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A B S T R A C T   

Seismically isolated structures can be subjected to large horizontal displacements relative to the ground, espe-
cially in Near-Fault earthquakes, which are characterized by one or more intense pulses of velocity and 
displacement of long period. One strategy to mitigate the problem of large displacements, which occurs in lin-
early isolated structures, is the use of deformable and dissipative devices (bumpers). The impact between the 
structure and the bumpers, if the bumpers are appropriately designed, can produce beneficial effects on the 
dynamic response of the system, both on displacements and accelerations. In this paper the response obtained 
from a numerical model of isolated single-degree-of-freedom (SDOF) systems constrained by two bumpers, ar-
ranged symmetrically on both sides of the mass of the system with an initial gap, subjected to base harmonic 
excitation, is studied. This model is called Vibro-Impact Isolation System (V-IIS). The objective of this work is to 
define a methodology for choosing the design parameter defining the V-IIS (mechanical characteristics of the 
bumpers, gap and isolation frequency of the system) by observing both steady-state and transient responses of 
both the system and the bumpers. The study of the transient response is compared with that obtained in the 
steady-state to assess how representative the latter is of the V-IIS transient response. From the definition of the 
methodology for choosing the parameters of the V-IIS, through optimal design, the only design parameters are 
the gap and the isolation frequency of the system. Therefore, an appropriate choice of the gap makes it possible 
to bring frequency-selective viscous damping in V-IISs, introducing two advantages over linear systems: the 
reduction of the peak intensity of the responses in the resonance range (both displacement and acceleration) and 
the reduction of the static displacement of the system, but keeping the dynamic response with which the system 
is designed unchanged.   

1. Introduction 

One of the most widely used strategies for passively controlling the 
dynamic response of sensitive structures and equipment is base isola-
tion. This strategy consists of interposing a highly deformable element 
horizontally between the base floor and the structure (or equipment), so 
as to significantly increase the period of the system and reduce the 
transmitted acceleration. 

The problems of traditional (i.e. linear) isolated systems are due to 
their low stiffness, which induces large displacements of the isolated 
floor, with respect to both static actions and seismic events character-
ized by several long-period displacement and velocity pulses (Near-Fault 
earthquakes) [1,2]. These large displacements can cause two different 
problems: exceeding the limit deformation of the isolators, and thus 
inducing permanent deformation or rupture of the isolators; or impact of 

the isolated structure or equipment with adjacent elements, if the space 
between them, the gap, is not sufficient to accommodate the large dis-
placements generated [3,4]. In the latter case, inadequate gap sizing 
may be due to practical limitations, for example, for seismic isolation 
retrofitting of existing buildings in metropolitan areas, where adequate 
space is not always available. Pounding has been shown to generate 
increases in both accelerations and interstorey drifts in isolated struc-
tures that impact surrounding space walls [4,5]. These increases in dy-
namic response can cause severe damage to structural and nonstructural 
elements [6,7], such as sensitive equipment located within the isolated 
buildings [8,9]. The problems caused by large displacements can also be 
due to the presence of vibrating machines, which during their on–off 
phases or not working under design conditions, can attain frequency 
values close to those of resonance, transmitting strong accelerations and 
displacements to the structures that contain them, creating discomfort 
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[10,11]. 
Some studies, focusing on reducing the large static displacements of 

linear isolation systems, propose nonlinear isolation systems with high 
static stiffness and low dynamic stiffness [12,13]. These systems take 
advantage of negative stiffness mechanisms (NSMs) arranged in parallel 
with classical isolation systems. Subsequent developments of these 
systems led to the definition of nonlinear isolators as quasi-zero stiffness 
(QZS) systems [10,11]. 

In contrast, semi-active control systems, through the use of sensors, 
processors and actuators, allow the mechanical parameters (such as 
stiffness [14]) of control devices to be adjusted in real time so limiting 
problems due to large displacements. 

Another effective strategy to reduce and control the negative effects 
due to large displacements of the isolation floor is the interposition of 
deformable and dissipative devices, called bumpers [15,16]. Polycarpou 
and Komodromos [17] studied, through numerical simulations, the 
effectiveness of using rubber bumpers, to be applied at locations where 
impacts are likely to occur, to act as shock-absorbers. 

De Angelis and Andreaus conducted several experimental in-
vestigations on the influence of bumpers on the dynamic response of 
single-degree-of-freedom (SDOF) systems subjected to harmonic base 
excitation [18–26]. From these studies, it was observed that the pa-
rameters governing the impact between the system and the bumper can 
be summarized into three: gap (distance between mass and bumper), 
stiffness and damping of the bumpers. In addition, the authors, based on 
the experimental investigations, defined a numerical model, through 
which numerical analyses [18,21,24] were carried out, which allowed 
the identification of optimality relationships between stiffness and 
damping coefficient of the bumper and ratio damping of the system, 
reducing the design parameters from three to two [26]. These works 
[19–23,25] will be discussed in more detail in Section 4. 

The present work analyzes the response obtained from a numerical 
model of isolated SDOF system constrained by two bumpers, arranged 
symmetrically on both sides of the mass of the system with an initial gap, 
subjected to basic harmonic excitation. This model, thus defined, takes 
the name of Vibro-Impact Isolation System (V-IIS).The design of the 
bumpers is carried out following the optimality relationship introduced 
in [26] and an optimal curve presented in this paper. Therefore, the 
objective of this work is to define a methodology for choosing the design 
parameter defining V-IIS (gap and system isolation frequency) by 
observing both steady-state and transient responses of both the system 
and the bumpers. The study of the transient response is then compared 
with that obtained previously at steady-state to value how representa-
tive the latter can be of the response of V-IIS to transient as well. 
Although this methodology is obtained through the study of SDOF 
oscillator subjected to a harmonic base excitation, it also shows appli-
cability in the case of seismic motion in the ground. This is because for a 
seismic excitation, although it is a multi-frequency action, it can be 
assumed that its action on a structure can be characterized by a quasi- 
resonant state at the effective fundamental frequency of the structure. 
These proposed nonlinear isolation systems, in reducing large dis-
placements by introducing a limit switch to the isolated system, allow 
the dynamic amplification in the resonance range and the static 
displacement to be reduced. 

Section 2 introduces the linear oscillator focusing on the influence of 
the damping and isolation frequency at which the system is designed; 
Section 3 introduces the model with the equations of motion; Section 4 
reports the authors’ contributions about Vibro-Impact Systems both on 
the study of nonlinear dynamics and possible response scenarios and, 
subsequently, on the control of dynamic response; Section 5 talks about 
the design criteria of the parameters of V-IISs, introduces the optimal 
design of the bumpers and a study on the influence of the gap and the 
isolation frequency on the response; Section 6 reports the steady-state 
responses, obtained in terms of Pseudo-Resonance Curves (PRCs), in 
which the sweeps were carried out by applying the continuation tech-
nique, and the transient responses, obtained through time histories and 

force–displacement cycles, for four different initial gaps and without 
impact condition; finally, Section 7 concludes by reporting final con-
siderations on the results obtained. All reported results are also repre-
sented in dimensionless terms so that they can be generalized. 

2. Linear isolation systems 

A simple single-degree-of-freedom oscillator, such as a mass-spring- 
damper system, is introduced to study linear isolated systems and to 
define what the criticality of these systems depends on. 

The graph in Fig. 1 shows the transmissibility of acceleration TRa(ξ,
β) [27] as a function of parameter β, for different values of parameter ξ: 
TRa(ξ, β) represents the maximum absolute acceleration a0 transmitted 
to a mass normalized with respect to the peak ground acceleration AG; β 
is defined as the ratio of the frequency Ω of the harmonic excitation to 
the frequency ω of the system; ξ is the damping ratio defined as the ratio 
of the damping coefficient c to the critical damping coefficient ccr =

2mω. 
The analytical formula of the transmissibility of acceleration is as 

follows: 

TRa(β, ξ) =
a0

AG
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (2βξ)2

(
1 − β2)2

+(2βξ)2

√
√
√
√ (1) 

From the study of the curve, two ranges can be identified. These are 
separated by the value β =

̅̅̅
2

√
, which together with β = 0 identify the 

two fixed points where transmissibility takes a unity value, i.e., trans-
mitted acceleration a0 is equal to ground acceleration AG:  

• 0 ≤ β ≤
̅̅̅
2

√
non-isolation range, where transmissibility is greater 

than or at most equal to 1;  
• β >

̅̅̅
2

√
range of isolation, where transmissibility is less than 1. 

Fig. 1. Transmissibility TRa curves, representing the ratio of the amplitude of 
the absolute acceleration of the single-degree-of-freedom oscillator a0 to the 
amplitude of the absolute acceleration of the ground motion AG, as a function of 
the ratio β of the harmonic forcing frequency to the oscillator frequency and for 
five different values of the system damping ratio ξ (smaller thicknesses repre-
sent smaller damping ratios) are shown. 0 < β ≤

̅̅̅
2

√
represent the non-isolation 

range, highlighted in yellow; β >
̅̅̅
2

√
represent the isolation range, highlighted 

in green. The non-isolation range is in turn divided into a quasi-static response 
sub-range (for small β values), highlighted in blue, and a resonance sub-range 
(for β values around 1), highlighted in red. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of 
this article.) 
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As shown in Fig. 1, the first range can be further divided into two sub- 
ranges that are not well defined:  

• β small, quasi-static response sub-range, where the amplitude of the 
transmitted acceleration is essentially equal to the peak ground 
acceleration;  

• β approximately larger than 0.5 but smaller than 
̅̅̅
2

√
, resonance sub- 

ranges, within which the mass response is amplified, attaining a 
maximum in βR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 2ξ2

√
. 

