See Box 3), dividing the data 
into eight subsets (i.e. folds) containing 24 samples, 12 per category (See Figure 3 for 
visual explanation). This way, we guaranteed a low dispersion between results and that 
each sample was evaluated at least once. In each iteration, 1-fold (24 samples) was used 
for testing, while the remaining 7 were used for retraining. For each retraining process, 20 
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epochs were considered, with a learning rate of 0.05, using Tensorflow’s Adam optimiser. 
Accuracy measures were obtained for each iteration, and in some cases, accuracy for 
specific species is also reported.

2.4. Implementations

First, the effect of Transfer Learning was evaluated by training the three networks with 
randomly initialised weights and comparing these to the pre-trained ones (no-TL vs. TL 
implementation). In this implementation, DA was always used, adding noise (10%), and 
adding samples with increased and decreased pitch. This should effectively triplicate the 
number of data samples in each training set, composed of 7 folds (a total of 672 data 
samples in the augmented dataset).

Second, to evaluate the impact of adding augmented samples in the training process, 
we tested the model with a progressively higher number of samples (progressive data 
size augmentation implementation). We wanted to test how many times data needed to 
be augmented to obtain sufficient performance. Two sub-implementations were eval
uated, first with progressively adding more samples of the same type (5% of noise) for 
all three networks, ranging from no DA to four times the amount of data (x4). Note that 
since instances of added noise were random, two signals with the same base vocalisa
tion and same noise added were considered different. In the second sub- 
implementation, different levels of noise were added (5%, 10%, 15%), with progres
sively more samples (no DA, x2, x3, x4). This approach was only tested in the ResNet 
network as we hypothesised that conclusions would be equivalent for the other two 
networks. All these experiments used TL procedures, and the three networks were 
evaluated independently.

Third, to evaluate which DA transformation best improved accuracy, several 
combinations of DA sets were considered (DA transformations implementation). 
We first tested the network augmenting only with noise (10%), for a domain 
general data transformation against increasing (f0↑) and decreasing (f0↓) pitch 
separately for a domain specific transformation. This duplicated the training set – 
for every case the amount of samples was the same. Second, we tested combina
tions of these approaches (effectively triplicating the amount of samples). 
A domain general transformation (adding noise, 5% and 10%) was compared 
against combinations of increase/decrease of pitch together with noise (10%). 
Finally, we evaluated the network with all three transformations: Noise (10%), 
pitch increase, and pitch decrease.

To explore how acoustic features from different species vocalisations could 
generalise across taxa in the two conditions, we chose a complementary approach. 
We performed a leave-one-out (LOO) cross-validation approach, where the net
work was trained with 3 of the species, using the data of the left-out species as 
a test set. The idea was to test the network with data from a species not being 
trained with, but of the same affective quality. This could provide an idea of how 
well CNN can generalise affiliative and agonistic vocalisations independent of the 
species emitting them.
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BOX 2. Data Augmentation in an acoustic classification task.
A well-described problem in DL is that efficient audio classification systems depend on large datasets for 
training (Tsalera et al. 2021). High-accuracy sound recognition systems face a big challenge regarding 
robustness and generalisation as factors such as noisy environments, reverberation, and other types of 
perturbations can affect performance negatively (Wang et al. 2015). When dealing with small acoustic 
datasets, a data augmentation procedure can help to increase performance of an otherwise poorly 
performing system (Zhao et al. 2022).
A data augmentation approach consists of applying transformations to available data to increase the 
number of items in the training set. The type of transformations applied depends on the task. In 
a classic image classification task, for example, possible transformations include modifying contrast or 
rotation of the image. It is important that transformations are applied in a way that important features 
are preserved after the transformation (e.g, in a face classification task, an eye needs to still be an eye 
after the transformation). In the case of acoustic classification using CNN, sounds are converted into 
a time-frequency representation to apply transformations before or after the conversion to 
spectrograms.
Regarding transformations in the time domain, there is general consensus that applying noise to the 
signal increases the overall performance independent of the application (Abayomi-Alli et al. 2022). 
This is considered a ‘domain general’ transformation. If a particular classification task includes 
vocalisations (animal or human), another suggestion includes a pitch shift, and this is considered 
a ‘domain specific’ transformation. In both cases, there are parameters that need to be tuned (e.g. the 
amount of noise, range of frequency shift for the pitch, etc.), and care must be taken to preserve 
important features. For example, a pitch shift cannot put fundamental frequency in an unnatural 
range. Other types of transformations include signal scaling or volume increase/decrease. For 
transformations applied directly to the spectrograms, care must be taken with standard image 
augmentation protocols, as they may result in unusable training items (e.g. a rotation would mix 
up time and frequency dimensions). In fact, standard image augmentation procedures have shown to 
be detrimental in bioacoustic classification tasks (Nanni et al. 2020). Successful transformations in 
time-frequency representation include masking (i.e. removing segments of the image) and mixing 
signals (Zhang et al. 2019).

