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Abstract

Motivation: Gene–disease associations are fundamental for understanding disease etiology and developing effect-
ive interventions and treatments. Identifying genes not yet associated with a disease due to a lack of studies is a
challenging task in which prioritization based on prior knowledge is an important element. The computational
search for new candidate disease genes may be eased by positive-unlabeled learning, the machine learning (ML)
setting in which only a subset of instances are labeled as positive while the rest of the dataset is unlabeled. In this
work, we propose a set of effective network-based features to be used in a novel Markov diffusion-based multi-class
labeling strategy for putative disease gene discovery.

Results: The performances of the new labeling algorithm and the effectiveness of the proposed features have been
tested on 10 different disease datasets using three ML algorithms. The new features have been compared against
classical topological and functional/ontological features and a set of network- and biological-derived features
already used in gene discovery tasks. The predictive power of the integrated methodology in searching for new dis-
ease genes has been found to be competitive against state-of-the-art algorithms.

Availability and implementation: The source code of NIAPU can be accessed at https://github.com/AndMastro/
NIAPU. The source data used in this study are available online on the respective websites.

Contact: mastropietro@diag.uniroma1.it or davide.vergni@cnr.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The discovery of gene–disease associations (GDAs) is made difficult
by incomplete knowledge of biological and physiological processes.
When approaching complex, multi-gene diseases and traits, it is
hard to disentangle the contribution of each gene, and computation-
al biological approaches for predicting GDAs (Opap and Mulder,
2017; Piro and Cunto, 2012) can support and address experimental
methods (e.g. genome-wide association studies—GWAS—or linkage
studies, among others) which are expensive and time-consuming.

The fuzzy background of yet unknown or truly unassociated
genes contributes to making the computational identification of dis-
ease genes challenging to carry out with accuracy. In machine learn-
ing (ML), this setting translates into the ability to identify new
positive instances among a set of positive and unlabeled samples, a
task known as ‘positive-unlabeled (PU) learning’ (Bekker and Davis,
2020; Liu et al., 2003). This task can be addressed through semi-
supervised learning algorithms, trained using two approaches. In the
first one, the set of unlabeled instances is assumed to be a

contaminated set of negative instances and the contamination is con-
sidered during the modeling process by weighting the data points or
adding penalties on misclassification (Claesen et al., 2015; Elkan
and Noto, 2008; Ke et al., 2018; Mordelet and Vert, 2014). In the
specific case of gene discovery, this contamination is given by the
possibility of the negative instances of containing not yet discovered
positive genes. The second approach, called two-step technique,
aims at relabeling the instances and then training a supervised learn-
ing algorithm (Liu et al., 2003; Yang et al., 2012, 2014). For ex-
ample, Yang et al. (2012) introduced a multi-class labeling
procedure considering five different labels, namely Positive (P),
Likely Positive (LP), Weakly Negative (WN), Likely Negative (LN)
and Reliable Negative (RN), based on a Markov process with restart
(Can et al., 2005), widely applied in disease genes identification
(Köhler et al., 2008; Li and Patra, 2010a, b). Then, a supervised
learning algorithm is trained on the relabeled data.

In the present work, we considered the multi-class labeling
approach since it allows identifying a set of originally unlabeled
items, namely the LP set, whose features are close to that of the
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items in P. This translates into the identification of a small set of
genes more likely to contain true positive instances, hence providing
a set of new candidate disease genes for prioritization.

Going beyond the approach from Yang et al. (2012), we propose
several significant modifications of the multi-class method regarding
the distance matrix defining the Markov process and the selection of
the different classes. Some of these modifications were needed in
order to apply the method to general PU datasets, while others were
proposed to make the process of class formation more rigorous and,
at the same time, flexible. The approach considered here, being a
two-step technique, is based on the separability and smoothness
assumptions (Bekker and Davis, 2020), which require that the fea-
tures should be able to distinguish between positive and negative
instances and, at the same time, instances with similar features
should be more likely to have the same label. Therefore, as a further
contribution, we propose the use of specific network-informed fea-
tures, one of them introduced for the first time in this work, based
on protein–protein interaction (PPI) data, which provide a charac-
terization of the topological relationships of all human genes with
respect to the set of disease genes. The use of such measures grants a
much more precise classification of genes than other topological
measures. In particular, the set of seed genes is identified very pre-
cisely as well as the genes closest and farthest to them, as shown in
Section 3.1. The network-informed adaptive PU (NIAPU) frame-
work is therefore formed by two components: the network diffusion
and biology-informed topological (NeDBIT) features and the adap-
tive PU (APU) labeling algorithm.