It is also observed that ξ acts over the entire range of β, reporting 
different effects in the two ranges of β: in the range 0 ≤ β ≤

̅̅̅
2

√
it acts 

positively by reducing the response as damping increases; in β >
̅̅̅
2

√
, it 

acts negatively by increasing the response, thus reducing the effective-
ness that is achieved in isolation, again as damping increases. 

While the Transmissibility curves quantify the acceleration trans-
mitted to the mass, the displacement response factor curves Rd(ξ, β)
(Fig. 2) show the maximum displacement u0 of the system subjected to 
harmonic forcing compared to the displacement ust that is obtained with 
a static force of intensity equal to the amplitude of the harmonic forcing. 

The analytical formula of the displacement response factor is as 
follows: 

Rd(β, ξ) =
u0

ust
=

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 − β2)2

+(2βξ)2
√ (2) 

The same β ranges identified in Fig. 1 are also given for the response 
quantity Rd:  

• If β≪1, sub-range of quasi-static response, Rd ≃ 1, then the dynamic 
displacement is approximately equal the static displacement for any 
value of ξ;  

• when β is contained in the resonance sub-range, Rd is very sensitive 
to the change in the damping ratio of the system, taking increasing 
values as ξ decreases;  

• if β≫1, isolation range, Rd tends to zero for any value of ξ. 

Therefore, the damping ratio acts positively over the whole range of 
β. However, while in the resonance sub-range the response is very sen-
sitive to the variation of ξ, the response decreases as the damping in-
creases, in the quasi-static response sub-range and in the isolation range, 
the influence of ξ on the response is negligible. 

From the study of TRa and Rd, both problems related to the non- 
isolation range and to the isolation range emerge. For values of β 
characteristic of the resonance sub-range, the system exhibits high am-
plifications of the maximum responses in terms of both displacement 
and acceleration. To overcome this problem, action is taken by 
increasing either the damping ratio ξ, reducing the maximum response 
values, or the isolation β, βI, ratio of system operating frequency moving 
away from the resonance range and toward lower response values. 

In the isolation range, on the contrary, as ξ increases, the beneficial 
effect of isolation is reduced. 

The static displacement, on the other hand, as normalized in Fig. 2, 
depends neither on the β of isolation, βI, nor on ξ; therefore, it is free 
from problems. In fact, the quantity Rd, characterizing the maximum 
displacement response of the system, allows the static displacement to 
be read in the quasi-static response sub-range, with β≪1, and is equal to 
the unit value for each ξ. 

The curve in Fig. 3 is now introduced in which the dimensionless 
static displacement q*

st , defined as the ratio of the static displacement 
ust = AG/ω2, equal to the peak ground acceleration AG divided by the 
square of the frequency ω of the system, and the peak ground 
displacement DG = AG/Ω2, equal to the peak ground acceleration AG 

Fig. 2. Displacement response factor Rd, representing the ratio of the amplitude 
of the relative displacement u0 to the static displacement due to a force equal to 
AG • M, of the single-degree-of-freedom oscillator, as a function of the ratio β of 
the harmonic forcing frequency to the oscillator frequency and for five different 
values of the system damping ratio ξ (smaller thicknesses represent smaller 
damping ratios) are shown. 0 < β ≤

̅̅̅
2

√
represent the non-isolation range, 

highlighted in yellow; β >
̅̅̅
2

√
represent the isolation range, highlighted in 

green. The non-isolation range is in turn divided into a quasi-static response 
sub-range (for small β values), highlighted in blue, and a resonance sub-range 
(for β values around 1), highlighted in red. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 3. Static dimensionless displacement q*
st , representing the ratio of the static 

displacement of the single-degree-of-freedom oscillator ust , due to a force equal 
to AG • M, to the amplitude of the displacement of the ground motion DG, as a 
function of the isolation frequency ratio βI of the oscillator is shown. 0 < β ≤
̅̅̅
2

√
represent the non-isolation range, highlighted in yellow; β >

̅̅̅
2

√
represent 

the isolation range, highlighted in green. The non-isolation range is in turn 
divided into a quasi-static response sub-range (for small β values), highlighted 
in blue, and a resonance sub-range (for β values around 1), highlighted in red. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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divided by the square of the frequency Ω of the excitation, as a function 
of the parameter βI, is reported. This βI represents the isolation fre-
quency ratio that characterizes the system, so the range of interest is that 
of isolation relative therefore to values of β >

̅̅̅
2

√
. 

The function describing q*
st is: 

q*
st =

ust

DG
= β2 (3) 

It is evident from Fig. 3 that the design of systems with high βI leads 
to high values of the static displacement. 

As known, the response of linear systems depends on two parame-
ters: the frequency ratio β and the damping ratio ξ. The first parameter β 
allows us to define response ranges (quasi-static, resonance, and isola-
tion); the second parameter ξ influences the resonance and isolation 
ranges in a more or less beneficial way. An appropriate choice of 
parameter β, toward high values, allows reducing the response; on the 
contrary, high values of parameter ξ reduce the response in the reso-
nance range and increase it in the isolation range. 

A linear system that exhibits low response values, therefore, turns 
out to be designed with high values of β, in the isolation range, and with 
modest values of ξ. Systems designed in this way, linear isolated systems, 
present problems both with respect to static displacement, since high 
values of β result in high values of static displacement, and during the 
application of the excitation, in the transient before the excitation at-
tains the steady-state. This is because, during the application of the 
excitation, the system, in reaching steady-state, spans all values of β 
between 0 and the value of β isolation, βI, with which the isolated system 
is designed. The system then, in the transient, also assumes values of β 
close to resonance, albeit for a limited time range, which result in high 
values of response as it presents small values of ξ. 

One possible solution to the problems that arise in linear isolated 
systems may be to define a new nonlinear isolated system. The nonlinear 
behavior, introduced by β-selective damping, should produce two 
beneficial effects: limit the dynamic amplification in the non-isolation 
range; increase the static stiffness without changing the behavior of 
the system in the isolation range. 

3. Model and equations of motion 

The model adopted for numerical analysis is illustrated in Fig. 4. The 
figure represents a Vibro-Impact single-degree-of-freedom (SDOF) sys-
tem consisting of a mass M, a damper D, and two deformable and 
dissipative bumpers, arranged symmetrically on both sides of the mass 
with an initial gap G0j (j = R right side, j = L left side) and referred to as 
right bumper BR and left bumper BL, respectively. The damper and 

bumpers are modeled by a linear elastic element, with stiffness K and Kj 

(j = R,L), respectively, and a linear viscous damper, with damping co-
efficient C and Cj (j = R,L), respectively, arranged in parallel. The sys-
tem is subjected to a harmonic base acceleration At(t) = AGsin(Ωt), 
where AG is the amplitude and Ω the circular frequency of this excita-
tion. Finally, in Fig. 4 u(t) refers to the relative displacement of the mass 
with respect to the ground, and uj(t) (j = R, L) refers to the bumper 
deformation. 

The equation of the motion is written in dimensionless form to make 
them as general as possible. The components of the equation are 
normalized with respect to F* = Mω2u*, which represents the maximum 
force in the SDOF system in free flight (without impact, FF): the quantity 
u* = ust • Rd,max represents the maximum relative displacement in FF, 
where ust = AG/ω2 is the static displacement and Rd,max = 1/
(2ξ

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ξ2

√
) is the maximum value of the displacement response factor 

Rd(ξ, β); while ω =
̅̅̅̅̅̅̅̅̅̅
K/M

√
denotes the frequency of the system. The 

frequency ratio β = Ω/ω and the damping ratio ξ = C/2Mω are intro-
duced, and the dimensionless time τ = ωt is defined. In the dimension-
less equations, the quantities q = u/u* and qj = uj/u* (j = R, L) are the 
dimensionless displacement of the mass and the dimensionless defor-
mation of the bumpers, respectively. Similarly, the dimensionless gap is 
δ0j = G0j/u* (j = R,L) and can take values in the range 0 ≤ δ0j ≤ 1. The 
force f(τ) = 2ξq′(τ)+q(τ) is the dimensionless force of the damper, while 
fj(τ) = 2ξγjq′

j(τ)+λjqj(τ) (j = R, L) – where γj = Cj/C and λj = Kj/K are 
the dimensionless damping and dimensionless stiffness of the bumpers – 
are dimensionless contact forces. Finally at(τ) = aGsinβτ is the dimen-
sionless harmonic excitation, where aG = 2ξ

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ξ2

√
is the dimension-

less amplification, and α(τ) = q″(τ)+at(τ) is the total or absolute 
acceleration of the mass. 

Therefore, the dimensionless equations of motion of the model can 
be written in the following form: 
{

q″(τ) + f (τ) + fj(τ)•ψ1[δj(τ)]•ψ2[fj(τ)] = − aGsinβτ
fi(τ) = 0 (4)  

where it is assumed that, if the mass is in contact with the left bumper, 
j = L and i = R, or, if the mass is in contact with the right bumper, j = R 
and i = L. In the equations the Heaviside functions ψ1 and ψ2 are defined 
as follows: 

contact ψ1
[
δj(τ)

]
=

{
0, δj(τ) > 0
1, δj(τ) = 0 (j = R,L) (5)  

separation ψ2
[
fj(τ)

]
=

{
0, fR(τ) ≤ 0 or fL(τ) ≥ 0
1, fR(τ) > 0 or fL(τ) < 0 (6)  

where δj(τ) (j = R, L) represents the gap function in terms of dimen-
sionless time τ and, if j = R, is equal to δR(τ) = δ0R + qR(τ) − q(τ), and, if 
j = L, is equal to δL(τ) = δ0L− qL(τ) + q(τ). In all introduced equations 
the superscript (′) indicates the differentiation with respect to dimen-
sionless time τ. 