Figure 2. Proposed data augmentation scheme. Original training data are subjected to domain- 
general (addition of noise) and domain-specific (pitch shift) transformations. Modifications in the 
time-frequency realm (like spectrogram rotations or stretching) are neglected for this particular 
study.
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3. Results

First, we trained the VGG16 network with randomly initialised weights, i.e. without any 
TL approach, but with the previously described DA approach (no-TL condition). Results 
are reported in Table 3. Without transfer learning, accuracy was around 50% (i.e. no 
better than chance) on the test set for all three networks. It was clear that the amount of 
training data was insufficient. With the TL approach (Table 2) average accuracy was 
around 80% for the VGG16 and ResNet networks and 59% for the VGGish. However, 

BOX 3. K-fold Cross-validation approach.
In Machine Learning, cross-validation is a model validation approach in which the data set is divided into 
a training and test-set repeatedly in different ways. By running multiple iterations, an idea can be formed 
about how variable the model’s performance is for different test sets, thus allowing statistical analysis of 
the model’s performance. A cross- validation approach is preferred over a traditional training/testing split 
when the dataset is too small, as few data samples for evaluation can underestimate or overestimate 
a model’s ability to predict new data (James et al. 2013).
There are various cross-validation approaches. The main differences revolve around the size of the splits, 
the amount of iterations and the type of data. A good criterion is to evaluate how many samples are 
available and how much computational power the training procedure will take. Usually, more exhaustive 
approaches tend to take more computational resources, and are preferred for very small datasets. An 
example is the leave-p-out cross validation, in which p items are taken for testing, and the remaining for 
training, using all possible combinations p items. A particular case is when p = 1, typically referred to as 
leave-one-out cross validation. For less exhaustive approaches, a common method is the K-fold cross- 
validation, in which data is separated into K subsamples, and each subsample is used once for testing 
across K iterations.

Figure 3. K-fold cross validation split. Every vocalisation (index in x axis) appears at least in  
the testing set (orange) and the remaining for training (blue). Class (affective condition) and 

Species was expressed in the last two lines. All 192 samples were separated in 8 subsets 
(folds), containing 24 vocalisations. Each fold was balanced in terms of class (12 vocalisa
tions for each emotional valence) but not in terms of groups (random amount of vocalisation 
per species).
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accuracy results on individual species varied significantly. In Table 3, results for indivi
dual species showed that all three networks performed better for chimpanzees and tree 
shrews. Particularly, accuracy of chimpanzees and tree shrews was above 90% for the 
VGG16, while the ResNet could perfectly classify vocalisations across these species. The 
VGGish performed, with a 71% accuracy for these two species. On the other hand, 
accuracy decreased noticeably for human infants and dogs, with 68% and 57% respec
tively for the VGG16 and 58% and 66% respectively for the ResNet. Finally the VGGish 
obtained an accuracy of 61% for human infants but could not correctly classify vocalisa
tions of dogs (accuracy below 50%). Note also that for human infants and dogs, 
variability in accuracy classifications also increased noticeably compared to the other 
two species.