2 Materials and methods

2.1 Data sources and preprocessing
The proposed methodology exploits two types of data, that is, reli-
able PPIs and known GDA data. PPI data provide valuable biologic-
al knowledge for the identification of undiscovered disease genes
(Doncheva et al., 2012; Petti et al., 2021; Piro and Cunto, 2012;
Silverman et al., 2020; Tieri et al., 2019). Human PPI data, that is,
the human interactome, were gathered from the BioGRID (Stark
et al., 2006) dataset (version 4.4.206). The human interactome is
obtained by choosing Homo sapiens genes (organism ID 9606),
from which we extract a connected network consisting of 19 761
genes and 678 932 non-redundant, undirected interactions (see
Supplementary File S1).

GDAs were derived from DisGeNET (version 7.0) (Pi~nero
et al., 2016, 2020), a discovery platform containing one of the
largest publicly available collections of genes and variants associ-
ated with human diseases together with a score denoting the asso-
ciation confidence and significance. Ten diseases were considered:
malignant neoplasm of breast (disease ID C0006142, 1074 genes),
schizophrenia (C0036341, 883 genes), liver cirrhosis (C0023893,
774 genes), colorectal carcinoma (C0009402, 702 genes), malig-
nant neoplasm of prostate (C0376358, 616 genes), bipolar dis-
order (C0005586, 477 genes), intellectual disability (C3714756,
447 genes), drug-induced liver disease (C0860207, 404 genes),
depressive disorder (C0011581, 289 genes) and chronic alcoholic
intoxication (C0001973, 268 genes). The selection criterion for
these diseases was the highest cardinality of GDAs in the curated
DisGeNET dataset to ensure sufficient information for the ML
task. To validate the gene discovery results, we relied on the all
genes DisGeNET dataset, which we refer to as extended dataset.
The latter contains associated genes from additional sources not
present in the curated version (Bravo et al., 2014, 2015;
Bundschus et al., 2008, 2010). More details can be found in
Supplementary File S2. After performing additional cleaning steps
(see Supplementary File S2), we ended up having a set of seed
genes for each disease, denoted by R, with their association score
S. In particular, we have 1025 genes for disease C0006142, 832
for C0036341, 747 for C0023893, 672 for C0009402, 606 for
C0376358, 451 for C0005586, 431 for C3714756, 320 for
C0860207, 279 for C0011581 and 255 for C0001973.

2.2 Multi-class labeling: APU labeling algorithm and

classification
The APU algorithm consists of a multi-class labeling procedure that
relies on the labels introduced in Yang et al. (2012): P, LP, WN, LN
and RN. P instances are the known disease genes, RN instances rep-
resent the genes whose features are the furthest from the average fea-
tures in the P set, while the remaining labels are assigned through a
Markov process with restart (Can et al., 2005). The novelty of the
proposed method is the construction of a new transition matrix
starting from the distance matrix between the features of the genes.
The matrix needs to be normalized in order to preserve the total
transition probability of the state vector whose initial value is differ-
ent from zero only for genes in the P and RN classes. Moreover, the
class selection has been made flexible by using an adaptable quantile
separation instead of fixed thresholds. These characteristics have
been implemented in order to make the process of class formation
more rigorous and, at the same time, more flexible hence easily
adaptable to different settings, datasets and needs.