Since the bumpers are equal and symmetrically arranged on both 
sides of the mass γR = γL = γ, λR = λL = λ and δ0R = δ0L = δ0. 

4. Nonlinear vibro-impact isolation systems: linear isolated 
systems with vibro-impact systems 

Linear isolation systems show problems related to large displace-
ments, since they have high isolation frequency ratios βI, and to the 
presence of excessive response values when working in the resonance 
zone, due to modest damping ratios ξ. Therefore, introducing appro-
priately designed end-stop devices (bumpers) to linear isolation systems, 
in addition to making the system strongly nonlinear, allows these 
problems to be mitigated. 

The authors have extensively studied, both numerically 

Fig. 4. Model of the system: the cyan box contains the mechanical elements 
that characterize the damper, and the red boxes contain the mechanical ele-
ments that characterize the bumpers. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 
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[18,21,23–26] and experimentally [19–23,25], the dynamic response of 
Vibro-Impact isolated systems, via single-degree-of-freedom (SDOF), 
base-isolated systems constrained on both side with bumpers. 

Initial numerical studies performed in [18] showed the influence of 
bumpers mechanical characteristics on the dynamic response of the 
system defining the various scenarios. Fore and back sweeps in accel-
eration and relative displacement excursion were performed, applying 
the continuation technique. These analyses revealed the presence of 
multiple resonance peaks, hysteresis ranges, and jumps between 
different solutions. Based on this numerical study, subsequent experi-
mental work presented in [19,20] was directed. Specifically, the first 
paper [19] was used to verify the operation of the experimental equip-
ment and test the feasibility of the designed experiments using only one 
type of bumper, one gap width, and four peak values of table accelera-
tion. The second work [20] was devoted to individually characterize the 
mechanical behavior of the damper and bumpers prior to shake-table 
tests also in relation to strain rate and to verify potential differences in 
the dynamic response of the system with respect to different bumpers, 
gaps, and peak table accelerations; for this purpose, two types of bum-
pers, two gap values for each type of bumper, and at most four peak table 
acceleration values were used in the case of one bumper and one gap. In 
[21] the results of an additional experimental work were presented in 
which the experimental setup of the previous experiments was 
improved. The results obtained from these experimental tests [19–21] 
showed excellent agreement with the numerical results obtained in [18]. 
In [23], the focus is on identifying and characterizing the possible sce-
narios that can occur in the experimental response of the single-degree- 
of-freedom (SDOF) Vibro-Impact Isolation System (V-IIS) by varying the 
peak value of the table acceleration, the initial gap between mass and 
bumper, and the bumper stiffness. Four scenarios were identified: sce-
nario corresponding to the free-flight condition FF; scenario corre-
sponding to the grazing condition; scenario characterized by the 
presence of only the primary resonance with right hysteresis; and sce-
nario that compared to the previous one also has a the secondary reso-
nance. These scenarios were also reproduced numerically using a 
Simplified Nonlinear Model (SNM). In [24] further numerical analyses 
were conducted by studying small and null gaps. These analyses allowed 
additional scenarios to be added to the scenarios obtained in [23]. 
Therefore, this study motivated the experimental work presented in [25] 
that investigated the influence of the gap parameter on the dynamic 
response of V-IIS, confirming the results obtained in [24] and extending 
the parametric investigation by considering positive, zero and negative 
gaps. 

The definition of the SNM allowed characterizing the impact phe-
nomenon by defining three parameters: the dimensionless gap δ0, the 
dimensionless stiffness λ and the dimensionless damping γ. 

Based on the response scenarios identified in some of the works 
[18–21,23–25], successive experimental and numerical studies have 
dealt with vibration control [22,26], particularly on the appropriate 
choice of the values of the three parameters gap, stiffness and damping 
of the bumpers, which allow both large displacements and excessive 
accelerations to be mitigated. The paper [22] reports the results of an 
experimental campaign on a shaking table of a SDOF system symmet-
rically constrained by two bumpers. This study brought out how a cor-
rect choice of bumpers and seismic gap allows a better control of the 
response in both displacement and acceleration. This result directed the 
studies presented in [26], which are an extension of [22]. The objective 
of this work [26] is to investigate, via parametric numerical analysis, the 
possibility of using impact to control the dynamic response of isolated 
systems. This objective was partially achieved through the definition of 
an optimality relationship that allows selection of bumper stiffness as a 
function of bumper damping and system damping ratio. This optimality 
relationship is presented in Subsection 5.1. 

In this work, an additional constraint is added to the design of 
bumpers that bonds the stiffness of bumpers with the gap through an 
optimal curve. Therefore, an optimal design methodology has been 

defined that links the three parameters defining the impact phenomenon 
(δ0, λ, γ), by means of an optimality relationship [26] and an optimal 
curve, thus reducing the design of V-IISs to the selection of the gap 
parameter δ0 and the isolation frequency of system βI. In this way a new 
vibration control methodology is defined. It involves coupling linear 
isolated systems with bilateral constraints composed of deformable and 
dissipative devices, called Vibro-Impact Isolation Systems (V-IISs). The 
nonlinear behavior of the V-IISs, achieved by the presence of additional 
β-selective viscous damping that is controlled by the appropriate choice 
of the parameters λ, γ and δ0, allows two benefits to be introduced to 
linear systems: reducing the peak intensity of the responses in the 
resonance range and reducing the static displacement of the system. 

This result makes it possible to exploit both the benefits of isolated 
systems, in the range of isolation frequencies, and the benefits due to 
viscous energy dissipation through the use of bumpers, in the non- 
isolation range. Therefore, the bumpers can have a selective influence 
in the frequency range limited to the non-isolation range. 

5. Design criteria of the parameters of V-IISs 

When designing the V-IISs, both the parameters that characterize the 
phenomenon of the impact of the mass with the bumpers and the 
isolation frequency of the system must be defined. The parameters 
related to the impact are the dimensionless gap δ0, the dimensionless 
stiffness of the bumpers λ and the dimensionless damping of the bumpers 
γ. The design of these parameters is done through an optimality rela-
tionship, reported in [26], and an optimal design curve, presented in this 
work, which allow to design the bumpers in an optimal way through the 
choice of the δ0 parameter alone. Instead, as regards the isolation fre-
quency of the V-IISs, the fundamental design parameter is the isolation 
frequency ratio βI. Therefore, the design of the V-IISs is delegated to the 
choice of the parameters δ0 and βI only. A right choice of these param-
eters allows to reduce the amplitude of the acceleration in resonance and 
the static displacement of the system. 

The definition of the optimality curve and the study of the influence 
that the parameters δ0 and βI have on the response of the system, were 
done through the study of Pseudo-Resonance Curves (PRCs) of the 
normalized excursions of the absolute acceleration ηa = Δα/Δα0 and of 
the relative displacement ηd = Δd/Δd0, where the excursions Δα and Δd 
are calculated as the difference between the maximum and minimum 
values recorded in the steady state of each frequency sub-interval of the 
absolute acceleration and of the relative displacement, respectively; 
while, Δα0 and Δd0 are the maximum excursions of the absolute accel-
eration and of the relative displacement in free-flight conditions FF, 
respectively. 

Subsection 5.1 will therefore report the optimal design of the bum-
pers, while Subsection 5.2 will report a study on the influence of the two 
free design parameters, δ0 and βI, providing indications on the influence 
of two parameters on the system response by identifying outlier values. 

5.1. Optimal design of the bumpers 

In order to optimize the control of the dynamic response of the sys-
tem, an optimal design criterion for selecting the physical parameters 
governing the impact (gap δ0, stiffness λ and damping γ of the bumpers) 
is adopted. This is based on an optimality relationship, introduced in 
[26], that bonds the damping ratio ξ of the system with the parameters λ 
and γ of the bumpers, and an optimal curve, introduced in this paper, in 
which the stiffness λ of the bumper is a function of the gap δ0. 

The optimality relationship is defined as follows: 

γ
λ
=

1
2ξ

(7) 

This relationship was sought through a parametric numerical anal-
ysis in which, for each δ0 investigated and for fixed values of ξ and γ, the 
value of λ was found such that the peak acceleration of the mass in 
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resonance was minimized. This is possible because the bumpers are fully 
utilized: as show in Fig. 5, the bumpers have sufficient time to recover 
their deformation before the next impact, dissipating all the accumu-
lated energy, and they do not remain inactive because the next impact 
occurs practically immediately after recovery; therefore, the analytical 
definition Eq. (7) was obtained by imposing the dimensionless bumper 
relaxation time τr = 1, with τr = 2ξγ/λ. 

The optimality relationship (Eq. (7)) is independent of the gap and 
through it, it is possible to reduce the number of impact parameters from 
three (δ0, λ, γ) to two, since choosing λ gives the value of the corre-
sponding γ. 

With the introduction of the optimal curve (Fig. 6a) an additional 
constraint is introduced, reducing the bumper design to the choice of 
only one parameter, the dimensionless gap δ0. The optimal curve, shown 
in Fig. 6a, was obtained through a parametric analysis by which for each 
δ0 and for a fixed value of ξ, the optimal value λopt , and then through the 
optimality relationship (Eq. (7)) also of γopt, is found such that the 

maximum acceleration of the system is minimized (Fig. 6b, obtained for 
a value of δ0 equal to 0.10). 