In a second iteration, we evaluated the impact on accuracy based on the number of 
samples in a training set. For this, we progressively increased the numbers of samples in 
the training set in two ways. Here we used transfer learning, as the first iteration had 
shown that no useful learning takes place without it. Results are presented in Figure 4. As 
shown in Figure 4 (left), using only the original data yielded poor results, although it is 
worth noting that accuracy was still above chance for the VGG16 and ResNet networks. 
Augmenting the data increased accuracy as expected, but adding more noisy samples in 
the x3 and x4 conditions did not noticeably improve accuracy. Overall, ResNet and 
VGG16 performed better than VGGish. Figure 4 (right) shows that noise at different 
levels boosted overall performance independent of condition for the ResNet network. In 

Table 3. Average accuracy (mean ± standard deviation, in %), for the three tested networks with and 
without Transfer Learning (TL). Accuracy for individual species for the case with TL is also presented 
(rows in cursive).

Accuracy (%) No TL+DA TL+DA Human Infants Dog Chimpanzee Tree Shrew

VGG16 0.49±0.03 0.79±0.09 0.68±0.23 0.57±0.24 0.91±0.15 0.98±0.06
Resnet 0.51±0.04 0.81±0.07 0.58±0.17 0.66±0.26 1.0±0.0 1.0±0.0
VGGish 0.49±0.05 0.59±0.10 0.61±0.33 0.43±0.14 0.71±0.18 0.71±0.19

Figure 4. Effect of adding progressively more samples into a training set, using the same type of 
augmentation (left). Effect of considering noise at different energy levels for the ResNet network 
(right).
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particular, adding 15% of noise yielded the best results, when duplicating or triplicating 
the training sample. However, increasing the amount of training data using higher levels 
of noise yielded lower performance compared to other methods.

In the third iteration we explored different combinations of data augmentation 
techniques, and results are summarised in Table 4. In this case, adding only noise 
(random transformation) was compared against domain specific transformations, i.e. 
pitch shift up (f0↑), or down (f0↓), for half an octave. Results revealed that including only 
domain-specific transformations (both pitch-shift up and down) yielded better results 
than adding only noise, although this difference seemed not to be statistically significant. 
In particular, including pitch-down transformations seemed to boost accuracy in all 
networks. More importantly, using a combination of domain general and domain- 
specific transformations seemed to yield the best results.

Finally, to evaluate the capacity of the three networks to generalise affective 
vocalisation qualities across species, the leave-one-out (LOO) cross validation 
approach was evaluated, using previously described TL and DA approaches. 
Results are presented in Table 5. It can be seen that the VGG16 network experi
enced an increase in accuracy when testing on human infants and chimpanzees. The 
same was observed, but with a higher accuracy, when testing the ResNet network 
with chimpanzees, but not for human infants. A similar situation occurred with the 
VGGish, showing an increase in accuracy for chimpanzees and tree shrews, but not 
for human infants nor dogs. Finally, some accuracies were noticeably low, particu
larly the ResNet classification of dog and tree shrews, which were below 40%, and 
the VGGish for dogs at 40%. This suggests that in these cases networks are inverting 
the affective quality of the recognised class (i.e. recognise an affiliative vocalisation 
as a non-affiliative, and vice versa).

Table 4. Average accuracy (mean ± standard deviation, in %), for the different DA cases, for all three 
networks. Best results were observed when including a pitch-shift down transformation (f0↓).

DA x2 DA x3 DA x4

Accuracy 
(%) Noise (10%) f0↓ f0↑

Noise 
(5%+10%)

f0↓ + 
Noise (10%)

f0↑ + 
Noise (10%) f0↑ + f0↓

Noise (10%)+ 
f0↑+f0↓

VGG16 0.77±0.09 0.80±0.10 0.71±0.10 0.76±0.06 0.81±0.09 0.77±0.09 0.84±0.08 0.85±0.07
Resnet 0.79±0.11 0.83±0.07 0.81±0.9 0.82±0.07 0.84±0.06 0.79±0.10 0.88±0.08 0.89±0.04
VGGish 0.58±0.08 0.55±0.09 0.49±0.10 0.57±0.09 0.52±0.11 0.52±0.11 0.64±0.12 0.69±0.12

Table 5. Average accuracy (mean ± standard deviation, in %) for the leave-one-out cross validation 
approach. Networks were trained with vocalisations from three of the species, while the testing was 
conducted on the remaining species. An increase in accuracy in chimpanzee vocalisation classification 
was observed when training with human infants vocalisations using any network. The opposite was 
observed only for VGG16. An accuracy increase was also observed with the Tree Shrew trained using 
the VGGish network.