Let V be a set whose generic ith element vi¼1;...;n is characterized
by the couple ðxi; yiÞ where xi 2 ½0;1�d represent the feature vector,
and yi 2 f0;1g the initial label. The APU algorithm is defined by the
following steps:

Step 1: Compute the matrix W, whose elements wij are defined
as follows:

wij ¼
1� eij �m

M�m
if i 6¼ j

1 otherwise
;

(
(1)

where eij ¼
P

k ðxk
i � xk

j Þ
2; m ¼ minijfeijg and M ¼ maxijfeijg. The

symmetric matrix W represents the similarity score between ele-
ments i and j.

Step 2: Compute the reduced matrix W r as follows:

wr;ij ¼
n

wij if wij > qw

0 otherwise
:

The threshold qw is computed as a given quantile of the distribu-
tion of the elements in the matrix W in order to exclude from the
propagation process links between poorly related elements. To ob-
tain a proper Markov process, that is, preserving the probability dis-
tribution, the matrix W r must be normalized as Wn ¼ D�1W r,
where D is the diagonal matrix with elements dii ¼

P
j wr;ij.

Step 3: Initialize the propagation process with the initial state
vector g0 defined as follows. Let jPj be the cardinality of P (set of
seed genes) and x̂ ¼ ðx̂1; . . . ; x̂dÞ, where x̂k ¼ 1=jPj

P
i2P xk

i , be the
average features of P. The RN genes are chosen to be the ones hav-
ing the most distant features from x̂. We select the jPj most distant
genes from x̂ in order to keep the classes balanced. Then, the ith
element of g0 is defined as

g0;i ¼
1 if i 2 P
�1 if i 2 RN

0 otherwise
:

8<
:

When needed, a different number of RN genes can be selected.
In this case, the initial value of the RN genes in the state vector g0

must be set to �jPj=jRNj so that the two distributions of positive
and negative values are balanced in g0, with the sum of its elements
equal to zero.

Step 4: Define a Markov process with restart as

gr ¼ ð1� aÞWt
ngr�1 þ ag0; (2)

where the parameter a is usually set to 0.8 (Li and Patra, 2010a;
Yang et al., 2012). Starting from the state vector g0, the dynamics in
Equation (2) ends in the stationary state g1, numerically reached
when jgr � gr�1j < 10�6.

Step 5: Use G1 to assign the remaining labels. Selecting only the
elements that belong neither to P nor to RN, the values of the
asymptotic distribution of those elements are sorted and the ranking
of the corresponding elements is used to form the remaining classes:
LP, WN and LN. A simple rule is to divide the ranking into three
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equal parts and identify LP samples with the first third, WN with
the second third and LN with the third third. However, depending
on the type of analysis and the problem addressed, any division of
the ranking can be considered acceptable.

Step 6: Classification. An ML classifier is trained over the dataset
containing features and labels. Three different ML algorithms have
been used: Random forest (RF) (Breiman, 2001), support vector ma-
chine (SVM) (Cortes and Vapnik, 1995; Drucker et al., 1997) and
multilayer perceptron (MLP) (Hastie et al., 2001) (details in
Supplementary File S2).

2.3 NeDBIT features
The NeDBIT features include two network diffusion-based features,
namely heat diffusion and balanced diffusion, and two biology-
informed topological metrics, namely NetShort and NetRing.
Network diffusion methods are widely used in disease gene discovery
processes (Janyasupab et al., 2021; Lancour et al., 2018; Picart-
Armada et al., 2019). We coupled network diffusion methods and in-
novative topological-based features in order to make the most of the
combined predictive power of both approaches. Moreover, all the fea-
tures are computed exploiting the association score S. In this way, the
NeDBIT features, not assigning the same weight to all seed genes, are
certainly more significant for the disease under investigation.