Therefore an optimal procedure was applied to minimize the 
maximum of the objective function ηa, which represents the normalized 
excursion of the absolute acceleration of the mass. The optimization 
problem is to find the parameter λ bounded within a predetermined 
searching range [0.01 10], for any values of δ0 within the range [0 1], for 
γ dependent on λ as it is subject to the optimality relationship Eq. (7) and 
for a fixed value of ξ = 0.10. therefore, this procedure can be expressed 
mathematically in the form: 

Fig. 5. Time history of displacement: in black (impact with optimal bumper 
design, OD) and dashed black (without impact, FF) the trend of mass position 
d(τ) = q(τ); in blue (j = R) and red (j = L) the trend of bumper position dR(τ) =
qR(τ)+δ0 and dL(τ) = qL(τ) − δ0. The system has ξ = 0.10 and the OD parame-
ters are δ0 = 0.10, λ = 0.78 and γ = 3.90 (obtained by the optimality relation, 
Eq. (7)). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 6. (a) Optimal curve that associates each gap δ0 with an optimal value of the stiffness of the bumper λopt ; (b) Pseudo-Resonance Curves (PRCs) in acceleration ηa 
for δ0 = 0.10 and for different values of the stiffness of the bumper λ: in red PRC obtained with λopt , while in black PRCs obtained with values of λ other than the 
optimal one. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Trends of the characteristic β values with the dimensionless gap δ0: red 
line β1 represents a limit curve that, for β < β1, returns the no-impact scenarios; 
blue line β2 represents the limit curve that, for β > β2, returns the no-impact 
scenarios; the black line βR represents the β values of resonance; green line βc 
represents the β values of isolation beginning. The colored areas represent 
different situations which can occurs when β >

̅̅̅
2

√
: green area represents no- 

impact scenarios; magenta area represents scenarios where the amplitude of 
mass acceleration is lower than the amplitude of ground acceleration, but is still 
greater than the acceleration under free-flight conditions; yellow area repre-
sents scenarios where the amplitude of the mass acceleration is greater than the 
acceleration amplitude of the ground and of the mass in free-flight condition. 
The dotted lines show the δ0 investigated in Fig. 8: (a) δ0 = 0.3, (b) δ0 = 0.19, 
(c) δ0 = 0.03, (d) δ0 = 0. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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0 ≤ δ0 ≤ 1 findλ min max {ηa[λ |δ0 γ ξ]} (8)  

subjected to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.01 ≤ λ ≤ 10

ξ = 0.1

γ =
λ
2ξ

(9) 

Looking at the red curve in Fig. 6a, it is evident that controlling the 
response of the Vibro-Impact system with a gap δ0 > 0.82, is ineffective. 
This is because, for these values of δ0, the optimal stiffness λ is so small 
that the presence of the bumpers is insignificant. 

This optimal design allows the bumper design parameters to be 
reduced from three to one, the dimensionless gap δ0 alone. However, the 
overall response of V-IIS also depends on the choice of system isolation 
frequency βI, so the influence of these two parameters (δ0 and βI) on the 
response will be discussed in the following subsection. 

5.2. Influence of parameters δ0 and βI on the response 

Fig. 8 shows the trend of some characteristic values of β in terms of 
dimensionless gap δ0, in the optimal design (minimum peak of excursion 
of mass acceleration) and with a damping ratio ξ = 0.10. 

Specifically, the red and blue lines represent the values, denoted β1 
and β2, respectively, which identify the boundaries of the frequency 
range (β1 < β < β2) where, for the considered value of δ0, impact defi-
nitely occur, based on purely geometric considerations. The black and 
green lines, refer to the βR and βc values, which indicate, for the 
considered value of δ0, the resonance frequency and the frequency at 
which the isolation range begins, respectively. While the values of β1 
and β2 depend only on ξ and δ0, the values βR and βc also depend on λ 
and γ. 

It can be observed that βR (black curve), starting from βR ≃ 0.99 for 
δ0 = 1 (free-fight condition), increases as δ0 decreases, reaching its 
maximum value (βR ≃ 1.70) for δ0 = 0. This is also evident from Fig. 8a- 
d, in which, for selected values of δ0 (0.3 in Fig. 8a, δ0c ≃ 0.19 in Fig. 8b, 
0.03 in Fig. 8c, 0 in Fig. 8d), the PRCs of ηa (left column) and ηd (right 
column) are shown, considering both the free-flight condition FF (black 
curve) and the condition corresponding to the minimum peak acceler-
ation value (red curve, optimal condition). In these figures, the above-
mentioned frequency values are represented with colored symbols (β1 
cyan diamond, β2 cyan circle, βR black circle, βc green triangle) and the 
yellow boxes represent the values of ηa and ηd for β = 0. 

As for β1 (red curve in Fig. 7) and β2 (blue curve in Fig. 7), these 
coincide (β1 = β2 ≃ 0.99) for δ0 = 1 (FF) and increasingly diverge as δ0 

decreases, with β1 < 0.99 and β2 > 0.99. For δ0 = δ*
0 ≃ 0.199, impact 

occurs immediately (β1 = 0). For 0 ≤ δ0 < δ*
0, impact still occurs from 

β1 = 0, but, compared to the case δ0 = δ*
0 the equation R(ξ, β) = δ0 

(where R(ξ, β) is the displacement response factor Rd(ξ, β) normalized 
with respect to its maximum value Rd,max(ξ)) admits only one solution, 
that is β2 (blue curve). Finally, when the bumpers are initially in contact 
with the mass (δ0 = 0), the equation R(ξ, β) = δ0 admits no solution and 
thus impact occurs for any value of β. This is also evident from Fig. 8a-d. 
In particular, the symbols representing β1 and β2 (cyan diamond and 
cyan circle, respectively) are both visible for δ0 = 0.3 (first row, Fig. 8a), 
while for δ0 = δc ≃ 0.1915 (second row, Fig. 8b) and for δ0 = 0.03 (third 
row, Fig. 8c) only β2 (cyan circle) appears. For δ0 = 0 (fourth row, 
Fig. 8d) there is no symbol. 

These values of β (β1, β2, βc) and δ0 (δ*
0, δ0c) define outliers, in that 

different responses occur if the parameters βI and δ0 take values greater 
or less than these. Therefore, the different response ranges defined by 
these outliers will be discussed below. In fact, referring to the frequency 
value (isolation threshold) beyond which, where the impact occurs, the 
amplitude of the mass acceleration becomes lower than the amplitude of 
the ground acceleration, denoted as βc and represented with a green line 
in Fig. 7 (and with a green triangle in the PRCs shown in Fig. 8a-d), two 

ranges can be identified, namely δ0c < δ0 ≤ 1 and 0 < δ0 < δ0c. 
For δ0c < δ0 ≤ 1 (see also Fig. 8a, corresponding to δ0 = 0.3), βc =

̅̅̅
2

√
, which means that, in the presence of obstacles, the frequency range 

where ηa < ηa|β=0 (highlighted in green) is the same as in the linear case 
(FF). Consequently:  

• for 0⩽β < β1 the impact does not occur and thus the system behaves 
as a linear system; moreover, ηa > ηa|β=0;  

• for β1⩽β < β2 the impact definitely occurs and it is still ηa > ηa|β=0;  
• for β2 < β < βc the impact does not occur and therefore the system 

behaves as a linear system; but it is still ηa > ηa|β=0;  
• for β⩾βc the impact does not occur and therefore the system behaves 

as a linear system; also ηa < ηa|β=0 (this frequency range is high-
lighted with a green area in Fig. 7 and with a horizontal green line in 
Fig. 8a). 

For δ0 = δ0c, (see also in Fig. 8c), β1 = 0 and it is β1 = βc =
̅̅̅
2

√
(the 

blue and green curves in Fig. 7 intersect and the cyan circle and green 
triangle in Fig. 8b overlap). Consequently:  

• for 0 ≤ β <
̅̅̅
2

√
the impact definitely occurs and it is ηa > ηa|β=0;  

• for β ≥
̅̅̅
2

√
the impact does not occur and therefore the system 

behaver as a linear system; moreover, ηa < ηa|β=0 (this frequency 
range is highlighted with a green area in Fig. 7 and with a horizontal 
green line in Fig. 8b). 

For 0 < δ0 ≤ δ0c, (see also Fig. 8c, corresponding to δ0 = 0.03), β1 >

0 and βc >
̅̅̅
2

√
and, furthermore, β2 > βc. Consequently:  

• for 0 ≤ β < βc the impact definitely occurs. Compared to the linear 
case (FF), when impact occurs, for 

̅̅̅
2

√
≤ β < βc, it is ηa > ηa|β=0. The 

amplitude of this frequency range, highlighted with a yellow area in 
Fig. 7 and with a horizontal yellow line in Fig. 8c, increases as δ0 
decreases;  

• for βc < β ≤ β2 the impact still occurs, but now it is ηa < ηa|β=0, 
which means that the amplitude of the mass acceleration is lower 
than the amplitude of the ground acceleration, but is still higher than 
the acceleration under FF. The amplitude of this frequency range, 
highlighted with a magenta area in Fig. 7 and with a horizontal 
magenta line in Fig. 8c, increases as δ0 decreases;  

• for β > β2 the impact does not occur and it is ηa < ηa|β=0, and thus the 
system behaves as a linear system (this frequency interval is high-
lighted with a green area in Fig. 7 and a horizontal green line in 
Fig. 8c). 

For δ0 = 0(see also Fig. 8d), impact occurs for every value of β and βc 
reaches its maximum value (βc ≃ 3). Consequently:  

• for 0 ≤ β < βc the impact definitely occurs. Compared to the linear 
case (FF), when impact occurs, for 

̅̅̅
2

√
≤ β < βc (frequency range 

highlighted in yellow), it is ηa > ηa|β=0;

• for β ≥ βc the impact still occurs, but it is ηa < ηa|β=0, which means 
that the amplitude of the mass acceleration is lower than the 
amplitude of the ground acceleration, but is still higher than the 
acceleration under FF (frequency range highlighted in magenta). 