Test Set

Approach Human Infants Dog Chimpanzee Tree Shrew

LOO – VGG16 0.59±0.04 0.49±0.02 0.63±0.06 0.47±0.02
LOO – ResNet 0.42±0.03 0.26±0.03 0.79±0.03 0.39±0.04
LOO – VGGish 0.53±0.04 0.40±0.04 0.58±0.05 0.60±0.07
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4. Discussion

In this study, we explored different classification approaches in a small set of mammalian 
vocalisations, using off-the-shelf convolutional neural networks. We highlight the impor
tance of two particular techniques: Transfer Learning and Data Augmentation. Both 
techniques increased classification accuracy in a dataset of affective vocalisations in 
mammals. On the one hand, using pretrained networks has been the standard in bioa
coustics for some time (Lasseck 2018; Guyot et al. 2021), demonstrating the usefulness in 
these classification and detection tasks. On the other hand, we also showed that increment
ing the amount of data via DA techniques is also beneficial for small datasets, in accord 
with previous findings in acoustic data (Vecchiotti et al. 2019). DA techniques clearly boost 
accuracy classification in bioacoustic datasets (Nanni et al. 2020). These prior studies 
included more than a hundred samples per species and per class. The current results 
show that a DA approach can improve performance even in small data sets. However, 
while there is a wide range of transformations that can be applied to acoustic data 
(Abayomi-Alli et al. 2022), there is little understanding of the effectiveness of some of 
these transformations in bioacoustic datasets. Previous studies suggested that pitch shifts – 
among other transformations – are effective in bioacoustic classification of cats and birds 
(Nanni et al. 2020), being analogous to data in human voice speaker recognition (Nugroho 
et al. 2022). However, an exploration of parameter settings for these types of transforma
tions (e.g. how much noise should be added or how much pitch should be increased or 
decreased) is yet to be studied. The current results suggest that noise around 10% or 15% of 
the total energy of a vocalisation should be added for data augmentation, but this may vary 
depending on the setting, that is, if there was already background noise or not. A limitation 
of the current study is that we did not explore if different increases or decreases in pitch 
improved accuracy, as this is likely to vary depending on the species and a more diverse 
range of species would be needed for this purpose. To illustrate this point, the vocal range 
of primates differs from that of birds, so applying the same pitch modification would not 
necessarily help models to achieve generalisation.

In the present study, ResNet seemed to achieve the best overall performance, closely 
followed by the VGG16. This might seem counterintuitive, as one would expect feature 
transfer from a similar task to yield better results. In fact, most recent studies followed the 
trend of pretraining on acoustic datasets (Kahl et al. 2021). However, evidence showed that 
transferring from a large image dataset (particularly, the ImageNet dataset used in this 
study), offers as good results as transferring from an audio dataset for a standard audio 
classification task (Palanisamy et al. 2020; Fonseca et al. 2021). The reason for this is still 
unclear (Neyshabur et al. 2021) because there is still no real understanding of what features 
are transferred in a TL approach. However, one study (Palanisamy et al. 2020) suggested 
that in initial layers, spectrograms are treated similarly by the network as images. 
A visualisation of this phenomena shows that the network pays attention to regions with 
high energy distribution in spectrograms by learning the boundaries of these regions. This 
is an analogue of how image detection algorithms learn edges around objects. By having 
unique shapes for each sound, the network can classify them well. Therefore, a network 
pre-trained on ImageNate that excels as an edge detector, will also be able to derive good 
classification accuracy with sufficient fine-tuning. Despite this, it remains unknown which 
pre-trained CNN would perform best in a given task, and recent studies that compare 
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performance of different pre-trained networks are inconclusive (Tsalera et al. 2021). 
Following the current results, we suggest that both types of approaches (pretraining on 
image and audio datasets) should be tested in any particular classification task.