2.3.1 Heat diffusion feature

This feature is obtained by using a heat diffusion process over the
network, which is among the most used processes for disease gene
prioritization and prediction [see Carlin et al. (2017) and references
therein]. Starting with a distribution of weights, with positive values
only on the seed genes, their evolution is determined by using the
diffusion equation on graph (Nitsch et al., 2010)

z0ðtÞ þ LzðtÞ ¼ 0; (3)

where L is the Graph Laplacian matrix, L ¼ K� A, K is the diag-
onal matrix with the degree of nodes on the diagonal, namely Kii ¼
ki and A is the adjacency matrix of the PPI. The weights at time t are
given by the formal solution of Equation (3)

zðtÞ ¼ exp ð�LtÞzð0Þ; (4)

where exp is the exponential of the matrix. Regarding the initial
distribution of weights, we assign zið0Þ ¼ si for seed genes in R and
0 otherwise, where si is the association score.

2.3.2 Balanced diffusion feature

This feature is obtained by using the diffusion equation in (3) but
with another version for the Graph Laplacian matrix, that is,
Lb ¼ I� K�1A. The weights at time t are obtained as in Equation
(4) by using operator Lb and the initial weights are given as for the
previous measure.

This form of the graph diffusion operator differs from the heat
diffusion in the fact that the operator L diffuses the same amount of
score for each link, whereas Lb diffuses the same amount of score
for each node. This implies a different short-time behavior of the dif-
fusion process on the graph.

2.3.3 NetShort

The NetShort measure (White and Smyth, 2003) is based on the idea
that a generic node is topologically important for a disease if a large
number of seed nodes must be traversed to reach it. For each node,
the weights are assigned as follows:

wij ¼ aij
2

~si þ ~sj
; where ~si ¼

si

maxS
if i 2 R

a
minS

maxS
if i 62 R

8><
>:

and minS and maxS are the minimum and the maximum of the asso-
ciation scores, a is the penalization parameter given to non-seed
nodes and aij is the (i, j) element of the adjacency matrix A. We use

a ¼ 0:5 so that all non-seed nodes have normalized score ~si ¼ 1
2

minS
maxS

while seed nodes have normalized score minS
maxS � ~si � 1. Then, the

NetShort measure NSi of node i is defined as

NSi ¼
X
j 6¼i

1

dij
;

where dij is the length of the weighted shortest path from i to j.

2.3.4 NetRing

The NetRing measure, introduced for the first time in this work, is
based on the concept of ring structure (Baronchelli and Loreto,
2006) generalized to a set of seed nodes. Starting from seed nodes, a
partition of the graph in sub-graphs, or rings, is introduced with the
following property:

RðlÞ � j 2 Vjmin
i2R

lij ¼ l
n o

;

where lij is the (unweighted) length of the shortest path from i to j.
R(l) contains all the non-seed nodes with a minimal distance l from,
at least, one seed node. From the definition follows that Rð0Þ �
R; Rðl1Þ \ Rðl2Þ ¼1 if l1 6¼ l2 and V ¼ [L

l¼0RðlÞ, where L is
the highest value of the minimal distance from non-seed nodes to
seed nodes.

An initial rank defined by means of the association score is com-
puted as

r̂ i ¼
1� si

maxS
if i 2 R

1 if i 62 R
;

(

then the NetRing measure ri of node i is defined as

ri ¼
ar̂ i þ ð1� aÞ 1

ki

X
jjAij 6¼0

r̂ j if i 2 R

li þ
1

ki

�X
j2Oi

r̂j þ
X

j2Riðli�1Þ
rj � ðli � 1Þ

�
if i 62 R

;

8>>>><
>>>>:

where the score for seed genes is a convex combination of the initial
rank r̂ i and the average of the initial rank of the neighbors of
the node, so that seed nodes having many seed nodes as neighbors
have a higher rank. The rank of non-seed nodes is obtained by
summing the level of the ring and the average of two terms, that is,
the number of genes belonging to the same or higher rings
(Oi ¼ fj 62 Rðl � 1ÞjAij 6¼ 0g) and the sum of the rank of genes in the
lower ring (Riðli � 1Þ ¼ fj 2 Rðli � 1ÞjAij 6¼ 0g) corrected by the
ring level. The correction is introduced to make the rank rj compar-
able with r̂ j. Additional important considerations about the
NetRing measure can be found in Supplementary File S2.

