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Abstract

The new Segment Routing paradigm provides the network operator the possibility of highly in-
creasing network performance exploiting advanced Traffic Engineering features and novel network
programmability functions. Anyway, as any new solutions, SRv6 has a side effect: the introduction
of unknown service disruption events. Network Black Holes (BHs) are logical failures that create a
service disruption for a subset of traffic flows, generally due to device misconfiguration. Detection of
a BH is a hard task due to its specific nature: the infrastructure is up and the disconnection affects
a limited number of flows. An example of BH is the one caused by the failure of the Path MTU
Discovery procedure in IPv6. The Segment Routing (SR) Architecture is an overlay infrastructure
that realizes the source routing. SR exploits the connectivity service offered by the underlay IPv6
(SRv6). Thus SR inherits the problems related to BHs affecting IPv6. In SR this problem is even
more stressed due to the encapsulation mechanism that is required to enforce the segment lists on
packets. Even worse, existing active probing based tools to detect network BHs for IPv6 are not
suitable in SR. In this paper we investigate the problem of detecting SR Black Holes in SR domains.
First, we provide an experimental demonstration of the creation of an SR Black Holes. Then we
show that existing tools based on active probing are not suitable to detect SR BHs. Then, a pas-
sive framework named Segment Routing Black Holes Detection (SR-BHD) is introduced. SR-BHD
make use of specific traffic counters available in SR capable nodes to verify the validity of the flow
conservation principle on each network element. Experimental evaluation carried out through simu-
lation and emulation shows the effectiveness of SR-BHD in detecting the presence of SR BHs. The
proposed framework, named Segment Routing Black Holes Detection (SR-BHD) uses a passive ap-
proach based on the observation of traffic counters available in SR capable nodes [9]. In particular,
the main contributions of this thesis are:

• an experimental demonstration of the existence of SR Black Holes and of the possible failure
detecting them through an active approach;

• the proposition of a passive detection system allowing a reliable identification of a black hole;

• a deep performance evaluation of the proposed method through simulation.

• a validation of the proposed framework over a real testbed.

Keywords: IPV6, SRv6, Segment Routing, Network Black Hole, failure detection, network mon-
itoring.
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Nomenclature

API: Application programming interface is a connection between computers or between computer
programs.

Best effort: delivery describes a network service in which the network does not provide any guarantee
that data is delivered or that delivery meets any quality of service.

Black hole: refers to a place in the network where incoming or outgoing traffic is silently discarded
(or "dropped"), without informing the source that the data did not reach its intended recip-
ient.

Connectionless: It does not include any connection establishment and connection termination.

Control plane: In network routing, the control plane is the part of the router architecture that is
concerned with drawing the network topology, or the information in a routing table that
defines what to do with incoming packets.

Data plane: The data plane is the part of the software that processes the data requests.

Decapsulation: Decapsulation is the process of opening up encapsulated data that are usually sent
in the form of packets over a communication network.

Destination Routing: Destination routing is a sequential pathway that messages must pass through
to reach a target destination.

Destination-based routing: In telecommunications, destination routing is a sequential pathway that
messages must pass through to reach a target destination.

Encapsulation: In computer networking, encapsulation is a method of designing modular commu-
nication protocols in which logically separate functions in the network are abstracted from
their underlying structures by inclusion or information hiding within higher-level objects.

IP Header: IP Header is meta information at the beginning of an IP packet.

iPerf: a tool for active measurements of the maximum achievable bandwidth on IP networks.

MPLS: Multiprotocol Label Switching is a routing technique in telecommunications networks that
directs data from one node to the next based on short path labels rather than long network
addresses, thus avoiding complex lookups in a routing table and speeding traffic flows.

Namespace: a set of signs (names) that are used to identify and refer to objects of various kinds.

Python: an interpreted high-level general-purpose programming language.

Routing: the process of selecting a path for traffic in a network or between or across multiple
networks.

Segment Routing (SR): a protocol designed to forward data packets on a network based on source
routes.
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Source routing: in computer networking, source routing allows a sender of a packet to partially or
completely specify the route the packet takes through the network.

Throughput: the rate of production or the rate at which something is processed.

Tracing: involves a specialized use of logging to record information about a program’s execution.

Wireshark: a free and open-source packet analyzer.
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Chapter 1

Introduction to network failure

Network infrastructures are becoming always more complex due to the ever increasing service re-
quests from users [31]: multi layered architecture, including several different technologies and devices
and eg. IP/MPLS over Wavelength Division Multiplexing (WDM).

Network Failures (eg. fiber cut, router reboot, etc.) can happen in each layer of the architecture
during failures, users can experience QoS degradation and/or service disruption Generally [? ]
devices raise alarms to notify a failure event Alarms coming from all over can make the failure
localization harder.

Figure 1.1: Amazon error caused cloud outage
https://www.datacenterknowledge.com/archives/2011/04/29/amazon-networking-error-caused-

cloud-outage

There is a broad range of causes of network failures: hardware faults (e.g., device failures,
memory errors) and other multiple reasons, for interface errors such as faulty cable installation,
faulty optical transceivers, for OS bugs, for a specially crafted IPv6 packet that was found to crash
the device and certain types of Internet Protocol Version 4 (IPv4) packets destined to a physical
or virtual interface on the device that can caused a memory leak and finally for misconfigurations
(e.g., ARP conflict).

During failure periods, the service would be available, but users may experience high latency
or packet drops [16] e [33], for instance, due to interface errors TCP (Transmission Control Proto-
col) (TCP) may likely timeout and re-transmit in the slow-start phase thus degrading the service

1
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Figure 1.2: Data center outage generate big losses
https://www.informationweek.com/government/data-center-outages-generate-big-losses

performance.
The figure 1.3 shows the histogram of the top-k problems observed from trouble tickets associated

with intra (a) and inter (b) datacenter failures;

Figure 1.3: Top-k problems observed from trouble tickets for intra and inter datacenter [30]

There is a multitude of devices that can fail in a network [36] e [15]: from a user perspective,
a network failure causes a loss of connectivity and when elements in the path between the source
and destination hosts is not available. From now on we will look at a network failure as a loss of L3
connectivity recovery from higher layer allowing protection also at lower layers [26] figure 1.4 shows
a possible L3 link disruption classification. In the figure 1.4 we have tried to summarize and build
a taxonomic classification of the main failures.

L3 link failure is a frequent event into an ISP network and figures 1.6 and 1.8 show that the
most of the L3 link failures are transient and single and short-lived 1.7.

IP restoration can be divided into three basic phases:

• Failure detection;

• Failure notification to the control plane and other network entities;

2
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Figure 1.4: Disruption classification

Figure 1.5: Failure notifications over three timescales: weekly (top), daily (middle), and hourly (bottom)
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Figure 1.6: L3 failures transient and single

Figure 1.7: Duration of failure events
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Figure 1.8: Distribution of simultaneous failures

• Failure detour.

Figure 1.9: Failure detour

Bidirectional Forwarding Detection (BFD) [18] is a network protocol that is used to detect faults
between two forwarding engines connected by a link:

• BFD is a simple Hello protocol;

• A pair of systems transmit BFD packets periodically over each path between the two systems.

If a system stops receiving BFD packets for long enough, the link with the neighboring system
is assumed to have failed.

Once the failure has been detected, the event has to be notified to the interested parties:

• centralized control plane with Software Defined Networking (SDN) Controller;

5
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Figure 1.10: Bidirectional Forwarding Detection (BFD) mechanism

Figure 1.11: Centralized and distributed control plane

• distributed data plane in all the network routers.

The detour operation consists in changing the routing of the traffic flows currently forwarded
over the failing device. There are two possibilities:

• protection: a backup path is configured in the network. It’s fast (do not requires online
configuration) but it’s high resources consumer (capacity, memory, etc.);

• restoration: an alternative path is searched once the failure is detected. Low resource utiliza-
tion is required but the restoration is slow.

Monitoring tools

• allow fast detection of failures;

• inaccurate;

• determine which L3 link has failed;

• hard to discover where the failure occurred (which device);

Data Driven Localization

• require up to several hours to detect a failure accurately;

• allow to exactly assess the failed device and the type of failure;

6
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Figure 1.12: IP restoration mechanism

Figure 1.13: Monitoring tools and data driven localization

Figure 1.14: Evaluation for real network
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Current technologies (BFD + Segment Routing (SR)) allow to react to a L3 link failure in 50
ms. With the always increasing data rate, 50 ms [2] [18] can easily turn into a severe packet loss.

Under the hypothesis of packets of length L = 1500 Byte, 50 ms of service disruption turns into
41.7 Kbps loss. In case of proactive configuration of the backup path, most the 50 ms needed to
restore the service is due to detection (BFD). As shown in the introduction, L3 link failures exhibit
a recurrent pattern: IDEA: if the failures could be predicted, it would be possible to reduce the
packet loss PROS: reduce (or avoid) packet loss increase of QoS, CONS: trigger unneeded re-routing
possible reduction of QoS.
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Chapter 2

Source Routing and Segment Routing

SR architecture is based on the concept of source routing and has interesting scalability properties, as
it dramatically reduces the amount of state information to be configured in the core nodes to support
complex services. SR architecture was first implemented with the Multiprotocol Label Switching
(MPLS) dataplane and then, quite recently, with the IPv6 dataplane (Segment Routing Version 6
(SRv6)). SRv6 SR architecture (SRv6) has been extended from the simple steering of packets across
nodes to a general network programming approach, making it very suitable for use cases such as
Service Function Chaining and Network Function Virtualization (NFV). The new Segment Routing
paradigm provides the network operator the possibility of highly increasing network performance
exploiting advanced Traffic Engineering features and novel network programmability functions. The
network paradigm based on source routing, i.e., the source node decides the path that each packet
has to go through. SRv6 has a side effect: the introduction of unknown service disruption events
and incorrect computation of the (Maximum Transmission Unit (MTU)) value of an end-to-end
path in an SRv6 network.

Figure 2.1: Exceeding the maximum transmission unit (MTU)
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2.1. The Segment Routing

2.1 The Segment Routing

Architecture Segment Routing is a Cisco technology and is based on the paradigm of Source Routing.
By calling intermediate devices, i.e. routers, with the name "nodes", they can have three distinct
roles:

• Ingress node;

• Intermediate node;

• Egress node.

Segment Routing involves adding an ordered list of segments in the packet header, called Seg-
ment List. The ingress node is so called because it is the node that takes care of inserting this
information into the packets and represents the entry point into the network SR. The segments
represent instructions and, identified by theirs Segment Identifier (or SID), can be of two types:

• Reach node N by following the shortest path or by specifying the nodes to pass through (these
will be reached by following the shortest path);

• Apply the S service.

The intermediate node is the node that performs the only routing function. The egress node has
the task of eliminating all information related to SR including the Segment List, and sending the
packet to its final destination. As for other features and functionality of the Segment Routing, a
link failure protection is provided. In fact, if a connection between two nodes is interrupted,SR
expects to redirect traffic by following another route, without any traffic loss occurring: it is called
fast-reroute solution. In the end, SR supports all kinds of control plane whether it is centralized,
distributed or hybrid, while, with reference to the data plane, can be used, among others, IPv6.