The current study also addressed the capacity of these networks to generalise affective 
call qualities across different species. Although it might seem that on average all three 
networks could generalise to some degree, looking into individual species we can see that 
the networks are able to only meaningfully generalise for chimpanzees and tree shrews, 
with a noticeable decrease in performance for the other two species. Looking into the 
acoustic characteristics of the calls (see Table A in Appendix), we noted that for chimpan
zees and tree shrews, the distinction between agonistic and affiliative vocalisations was 
similar to the distinction between voiced and unvoiced vocalisations, respectively. On 
a similar note the Peak frequency is higher for agonistic calls in the same species. We 
also noticed that there were no major differences in acoustic features of human infants and 
dogs between the two agonistic conditions. The only exception might have been the peak 
fundamental frequency, which was slightly higher in the agonistic condition. This was 
supported by results of the GLM analysis (Table B in Appendix), in which only peak 
frequency showed a statistical difference between conditions. Interestingly, the distinction 
between voiced and unvoiced vocalisations was not significant, when considering all 
species. Despite this, and observing results in Table 4, we suggest that networks might be 
learning how to differentiate between voiced and unvoiced vocalisations. This is supported 
by the Leave-one-out cross-validation experiment, in which the VGGish network could 
slightly improve accuracy when tested in either of the species, whilst being trained on the 
other three. A possible reason why the VGGish network could make this distinction might 
be the pretraining of acoustic data (instead of an image dataset), as there might be a better 
feature transfer for the voiced/unvoiced differentiation. One potential reason why the GLM 
analysis might not sufficiently differentiate between conditions is that the selected acoustic 
parameters may not be informative for this analysis. While additional parameters like 
MFCC and kurtosis could be incorporated, the choice of acoustic parameters is often 
specific to each case and species, with no universal set of parameters or rules ensuring 
consistent results. Additionally, the assumption of linearity required for a GLM analysis 
may oversimplify this particular case. Introducing alternative nonlinear assumptions is 
challenging as this would necessitate a thorough examination of the vocalisations. One 
advantage of using DL is it can identify nonlinear relationships within the data without 
further input. Another advantage of using raw acoustical inputs is that neural networks can 
learn differences autonomously, eliminating the need for manual feature selection and 
evaluation, as in traditional machine learning approaches.

Bioacoustic research has suggested that agonistic calls are more relevant in cross-taxa 
communication (Scheumann et al. 2014) as they usually convey information about 
danger or threat to other species. In this regard non-linear vocal phenomena are usually 
present in these vocalisations (Anikin et al. 2020). One could argue that harshness and 
chaotic sounds derived from non-linear phenomena could be an acoustic feature that can 
therefore be generalised across taxa. However, as affiliative vocalisations are more 
commonly used in interspecies communication, it could also be said that these types of 
vocalisations cannot be generalised. From an evolutionary perspective, it is more likely 
that phylogenetically related species share similarities in vocalisations. This is something 
we observed (see Table 4), particularly in the VGG16 network, where accuracy was 
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slightly higher when human infant vocalisations were present in the training set for 
classifying chimpanzee vocalisations and vice versa. However, we note that with such 
a limited number of calls and species these interpretations are necessarily preliminary, 
and given the nature of the tested networks, it remains to be seen which acoustic features 
ultimately lead to best performance in call classification. On a similar note, a separate 
study performed on bird vocalisations also suggested a relationship between accuracy in 
classification and phylogenetic distance (Provost et al. 2022). Consequently, we provided 
a first step in the use of DL approaches that can ultimately lead to explorations of broader 
spectra of species and vocalisations.

5. Conclusions

This research investigated the classification of mammalian vocalisations using convolu
tional neural networks, with a particular focus on techniques like Transfer Learning (TL) 
and Data Augmentation (DA). Both techniques enhanced the accuracy of classifying the 
affective quality of vocalisations for this particular dataset. The results showcase the efficacy 
of pre-training from image datasets, compared to TL from acoustic datasets. Among the 
models tested, ResNet exhibited the best performance, closely followed by VGG16. The 
study also explored whether these networks generalise across species, revealing effective 
discrimination in chimpanzees and tree shrew vocalisations, with less satisfactory results 
for human infants and dogs. We suggest a potential connection between accuracy and 
phylogenetic distance, but more studies are required, potentially with a more diverse range 
of species and types of vocalisations. Overall, we could provide preliminary insight into 
vocalisation features and their transferability across taxa using deep learning approaches, 
demonstrating the feasibility of these techniques in future research.