3 Results

The performance of NIAPU is tested on the 10 disease datasets
detailed in Section 2.1. A visual overview of the workflow can be
grasped in Figure 1. Section 3.1 is devoted to testing the performance
of NIAPU (APUþNeDBIT) against the implementation of the APU
labeling algorithm with two different sets of features commonly used
when dealing with disease gene identification. The performances are
investigated in terms of out-of-sample classification. Section 3.2 ana-
lyzes the performance of NIAPU in the identification of candidate dis-
ease genes. To this end, a subset of seed genes is masked out to see
whether such genes are predicted as LP. Section 3.3 deals with com-
paring NIAPU with other disease gene identification algorithms, while
Section 3.4 presents results from an enrichment analysis of the candi-
date disease genes obtained by the NIAPU methodology.

3.1 NeDBIT classification performances
The effectiveness of the NeDBIT features is tested by comparing
NIAPU against the implementation of the APU labeling algorithm
with two different sets of features: the first (PUDI) computed
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Fig. 1. The complete NIAPU pipeline. PPI and GDAs are used to obtain a disease-related network. Features are extracted (Section 2.3) and APU is applied (Section 2.2) to

assign new labels to train ML algorithms for the final gene classification. The new labels can be used for disease gene-discovery purposes (Sections 3.2 and 3.3).

Fig. 2. Confusion matrices for multi-class classification on malignant neoplasm of breast (C0006142). The APU labeling and the newly defined NeDBIT features allow for a

better and clear distinction of the P class and the pseudo-classes. (a) MLP þ TFO features. (b) MLP þ PUDI features. (c) MLP þ NeDBIT features. (d) RF þ TFO features.

(e) RF þ PUDI features. (f) RF þ NeDBIT features. (g) SVM þ TFO features. (h) SVM þ PUDI features. (i) SVM þNeDBIT features.
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following Yang et al. (2012) is based on topological features (origin-
ally taken from Xu and Li, 2006) and functional information based
on the semantic similarity of GO terms (originally taken from Wang
et al., 2007), the second (TFO) includes simple topological, function-
al and ontological features (see Supplementary Files S2 and S3). The
comparison is carried out in terms of out-of-sample classification per-
formance, namely the 10 datasets detailed in Section 2.1 were split
into training set (70%) and test set (30%), keeping class balance.
Then, we trained the three ML algorithms defined in Step 6 of
Section 2.2 for the three different applications of the APU algorithm.

Results related to malignant neoplasm of breast disease are
reported in Figure 2 in terms of confusion matrices. The comparison
among TFO, PUDI and NeDBIT features shows that the latter are
far superior to the others. The joint usage of APU and NeDBIT fea-
tures (NIAPU) succeeded in discriminating the class P from the rest
of the genes and better separating the pseudo-classes LP, WN, LN
and RN.

Regarding the pseudo-classes, the identification performances
were also satisfying using TFO and PUDI features, even if with a
drop in accuracy compared with NeDBIT. This highlights the effect-
iveness of the APU label assignment. RF and MLP delivered the best
performances. Regarding SVM, LN samples were sometimes mis-
classified as either WN or RN.

Overall, for P and RN classes, the NIAPU classification is almost
perfect since NeDBIT features allow those classes to be properly sep-
arated from the others since they grasp the topological aspects of the
set of seed genes as a whole, assigning lower and lower weights to
genes that are progressively ‘far’ from the set of seed genes. For the
rest of the classes, the performances are good but some genes are
misclassified. This is due to the label assignment via quantiles, which
obviously introduces some arbitrary noise at the boundary of such
quantiles.

Results related to the other diseases are provided in
Supplementary File S2, along with the results of a 5-fold cross-
validation study carried out for the three sets of features.