Segment routing, a form of computer networking, is a modern variant of source routing that
is being developed within the Source Packet Routing in Networking (SPRING) and IPv6 working
groups of the Internet Engineering Task Force (IETF). In a segment routed network, an ingress node
may prepend a header to packets that contain a list of segments, which are instructions that are
executed on subsequent nodes in the network. These instructions may be forwarding instructions,
such as an instruction to forward a packet to a specific destination or interface. Segment routing
works either on top of a MPLS network or on an IPv6 network. In an MPLS network, segments
are encoded as MPLS labels. Under IPv6, a new header called a Segment Routing Header (SRH) is
used. Segments in a SRH are encoded in a list of IPv6 addresses. Segment routing is a method of
forwarding packets on the network based on the source routing paradigm. The source chooses a path
and encodes it in the packet header as an ordered list of segments. Segments are an identifier for any
type of instruction. For example, topology segments identify the next hop toward a destination.
Each segment is identified by the segment ID (SID) consisting of a flat unsigned 20-bit integer.
Segments Interior gateway protocol (IGP) distributes two types of segments: prefix segments and
adjacency segments. Each router (node) and each link (adjacency) has an associated segment
identifier (SID).

• A prefix SID is associated with an IP prefix. The prefix SID is manually configured from the
SPRING range of labels, and is distributed by Intermediate System - Intermediate System
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Figure 2.2: SRH packet header

(IS-IS) or Open Shortest Path First (OSPF). The prefix segment steers the traffic along the
shortest path to its destination. A node SID is a special type of prefix SID that identifies a
specific node. It is configured under the loopback interface with the loopback address of the
node as the prefix. A prefix segment is a global segment, so a prefix SID is globally unique
within the segment routing domain;

• An adjacency segment is identified by a label called an adjacency SID, which represents
a specific adjacency, such as egress interface, to a neighboring router. The adjacency SID is
distributed by IS-IS or OSPF. The adjacency segment steers the traffic to a specific adjacency.
An adjacency segment is a local segment, so the adjacency SID is locally unique relative to a
specific router. By combining prefix (node) and adjacency segment IDs in an ordered list, any
path within a network can be constructed. At each hop, the top segment is used to identify
the next hop. Segments are stacked in order at About Segment Routing 1 the top of the
packet header. When the top segment contains the identity of another node, the receiving
node uses equal cost multipaths (ECMP) to move the packet to the next hop. When the
identity is that of the receiving node, the node pops the top segment and performs the task
required by the next segment. Dataplane Segment routing can be directly applied to the
Multiprotocol Label Switching (MPLS) architecture with no change in the forwarding plane.
A segment is encoded as an MPLS label. An ordered list of segments is encoded as a stack
of labels. The segment to process is on the top of the stack. The related label is popped
from the stack, after the completion of a segment. Services Segment Routing integrates with
the rich multi-service capabilities of MPLS, including Layer 3 virtual private network (VPN)
(L3VPN), Virtual Private Wire Service (VPWS), Virtual Private LAN Service (VPLS), and
Ethernet VPN (EVPN). Segment Routing for Traffic Engineering Segment routing for traffic
engineering (SR-TE) takes place through a tunnel between a source and destination pair.

11
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Segment routing for traffic engineering uses the concept of source routing, where the source
calculates the path and encodes it in the packet header as a segment. Each segment is an
end-to-end path from the source to the destination, and instructs the routers in the provider
core network to follow the specified path instead of the shortest path calculated by the IGP.
The destination is unaware of the presence of the tunnel. We need segment routing for
traffic engineering (SR-TE), the network no longer needs to maintain a per-application and
per-flow state. Instead, it simply obeys the forwarding instructions provided in the packet.
SR-TE utilizes network bandwidth more effectively than traditional MPLS-TE networks by
using ECMP at every segment level. It uses a single intelligent source and relieves remaining
routers from the task of calculating the required path through the network;

• Ready for SDN: Segment routing was built for SDN and is the foundation for Application
Engineered Routing (AER). SR prepares networks for business models, where applications
can direct network behavior.

SR provides the right balance between distributed intelligence and centralized optimization and
programming:

• Minimal configuration: Segment routing for TE requires minimal configuration on the source
router;

• Load balancing: Unlike in RSVP-TE, load balancing for segment routing can take place in
the presence of equal cost multiple paths (ECMPs);

• Supports Fast Reroute (FRR): Fast reroute enables the activation of a pre-configured backup
path within 50 milliseconds of path failure.

2.2 Segment Routing version 6

Segment Routing can be applied to the protocol IPv6, adding a new type of header to packets,
called Source Routing Header (or SRH). There Segment List, consisting of segments each coded in
address IPv6, is inserted in the SRH where there is also a pointer indicating the next segment to be
processed. The ingress node it then runs the encapsulation service by adding the SRH, while the
egress node performs the decapsulation service by eliminating the SRH. The header of a packet that
is encapsulated by the ingress node has the structure shown in Figure 2.2. As already mentioned,
a segment represents an instruction and indicates the service to be performed on a given node.
Consequently, a segment (or SID) is made up of 128 bits and has the following structure:

Figure 2.3: Structure of a segment

A Segment List, therefore, it looks like this:

• The Locator is the node to reach e Function is the function in it to perform.

12
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Figure 2.4: Segment List

• Some of the available functions are as follows:

Figure 2.5: Some of the functions identified by a SID

• Nodes have the ability to store several Segment lists, each of which is identified by a Binding
Segment IDentifier (BSID) and it too, in this case, is an address IPv6.

A BSID is related to at least one Policy: this is entered dynamically or statically by an operator,
and determines which one BSID must be added in the SRH of a package based on the matching
of the established parameters. These parameters are defined when the Policy. To illustrate how a
network works SRv6, an example topology is proposed below (Figure 2.6) and set SID, BSID And
Policy. Let’s imagine the following are set SID:

• On node E1 i SID e1 :: 1 with encap function and e1 :: 2 with decap function to host A

• On node E2 i SID e2 :: 1 with encap function and e2 :: 2 with decap function to host B

• On node C1 i SID c1 :: with function end node

• On node C2 i SID c2 :: with function end node

In order for hosts A and B to communicate, the BSID could be the following (the BSID and
between the angle brackets le Segment list):
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• On node E1, a1 :: / 128 <c1 ::, e2 :: 2>

• On node E2, a2 :: / 128 <c2 ::, e1 :: 2>

Figure 2.6: Example topology

Since the BSID there are two, as many will be policy:

• Policy 1 in node E1 associated with the BSID a1 :: / 128. The parameters to match are:
ip-source = A; ip-destination = B;

• Policy 2 in node E2 associated with the BSID a2 :: / 128. The parameters to match are:
ip-source = B; ip-destination = A.

That is, Policy 1, installed in E1 and which sees as an action to be taken that of sending traffic
following the instructions of the BSID a1 :: / 128, is used for all those packets whose source IP
address is the address of host A and the destination IP address the address of host B. Vice versa
for Policy 2.

2.3 Vector Packet Processing

This framework is the open source version of Cisco Vector Packet Processing (VPP): one stack
high performance packet processing executable on commercial CPUs. Built using the Data Plane
Development Kit (DPDK), the VPP platform provides the functionality of dataplane in software.

The high performance is guaranteed by the packet processing mode: instead of taking place one
at a time, i.e. in a scalar way, VPP processes packet vectors, hence its name. However, a further
advantage of its use lies in its modularity: packets are processed following a graph that the user can
modify or extend by operating on the nodes. Each time a new node is visited, VPP sorts the vector
of packets by type and before continuing with the processing, divides it into further homogeneous
vectors, i.e. containing all the same types of packets: in this way, since not all packets must be
processed identically, they follow different paths on the graph. The operation is schematically
presented in figure 2.7.

For this reason, three types of nodes are distinguished:
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Figure 2.7: Example of a VPP processing graph

• Process node: recall simple functionalities that are part of the main core of VPP (for example
by calling the libraries l2-input or ip4-lookup)

• Input nodes: manage the initial vector of packets

• Internal nodes: these types of nodes are crossed only under explicit request

For this study, the VPP version used is v20.01 and is installed in Ubuntu 20.04 where each in-
stance of it represents a router. This way, once you have configured interfaces and set the parameters
for Segment Routing, you will have a functioning network topology.

2.4 Linux namespace

Another technology used is the namespace. The namespace is a feature of the Linux kernel capable
of reserving portions of global resources and isolating them, so as to make them for the exclusive
use of specific processes. These resources do not affect the global ones and are not visible from
other processes. There are several types of namespace depending on the resources they isolate, but
the Network Namespace (NETNS), or network namespace allows you to reserve instances of routing
tables and network stacks that can be used by an interface assigned to it. Since the physical network
interface has already been in use root namespace, you need to instantiate a Virtual Ethernet (VETH)
pair: two connected virtual network interfaces will be created, one of which must be assigned to
namespace of interest and the other remains in the root namespace and can therefore send / receive
traffic from physical interfaces or interfaces connected to others NETNS. In the image below, the
way in which communication takes place between NETNS and interfaces in the root namespace.
Hereinafter, i NETNS will be used to simulate terminal hosts.
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Figure 2.8: Namespace graphic illustration
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Chapter 3

MTU Black Holes

3.1 MTU Black Hole and its effects

A Black Hole is defined as an area of the network where inbound and/or outbound traffic is discarded
without the source being informed. In this case, the reason for assuming the occurrence of a Black
Hole is due to a packet size exceeding with respect to the minimum MTU (§4.2.3). This event,
referred to as MTU dependent SR Black Hole, under the SRv6 paradigm, cannot be detected by
known monitoring solutions based on active probing: the reason is that in SRv6 probe packets and
user data do not follow the same paths and therefore detection is not possible.