Comparing PRCs in FF (black curves) and those associated with the 
occurrence of impact (red curves), it is observed that the V-IISs intervene 
on response (of both displacement and acceleration) selectively, intro-
ducing energy dissipation in a limited range of β, between β1 and β2, for 
each δ0, where impact occurs. If δ0 ≥ δ0c, only the positive effects of 
energy dissipation in the non-isolation range (reduction of the response 
of displacement and acceleration) are observed, without changing the 
response in isolation range. When, on the other hand, values of δ0 
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smaller than δ0c are selected, there begins to be a reduction in the 
isolation range, as well as a greater reduction in the maximum response 
values, compared with FF. Therefore, the best solution turns out to be 
the selection of a δ0 such that β2 is close to, but at the same time lower 
than, the isolation frequency βI of the system, so that a good reduction in 
response, both in acceleration and displacement, is observed, while 
leaving the response for β = βI unchanged, compared to FF. 

Form the PRCs of displacement also we observe the benefits that V- 
IISs can bring on the static displacement qst = ust/u*. When 
δ0 ≥ δ*

0
(
δ*

0 ≃ δ0c
)
, the static displacement is unchanged with respect to 

free flight; choosing δ0 < δ*
0, however, results in a reduction of qst . In 

Fig. 9a, to highlight the effect of V-IISs on qst , the trend of static 
displacement qst as a function of δ0 is shown. 

From Fig. 9a it is observed that for values δ*
0 ≤ δ0 ≤ 1, qst is inde-

pendent of δ0 resulting equal to the FF (qst ≃ 0.199). When 0 ≤ δ0 < δ*
0, 

qst decreases as δ0 decreases assuming the minimum value at δ0 = 0, 
which is equal to qst ≃ 0.08. The dependence of the static displacement 
on the isolation frequency βI of the system is not seen because of the way 
the equations were normalized, and the dimensionless static displace-
ment qst is defined. To highlight this dependence, a new dimensionless 
parameter representing the static displacement, q*

st = ust/DG, where DG 

is the peak ground displacement, is introduced as done in Section 2. 
Fig. 9b shown some representative curves of given values of q*

st (2, 4, 9, 
16) as a function of the design parameters δ0 and βI of the system; the 
range of interest is that of isolation, highlighted in green in Fig. 9b, 
related to β >

̅̅̅
2

√
. For δ*

0 ≤ δ0 ≤ 1 values, q*
st is independent of δ0 and 

takes on larger values as βI increases, while for 0 ≤ δ0 < δ*
0, to obtain 

fixed values of q*
st , reducing δ0 allows the system isolation frequencies βI 

to be used at higher frequencies. From Fig. 9b, the static displacement q*
st 

can thus be read, once the parameters of isolation frequency βI and gap 
δ0 are assigned. The curve for β2 has also been plotted in this graph: the 
area to the right of this curve represents the domain of parameter pairs 
δ0, βI in which the V-IIS reports the same dynamic response in the 
isolation zone as a linear system designed with the same βI. Therefore, 

the values of δ0 = δ*
0 and βI = β2, represent outliers separating from 

good or poor V-IIS behavior. 
From the analysis in Fig. 9, one can appreciate the benefits that an 

appropriate choice of parameter δ0 gives in terms of static displacement 
of the system, compared to FF (δ0 = 1). 

6. Results 

This Section analyzes the numerical response of different Vibro- 
Impact Isolation systems (V-IISs), all defined by a damping ratio ξ =

0.10, each of which is characterized by a fixed value of δ0 and a cor-
responding pair of values λopt, γopt of which λopt is obtained, for fixed δ0, 
through the optimal curve (Fig. 6a), and successively γopt , is obtained 
through the optimality relationship (Eq.(7)). The responses represented 
are the dimensionless absolute acceleration (α, which is equivalent to 
the dimensionless total force of the system fI) and the dimensionless 
relative displacement (d = q) of the mass, the dimensionless contact 
force (fj, j = R, L) and the dimensionless displacement of the bumpers 
(dj = qj +δ0 with j = R, dj = qj − δ0 with j = L), as a function of time. 
Also represented are the normalized excursion of absolute acceleration 
ηa = Δα/Δα0, the normalized excursion of relative mass displacement 
ηd = Δd/Δd0, the normalized excursion of contact force ηF = ΔfB/Δα0, 
and the normalized excursion of bumper deformation ηB = ΔdB/Δd0. 
These quantities are represented as a function of the frequency β, 
through the Pseudo-Resonance Cures (PRCs). PRCs were obtained with 
sweeps performed by applying the continuation technique, where the 
final values of the state variables (displacement and velocity) of the 
system are taken as initial conditions of the following analysis; the 
driving frequency is slightly changed as soon as the steady state is 
attained and a new stable solution is searched for. The excursion Δi 
(where i = α, d, fB, dB) are calculated as the difference between the 
maximum and minimum values recorded at the steady-state of each 
frequency sub-interval. To calculate the excursion of contact force ΔfB 
and bumper deformation ΔqB, both bumpers are considered, specifically 
for maximum values the right bumper and for minimum values the left 

Fig. 8. PRCs of acceleration ηa, on the left, and displacement ηd, on the right, for different gap δ0: (a) δ0 = 0.3, (b) δ0 = 0.19, (c) δ0 = 0.03, (d) δ0 = 0. Black line 
represents free-flight condition, red line represents the condition with optimal bumpers and for δ0 fixed; The colored symbols represent the location of the char-
acteristic β values (cyan diamond β1; cyan circle β2; black circle βR; green triangle βc) and the values of ηa and ηd for β = 0 (yellow squares). Finally, the colored lines 
represent different β ranges, that are obtained for β >

̅̅̅
2

√
: green line, ηa is lower than acceleration amplitude of the ground and equal to ηa in FF condition; magenta 

line, ηa is smaller than acceleration amplitude of the ground, but larger than ηa in FF condition; yellow line, ηa is greater than acceleration amplitude of the ground 
and than ηa in FF condition. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. In (a), black line shows the trend of static displacement qst , normalized with respect to the peak mass displacement in free-flight condition u*, as a function of 
gap δ0 and in (b), red lines show the trend for four different values of static displacement q*

st (2, 4, 9, 16; lower thickness means lower values), normalized with 
respect to peak ground displacement DG, of isolation frequency βI as a function of gap δ0. This graph also shows the outliers β2 (blue line), δ*

0 (dashed horizontal 
straight line) and β =

̅̅̅
2

√
(dashed vertical straight line), the last separates the non-isolation range (yellow line) from the isolation range (green line). (For inter-

pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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bumper. Normalization is done with respect to Δα0 and Δd0, which 
indicate the maximum excursion of absolute acceleration, as well as 
total force, and relative displacement in free-flight condition FF, 
respectively. 

Subsection 6.1 studies the steady-state response through the Pseudo- 
Resonance Curves (PRCs) in acceleration and displacement of the mass 
and in contact force and deformation of the bumpers, obtained for four 
different values of δ0 and for FF; Subsection 6.2 studies the transient 
response through time histories and force–displacement cycles obtained 
by applying a harmonic action to the base with constant amplitude and 
time-varying frequency, for the same δ0, comparing them with the FF. 

The values of δ0 examined are characteristic of four different cases: 
δ0 = 0.3 > δc ≃ δ*

0; δ0 = 0.19 ≃ δ0c ≃ δ*
0; δ0 = 0.03 < δ0c ≃ δ*

0; δ0 = 0 
mass boundary condition adjacent to bumpers. δ0c indicates the value of 
δ0 below which there starts to be a reduction of the isolation range; 
while δ*

0 indicates the value of δ0 below which there starts to be a 
reduction of the static displacement. 

6.1. Steady-state response analysis 

Fig. 10a and 10b show PRCs of the dimensionless response quantities 
related to mass, acceleration ηa and displacement ηd, respectively. The 
black curves reproduce the transmissibility (Fig. 10a) and displacement 
response factor (Fig. 10b), given in Section 2, scaled with respect to their 
peak, respectively, for a system having ξ = 0.1 (free-flight condition FF, 
δ0 = 1). The red curves are related to four different values of δ0 (the 
smaller the line thickness, the lower the reference δ0). Depending on the 
different β ranges, different considerations can be made in terms of both 
acceleration and displacement. 

As for the acceleration ηa (Fig. 10a):  

• in the quasi-static response range, β≪1, the acceleration is found to 
be independent of δ0 and has a value approximately equal to peak 
ground acceleration AG; 

• in the resonance range, the maximum acceleration of the mass en-
counters greater reduction as δ0 decreases, compared with the FF; in 
fact, the absolute maximum is reduced, by 21% for δ0 = 0.3, by 31% 
for δ0 = 0.19, by 54% for δ0 = 0.03 and by 62% for δ0 = 0. In 
addition, along with a reduction in response, an enlargement of the 
resonance range is exhibited, that is an increase of the width of the 
range of β within which maximum mass acceleration is greater than 
peak ground acceleration;  

• in the range straddling the resonance range and the isolation range, 
for values of β < β2, ηa shows larger increases as δ0 decreases relative 
to FF;  

• for β ≥ β2 the red curves overlap with the black curve relative to FF, 
whereas for δ0 = 0 this overlap with the black curve does not occur, 
since the mass impacts the bumpers for any values of β (the β2 fre-
quency ratio beyond which the mass no longer impacts the bumpers 
tends to infinity). 