3.2 NIAPU performances in disease gene identification
We tested the ability of NIAPU to identify new candidate genes. We
performed a validation by excluding the 20% of seed genes, setting
them as unlabeled both in the computation of the NeDBIT features
and in the APU labeling algorithm. We repeated the procedure five
times with non-overlapping gene sets. We investigated whether
NIAPU was able to properly classify the removed positive genes as
LP. For brevity, the results for malignant neoplasm of breast only
are reported in Table 1 (other diseases in Supplementary File S2).
On average, around 46% of unlabeled seed genes fell in the LP class,
while the rest fell in a decreasing classification trend toward the RN
class. We also observed a clear correspondence between the labeling
and the association score: the higher the score, the more likely the
gene is to be found in the LP class. This underlines the influence of
scores on the NeDBIT features. Analogous results can be found in
Supplementary File S2 for the remaining diseases.

Aggregated results related to ML classification for all the dis-
eases are reported in Table 2. All the classes were identified by RF
and MLP with high scores, while SVM reported lower metrics, par-
ticularly with regard to the LN class. Therefore, NIAPU turned out
to be robust also in more challenging settings with reduced seed
gene sets.

3.3 NIAPU versus other disease gene identification

tools
We compared the predictive performance in the identification of
candidate disease genes of NIAPU against known gene discovery
algorithms, namely DIAMOnD (Ghiassian et al., 2015), Markov
clustering (MCL) (Enright et al., 2002; Sun et al., 2011), random
walk with restart (RWR) (Köhler et al., 2008; Valdeolivas et al.,
2019), two variants of GUILD (Guney and Oliva, 2012), one
exploiting the NetCombo measure and the other based on
Functional Flow (fFlow) (Nabieva et al., 2005), and ToppGene
(Chen et al., 2009a) (relying on the implementation provided by the
GUILD software). See Supplementary File S2 for a detailed descrip-
tion of these algorithms. For this analysis, we relied on the extended
GDA dataset provided by DisGeNET. We assigned the labels using
NIAPU on the curated version of the dataset and then investigated
whether the seed genes contained in the extended version (but not in
the curated one) fell into the LP class. We considered the ranking
retrieved by NIAPU at different quantile thresholds.

In Figure 3, we report the results of this comparison in terms of
F1 score. Most of the time, our methodology outperformed or was

Table 1. Labeling of the unlabeled seed genes by NIAPU for malignant neoplasm of breast (C0006142)

Label % Genes Number of genes GDAS mean GDAS median GDAS mode

LP 45.659 6 1.362 93.6 6 2.793 0.383 6 0.016 0.346 6 0.019 0.32 6 0.045

WN 27.415 6 0.636 56.2 6 1.304 0.343 6 0.013 0.318 6 0.011 0.3 6 0.0

LN 17.659 6 4.436 36.2 6 9.094 0.324 6 0.012 0.303 6 0.004 0.3 6 0.0

RN 9.268 6 3.65 19.0 6 7.483 0.322 6 0.013 0.303 6 0.004 0.3 6 0.0

Note: Results are intended as average with standard deviation over the five runs (GDAS: association score S).

Table 2. Classification scores as pooled mean and standard devi-

ation (over all the diseases)