In this work we propose a passive monitoring solution able to exploit the SRv6 Traffic Counters
to detect links where packets are lost due to MTU issues. The advent of the NFV paradigm and
the need to create complex services by configuring the so called Service Function Chains (SFCs),
have pushed forward routing technology enhancements. With reference to the control plane func-
tionalities the introduction of the SDN has allowed the definition and implementation of efficient
and flexible routing algorithms. Considering the data plane, this requirement is efficiently provided
by the Segment Routing (SR) architecture [35]. SR leverages the concept of source routing to let
the source node to declare the set of instructions (either topological or service based) to apply on
each packet. In particular, SR defines a powerful network programming model [10] that offers an
unprecedented expressiveness in the definition of network programs to be applied on traffic flows.
An instruction, referred to as segment in the SR jargon, allows to specify the type of function to
execute (and eventually to pass a set of arguments as input) and the node that has to perform it,
also known as locator. A network program in then represented by a segment list, i.e., an ordered list
of segments. To reduce the burden of network nodes and make the architecture scalable, network
programs are directly inserted in the packet header. In particular, since SR uses the IPv6 data
plane (SRv6, [12]), the segment list is included in a new extension header named SRH. So, the
flexibility of the SR architecture comes at the price of an overhead increase. If, on one hand, this
cost is affordable considering the more and more growing of the backbone link capacities, on the
other hand longer packets being transported over an IPv6 data plane causes potential creations of
anomalies in the packet forwarding. In fact, it is well known that IPv6 has problems [4] with the
correct handling of the MTU, since the fragmentation operation is allowed only at the source node.
Communication failures due to silent discard of too big packets are known in IPv6 to as black holes
[24]. The working principle of SRv6 further stresses the issues related on MTU constraint violation
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in IPv6. As evidence of this fact, in the RFC 8574, that introduces SRH [12], suggests to deploy
a greater MTU value within the SR Domain than at the ingress edges. Furthermore, efforts to
reduce the overhead required to enforce a network program on packets have been recently made
by defining the concept of microSIDs [34]. In a nutshell, a microSID is a special instruction able
to encode a whole segment list into a single segment identifier. Nevertheless, while following the
recommendation specified in [11] and using the microSIDs, the risk of the creation of a network
black hole can be reduced, the problem is still present. There are several factors that contribute
to the creation of a black hole. Among those, the most critical one is that network programs can
potentially be enforced at every node in the network on the basis of the verification of a logical
condition (e.g., re-routing policy to bypass a failed link [22], or redirect traffic in case of Virtual
Machine migration [6]). To better explain this concept, let ∆ be the difference between MTU of
the bottleneck link in SR domain and the length a packet that is entering the domain. A black hole
can happen if the overhead O due to the enforcement of network programs on the packet becomes
greater than ∆. From this simple example it is evident the contribution of the recommendation
specified in [12] and of the use of microSIDs: the first aims at increasing ∆, while the latter tries
to reduce O. In [28] we have conjectured the existence of a silent network failure in SRv6 due to
the MTU constraint violation, i.e., an SR Black Hole. Furthermore, we have discussed through an
application example that classical detection tools using active approaches (i.e. the transmission of
probes) fail in diagnosing the presence of an SR Black Hole. These methods work according to the
fate sharing paradigm, i.e., they assume that probe and data packets share the same network “fate”.
Unfortunately, since SR architecture follows the policy routing approach, there is no guarantee that
probes and data packets follow the same path. Consequently active detection tools are not suitable
in case of SR Black Holes. In this paper we address the problem of detecting MTU related black
holes in an SRv6 network. In particular, we propose a passive monitoring framework that is able
to accurately detect the presence of SR Black Holes, providing as output a short list of suspected
link/flow pairs, i.e., the list of flows impacted by black holes and the links causing such black holes.

3.2 Related Works

We provide an overview of the research activities related to network black holes. In particular,
we divide the literature in two categories: i) known types of network black holes and existing
frameworks for their detection, and ii) performance measurements tools in the context of Segment
Routing architecture.

3.2.1 Network Black Holes and Detection Frameworks

As defined in [19], network black holes are silent logical failures, often caused by events such as
misconfiguration or software bugs. Among the different causes, the use of overlay architectures
seems to be a common accelerator for the creation of black holes. A first example is reported in
[8], where different failure modes that lead to the occurrence of a black hole are presented, in the
context of an IP over MPLS infrastructure. In this scenario, failures affecting the Label Distribution
Protocol (LDP) execution can create a black hole, due to the fact the underlying IGP domain is
working correctly, while end to end reachability is compromised.

The present work is focused on black holes occurring in an SRv6 network due to the violation
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of the MTU constraint caused by the failure of the Path MTU Discovery (PMTUD). The different
types of failure modes for the PMTUD procedure are described in [24]. Among those, the most
common one is represented by unresponsive routers, that are configured to not send ICMP Packet
Too Big (PTB) messages back to the source node whenever a packet with a length exceeding the
MTU is received. Many different detection systems have been proposed to detect the presence of
network black holes in different contexts. All of them rely on the active test of the network status
through the sending of probes. In the next we describe some of the most relevant detection tools.

In [19] an active probing detection mechanism is defined; it is able to detect network black
holes occurring in an IP/MPLS backbone. A full mesh of probes are periodically exchanged among
the edge routers. The method is based on the concept of failure signature, that represents the set
of probes that are lost in case a black hole occurs in a specific link. Then, spatial correlation is
exploited to identify a set of suspicious links. In particular, all the links whose failure signature is
close to the actual set of failed probes are inserted into an hypothesis set.

One of the most reliable tools to discover PMTUD failures is Scamper [24]. Scamper is a two
steps procedure to determine either the largest MTU that can be used on a end to end path, and
to discover (in case of a failure) what is the router that is not participating to the PMTUD. Both
the phases of Scamper are based on the enforcement of probes along the end to end path to check.
These probes consist in a set of UDP segments destined to an unused port, when performing the
first step, whereas a set of ICMP Echo messages destined to intermediate routers are used in the
second phase.

Netalyzr is presented in [20], it is a network measurement and debugging tool to monitor the
Internet. The architecture is provided with a set of pre-installed applets; one of these aims at
determining the path MTU toward a destination server. This search is based on a process that
emits a set of UDP probes to the target destination.

Ripe Atlas [32] is a worldwide monitoring infrastructure based on the use hardware probes
placed in the so called vantage points. In [5] Ripe Atlas has been used to discover path MTU black
holes in the Internet, with the specific focus of assessing the main causes and the most affected data
plane protocol. The obtained results show that black holes due to failure in the PMTUD procedure
affect both the IPv4 and the IPv6 data planes. Specifically, Ripe Atlas is able to detect the main
causes and the location of these failures, such as PTB messages and fragmented packets filtered by
firewalls.

In this paper we extend the seminal idea described in [28], i.e. a passive approach based on the
elaboration of traffic-related data available in SRv6 network devices. This approach has already
been successfully applied in the past to identify and detect network anomalies and failures. As an
example, in [25] the network tomography is exploited to identify anomalous traffic flows, while [33]
that defines a statistical analysis based on Signal Processing techniques and applies it over SNMP
MIB data in order to detect different types of network anomalies, such as, file server failure due to
abnormal user behavior or protocol implementation errors. Nonetheless, no passive monitoring tool
has ever targeted the detection of SR Black Holes.

3.2.2 SR Performance Measurement tools

SR architecture provides a set of Operation And Maintenance (OAM) tools that Network Operators
can use to measure the performance of their infrastructure, execute troubleshooting operations, and
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so on. Here we report few examples. In [14] it is presented a scalable and topology-aware data-
plane monitoring system for SR-MPLS. Ping and Traceroute for SR networks are defined in [21].
Bidirectional Forwarding Detection (BFD) to test the aliveness of Segment Routing Policies for
Traffic Engineering is presented in [2].

SR capable nodes are able to collect statistics on the traffic by exploiting a set of traffic counters
called SR Routing Traffic Counter (SRTCs), allowing to perform traffic measurements at different
granularity. By means of SRTCs an SR node is able to collect statistics on the received traffic flows
aggregating them according to the active segment. Three different types of SRTCs are used in the
proposed framework: i) SR-INT, ii) PSID, and iii) POL. SR-INTs (also known to as link counts)
account the traffic at link granularity, i.e., they measure the amount of SR traffic that is sent over
a specific link. By means of the PSID counters, an SR capable node can account the amount of
received traffic that is directed toward a specific node. Finally, POL counters keep track of the
amount of traffic that has been steered through a specific SR policy. These counters are described
in detail in [29], where the logical relations between them are captured by a mathematical model.
Exploiting this model, the Authors show SRTCs can successfully used to improve the performance
of existing algorithms in different networking problems (e.g, Traffic Matrix Assessment, Traffic
Anomaly Detection, etc.). The present paper is strongly based on the findings reported in [29].

In [23] an SRv6 Performance Monitoring (SRv6-PM) framework is proposed, allowing to perform
a deep performance monitoring on an SRv6 infrastructure. Three main components are defined: i)
a set of data plane tools for performing traffic measurements (e.g, packet loss, delay) at line rate,
ii) a control plane logic that requires to the network nodes to perform specific measurements (and
a southbound interface for the data/control plane interaction), and iii) a Cloud Native Big Data
Management system for data storage, processing and visualization. As use case for the validation
of SRv6-PM, the fine grained measurement of the packet loss level affecting a single SR flow is
considered. To measure the amount of packets that are lost for a specific flow, SRv6-PM exploits
SR traffic counters instantiated at the ingress and egress nodes. Specifically, the difference among
these two counters represents the overall number of lost packets for the target flow.

SCMon [3] is a network wide monitoring system that allows to check the health status of links.
It exploits the source routing and the flexibility achieved by SR to create a set of monitoring cycles
where to send probes to the aliveness of each them. By properly designing the different cycles it is
possible to precisely localize a failed link. Furthermore, SCMon exploits adjacency SIDs of SR to
test the status of IP links composed by bundle of connections at layer 2 (the inability to do that is
a major drawback of the classical systems based on Bidirectional Forwarding Detection, BFD).

3.2.3 Segment Routing background

Segment Routing (SR) [13] is a novel network paradigm based on source routing , i.e., the source
node decides the path that each packet has to go through. The end to end paths are encoded as
an ordered list of instructions, also referred to as segments. Thus the full list of segments is named
Segment List (SL). Segments are expressed as labels, named Segment IDentifiers or SIDs. In the
case of SRv6, the underlay data plane is based on IPv6 and a SID is an IPv6 address.

In SRv6 packet forwarding works as follows. When the border router receives a packet, it has
to steer it over a specific SL. This last is chosen according to a given SR Policy . After a packet
has been processed according to a matched SR Policy , its most external IPv6 header is extended
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by the inclusion of a SR Header (SRH). This last containing the SL and a pointer identifying the
active segment, i.e. the current SID to be used for packet forwarding. In particular, the active
segment is copied in the destination address field of the outer IPv6 header. Transit routers forward
incoming packet by inspecting the IPv6 destination address of the outer header. Once the node
having the same SID of the active segment is reached, the SID-related function must be applied
(many functions can be defined). A common function is the END one, which implies that the active
segment has to be updated, thus the pointer moves to the next SID in SL. A further action that
can be performed is the enforcement of a SL by inserting a new policy. Finally, before the packet
leaves the SR domain, the SRH has to be removed.

3.3 MTU Black Hole and SR Header

The traditional paradigm used in telecommunication networks is based on sending packets on a
specific path, using the destination IP address as the only discriminating factor. In fact, the
routers, which carry out the routing operation, when they process the packets consult their routing
table: a set of records which, based on the destination address of the packet, communicates the
output interface that allows you to reach the desired host. The method by which packets are placed
on a specific path based on the destination IP address is called Destination Routing. However,
for various reasons, it is useful for the source to indicate the path that the data flow must follow,
using the other fields of the packet header as additional information. The normal routing tables are
replaced with other data structures more suitable for this purpose or a solution Software Defined
Networking (SDN) is used: in fact the matching, that is the correspondence between the fields
of the packet and those of the data structure of the control plane of the router, this time must
take place on several parameters and the entire path of the packets must be specified in advance.
This paradigm is called Source Routing. In computer networking, source routing, also called path
addressing, allows a sender of a packet to partially or completely specify the route the packet takes
through the network. In contrast, in conventional routing, routers in the network determine the
path incrementally based on the packet’s destination. Another routing alternative, label switching,
is used in connection-oriented networks such as X.25, Frame Relay, Asynchronous Transfer Mode and
Multiprotocol Label Switching. Source routing allows easier troubleshooting, improved traceroute,
and enables a node to discover all the possible routes to a host. It does not allow a source to directly
manage network performance by forcing packets to travel over one path to prevent congestion on
another. In the Internet Protocol, two header options are available which are rarely used: strict
source and record route (SSRR) and loose source and record route (LSRR). Because of security
concerns, packets marked LSRR are frequently blocked on the Internet. If not blocked, LSRR can
allow an attacker to spoof an address but still successfully receive response packets by forcing return
traffic for spoofed packets to return through the attacker’s device. In IPv6, two forms of source
routing have been developed. The first approach was the Type 0 Routing header. This routing
header was designed to support the same use cases as the IPv4 header options. Unfortunately there
were several significant attacks against this routing header and its utilisation was deprecated. A
more secure form of source routing is being developed within the IETF to support the IPv6 version
of Segment Routing. Software-defined networking can also be enhanced when source routing is used
in the forwarding plane. Studies have shown significant improvements in convergence times as a
result of the reduced state that must be distributed by the controller into the network.
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It is important to underline that in these types of Black Holes not all traffic is discarded, but
only that which exceeds the minimum MTU in size. Let’s consider the following network topology:

Figure 3.1: SRv6 network topology

Let’s imagine that host A sends a large file to host B, following the blue path in the figure
and using the protocol File Transfer Protocol (FTP) (in turn based on the protocol TCP) in the
network SRv6. Handshake messages will be received and the connection will be established, however
there will be problems sending the file: host A and host B, before starting the connection, they
ran the algorithm Path MTU Discovery (PMTUD) or Packetization Layer Path MTU Discovery
(PLPMTUD) (§4.2.5) to identify the minimum MTU along the path, which in the figure we assume
is between nodes C3 and C4. However, for a reason related to SRv6 and which will be analyzed later,
the real amount of data that can be transmitted is less than that allowed by the calculated MTU.
Therefore, host A in fragmenting the packets will use the MTU found as a reference value and for
this reason when it tries to send the fragments, they will be discarded before being transmitted in
the link highlighted in the figure. Routers, for security reasons, are usually not enabled to send and
/ or receive packets ICMP therefore, node C3 will discard the packets without notifying the source.
Even if this does not happen, it would be likely that the source host is protected by a firewall which,
for the same reason as the routers, blocks traffic ICMP. The consequences, since you are using a
protocol based on TCP, are, in addition to the obvious total loss of data, also an increase in network
congestion. Indeed, TCP provides for the postponement of packages for which no acknowledgment
has been received. However, the biggest pitfalls that the MTU Black Hole would reserve, is in its
detection:

• It is very difficult for it to be detected a priori.

• Its presence can be guessed once the traffic loss has been registered.

• Even if traffic loss is detected, as shown above it is possible that it is not total or that only part
of the packets sent are lost. This can lead to researching the causes of the problem elsewhere.

3.4 Causes of MTU Black Hole

In §EncapIP-4.2.2 it was pointed out that in the C3-C4 link node C3 will discard packets with a size
greater than that allowed by the link. This is because the network protocol in use is the IPv6 which,
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as reported in §4.2.5, does not allow further fragmentation of packets from intermediate devices.
Therefore, the upstream source host must perform a correct fragmentation, that is, respecting the
limitations imposed by the minimum MTU of the path. However, before instantiating a connection
with host B, host A ran the algorithm PLPMTUD, so it is already aware of the minimum MTU. So
what is the reason why, despite the fragmentation performed by the source host, the packets exceed
the minimum MTU. The answer is to be found in Segment Routing. Segment Routing provides that
the ingress node add the SRH (§2.2). The size introduced by this header is variable and depends
on the length of the Segment List:

Figure 3.2: SRH dimensions

The minimum size introduced is the case where the Segment List contains two suns SID and,
remembering that each SID being an address IPv6 it has a length of 16 bytes, the increase in size
amounts to 80 bytes. In general:

40bytes+ 8bytes+ 16 ∗ nbytes (3.1)

Where with 40 bytes the header is taken into account IPv6, dataplane used by SR. This increase
in size cannot be predicted or known a priori by the source host, as it does not have a topological
view of the network. Furthermore, the SRv6 policy and the path to follow in order to reach the
destination, are not elements of competence of the source host and of the destination host, but
it is of the ingress node. The ingress node in phase of encapsulation must take into account the
MTU of the domain SR and on the basis of this decide the most suitable path and such as to avoid
exceeding this limit. However, network architecture environments SRv6 are highly dynamic and
thank to encapsulation, the path from one node to another can undergo changes to circumvent for
example, a link failure. In fact, an intermediate node can itself become an encapsulator node and
therefore use a recovery policy (§2.1), as shown in Figure 3.4.

This constitutes a further cause of the formation of MTU Black Hole: the input node cannot
know in advance whether a link failure will occur with the consequent adoption of a recovery
policy which, by providing for a further encapsulation, causes an uncontrolled increase in the size
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Figure 3.3: Example of Encapsulation with SRH

of the packet. If an ingress node must take into account the MTU minimum, due to repeated
and unpredictable encapsulations SRH additives can cause an overrun of the MTU and consequent
dropping in the intermediate nodes.

Figure 3.4: Repeated encapsulation following a link fail

In this scenario, host A sends packets to host B using a policy that provides for transit for
nodes E1, C1, C2, E2. During communication, a link fail in C1-C2. C1, detecting the disservice,
applies the recovery policy. The latter provides for a further encapsulation that makes the traffic
pass through nodes C3 and C4. Therefore, the bytes of SRH2 of node C1 must be added to the
bytes added by SRH of node E1, for a total indicated in figure 3.5:

In this case n is equal to 5, so 176 bytes are added. Now we assume that the MTU between
connection C3-C4 is less than all the others and therefore constitutes the Minimum MTU. It may
happen that at the first encapsulation, i.e. in node E1, the addition of the SRH still respects the
minimum MTU, but at the second encapsulation, i.e. in C1, the addition of an additional SRH
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Figure 3.5: Repeated encapsulation following a link failure

satisfies the MTU of link C1-C3, but not the one between C3-C4. In this case, C3 does the drop
packages and the source host will not be notified. We are therefore in the presence of a MTU Black
Hole. In both figures 3.3 and 3.4 the same path is assumed to be valid also in the direction of host
B host A. A further similar theoretical analysis is applied to a scenario experimentally replicated
in §2.3.5.3.

3.5 Experimentation environment

To show the formation of the Black Hole, we proceed to set up an environment in which the network
topology of Figure 3.6 is proposed and then various data flows are started between host A and host
B.

Figure 3.6: Network topology

The causes that lead to the formation of the Black Hole:

• Use of IPv6 (in particular, the lack of support for fragmentation in intermediate nodes)

• Use of SRv6 (in particular, the increase in size due to the encapsulation)

• Use of firewalls in terminal devices and / or blocking of ICMP traffic in nodes

The operating system in which the experimentation takes place is Ubuntu 20.04. As already men-
tioned in §2.4, the Linux kernel functionality will be used to simulate terminal hosts NETNS (net-
work namespace), while the platform will be used to emulate the nodes VPP version 20.01 (§2.3),
whose installation is described in Appendix A.

3.5.1 File structure

For the launch of VPP instances, installation of policies, start of traffic flows and more, a script has
been created that is able to recall and execute files that allow these actions. The script was made
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in the language Python, and the source code is shown in Appendix §A.4 The recalled files are with
extension .sh, that is, content with language commands bash

• 0-0main, 0-1-linking-vpp-instances, 0-2-creating-hosts, 0-3-setting-SRv6, allow the creation of
the topology

• tcp, runs a client on host A and a server on host B and initiates a TCP communication

• 2-1-ping, allows an ICMP message to be sent from host A to host B

• enable-flow, calls the 2-1-ping and tcp-client files and starts two types of traffic: ICMP and
TCP.

• 1-1-enable-rec-policy, enable the recovery policy in C1 and C2

• 1-2-disable-rec-policy, disable the recovery policy in C1 and C2

• 6-MTU-Path-Discovery, executes the algorithm PLPMTUD

• 9-exit-kill-VPP, terminate all instances of VPP.

All the files are shown in the appendices A from §A.8 to §A.14.

3.5.2 Network topology set-up

The commands executed by the files proposed in §3.5.1 and which proceed to the correct network
setting are described below.

3.5.3 IPv6 address assignment

The interfaces of each element of the network are assigned only IPv6 addresses assigned in the
following way:

Figure 3.7: IPv6 addresses of the network interfaces

Each link has an MTU of 1500 bytes, with the exception of the host A - E1 and E2 - host B
links which have an MTU of 1300 bytes and of the C3-C4 link which has an MTU of 1400 bytes in
which a MTU Black Hole.

In fact, in networks in which the SRv6 architecture is applied, it is good practice to have an
MTU lower than the internal ones in the external connections, i.e. those that connect the terminal
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Figure 3.8: BSID addresses

hosts to the ingress / egress node, in order to avoid exceeding this last. THE BSID are assigned as
shown in Figure 3.8 with the particularity that ingress and egress node (E1 and E2) and nodes C3
and C4 have two of them: one with the function of end point (indicates that the node is passing
through and sends the packet to BSID next) and the other with the function of decapsulation
(which, specifying the interface to which decapsulate, indicates the arrival node). All other nodes
have only one BSID with the function of end point.

3.5.4 Policies and Routing Tables

In order for host A to reach host B, Policy 1 shown in red in Figure 3.9 is used link fail in C1-C2,
to reach C2, Policy 2, indicated in blue in Figure 3.9, is also used together with Policy 1.

Figure 3.9: Policy

Both Policies are used for TCP traffic, while Policy 3, shown in green in Figure 3.9, is used for
ICMP traffic. This traffic subdivision was possible by means of a traffic classifier in node E1 and
E2: the processing graph of VPP was changed with the help of Python Application Programming
Interface (API) and running the script in the Appendix §A.16. Indeed, after visiting the node
ip6-inacl Input Access Control List (INACL) that separates one packet stream from another based
on specific characteristics, the node has been added sr-pl-rewrite-encaps which encapsulates the
packets in the correct Policy.

The following are listed BSID of each Policy and the corresponding expected path:
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Figure 3.10: VPP Processing Graph

Policy 1 (BSID a1::) C1::,c2::,e2::9 ; c2::,c1::,e1::9
Policy 2 (BSID a2::) C3::,c4::1 ; c4::, c3::1
Policy 3 (BSID a3::) C3::, c4::, e2::9 ; c4::,c3::,e1::9

Table 3.1: BSID

The outbound path, i.e. with direction host A-host B, is separated by a semicolon from the
return path, i.e. with direction host B-host A. The routing tables of each node are listed below:

Destination Via
fc00::1:0:2/112 fc00::1:0:1
fc00::6:0:2/112 fc00::6:0:1
fc00::2:2/112 fc00::6:0:2
fc00::1:2/112 fc00::1:1

c1::/128 fc00::1:0:2

Table 3.2: Routing Table E1

Destination Via
fc00::1:0:2/112 fc00::1:0:2
fc00::1:2/112 fc00::1:0:1

fc00::2:0:2/112 fc00::2:0:1
fc00::7:0:2/112 fc00::7:0:1

c3::/128 fc00::7:0:2
e1::9/128 fc00::1:0:1

Table 3.3: Routing Table C1

Destination Via
fc00::3:0:2/112 fc00::3:0:2
fc00::4:0:1/112 fc00::4:0:1
fc00::2:2/112 fc00::2:1
fc00::1:2/112 fc00::4:0:1

c2::/128 fc00::3:0:2
c4::/128 fc00::4:0:1

Table 3.4: Routing Table E2

However, the Routing tables undergo the following variations (the records that are deleted are
shown in red) in order to simulate the link fail and to allow the Recovery Policy to function correctly:

• Installation of the Recovery Policy

• Uninstalling the Recovery Policy and restoring the C1 - C2 link
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Destination Via
fc00::2:0:1/112 fc00::2:0:2
fc00::3:0:1/112 fc00::3:0:1
fc00::2:2/112 fc00::3:0:2

fc00::8:0:2/112 fc00::8:0:1
c4::/128 fc00::8:0:2
e2::9/128 fc00::3:0:1

Table 3.5: Routing Table C2

Destination Via
fc00::6:0:1/112 fc00::6:0:2
fc00::7:0:1/112 fc00::7:0:2
fc00::5:0:1/112 fc00::5:0:2
fc00::2:2/112 fc00::5:0:1
fc00::1:2/112 fc00::6:0:1

c4::/128 fc00::5:0:1
c1::/128 fc00::7:0:1

Table 3.6: Routing Table C3

Destination Via
fc00::5:0:2/112 fc00::5:0:1
fc00::8:0:1/112 fc00::8:0:2
fc00::4:0:1/112 fc00::4:0:1
fc00::2:2/112 fc00::4:0:2
fc00::1:2/112 fc00::5:0:2

c2::/128 fc00::8:0:1
c3::/128 fc00::5:0:2

Table 3.7: Routing Table C4

Destination Via
c2::/128 fc00::2:0:2
c2::/128 a2::

Table 3.8: Variation of Routing Table C1

Destination Via
c2::/128 fc00::2:0:1
c2::/128 a2::

Table 3.9: Variation of Routing Table C2

Destination Via
fc00::7:0:1/112 fc00::7:0:2

C4::1/128 fc00::5:0:1

Table 3.10: Variation of Routing Table C3
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Destination Via
fc00::8:0:1/112 fc00::8:0:2

C3::1/128 fc00::5:0:2

Table 3.11: Variation of Routing Table C4

Destination Via
c2::/128 a2::
c2::/128 fc00::2:0:2

Table 3.12: Variation of Routing Table C1

Destination Via
c1::/128 a2::
c1::/128 fc00::2:0:1

Table 3.13: Variation of Routing Table C2

Destination Via
c4::1/128 fc00::5:0:1

fc00::7:0:1/112 fc00::7:0:1

Table 3.14: Variation of Routing Table C3

Destination Via
c3::1/128 fc00::5:0:2

fc00::8:0:1/112 fc00::8:0:1

Table 3.15: Variation of Routing Table C4

3.5.5 Policy Analysis

This paragraph proposes an analysis of the dynamics of the Policy, paying attention to the size of
the packages, their increase and allowed size.

3.5.6 Policy a1 ::

There Policy 1, identified by BSID a1 :: / 128, introduces an increase in packet size which, according
to the formula in §3.4 , is equal to:

40bytes+ 8bytes+ 16 ∗ 3bytes = 96bytes (3.2)

Considering that the minimum MTU along the path after encapsulating the traffic in node E1
and, in the reverse path, of node E2 is equal to 1500 bytes:

1500bytes− 96bytes = 1404bytes (3.3)

That is, the maximum size of the packets that respect the MTUs in the links inside the network
is 1404 bytes. However, the MTU in host A - E1 and host B - E2 links is 1300 bytes:

In other words, in the case of Policy 1, there can be no overrun of MTU in internal connections
as hosts A and B, encapsulating the packets according to the MTU of their interface, automatically
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respect the MTU limitations in intermediate connections despite the addition of the SRH.

3.5.7 Policy a3 ::

There Policy 3, identified by BSID a3 :: / 128, introduces the same size increase as Policy 1. The
difference lies in the minimum MTU of the path, which is given by the link C3 - C4, that is 1400
bytes:

For the same reason in §3.5.6, hosts A and B respect the internal MTUs when encapsulating
packets.

3.5.8 Policy a1 :: with recovery Policy a2 ::

In §3.5.6 and in §3.5.7 it has been noted that the MTU of the interface of hosts A and B constitutes
the minimum MTU of the path identified by BSIDs a1 :: / 128 and a3 :: / 128. In the case of joint
use of the Recovery Policy with Policy a1 :: / 128, there are further considerations that modify the
result compared to the previous cases. In fact, the minimum MTU of the path identified by Policies
1 and 2 after the double encapsulation, is given by the C3 - C4 link which is equal to 1400 bytes.
With reference to the calculation of the dimension introduced by the double heading SRH in §2.2,
the increase amounts to:

40bytes+ 8bytes+ 16 ∗ 3bytes+ 40bytes+ 8bytes+ 16 ∗ 2bytes = 176bytes (3.4)

Considering the MTU of connection C3 - C4:

1400bytes− 176bytes = 1224bytes (3.5)

The amount of data that can be transmitted is 1224 bytes. However, the minimum MTU of the
path is represented by the MTU of the interfaces of hosts A and B:
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We note that although the minimum MTU is 1300 bytes, in reality the amount of data that
can be transmitted over the entire path is, at most, 1224 bytes. This quantity is not detectable by
currently available algorithms and can be found according to the above considerations. The main
consequence is that, not being aware of the actual amount of data that can be transmitted due to
repeated and unpredictable encapsulations, hosts A and B fragment packets according to the MTU
equal to 1300 bytes. Therefore, in sending, for example, a large file on which fragmentation will
necessarily occur, the host A will send packets of the maximum available size which, according to its
parameters, is greater than 1224 bytes causing a Black Hole in connection C3 - C4. This theoretical
discussion is flanked below by the experimental demonstration.

3.5.9 Starting the trial

As already mentioned in §3.5.1, the setup of the testbed takes place with the aid of a Python script
which, by recalling the various files, applies the settings and parameters presented so far.

Figure 3.11: Options available in the Python script

In the following paragraph, the development of the experiment will be presented, which will
allow us to produce the tests that show the presence of a Black Hole. In §3.5.4 the presence of a
traffic classifier has already been indicated: the latter has the task of separating the TCP traffic
from the ICMP traffic, encapsulating the first in Policy 1 and the second in Policy 3. Recalling that
Policy 1 the Recovery Policy can be added, it is noted that the paths involved by the latter and by
Policy 3 have in common the passage on the C3 - C4 connection, as shown in Figure 3.9.

Figure 3.12: Link C3 - C4 in common in Policies 1 and 3

In fact, in this last link we want to show that, while the ICMP traffic is forwarded on the link
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since the low size of the message encapsulated in Policy 3 does not exceed the MTU, the TCP traffic,
whose packets exceed a certain size, will be discarded. In this way, the correct functioning of the
C3 - C4 link is highlighted and therefore does not constitute an element of cause of the dropping
of TCP packets. Analyzing subsequently the tracing of TCP traffic in node C3, we will see that
the size of the packets received so far exceeds in size the MTU of the C3 - C4 link with consequent
rejection of the same, without forwarding any notification to the source. As shown in Figure 3.11,
two cases are distinguished: the case in which the link fail in C1 - C2 with consequent activation
of the Recovery Policy, and the case in which all the connections are functional and the Recovery
Policy is deactivated.

3.5.10 Recovery Policy not active

Referring to Figure 3.9, this is the case where TCP traffic follows Policy 1 (in red) and ICMP
traffic follows Policy 3 (in green). Before starting any communication, it is necessary to execute the
MTU Path Discovery algorithm (§4.2.5) with TCP protocol, by manually launching the appropriate
command in the Python script. The traffic classifier will encapsulate the TCP packets in Policy
1 in which the minimum MTU of the path, according to the parameters presented in §3.5.3, is
represented by that of the interface of host A and host B, i.e. 1300 bytes .

Figure 3.13: MTU Path Discovery Results

Now it is possible to initiate a TCP communication between host A and host B by launching
the command from the Python script which, thanks to the utility iperf3, starts a server in host
B and a client in host A. In §3.5.6 it was pointed out that, by fragmenting the packets according
to MTU equal to 1300 bytes, the MTU of the internal connections cannot be exceeded. In fact,
considering that the TCP header has a size of 32 bytes and the IPv6 header has a size of 40 bytes,
the maximum amount of useful data that can be transmitted in the host connection A - E1 with
the TCP protocol is the following:

1300bytes− 40bytes− 32bytes = 1228bytes (3.6)
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That is, the Maximum Segment Size (MSS) is equal to 1228 bytes. Subsequently, the encapsu-
lation in E1 takes place and the packets, without considering the 14 bytes of the ethernet protocol,
will have the following size:

This size does not exceed the maximum packet size allowed along the Policy 1 path, i.e. 1404
bytes (§3.5.6). Even ICMPv6 traffic, not having a particularly large size, will be forwarded in the
host link A - E1, then encapsulated by node E1 in Policy 3. It will therefore reach the destination.
Using the option in the Python script to simultaneously start TCP and ICMPv6 traffic, the results
are shown in Figures 3.14 and 3.15. To generate the TCP traffic, a 10.4 Kbyte file was sent. As can
be seen from Figure 3.14 and as anticipated above, each TCP segment has a length of 1228 bytes.
Figure 3.15 shows the correct sending and receiving of ICMP messages between host A and host B.
To capture the traffic flows, Wireshark is the only interface of host B.

Figure 3.14: TCP Traffic Policy 1

3.5.11 Recovery Policy active

Referring to Figure 3.9, this is the case in which TCP traffic follows Policy 1 (in red) and Policy
2 (in blue), the latter due to a simulated link failure of C1 - C2, while ICMP traffic follows Policy
3 (in green). As in §3.5.10, it is necessary to manually launch the command in the Python script
to execute the MTU Path Discovery algorithm, the result of which is the MTU of the interface of
host A and host B: 1300 bytes. In §3.5.8 the amount of data that can be transmitted in the C3 -
C4 link has been calculated considering also the double encapsulation, and it is less than the 1300
bytes calculated by the MTU Path Discovery and according to which the fragmentation will take
place. L’MSS, therefore, is calculated as in §3.5.10 and is equal to 1228 bytes. Then, host A sends
the TCP packets to E1 and their size is:

1228bytes+ 40byte+ 32bytes = 1300bytes (3.7)

That is, it conforms to the MTU of host link A - E1. The moment packets enter the domain
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Figure 3.15: ICMP Traffic Policy 3

SRv6, the first encapsulation takes place which, already calculated in §3.5.6, amounts to 96 bytes:

1300bytes+ 96bytes = 1396bytes (3.8)

Being less than the MTU of the E1 - C1 connection which is equal to 1500 bytes, as shown
in Figure 3.16 is correctly forwarded (to have the complete size of the packets at the value 1396
calculated above, 14 bytes of the ethernet header must be added).

Figure 3.16: TCP packets received in the E1 interface of the E1-C1 link

Now, packages are encapsulated in Recovery Policy, or Policy 2, in order to bypass the link fail
in C1 - C2. The increase in packet size, calculated with the formula in §3.4 , is equal to 80 bytes:
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40bytes+ 8bytes+ 16 ∗ 2 = 80bytes (3.9)

Adding them to the 1396 bytes calculated above:

1396bytes+ 80bytes = 1476bytes (3.10)

Therefore, they respect the MTU of the C1 - C3 connection which is equal to 1500 bytes. (To
calculate the total size, 14 bytes of the ethernet header must be added: 1476 bytes + 14 bytes =
1490 bytes).