As for the displacement ηd (Fig. 10b):  

• in the quasi-static response range, the displacement does not change 
with respect to FF if δ0 ≥ δ*

0, while if δ0 < δ*
0 it decreases as δ0 de-

creases with respect to FF. The static displacement for δ0 = 0.03 
shows a reduction of 45% and for δ0 = 0 shows a reduction of 61%, 
while for δ0 = 0.3 and δ0 = 0.19 it shows no change, with respect to 
FF;  

• in the resonance range, as already for acceleration, the displacement 
exhibits greater reductions as δ0 decreases, with respect to FF; in fact, 
the absolute maximum shows reductions of 42%, 56%, 82%, and 
90% for δ0 = 0.3, 0.19,0.03, and 0, respectiely; 

Fig. 10. PRCs of acceleration (a) and of displacement (b): black lines are related to FF, red lines are related to four different values of δ0 (0, 0.03, 0.19, 0.3; thinner 
line thickness means smaller values of δ0). The cyan diamond and cyan circle represent the β1 and β2, respectively; for curves in which the value of β1 is not reported 
it is because this is 0, while for those in which the value of β2 is not reported (case of δ0 = 0) these tend to infinity. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Displacement time histories of displacement for a linear system (black 
line) and a V-IIS (red line); the systems have the same isolation frequency 
(β = βI = 2) and the same damping ratio (ξ = 0.1), while the V-IIS also has a 
gap δ0 = 0. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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• in the β ranges straddling the resonance range and the isolation 
range, each of these ranges relative to a δ0, the response obtained 
with V-IISs is greater than the response in FF (Fig. 11);  

• for β ≥ β2 the red curves overlap with the black curve related to FF, 
whereas, as already for acceleration, the curve corresponding to δ0 =

0 does not overlap with black curve, since the mass impacts with the 
bumpers for any value of β. 

Fig. 12a and 12b show PRCs of dimensionless response quantities 
related to the bumper, contact force ηF and deformation ηB. The red 
curves are related to four different values of δ0 (the thinner the line 
thickness, the smaller the reference value of δ0). Based on the different β 
ranges, different considerations can be made about the performance of 
these curves in terms of both contact force and bumper deformation. 

As for the contact force ηF (Fig. 12a):  

• in the quasi-static response range, with β < β1 (remembering that for 
δ0 ≤ δ*

0 β1 = 0), the contact force turns out to be zero until β = β1, 
relative to different δ0 investigated, is reached. Thereafter, when β ≥

β1 the contact force decreases as δ0 increases;  
• in the resonance range, the contact force reaches absolute maxima 

that converge, for each δ0 investigated, at about 0.3;  
• in the range following the resonance range, the contact force returns 

to increasing values as δ0 decreases. 

As for the bumper deformation ηB (Fig. 12b):  

• in the quasi-static response range, when β < β1 (always remembering 
that for δ0 ≤ δ*

0 β1 = 0), the deformation turns out to be zeros until 
β = β1, relative to different δ0 investigated, is reached. Thereafter, 
with β ≥ β1 the bumper deformation decreases as δ0 increases;  

• in the resonance range, the deformation shows absolute maximum 
values, which become greater as δ0 increases; in fact, the absolute 
maximum for δ0 = 0.3 is 0.28,for δ0 = 0.19 is 0.25, for δ0 = 0.03 is 
0.15, and for δ0 = 0 is 0.10;  

• in the range following the resonance range, the bumper deformation 
reverts to increasing values as δ0 decreases. 

For each δ0, both ηF and ηB, assume zero value for β ≤ β1 and for 
β ≥ β2, as there is no contact between mass and bumper. 

Comparing the responses, reported in the PRCs, obtained with the V- 
IIS (red curves) and the linear system without impact (black curves) at 
the same frequency, different observations can be drawn depending on 
the β range we are in. Around the resonant frequency of the linear sys-
tem, acceleration (Fig. 10a) and displacement (Fig. 10b) responses 

obtained with the V-IIS are always lower than that obtained with the 
linear system; moreover, the reduction of the response, compared with 
the linear system, is greater by reducing the δ0 parameter. For these β 
values, however, both contact force (Fig. 12a) and bumper deformation 
(Fig. 12b) show the maximum response values, which, as far as contact 
force is concerned, are at an almost identical value for each value of the 
δ0 parameter, while, as far as deformation is concerned, the maximum 
response values decrease in intensity as the δ0 parameter decreases. In 
the isolation range, on the other hand, the acceleration and displace-
ment responses report greater, or at most equal, values in the V-IIS 
system than in the linear system, and are the greater the lower the δ0 
parameter. In this range, contact force and bumper deformation exhibit 
modest values. 

From the analysis of these curves (Figs. 10 and 12), it is also observed 
that the lowest peak acceleration and displacement values and the 
lowest static displacement value are exhibited at δ0 = 0; however, for 
β > βc (with βc defined as the frequency ratio over which the accelera-
tion transmitted to the mass is lower than the ground acceleration, i.e., β 
of beginning isolation), δ0 = 0 is characterized by an always greater 
response than the free-flight case and the cases corresponding to larger 
gap values. 

Fig. 12. PRCs of contact force (a) and of bumper deformation (b): red lines are related to four different values of δ0 (0, 0.03, 0.19, 0.3; thinner line thickness means 
smaller values of δ0). The cyan diamond and cyan circle represent the β1 and β2, respectively; for curves in which the value of β1 is not reported it is because this is 0, 
while for those in which the value of β2 is not reported (case of δ0 = 0) these tend to infinity. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 13. Trend of the frequency harmonic excitation to the base as function of 
the dimensionless time τ; the dimensionless frequency β of the harmonic exci-
tation is defined as the ratio of harmonic excitation frequency to sys-
tem frequency. 
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To limit the reduction in the benefits of the isolation range, 
compared with the linear case, it would be appropriate to consider 
greater values of δ0, but still small, accepting greater peaks of both ac-
celeration and displacement, bumper deformation and static displace-
ment. 

6.2. Transient response analysis 

The time histories and force–displacement cycles, show in this Sub-
section, refer to the application of harmonic excitation to the base of 
constant amplitude and time varying frequency. The law of frequency 
variation is shown in Fig. 13. This is characterized by 3 traits: in the first 
trait the frequency of the harmonic excitation, represented by the 
dimensionless parameter β, varies linearly from 0 to the isolation 

Fig. 14. In the first row, time histories of dimensionless absolute acceleration of the mass (a) and dimensionless relative displacement of the mass (b): the gray 
dotted line is related to free-flight condition FF, the black line is related to impact condition with bumpers design in optimality PB, the blue line and red line represent 
the Steady-Stade Response values for the β in which the system is at each instant of time τ, in free flight SSRFF and impact SSRPB condition, respectively. In the second 
row, time histories of dimensionless contact force of the bumpers (c) and dimensionless deformation of the bumpers (d) in impact condition with optimal bumpers: 
the black line is related to damper PBD; the blue lines are related to right bumper PBR and left bumper PBL; the red line, related to the damper SSRPB,D, and green line, 
related to the bumper SSRPB,j (j=R right bumper, j=L left bumper), represent the Steady-Stade Response values for the β in which the system is at each instant of time 
τ. In the last row, force-displacement cycles of system (e) and bumpers (f): the gray dotted line is related of free-flight condition FF, the black line is related to impact 
condition with bumpers design in optimality PB, the blue lines are related to right bumper PBR and left bumper PBL, the red line represent the system response when 
the frequency force is constant. In figures (b) (d) (e) and (f), the red dashed lines represent the dimensionless gap that characterizes the V-IIS which is equal to 0.3 
and, the system presents ξ = 0.1. All the graphs in the figure have a second (upper) x-axis that defines the β to which the system is subjected during the application of 
harmonic excitation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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frequency value βI = 3 taking a dimensionless time τ1 = 200π; in the 
second trait the frequency takes on a constant value such that β = βI =

3, until τ2 = 240π is reached; in this trait the system response reaches 
steady-state (SS); finally in the last trait the frequency takes on a linearly 
decreasing trend going from β = βI = 3 to β = 0, a value reached at 
dimensionless time τ3 = 440π. 

The results shown in Figs. 14–17 refer to four different values of δ0 
(0.3, 0.19, 0.03, 0) that are compared with the free-flight condition FF. 

The first row of these figures refers to the characteristic quantities of the 
mass, dimensionless absolute acceleration α on the left (a) and dimen-
sionless relative displacement d on the right (b); the second row reports 
the bumper quantities, on the left dimensionless contact force fj, with j =

R,L, (c) and on right dimensionless bumper displacement dj, with j = R,
L, (d); finally, the third row reports the force–displacement cycles, on 
the left inertia force vs. mass displacement fI − d (e) and on the right 
contact force vs. bumper deformation fj − dj, with j = R, L, (f). In 

Fig. 15. In the first row, time histories of dimensionless absolute acceleration of the mass (a) and dimensionless relative displacement of the mass (b): the gray 
dotted line is related to free-flight condition FF, the black line is related to impact condition with bumpers design in optimality PB, the blue line and red line represent 
the Steady-Stade Response values for the β in which the system is at each instant of time τ, in free flight SSRFF and impact SSRPB condition, respectively. In the second 
row, time histories of dimensionless contact force of the bumpers (c) and dimensionless deformation of the bumpers (d) in impact condition with optimal bumpers: 
the black line is related to damper PBD; the blue lines are related to right bumper PBR and left bumper PBL; the red line, related to the damper SSRPB,D, and green line, 
related to the bumper SSRPB,j (j=R right bumper, j=L left bumper), represent the Steady-Stade Response values for the β in which the system is at each instant of time 
τ. In the last row, force-displacement cycles of system (e) and bumpers (f): the gray dotted line is related of free-flight condition FF, the black line is related to impact 
condition with bumpers design in optimality PB, the blue lines are related to right bumper PBR and left bumper PBL, the red line represent the system response when 
the frequency force is constant. In figures (b) (d) (e) and (f), the red dashed lines represent the dimensionless gap that characterizes the V-IIS which is equal to 0.19 
and the system presents ξ = 0.1. All the graphs in the figure have a second (upper) x-axis that defines the β to which the system is subjected during the application of 
harmonic excitation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Figs. 14–17a,b,e the trends of the mass quantities, obtained by impact, 
are shown with a continuous black line (PB, Preferable Bumper), and 
those without impact with a dashed black line (FF); in Figs. 14–17c,d,f 
the bumper quantities are shown with a continuous blue line (PBR, right 
bumper, and PBL, left bumper). 