Label Precision Recall F1 score

MLP

P 0.994 6 0.011 0.998 6 0.007 0.996 6 0.007

LP 0.972 6 0.013 0.972 6 0.016 0.972 6 0.012

WN 0.955 6 0.02 0.915 6 0.022 0.933 6 0.019

LN 0.835 6 0.021 0.744 6 0.042 0.782 6 0.019

RN 0.731 6 0.037 0.86 6 0.036 0.788 6 0.024

Macro avg 0.898 6 0.008 0.898 6 0.007 0.894 6 0.008

Weighted avg 0.884 6 0.009 0.876 6 0.009 0.876 6 0.009

Accuracy 0.876 6 0.009

RF

P 1.0 6 0.0 1.0 6 0.0 1.0 6 0.0

LP 0.984 6 0.005 0.984 6 0.005 0.984 6 0.005

WN 0.977 6 0.007 0.976 6 0.007 0.977 6 0.006

LN 0.982 6 0.005 0.986 6 0.004 0.984 6 0.004

RN 0.991 6 0.003 0.987 6 0.004 0.989 6 0.003

Macro avg 0.987 6 0.003 0.987 6 0.003 0.987 6 0.003

Weighted avg 0.984 6 0.004 0.984 6 0.004 0.984 6 0.004

Accuracy 0.984 6 0.004

SVM

P 0.998 6 0.004 1.0 6 0.0 0.999 6 0.002

LP 0.845 6 0.043 0.719 6 0.071 0.767 6 0.032

WN 0.635 6 0.135 0.726 6 0.108 0.625 6 0.102

LN 0.625 6 0.191 0.559 6 0.026 0.419 6 0.025

RN 0.366 6 0.224 0.5 6 0.004 0.38 6 0.011

Macro avg 0.694 6 0.066 0.701 6 0.013 0.638 6 0.022

Weighted avg 0.641 6 0.077 0.642 6 0.017 0.568 6 0.029

Accuracy 0.642 6 0.017

Note: Five runs were performed for each disease, masking out 20% of seed

genes.
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at par with the state-of-the-art algorithms for disease gene identifi-
cation, being often the best-performing method when looking for a
large number of candidate genes and of comparable performances

for lower ones. Indeed, DIAMOnD performs at its best when con-
sidering a low ratio (10–20%) of predicted genes, while NIAPU shows
good performances both for low and high percentages of candidate

genes, outperforming DIAMOnD in the latter case. In fact, as stated
by the authors themselves, DIAMOnD becomes unreliable when

exceeding 200 predicted genes (Ghiassian et al., 2015).

3.4 Enrichment analysis
For a further evaluation of our results, for each of the 10 diseases

considered, we performed a gene ontology/pathway/disease enrich-
ment analysis of the first 100 predicted genes in the LP class from

the validation on the extended GDA dataset. This analysis was

performed using Enrichr (Chen et al., 2013; Kuleshov et al., 2016;
Xie et al., 2021).

The selected LP genes do not correspond to any of the curated
GDA disease genes; therefore, among the enriched diseases, we cannot
expect to find the same disease for which the gene discovery process is
carried out. Instead, among the enriched terms (diseases, GO terms or
pathways), we should be able to find diseases and biological processes
that are somehow related to the disease under scrutiny.

We report the enrichment analysis results in Table 3. In particu-
lar, we present the top enriched diseases or biological processes for
each analyzed disease, together with references to literature that en-
dorse such relevant links.

Although not conclusive, the fact that there is evidence in litera-
ture of links and shared biological mechanisms between the ana-
lyzed diseases and enriched diseases is additional proof of the
validity and efficacy of the disease gene discovery process.

Fig. 3. Gene discovery performances in terms of F1 score. Results are reported for six diseases for increasing numbers of candidate genes considered as a percentage of the total

number of associated genes in the extended dataset, which is different for each disease. The rest of the diseases can be found in Supplementary File S2. (a) Malignant neoplasm

of breast (C0006142). (b) Schizophrenia (C0036341). (c) Colorectal carcinoma (C0009402). (d) Malignant neoplasm of prostate (C0376358). (e) Bipolar disorder

(C0005586). (f) Depressive disorder (C0011581).
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4 Discussions and conclusions

In this article, we presented the NIAPU algorithm, which fits the
typical problem of the computational identification of previously
unknown disease genes in the context of PU learning. The advantage
of the proposed method is that it allows accurate characterization of
the positive samples (P set)—via the NeDBIT features—and refined
control of the LP samples (LP set)—via the APU labeling proced-
ure—which, extracted from the set of unlabeled elements, contains,
with the highest probability, elements related to the disease of inter-
est. Moreover, NIAPU turned out to be an effective labeling proced-
ure, allowing ML models to be trained appropriately and deliver
highly accurate classification performances. As for disease gene
identification, NIAPU proved to be efficient in two different experi-
ments. In the first one, masking out a subset of seed genes, it turned
out that �46% of those fell in the LP class. In the second one,

assigning labels using NIAPU on the curated version of the
DisGeNET dataset and then searching for the seed genes of the
extended version only, the predictive performance of the NIAPU al-
gorithm outperformed or was at par with the state-of-the-art algo-
rithms for disease gene discovery.