Figure 3.17: TCP packets received in the C3 interface of the C1-C3 link

However, the MTU of the C3 - C4 link is 1400 bytes, less than the size of the packets arriving
at node C3. Therefore, C3 discards the packets and, not being enabled to send messages ICMPv6
Packet too big, it does not inform the host you arise (host A). In fact, by adding a packet tracing
at node C3 the result is the following:

Figure 3.18: Packet dropping of node C3

Further evidence of non-receipt is indicated by the statistics provided by the iperf tool, both by
the client and by the server:

The Server summary indicates that a connection was accepted on port 80 and was requested by
the address IPv6 fc00 :: 1: 2, which is host A. At the time of the test, a TCP stream was started
whose statistics highlighted in red indicate no data reception.

The Client summary indicates that a connection has been initiated with the host from the
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Figure 3.19: TCP Server Statistics

Figure 3.20: TCP Client Statistics
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addressIPv6 fc00 :: 2: 2, that is host B, on port 80. From the statistics it is observed that the client
has tried to send the file, sending 43.2 Kbytes and setting the MSS to 1228 bytes. The data sent
was all lost while the network experienced an increase in terms of congestion. In fact, as already
explained in §3.1, TCP attempts to retransmit packets:

Figure 3.21: Host A TCP retransmissions

In §3.1 the arrival at the destination of the packets of small dimensions is foreseen in fact,
the TCP connection between the two hosts has been correctly established, i.e. the TCP packets
such as SYN and FIN have not suffered the effects of Black Hole. The same is also true for traffic
ICMPv6 encapsulated in Policy 3, as shown in Figure 3.22: Host B receives and responds to ICMPv6
messages sent by host A.

Figure 3.22: ICMPv6 and TCP messages in Host B

After deducing the existence of MTU Black Holes by retracing the dynamics of an SRv6 network,
a scenario was proposed in which, by emulating the real mechanisms of these networks, it was
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possible to grasp behaviors of essential relevance, provided by the study of traffic flows for specific
protocols and from the reaction analysis of both the terminal hosts and the internal nodes of the
SR network, with consequent formulation of hypotheses of formation of the Black Hole. Therefore,
following empirical detection of traffic loss, data provided by the statistics of the iperf and wireshark
tools, an in-depth look at the method of processing the packets in the concerned nodes allowed the
production of the evidence that leads to the validation of the hypothesis of formation of Black
Holes. The hypothesis of its existence was therefore validated. Although the phenomenon of the
Black Hole may be statistically unlikely, its formation is a possibility that must be considered and
that needs the treatment provided in this work. There are, in fact, many scenarios in which it can
occur, especially if considered the high dynamism of Segment Routing networks. The cause of its
formation is the joint use of different tools, widely used and which boast functions that cannot be
renounced today. Its effects are obviously important, having repercussions on data consumption,
Network Status, and above all traffic loss, without the possibility of recovery.
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Chapter 4

Network Black Holes and Detection
Frameworks

As defined in [19], network black holes are silent logical failures, often caused by events such as
misconfiguration or software bugs. Among the different causes, the use of overlay architectures
seems to be a common accelerator for the creation of black holes. A first example is reported in
[8], where different failure modes that lead to the occurrence of a black hole are presented, in the
context of an IP over MPLS infrastructure. In this scenario, failures affecting the Label Distribution
Protocol (LDP) execution can create a black hole, due to the fact the underlying IGP domain is
working correctly, while end to end reachability is compromised.

This work is focused on black holes occurring in an IPv6 network due to the violation of the
MTU constraint caused by the failure of the Path MTU Discovery (PMTUD). The different types
of failure modes for the PMTUD procedure are described in [24]. Among those, the most common
one is represented by unresponsive routers, that are configured to not send ICMP Packet Too Big
(PTB) messages back to the source node whenever a packet with a length exceeding the MTU is
received.

Many different detection systems have been proposed to detect the presence of network black
holes in different contexts. All of them rely on the active test of the Network Status through the
sending of probes. In the next we describe some of the most relevant detection tools.

In [19] an active probing detection mechanism is defined; it is able to detect network black
holes occurring in an IP/MPLS backbone. A full mesh of probes are periodically exchanged among
the edge routers. The method is based on the concept of failure signature, that represents the set
of probes that are lost in case a black hole occurs in a specific link. Then, spatial correlation is
exploited to identify a set of suspicious links. In particular, all the links whose failure signature is
close to the actual set of failed probes are inserted into an hypothesis set.

One of the most reliable tools to discover PMTUD failures is Scamper [24]. Scamper is a two
steps procedure to determine either the largest MTU that can be used on a end to end path, and
to discover (in case of a failure) what is the router that is not participating in the PMTUD. Both
the phases of Scamper are based on the enforcement of probes along the end to end path to check.
These probes consist of a set of UDP segments destined to an unused port, when performing the
first step, whereas a set of ICMP Echo messages destined to intermediate routers are used in the
second phase.
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Netalyzr is presented in [20], it is a network measurement and debugging tool to monitor the
Internet. The architecture is provided with a set of pre-installed applets; one of these aims at
determining the path MTU toward a destination server. This search is based on a process that
emits a set of UDP probes to the target destination.

Ripe Atlas [32] is a worldwide monitoring infrastructure based on the use of hardware probes
placed in the so called vantage points. In [5] Ripe Atlas has been used to discover path MTU Black
Holes in the Internet, with the specific focus of assessing the main causes and the most affected data
plane protocol. The obtained results show that black holes due to failure in the PMTUD procedure
affect both the IPv4 and the IPv6 data planes. Specifically, Ripe Atlas is able to detect the main
causes and the location of these failures, such as PTB messages and fragmented packets filtered by
firewalls.

4.1 Data Set description

SR architecture provides a set of Operation And Maintenance (OAM) tools that Network Operators
can use to measure the performance of their infrastructure, execute troubleshooting operations, and
so on. Here we report a few examples. In [14] is presented a scalable and topology-aware data-
plane monitoring system for SR-MPLS. Ping and Traceroute for SR networks are defined in [21].
Bidirectional Forwarding Detection (BFD) [18] to test the viability of Segment Routing Policies for
Traffic Engineering is presented in.

SR capable nodes are able to collect statistics on the traffic by exploiting a set of traffic counters
called SR Traffic Counter (SRTCs), allowing the performance of the traffic measurements at different
granularity. By means of SRTCs an SR node is able to collect statistics on the received traffic flows
aggregating them according to the active segment. Three different types of SRTCs are used in
the proposed framework: i) SR-INT, ii) PSID, and iii) POL. SR-INTs (also known as link counts)
account the traffic at link granularity, i.e., they measure the amount of SR traffic that is sent
over a specific link. By means of the PSID counters, an SR capable node can count amount
of received traffic that is directed toward a specific node. Finally, POL counters keep track of
the amount of traffic that has been steered through a specific SR Policy . These counters are
described in detail in [29], where the logical relations between them are captured by a mathematical
model. Exploiting this model, the Authors show SRTCs can successfully be used to improve the
performance of existing algorithms in different networking problems (e.g, Traffic Matrix Assessment,
Traffic Anomaly Detection, etc.). The present paper is strongly based on the findings reported in
[29].

In [23] an SRv6 Performance Monitoring (SRv6-PM) framework is proposed, allowing deep
performance monitoring on an SRv6 infrastructure. Three main components are defined: i) a set
of data plane tools for performing traffic measurements (e.g, packet loss, delay) at line rate, ii)
a control plane logic that requires to the network nodes to perform specific measurements (and
a southbound interface for the data/control plane interaction), and iii) a Cloud Native Big Data
Management system for data storage, processing and visualization. As-use case for the validation
of SRv6-PM, the fine grained measurement of the packet loss level affecting a single SR flow is
considered. To measure the amount of packets that are lost for a specific flow, SRv6-PM exploits
SR traffic counters instantiated at the ingress and egress nodes. Specifically, the difference among
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4.2. IPv6 and MTU Path Discovery

these two counters represents the overall number of lost packets for the target flow.
SCMon [3] is a network wide monitoring system that allows users to check the health status of

links. It exploits the source routing and the flexibility achieved by SR to create a set of monitoring
cycles where to send probes to the viability each of them. By properly designing the different cycles
it is possible to precisely localize a failed link. Furthermore, SCMon exploits adjacency SIDs of SR
to test the status of IP links composed by bundle of connections at layer 2 (the inability to do that
is a major drawback of the classical systems based on Bidirectional Forwarding Detection, BFD).

Figure 4.1: Reference scenario

Policy Name Scope Head end node Segment List
pol 1 high reliability E1 C1,C2,E2
pol 2 best effort E1 C3,C4,E2
pol 2 link bypass C1 C3,C4

Table 4.1: Main features of the policies configured in the emulated

4.2 IPv6 and MTU Path Discovery

In this paragraph the salient points of the Protocol will be highlighted IP (o Internet Protocol), in
particular version 6 (briefly indicated with IPv6), useful for understanding the proof. IPv6 is the
successor of the protocol IPv4. Both belong to the network level (level 3) of the protocol stack TCP
(Transmission Control Protocol) e IP (Internet Protocol) (TCP/IP), shown in figure 4.2, and allow
communication between terminal devices through one or more networks.

4.2.1 Level 3 services

To understand the protocol IPv6, a brief description of level three is required. The services it must
guarantee are:
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Figure 4.2: TCP/IP protocol stack with encapsulation and decapsulation direction

• the encapsulation. It is done from the source. This term indicates the encapsulation of data
coming from the upper protocol level, that is transport, or level 4, in datagrams, defined as
data units of level three. By "encapsulating," we mean adding additional data that enables
the achievement of the objectives set by the level in question (in this case, level three allows
communication between devices through one or more networks).

• the decapsulation. It is carried out by the destination. This term indicates the extraction of
data from the datagram, that is, the elimination of the additional level three data inserted by
the source. we then obtain the data unit of level 4, the segment.

• the routing. By adding data from the source, intermediate devices, or routers, are able to
bring the packets to their destination. In fact, the data added in the encapsulation and
then eliminated in the phase of decapsulation, provide information to routers about source,
destination, packet size, and more.

4.2.2 Encapsulation of IP

IP encapsulates the transport layer segments by adding an IP Header. This header contains all the
data needed to reach the destination and therefore is not altered or deleted until the destination
host is reached. The encapsulation action allows independence between protocols of different levels.
This way if as an alternative to the protocol IPv4 the protocol is used IPv6, this does not affect, for
example, layer 4 protocols. Consequently, in addition to modularity, the technique of encapsulation
allows for scalability. This is reflected in the entire protocol stack: it too, in fact, has the property
of scalability and the insertion of an additional level in the protocol stack adds a higher level
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abstraction.

4.2.3 Characteristics of IP

To avoid an excessive increase in packet size, IP provides only the information necessary to reach
the destination. The basic features offered by IP are three:

• Connectionless. The destination is not informed in advance when the source sends data.
That is, an initial connection or exchange of information is not established between source
and destination, which instead may be necessary for correct data transmission.

• Best effort. The IP protocol does not guarantee the arrival of packets, the order of receipt
and their correctness. These services must be offered by other higher level protocols. IP is
mainly concerned with identifying the source and destination.

• Medium independent. IP operates independently of the transmission medium. In fact, it is
the task of the lower layer, the link layer, to prepare an IP packet for transmission. This
means that, thanks to its scalability, IP can be used regardless of the type of transmission
medium. However, one parameter that concerns it is taken into account by the network layer:
it is the MTU, or maximum transmission unit. This value is provided by the link layer and
indicates the maximum size limit of a single unit of data that can be transmitted on a specific
link. Based on this value, the maximum size of a packet is determined.