Also in the same Figs. 14–17, the curves representing the Steady- 
State Response (SSR) values of the mass responses (displacement and 
acceleration) and of the bumpers responses (contact force and 

deformation), for each value of β in which the system is located during 
the application of the harmonic excitation to the base, are then shown, 
both for the condition with impact (red curve, Figs. 14–17a,b,c, and 
green curve, Figs. 14–17c,d, denoted by SSRPB and SSRPB,i, where i = R 
refers to the right bumper, i = L refers to the left bumper, and i =D refers 
to the damper) and for the FF (blue curve, SSRFF, Figs. 14–17a,b). 

The graphs representing the quantities as a function of time 
(Figs. 14–17a,b,c,d), have an additional axis at the top showing the β 

Fig. 16. In the first row, time histories of dimensionless absolute acceleration of the mass (a) and dimensionless relative displacement of the mass (b): the gray 
dotted line is related to free-flight condition FF, the black line is related to impact condition with bumpers design in optimality PB, the blue line and red line represent 
the Steady-Stade Response values for the β in which the system is at each instant of time τ, in free flight SSRFF and impact SSRPB condition, respectively. In the second 
row, time histories of dimensionless contact force of the bumpers (c) and dimensionless deformation of the bumpers (d) in impact condition with optimal bumpers: 
the black line is related to damper PBD; the blue lines are related to right bumper PBR and left bumper PBL; the red line, related to the damper SSRPB,D, and green line, 
related to the bumper SSRPB,j (j=R right bumper, j=L left bumper), represent the Steady-Stade Response values for the β in which the system is at each instant of time 
τ. In the last row, force-displacement cycles of system (e) and bumpers (f): the gray dotted line is related of free-flight condition FF, the black line is related to impact 
condition with bumpers design in optimality PB, the blue lines are related to right bumper PBR and left bumper PBL, the red line represent the system response when 
the frequency force is constant. In figures (b) (d) (e) and (f), the red dashed lines represent the dimensionless gap that characterizes the V-IIS which is equal to 0.03 
and the system presents ξ = 0.1. All the graphs in the figure have a second (upper) x-axis that defines the β to which the system is subjected during the application of 
harmonic excitation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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value of the system for each instant of time τ. 
Fig. 14 shows the time response of the system quantities with a 

dimensionless gap δ0 = 0.3. In Fig. 14a, a 15% reduction in maximum 
acceleration is observed in the V-IIS, with respect to FF. These maxima 
occur near values of the frequency ratio β close to unity, that is, when the 
harmonic excitation frequency is close to the system frequency. For 
values of β for which impact does not occur (β ≤ β1 and β ≥ β2, 
remembering that β1 and β2 represent the lower and upper extremes, 

respectively, of the frequency range in which, for each value of δ0, 
impact definitely occurs), the curves for the condition with and without 
impact are overlapping; on the other hand, in the range β1 < β < β2, 
there is initially a reduction in the response for β ≃ βR (indicating, for 
each δ0, the value of the resonance frequency ratio), are then an in-
crease, with respect to FF. Fig. 14b shows a 37% reduction in the 
maximum displacement in V-IIS, with respect to FF. These maxima al-
ways occur for β close to unity. For the values of β for which the impact 

Fig. 17. In the first row, time histories of dimensionless absolute acceleration of the mass (a) and dimensionless relative displacement of the mass (b): the gray 
dotted line is related to free-flight condition FF, the black line is related to impact condition with bumpers design in optimality PB, the blue line and red line represent 
the Steady-Stade Response values for the β in which the system is at each instant of time τ, in free flight SSRFF and impact SSRPB condition, respectively. In the second 
row, time histories of dimensionless contact force of the bumpers (c) and dimensionless deformation of the bumpers (d) in impact condition with optimal bumpers: 
the black line is related to damper PBD; the blue lines are related to right bumper PBR and left bumper PBL; the red line, related to the damper SSRPB,D, and green line, 
related to the bumper SSRPB,j (j=R right bumper, j=L left bumper), represent the Steady-Stade Response values for the β in which the system is at each instant of time 
τ. In the last row, force-displacement cycles of system (e) and bumpers (f): the gray dotted line is related of free-flight condition FF, the black line is related to impact 
condition with bumpers design in optimality PB, the blue lines are related to right bumper PBR and left bumper PBL, the red line represent the system response when 
the frequency force is constant. In figures (b) (d) (e) and (f), the red dashed lines represent the dimensionless gap that characterizes the V-IIS which is equal to zero 
and the system presents ξ = 0.1. All the graphs in the figure have a second (upper) x-axis that defines the β to which the system is subjected during the application of 
harmonic excitation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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does not occurs, β ≤ β1 and β ≥ β2, the curves for the condition with and 
without impact, are overlapping; however, in the range β1 < β < β2, 
there is initially a reduction in the response for β ≃ βR, and then a in-
crease, with respect to FF. Fig. 14c shows the trend of dimensionless 
contact force (in blue), which is compared with the trend of dimen-
sionless damper force (in black), as a function of dimensionless time τ. 
These two quantities have their maximum values near βR of 0.27 and 
0.60, respectively. The damper force, for 0 < β < βR, reports increasing 
values, while for βR < β < βI, it takes on decreasing values; as for the 
contact force, on the other hand, these ranges, 0 < β < βR and 
βR < β < βI, reduce to β1 < β < βR, where the response increases in in-
tensity, and to βR < β < β2, where it decreases; for all other values of β, 
the contact force is zero. The dimensionless displacement of the bumpers 
(Fig. 14d) reports the same trend as the contact force: between 
β1 < β < βR, the response increases, and between βR < β < β2, it shows a 
decreasing trend; for all other values of β, it turns out to be constant and 
equal to δ0 (0.30). The maximum, in the absolute value, of the bumpers 
displacement occurs, therefore, for β = βR, and is equal to 0.70. The 
displacement cycles, shown in Fig. 16e and 16f, summarize what has 
already been said, highlighting the reduction in the displacement and 
total force of the system through the use of V-IIS in the face of an in-
crease in the contact force and displacement, as well as in the defor-
mation, of the bumpers. Finally, it should be pointed out that the V-IIS 
designed with this value of the parameter δ0 (equal to 0.3), shows a 
static displacement q*

st equal to that of a linear isolated system and equal 
to 9. The static displacement does not undergo a reduction because δ0 is 
greater than δ*

0 = 0.19. 
Fig. 15 shows the time response of the system quantities with δ0 =

δ0c ≃ 0.19, with δ0c representing the value of the gap below which the 
value of the frequency ratio of start of isolation βc begins to assume 
values greater than 

̅̅̅
2

√
. The trends of the quantities investigated are 

similar to those observed in Fig. 14. Thus, 25% reduction of the 
maximum acceleration in V-IIS, with respect to FF, is observed in 
Fig. 15a. Fig. 15b shows a 50% reduction of maximum displacement in 
the V-IIS, with respect to FF. the contact force and damper force, shown 
in Fig. 15c, have the maximum values near βR of 0.30 and 0.45, 
respectively. The absolute maximum value of the bumpers displacement 
(Fig. 15d) turns out to be 0.45. Finally, it should be pointed out that the 
V-IIS designed with this value of the parameter δ0 (equal to 0.19), shows 
a static displacement q*

st equal to that of a linear isolated system and 
equal to 9. The static displacement does not undergo a reduction 
because δ0 is equal to the outlier value δ*

0 = 0.19. 
Fig. 16 shows the time responses of the system quantities with δ0 =

0.03. The trends of the investigated quantities are similar to those 
observed in Fig. 15. Thus, a 50% reduction of maximum acceleration in 
V-IIS is observed in Fig. 16a, with respect to FF. Fig. 16b shows a 77% 
reduction of maximum displacement obtained with V-IIS, with respect 
to FF. The contact force and damper force, shown in Fig. 16c, have the 
maximum values near βR of 0.35 and 0.20, respectively. The absolute 
maximum value of the bumpers displacement (Fig. 16d) turns out to be 
0.20. Finally, it should be pointed out that the V-IIS designed with this 
value of the parameter δ0 (equal to 0.03), shows a reduction in static 
displacement q*

st compared to the linear isolated system, as δ0 is smaller 
than δ*

0 = 0.19. In fact, the static displacement turns out to be q*
st = 5, 

thus undergoing a 44% reduction compared to FF (where q*
st = 9). 