It is worth noting that the NeDBIT features are designed to be
able to use link-weighted and node-weighted graphs and that, by
having increasingly accurate PPIs, we expect increasingly good
results from the application of NIAPU. On the other hand, NIAPU
methodology is clearly influenced by the reliability of seed genes, the
association score assigned to them and the background network top-
ology (here, the PPI network and its reliability).

Indeed, GDA datasets may be affected by disease–gene associ-
ation bias due to the quantity of research on a given disease/trait. In
this regard, a recent systematic review (De Magalh~aes, 2022)

Table 3. Enrichment analysis of the LP genes predicted for the 10 diseases of interest

Disease Enriched disease/GO Relationship Reference

C0036341

Schizophrenia

KEGG

GO:0042981

Regulation of apoptotic processes

Apoptotic engulfment pathway involved in

schizophrenia (increased risk)

Chen et al., 2009b

C0005586

Bipolar disorder (BD)

KEGG

GO:0042981

Regulation of apoptotic processes

Observed relationship between mitochondrial

dynamics and dysfunction and the apoptotic

pathway activation and the pathophysiology

of BD

Scaini et al., 2017

C0006142

Malignant neoplasm of breast

Leukemia Therapy-related myeloid neoplasms may be

part of a cancer-risk syndrome involving

breast cancer

Valentini et al., 2011

C0009402

Colorectal carcinoma (CRC)

Ovarian cancer (OC) GCNT3 might constitute a prognostic factor

also in OC and emerges as an essential

glycosylation-related molecule in CRC and

OC progression

Fernández et al., 2018

C0011581

Depressive disorder

Parkinson Neurobiological investigations suggest that de-

pression in Parkinson’s disease may be medi-

ated by dysfunction in mesocortical/

prefrontal reward, motivational and stress–

response systems

Cummings, 1992

GO:0043066

Negative regulation of apoptotic

processes

Evidence of local inflammatory, apoptotic and

oxidative stress in major depressive disorder

Shelton et al., 2011

C0023893

Liver cirrhosis

Parkinson Parkinson’s disease among the neurological

complications in advanced liver cirrhosis

mediated by manganese

Mehkari et al., 2020

C0376358

Prostate cancer

Melanoma Diagnoses of cutaneous melanoma may be

associated with prostate cancer incidence

Cole-Clark et al., 2018

C3714756

Intellectual disability

Dementia People with intellectual disability are at higher

risk of dementia than the general population

Zigman and Lott, 2007

C0860207

Chronic alcoholic intoxication

Ovarian cancer (OC) Alcohol consumption might be associated with

the risk of OC in specific populations or in

studies with specific characteristics

Yan-Hong et al., 2015

KEGG Estrogen signaling pathway Association of increased estrogen level and

increased alcohol use in females

Erol et al., 2019

C0001973

Drug-induced liver disease

Leigh syndrome (LS) Valproate, listed as a cause of drug-induced

acute liver failure, can cause mitochondrial

dysfunction and should be avoided in LS

patients

Lee and Chiang, 2021

Note: The top enriched diseases and GO terms are reported, along with notes about disease relationships and main reference articles.
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demonstrated that 87.7% of all genes could be associated with can-
cer. This indicates that given the massive amount of research focused
on cancer, which also applies to other types of diseases, the defin-
ition ‘associated with’ is to be checked carefully and critically.

The usage of datasets that are as error-free, unbiased and reliable
as possible (e.g. using an interactome validated in the specific patho-
logical context, possibly with weighted PPIs) could potentially im-
prove the classification performance of the method. In this regard, it
is worth mentioning that an algorithm with the same theoretical
ground of NIAPU has been applied in different contexts (e.g. neph-
rology, gastroenterology and rare diseases) (Shahini et al., 2022a,
b), paying particular attention to the selection of seed genes and ref-
erence interactomes.
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