It is plausible that not all links a packet crosses to reach its destination will have the same MTU.
For this reason, in some cases the intermediate devices, usually routers, perform fragmentation: the
packet entering the device, not respecting the MTU of the outgoing interface, is further divided so
that it can then be forwarded. However, it will be pointed out later that this feature is disabled for
some protocols.

4.2.4 Internet Protocol version 6

To locate a device on a network, the IP protocol requires the assignment of strings, called IP
addresses. Based on the addressing capacity, i.e. the quantity of addressable devices, and therefore
the length of the IP address, we distinguish two versions of the IP protocol: the IPv4 and the
protocol IPv6. However, the length of the IP address is not the only factor in distinguishing one
protocol from another. The IPv6 protocol arises from the need to increase the addressing capacity,
while solving two other difficulties: the expansion of the routing tables and the elimination of the
use of NAT. Focusing only on increasing addressing capacity, the IPv4 protocol provides addresses
with a length of 32 bits while the IPv6 protocol provides addresses with a length of 128 bits, with
the possibility of addressing respectively 232 and 2128 devices. In order to facilitate reading, IPv4
addresses are converted from binary format to decimal format, while IPv6 addresses are converted
to hexadecimal format. An example of the two notations is shown below:

The number following the IP address specifies the portion reserved for identifying the network,
while it is complementary with respect to the maximum length of the address identifies the device.
The differences and the services offered by the two protocols are many, but it is necessary to pay
attention to a functionality provided by the IPv4 protocol but not by the IPv6 protocol, and which
makes the latter one of the causes of the creation of a MTU Black Hole: fragmentation.
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Figure 4.3: Local IPv6 and IPv6 addresses

4.2.5 Packet Fragmentation and MTU Path Discovery

As already mentioned in §4.2.3, the fragmentation of the packets is performed by the routers so that
the limitation on the MTU of the interfaces of each device along the path is respected. However,
for security reasons, this functionality is not provided for the IPv6 protocol, while it is up to the
end devices to perform it. To do this, it is necessary to know in advance the minimum MTU of
the entire path that will be followed by the data flow: the source host executes the MTU Path
Discovery (indicated by the abbreviation PMTUD). This algorithm, in the specific case of IPv6,
consists in sending probe packets assuming initially that the minimum MTU is the one set by the
outgoing interface of the source host. If the MTU of a device is less than the packet size along the
path, a type message is sent to the sourcePacket Too Big of the protocol ICMPv6, indicating its
value. The above procedure will be repeated until the destination is reached correctly. There are
two possible reasons that can invalidate the effectiveness of this algorithm, both related to security:

• The device running the algorithm is equipped with a firewall, instructed to block protocol
packets ICMP.

• Routers are not allowed to send packets ICMP in order not to provide sensitive information.

To overcome these problems, a variant of PMTUD: Packetization Layer (PL) Path MTU Discovery
(PLPMTUD). The PL indicates the level of the protocol stack which is responsible for specifying
the initial size of the packet. The levels employed are transport or higher. That is, as opposed to
PMTUD, PLPMTUD uses protocols that establish end-to-end connections with the target. There-
fore, it sends a series of segments of increasing size: if received, the minimum MTU of the path is
increased, otherwise if a packet loss is recorded, it is concluded that the last recorded MTU value
is the minimum.

4.3 Experimental Demonstration Of Possible Existence Of SR Black
Holes

The goal of this paragraph is twofold:

• to summarize the experimental demonstration about the existence of possible SR Black Holes
in a SRv6 networks, and

• to show that active probing based tools are not trustworthy for detecting such a type of
failures.

The test was conducted over an emulated network, created through virtual routers supporting
SRv6 as data plane technology. VPP [1] with SRv6 plugin has been used. The experimental topology
is shown in figure 4.1. Two hosts (A and B) are connected through the SRv6 domain. The two
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policies are reported in Tab. 4.1. In the considered scenario, the two policies impose two levels of
reliability of network paths: pol_1 is used for high reliability traffic, while pol_2 is associated to
the regular traffic. As an example, pol_3 reported in Tab. 4.1 is configured in node C1; in case of
failure of the link between nodes C1 and C2, the policy imposes a re-routing of the packets over an
alternative path (C1-C3-C4).

Figure 4.4: Snapshot of the Iperf window on client

Figure 4.5: Snapshot of the Iperf window on server

To verify the existence of the SR Black Hole two traffic flows are created between hosts A and
B. The first one is a TCP connection that requires the reliable transfer through the SRv6 domain.
This requirement is satisfied by adding a traffic classifier in the node E1 that steers the packets
belonging to the TCP connection along the path specified by the policy pol_1. The second one is
a series of ICMP Echo Requests, that are sent over the regular path by means of policy pol_2. T

As expected, no black hole has been experienced in the case of no link failures. In this situation,
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the lowest MTU of the links belonging to the path followed by the TCP connection is equal to 1300

Bytes, while the overhead imposed by the use of SRv6 is equal to 96 BytesSince the MTU of links
crossed by the TCP connection that are internal to the SRv6 domain is equal to 1500 Bytes, then
no violation happens and the flow is correctly delivered to the destination.

In this situation the packets sent through the link C3-C4 have an overall length of 1476 Bytes,
which exceeds the MTU, thus leading to a large quantity of packets to be silently dropped. Figure 4.4
shows the Iperf window at the client side of the TCP connection, where it can be seen the amount of
traffic sent and the considered MSS. As shown in figure 4.5, due to the SR Black Hole the server does
not receive the traffic. It is worth noting that the TCP connection has been successfully established,
due to the small size of the messages exchanged during the three way handshake. Furthermore,
the ICMP traffic, which is also crossing the link C3-C4, is correctly delivered to the destination.
Summarizing, the previous experiment has proven the existence of a SR Black Hole. Clearly, this
is an anomalous event that could happen only in case the network is not correctly configured. For
instance, in the proposed experiment the sending of ICMP PTB messages was disabled (default
configuration in VPP). This suggests that the SRv6 domain must be carefully configured in order
to avoid the creation of SR Black Holes, either enabling the sending of ICMP PTB messages on the
nodes, and to properly design the policy enforced on the incoming flows. Clearly, misconfiguration is
an unplanned and unwanted event, and generally [7] it is extremely hard to be found and corrected.
For this reason, in this work we define a framework to help Network Operator to detect SR Black
Holes.

4.4 Applying Active Probing Tools to Detect the SR Black Hole

The experimental demonstration about the existence of the SR Black Hole has been carried out in
a non collaborative network environment, i.e., nodes that do not sent ICMP PTB messages. In this
subsection we use the Scamper tool [24] to determine its effectiveness in the correct detection of
the path MTU. Scamper has been though to detect MTU related black holes in a non collaborative
network. It exploits a traceroute-like mechanism to accomplish two different tasks: i) find the link
where the black hole occurs, and ii) determine the bottleneck MTU. UDP probes are sent along
the path between the source and the destination nodes. At first small UDP probes are sent to
test whether the destination is actually reachable or not. Next, a PMTUD process is executed by
emitting bigger and bigger probes. In order to deal with unresponsive nodes, Scamper uses a timeout
mechanism: if an answer is not obtained at the expiration of the timer, it assumes that the packet
has been silently dropped due to the MTU constraint violation. After two consecutive timeout
events, Scamper starts determining the maximum size for packets which supported. In particular
it exploits a table of well known MTU values to speed up the process: when a given packet length
is detected to exceed the MTU (through the timeout mechanism), MTU is fixed at the smallest
value of the previously tested packet lengths. Once the path MTU value is determined, a traceroute
like procedure is used to determine the hop where the bottleneck link is located. Probes size is set
bigger than the path MTU and the Time To Live (or Hop Limit in case of IPv6) is incrementally
increased. As soon as an ICMP Time Exceeded message is not received, the bottleneck link is
declared as found: it is the one connecting the last responding node with its next hop.

A first observation arising from using Scamper in our scenario is that, due to the IP in IP
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Figure 4.6: MTU assessment procedure followed by Scamper

encapsulation performed by the ingress node of the SRv6 domain, the Hop Limit based mechanism
for the detection of the location of the bottleneck link does not work whenever this node belongs
to the SRv6 domain. In fact, after the encapsulation the Hop Limit of the outer header is set to
the default value, that is larger than the one reported in the inner header. Figure 4.6 shows MTU
lengths that are tested by Scamper at each iteration of its execution. The value assumed in the last
iteration is the one reported as output to the source host, which will generate packets accordingly.
Two experiments are conducted. In the first one, we leave the network configuration unchanged
with respect to the setting used in the previous experiment where the link between nodes C1 and
C2 fails. In this scenario we have already commented that the TCP traffic is encapsulated twice,
with an overall overhead due to SRv6 processing of 176 Bytes. Despite of the fact that the link
having the smallest MTU in the overall path followed by the TCP traffic is the one connecting the
source node to E1, due to the SRv6 overhead, the limit on the packet size is imposed by the link
between nodes C3 and C4. As a consequence the maximum allowed size for packets injected in
the SRv6 domain is 1224 Bytes. Unfortunately, due to the policy based routing used in SR, the
probes sent by Scamper follow a different path with respect to the data traffic; in particular, they
are handled through the policy pol 2. The final MTU size obtained by Scamper in this case is
the one reported by the blue curve in figure 4.6. The returned MTU size is equal to 1300 Bytes,
as a consequence, the TCP source will generate packets having a size larger than the one that is
supported, thus creating a black hole. The previous test has confirmed the intuition that active
tools fail in detecting the SR Black Hole due to the policy based routing used in SR. To further
stress this point, we have performed a second experiment by including in the node E1 a classification
rule that forces Scamper probes to follow the same path of the TCP traffic. The outcome of the
Scamper execution is represented by the red line reported in figure 4.6. As expected, under this
setting Scamper correctly determines that the value of the maximum supported MTU is 1224. In
fact, by injecting in the SR domain packets with such length, the enforcement of the pol_1 and
pol_3 (that determine an SR related overhead equal to 176 Bytes) leads to the maximum size of
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1400 Bytes, which is the MTU of the bottleneck link.

4.5 Segment Routing Black Holes Detection Algorithm (SR-BHD)

SR-BHD algorithm is the passive monitoring system that we have developed to detect SR Black
Holes in SR networks. First the system model and the notation are presented , then the working
principle of SR-BHD is introduced in two phases: the ideal model is firstly discussed, then, some
modifications are introduced in order to make SR-BHD robust with respect to possible noise signals
(e.g., packet loss due to congestion). Finally, an enhanced version of SR-BHD , called SR-BHD+,
based on the use of advanced traffic counters, is proposed to improve the precision of SR-BHD .

4.5.1 System model

Let G(N ,L) be the graph representing the topology of the considered SR domain, where N and L
are the set of N nodes and L links respectively. Considering a link l, the head node is indicated
with the notation l.h and the tail node to as l.t (the link leaves the tail and enters the head). In
this scenario three different types of traffic counters are available. The first one is named link count,
yL(l), and accounts the amount of traffic transmitted over the link l. The collection of all the link
counts is represented by the vector yL. Furthermore, PSID and POL counters [29] are used to get
statistics on the SR traffic. A PSID counter, instantiated at node i for the segment identifier a,
accounts all the packets received at node i having a as active segment. This quantity is indicated
with the symbol yB(i, a). The collection of all the PSID counters is represented by the vector yB.