Future research should consider a more extensive range of species vocalisations to 
achieve more meaningful and robust results in terms of understanding different DA 
approaches and its limitations, but also for better comprehension of how these models 
can generalise affective quality across taxa and the feasibility of transferability to more 
niche applications and/or species. Simultaneously, we hope that this work motivates the 
use of DL techniques in applications where animal vocalisations are scarce, such as 
passive acoustic monitoring, which has become an efficient tool to track endangered 
species (Teixeira et al. 2019). Sound detection and classification for endangered species 
usually relies on techniques other than DL, like spectral cross-correlation (Arvind et al.  
2023) or template matching (De Araújo et al. 2023). In that sense, we hope to encourage 
the use of DL techniques for acoustic monitoring of endangered species.
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Appendix

Table A. Acoustical characterisation of vocalisations. Mean ± standard deviation of following para
meters: Vocalisation duration, mean fundamental frequency (f0), standard deviation of f0, peak 
frequency, harmonic-to-noise ratio (HNR), percentage of voiced frames, and spectral centre of gravity. 
Results are presented per species and per category.

Human Infant Dog Chimpanzee Tree Shrew

Agonistic context – negative emotional valence
Vocalisation duration 0.72 ± 0.18 0.85 ± 0.15 0.75 ± 0.18 0.77 ± 0.13
Mean f0 604.74 ± 492.93 705.61 ± 352.91 1217.7 ± 161.08 2812.97 ± 909.27
Standard Deviation f0 215.59 ± 549.86 302.79 ± 299.74 103.65 ± 102.98 605.09 ± 575.51
Peak frequency 1157.89 ± 669.3 686.96 ± 269.91 1803.18 ± 447.83 4874.27 ± 921.21
HNR −37.12 ± 47.22 −100.09 ± 36.37 −25.3 ± 26.8 −106.24 ± 18.54
Percentage of Voiced Frames (%) 0.73 ± 0.27 0.48 ± 0.23 0.94 ± 0.1 0.48 ± 0.1
Spectral Centre of Gravity 1548.16 ± 795.25 938.93 ± 261.92 2004.96 ± 282.15 5470.93 ± 662.22

Affiliative context – positive emotional valence
Vocalisation duration 0.76 ± 0.13 0.72 ± 0.16 0.82 ± 0.14 0.69 ± 0.16
Mean f0 576.53 ± 380.01 686.79 ± 209.68 3026.45 ± 1087.77 4376.25 ± 827.05
Standard Deviation f0 358.12 ± 579.81 273.5 ± 341.4 1221.86 ± 833.55 1448.58 ± 465.97
Peak frequency 877.51 ± 674.82 763.95 ± 304.89 430.89 ± 666.13 371.53 ± 1213.94
HNR −29.11 ± 38.21 −112.15 ± 12.89 −88.02 ± 47.31 −78.86 ± 52.29
Percentage of Voiced Frames (%) 0.86 ± 0.17 0.5 ± 0.17 0.48 ± 0.3 0.65 ± 0.2
Spectral Centre of Gravity 1122.37 ± 673.81 1106.08 ± 272.81 2151.56 ± 1407.34 3492.44 ± 1621.38

Table B. Statistical analysis of acoustical parameters. A generalised linear regression model was 
considered, with all acoustic parameters used to predict context category (affiliative, agonistic), 
independent of the species.

Estimate Standard Error t-Value p-Value

Vocalisation duration 0.51614 0.21765 2.3714 0.018751
Mean f0 −0.18394 0.18295 −1.0054 0.31601
Standard Deviation f0 6.52 × 10−5 3.77 × 10−5 1.7316 0.085015
Peak frequency 0.00010731 5.95 × 10−5 1.8044 0.072807
HNR −0.00017356 3.13 × 10−5 −5.5513 9.79E × 10−8

Percentage of Voiced Frames (%) −0.0015772 0.00091746 −1.719 0.087287
Spectral Centre of Gravity 0.076262 0.16711 0.45637 0.64866
Vocalisation duration 1.07 × 10−5 3.80 × 10−5 0.28132 0.77878
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