Fig. 17shows the time response of the system quantities with δ0 = 0. 
The difference with the previous cases is due to the intensity of the 
maximum values of investigated quantities, in absolute value, and the 
values at Steady-State, i.e., in the trait between τ1 and τ2 where a con-
stant frequency harmonic excitation is applied. In Fig. 17a, the greatest 
reduction, 55 %, of the maximum acceleration obtained by V-IIS, with 
respect to FF is exhibited. Fig. 17b also reports a greater reduction than 
the other scenarios, of 85%, of the maximum displacement obtained by 
V-IIS, with respect to FF. The contact force and damper force, shown in 
Fig. 17c, have the maximum values near βR of 0.32 and 0.11, 

respectively. The absolute maximum value of the bumpers displacement 
(Fig. 17c) turns out to be 0.11. As for steady-state response, on the other 
hand, which is reached for values of β = βI relative to the constant trait 
of the frequency function of the harmonic excitation (horizontal trait in 
Fig. 13), for the case δ0 = 0, since βI < β2(δ0= 0) there is impact be-
tween mass and bumpers; therefore, the greater values of response in 
both absolute acceleration and relative displacement are reported than 
for the other scenarios in which the system response is equal to that in 
FF, since for these δ0, βI > β2|δ0=0.03,0.19,0.3. In fact, the acceleration, 
when β = βI in the case of δ0 = 0, shows an increase of 530%, whereas 
the displacement shows an increase of 20%, with respect to FF. The 
contact force and damper force, shown in Fig. 17c, have the maximum 
values near βR of 0.32 and 0.11, respectively. The absolute maximum 
value of the bumpers displacement (Fig. 17c) turns out to be 0.11. 
Finally, it should be pointed out that the V-IIS designed with δ0 = 0, 
shows the greatest reduction in static displacement q*

st compared to the 
linear isolated system. In fact, the static displacement turns out to be 
q*

st = 3.5, thus undergoing a 61% reduction compared to FF (where q*
st =

9). 
The gradient of the curve representing the variation in the frequency 

of harmonic excitation, summarized by the parameter τ1, was also 
subject to preliminary analysis. However, this parameter showed no 
influence on the maximum response values, except on the number of 
impacts: the lower τ1, the higher the gradient of the line and the fewer 
impacts; conversely, the higher τ1, the lower the gradient and the higher 
the number of impacts. Therefore, these results bring out the influence of 
two parameters, βI and δ0, on the response of V-IIS. The choice of a βI >

β2(δ0) allows to obtain benefits in the resonance range, and thus in the 
reduction of the maximum amplification of the response, and not to 
change the response in the isolation range, remembering, however, that 
as βI increases, the static displacement increases; smaller values of δ0 
allow to reduce not only the maximum dynamic amplification of the 
response, but also the static displacement, if δ0 < δ*

0, remembering, 
however, that small values of δ0 correspond to large values of β2. 
Therefore, the choice of these two parameters βI and δ0 must be made 
together, going through the evaluation of the two outlier values δ*

0 and 
β2(δ0) that influence the operation of V-IIS and thus the choice of the two 
parameters. 

Another purpose of transient analysis with time histories is to assess 
whether or not PRCs, obtained by sweeps performed with the continu-
ation technique, succeed in reproducing the response of the system to 
the transient. Therefore, being able to say that the steady-state values, 
for each β in which the system is located during the application of the 
harmonic excitation in Fig. 13, reproduce an envelope of the maximum 
values of the quantities of both mass acceleration and displacement and 
bumper deformation and contact force, it can be inferred that the PRCs 
also provide an understanding of the system’s response to the transient. 

7. Conclusions 

In this paper, the dynamic response of a single-degree-of-freedom 
Vibro-Impact Isolation System subjected to harmonic actions is stud-
ied through parametric numerical analyses. This new, strongly 
nonlinear system is defined by coupling an initial, linearly isolated 
system with bumpers, arranged symmetrically with respect to the initial 
system, with an appropriate initial gap, and suitably designed. There-
fore, the responses of different scenarios obtained by varying the gap 
parameter δ0, which is related through the optimal curve (Fig. 6a) and 
the optimality relationship (Eq.(7)) to the other two parameters gov-
erning the impact (damping γ and stiffness λ of the bumpers), both at 
steady-state and transient state, are analyzed. This study aims to solve 
the problems of linear isolated systems (large dynamic and static dis-
placements and high response values when the system is in the reso-
nance range), but without losing the benefits of linear isolated systems. 
The response quantities selected are absolute acceleration and relative 
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displacement of the mass, and contact force and deformation of the 
bumpers, also highlighting the response of static displacement. 

Based on the different responses, the following conclusion can be 
formed:  

• Comparing the curves representing the absolute maximum values of 
steady-state response, both of displacement and of acceleration, as a 
function of frequency ratio (PRCs), obtained in the free-flight con-
dition (FF) with those obtained at the occurrence of impact, it can be 
seen that the V-IISs intervene on the response selectively, intro-
ducing additional viscous damping in a limited range of β, between 
β1(δ0) and β2(δ0), for each δ0. If δ0 ≥ δ0c, the only positive effects of 
energy dissipation in the non-isolation range are obtained: greater 
reductions in response, with respect to FF, of both displacement and 
acceleration, as δ0 decreases, without obtaining increases in response 
in the isolation range. In fact, for the cases in which the V-IIS was 
designed with a δ0 = 0.3 and δ0 = 0.19, a reduction in dynamic 
amplification of 21% and 31%, respectively, in terms of acceleration, 
and 42% and 56%, respectively, in terms of displacement was ob-
tained compared with the linear system; this was precisely without 
obtaining an increase in the β of isolation onset βc(δ0). When 
δ0 < δ0c, on the other hand, even though we continue to have 
increasing reductions in maximum response values as the gap de-
creases, with respect to FF, we begin to have a reduction in the 
isolation range, resulting in increases in response, with respect to FF, 
for β between 

̅̅̅
2

√
and the value β2(δ0), representative of the fre-

quency ratio beyond which there is no longer impact for a fixed value 
of δ0. In fact, for the cases in which the V-IIS was designed with a 
δ0 = 0.03 and δ0 = 0, a reduction in dynamic amplification of 54% 
and 62%, respectively, in terms of acceleration, and 82% and 90%, 
respectively, in terms of displacement was obtained compared with 
the linear system, while reporting an increase in β2(δ0) that turns out 
to be 2.8 for δ0 = 0.03 and tends to infinity for δ0 = 0. Therefore, for 
βc(δ0)〈β > β2(δ0) the V-IIS reports greater responses than the linear 
case.  

• From the PRCs of displacement, the benefits that V-IIS can bring on 
static displacement are observed: when δ0 ≥ δ*

0 (δ*
0 ≃ δ0c), static 

displacement is unchanged with respect to FF (qst ≃ 0.19); choosing 
δ0 < δ*

0, however, there is a greater reduction in qst as δ0 decreases, 
assuming the minimum value at δ0 = 0, which is qst ≃ 0.08. In 
addition, to highlight the dependence of the static displacement on 
the isolation frequency βI with which the system is designed, which 
does not emerge by normalizing the displacement with respect to the 
maximum displacement in resonance, a new dimensionless param-
eter representing the static displacement is introduced, in which the 
dimensional static displacement is normalized with respect to the 
peak ground displacement. It can thus be seen that the static 
displacement increases as βI increases, and that this trend is atten-
uated more and more as δ0 decreases. The static displacement q*

st, for 
δ0 equal to 0.3 and 0.19 (δ0 ≥ δ*

0), turns out to be the same as in the 
FF; whereas, for δ0 equal to 0.03 and 0 (δ0 < δ*

0), it undergoes a 
reduction of 44% and 61%, respectively.  

• Comparing PRCs in both contact force and bumper deformation, we 
observe the maximum values of these quantities in the resonance 
range, where acceleration and displacement show the greatest re-
ductions compared with FF: the contact force takes on a nearly equal 
value for all δ0 equal to 0.3, while the strain turns out to be, for δ0 =

0.3, 0.28 ,for δ0 = 0.19, 0.25, for δ0 = 0.03, 0.15 and, for δ0 = 0, 
0.10. In the frequency range following resonance, both contact force 
and bumper deformation show modest values.  

• Through the time histories of the investigated quantities, obtained by 
applying a harmonic excitation of varying frequency, the transient 
response of the V-IISs can be studied: during the ramping up of the 
frequency of the harmonic excitation, the system also assumes the β 
values close to resonance, so the impact with the optimally designed 

bumpers allows an effective control of the system response. Another 
important result that these investigations have yielded is that PRCs, 
obtained with sweeps performed by applying the continuation 
technique, (which show the maximum values at steady-state) 
reproduce an envelope of the maximum values of the reference 
quantity reported in the time histories. 

These conclusions allow us to state that the optimal design of V-IISs is 
achieved through the choice of δ0 such that β2(δ0) values (frequency 
ratio beyond which impact no longer occurs for that δ0) are lower than 
the isolation frequency βI of the system. This introduces selective 
damping β that can reduce the system responses in the resonance range 
and limits the static displacement; while for values of β equal to βI, 
(isolation frequency ratio with which it was designed) the system be-
haves as a linear isolated system, showing the lowest values of absolute 
acceleration response with values of frequency ratio β in the isolation 
range. 

The aim of this study is to define a new strategy for controlling the 
dynamic response of structures and equipment, both for the presence of 
vibrating machines and for seismic actions of particular magnitude. In 
the case of seismic actions at the base, the assumption of representing 
such multi-frequency actions with the effective fundamental frequency 
of vibration of the structure can be an effective solution to represent the 
response of the structure. Therefore, the effectiveness of these hybrid 
systems subjected to seismic actions and in the case of continuous sys-
tems that can be assimilated to multi-degree-of-freedom systems will 
have to be investigated further, both through further parametric nu-
merical investigations and experimental investigations. 
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