SR capable nodes enforce the segment list on each incoming packet on the basis of an SR Policy .
An SR Policy is represented by the tuple < i, e, c >, where i and e are the ingress and egress points
of the SR tunnel and c is the color, that encodes the scope of the policy (i.e., low latency, best
effort, high reliability, etc.). Each policy has an associated traffic counter (named POL counter)
that accounts for the traffic that is steered through it. This quantity is indicated with the symbol
yP (i, e, c). The collection of all the POL counters is represented by the vector yP .

Let us refer with the symbol F to the set of application flows (e.g, HTTP, SSH, etc.) that are
injected in the SR domain. In order to transit the SR domain each application flow f is steered
through an SR Policy . Considering the policy < i, e, c >, the set of application flows that are
handled through it is referred to as Πi,e,c. We define an SR flow as the aggregated traffic that is
represented by the aggregate of all the application flows that are steered through the same policy.
An SR flow is indicated with the symbol xi,e,c. The collection of all the SR flows is represented by
the vector x.

In the IPv6 underlay layer the shortest path policy is used to compute the path between every
pair of nodes of the SR domain. The underlay path to go from node i to node a is referred to as
gi,a and is represented by a vector of length L, whose l-th component is equal to the percentage of
traffic that goes over the link l if the node i sends one unit of traffic toward node a. With reference
to the overlay, the routing is determined by the segment lists that are currently configured. The
segment list associated whith the SR Policy < i, e, c > is referred to with the symbol σi,e,c and
consists of an ordered sequence of node-SIDs. Then, the vector ri,e,c representing the overlay path
followed by the SR flow xi,e,c can be calculated using the following Equation 4.1:
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ri,e,c =
|σi,j,c|−1∑

k=1

gσi,j,c[k],σi,j,c[k+1] (4.1)

Equation 4.1 shows that the overlay routing of an SR flow is given by a linear combination of
the vectors representing the paths in the underlay between nodes included in the segment list. The
routing matrix R is the collection of the vectors ri,e,c for all the existing policies. With reference
to the PSID counter instantiated at node n for the active segment a, the variable bn,ai,j,c represents
the percentage of the SR flow xi,e,c that it accounts. The matrix B is given by the collection of the
bn,ai,j,c variables for all the PSID counters and SR flows. Then, the relation between the SR flows and
the value assumed by each PSID counter can be expressed through the Equation 4.2.

yB = B · x (4.2)

4.5.2 SR-BHD Principle

SR-BHD is inspired by the flow conservation principle [17] which imposes that, considering a network
node, the difference between the incoming and outgoing flow is equal to the local demand. Clearly,
in case of the occurrence of an SR Black Hole on a link, the flow conservation principle is violated.
In fact, a portion of the flow that should leave the node through the link where the SR Black Hole
happens, is dropped, due to the MTU constraint. Consequently, the balance between the incoming
and outgoing traffic is not more satisfied. Clearly, the occurrence of a black hole is not the only
event that induces a violation of the flow conservation principle. Congestion, binary errors and
destination unknown are examples of some common causes of packet loss leading to a violation of
the equilibrium between traffic entering and leaving a node. In the rest of this subsection we present
the equations that regulate the flow conservation principle. Then, in the remainder of the section
we present a method to include the additional sources of packet loss into the mathematical models.

SR-BHD periodically monitors the traffic statistics collected by the network devices and verifies
the validity of the flow conservation, and eventually raises an alarm for a possible SR Black Hole.
Two different types of equations are defined in SR-BHD to check the validity of the flow conservation
principle:

∑
a∈N

gi,a(l) · yB(i, a) = yL(l) ∀l ∈ L (4.3)

yB(i, a) =
∑
l∈δ+i

gl.t,a(l) · yB(l.t, a) ∀i, a ∈ N (4.4)

Equation 4.5 imposes that the overall amount of traffic received at node i that has to be for-
warded over the output link l is equal to the amount of traffic that is actually sent over the link l.
In fact, each PSID counter accounts the traffic received at node i and having a as active segment.
This traffic is routed according to the underlay path between the nodes i and a, that is represented
by the vector gi,a. The multiplication of the l-th component of this vector with the value assumed
by the PSID counter returns the portion of the traffic that is routed over the link l. Summing
up the contribution of each possible active segment it is possible to calculate the amount of the
received traffic that node i forwards over the output link l. In the ideal case (no losses) this quantity
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coincides with the link count yL(l).
Equation 4.6, where the symbol δ+i represents the set of links entering the node i, imposes the

flow conservation principle at the active segment level. In particular, considering a node i and an
active segment a, the counter yB(i, a) has to be equal to the overall traffic (having active segment
a) that the neighbors of the node i send toward it.

Before presenting the details of SR-BHD implementation it is worth highlighting that, check the
validity of Equation 4.6 is a critical task in a real network. In particular, it is due to the fact that
traffic counters involved in the formula are instantiated at different network nodes. Consequently,
lack of alignment of the traffic counters can compromise the validity of the flow conservation prin-
ciple. On the contrary, the condition imposed by Equation 4.5 is robust with respect to alignment
errors, since all the involved counters are instantiated in the same node.

∑
a∈N

gi,a(l) · yB(i, a) = yL(l) ∀l ∈ L (4.5)

yB(i, a) =
∑
l∈δ+i

gl.t,a(l) · yB(l.t, a) ∀i, a ∈ N (4.6)

Equation 4.5 imposes that the overall amount of traffic received at node i that has to be for-
warded over the output link l is equal to the amount of traffic that is actually sent over the link l.
In fact, each PSID counter accounts the traffic received at node i and having a as active segment.
This traffic is routed according to the underlay path between the nodes i and a, that is represented
by the vector gi,a. The multiplication of the l-th component of this vector with the value assumed
by the PSID counter returns the portion of the traffic that is routed over the link l. Summing
up the contribution of each possible active segment it is possible to calculate the amount of the
received traffic that node i forwards over the output link l. In the ideal case (no losses) this quantity
coincides with the link count yL(l).

4.5.3 Framework Overview

Figure 4.7 shows the main block functions composing the proposed passive monitoring framework.
It is thought to be integrated in a centralized monitoring system. Through a southbound interface
the central monitoring system queries the network elements to collect the traffic statistics, which
are stored in different databases. Every time new traffic measurements are available, the monitoring
system triggers the execution of the SR-BHD block. It takes as input link and PSID traffic counters,
the network topology and the current routing configuration (either in the IPv6 underlay than the
segment lists). SR-BHD block also receives as input the value of the margin, that consists in a vector
containing the estimation of the packet loss due to different causes (e.g., congestion, transmission
errors, etc.) for each network link. The margin estimation block requires to receive as input the
current link utilization.

The output of SR-BHD block is a list containing a set of link/flow pairs that are suspected to be
affected by an SR Black Hole. In order to improve the precision of the output, a refinement step can
be performed through the adoption of the SR-BHD+ block. Its execution requires the availability
of a further set of traffic counters, i.e., the POL ones. Since these counters are not always available
in SR capable nodes, the refinement performed by means of SR-BHD+ is optional.
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Figure 4.7: Scheme of the proposed monitoring framework

The next subparagraphs provide the insight of each of the functional blocks reported in Figure
4.7.

Algorithm 1 SR-BHD algorithm pseudo code.
Require: the network graph: G = (N ,L), the routing matrix: R, the traffic counters: yL and yB

1: initialize LS ← ∅, FS ← ∅ and tmp← ∅
2: for all l ∈ L do
3: if Equation 4.5 for link l does not hold then
4: LS ← l
5: tmp← l.h
6: end if
7: end for
8: for all n ∈ tmp do
9: for all a ∈ N do

10: if Equation 4.6 for node n and active segment a does not hold then
11: FS ← {xi,e,c : ri,e,c(l) > 0, l ∈ LS ∩ δ+n ∧ a ∈ σi,e,c}
12: end if
13: end for
14: end for
15: return the set of suspicious flows FS and links LS .

The pseudo code of the SR-BHD is reported in Algorithm 1. It takes as input the network graph,
the overlay routing matrix and the link count and PSID counter vectors. Then, in line 1 three data
structures are initialized as empty: i) the two sets LS and FS that will contain the suspicious links
and flows (i.e., those elements that could potentially be involved in a black hole), and ii) the set
tmp that will store the head nodes of suspicious links. After that, one link at a time (lines 2− 7),
the validity of Equation 4.5 is tested. In case the condition does not hold, then the current link is
declared as suspicious and its head node is included in the tmp set (lines 4 and 5). Once the location
of the potential SR Black Hole has been determined, the next step consists in the detection of the
affected SR flow. This task is performed in lines 8-14. More precisely, taken a node in tmp, each
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active segment is tested. The flow conservation law at node n for the current active segment a is
checked (line 10). In case the condition does not hold, the set of suspicious flows is updated (line
11). In particular all the SR flows that pass through the suspicious link l having a as active segment
are included in the set FS . Finally, the list of flows and links collected as suspicious black holes, are
returned in line 15. It is clear that the previously presented implementation of SR-BHD works only
in the ideal case that the only source of packet loss in the network is the presence of SR Black Hole.
In an actual situation, the presence of other sources of packet loss would be interpreted by SR-BHD
as the proof of the existence of a SR Black Hole, leading to the creation of a large number of false
positives. To cope with the presence of other sources of packet loss we introduce a tolerance term
in Equations 4.5 and 4.6, that is referred to as margin. Specifically, the margin of link l is indicated
by the symbol µ(l). With this new logic, the flow conservation conditions are violated only in case
the distance between the traffic that is supposed to be sent and the one that is actually transmitted
is greater than the margin. The goal of the margin is to make SR-BHD robust with respect to
sources of packet loss different from the targeted SR Black Hole. Considering the link l, the best
value to use for the margin is to set it equal to the amount of traffic that is lost due to congestion,
errors, etc. Unfortunately, this quantity is unknown in advance, so in the next we discuss a method
for its estimation. The first step consists in building a dataset D of observations for each network
link, considering a time horizon T . The hypothesis is that no SR Black Hole occurred during the
creation of the dataset. The observation related to the link l at time t is represented by the tuple
< yL(l)[t], Cl, yE(l)[t] >, which includes: i) the value of the link count on link l at time t, ii) the
capacity of the link l, and iii) the amount of traffic dropped on link l at time t. The measurement
of this quantity is performed by error counters widely deployed in current network cards, and that
accounts for packets discarded due to different reasons (e.g., congestion, checksum errors, TTL
expired, etc.). The first two parameters represent the features of the observation while the third
one is the label. Once the dataset is built, it is used to train a Neural Network (NN) having the
goal of learning the relation between the link utilization and the amount of traffic lost. The input
layer of the NN is composed of two nodes, one receiving the value of the link count for the link l and
the other one for its capacity, while the output layer contains a single node, reporting the targeted
amount of traffic lost. This last quantity is used as the value for the margin.

4.5.4 Exploit POL Counters to improve the precision

In the next we introduce an enhancement of the proposed algorithm, named SR-BHD+, that allows
for a consistent improvement of the precision. In particular, the idea is to exploit the extra infor-
mation provided by the POL counters to reduce the size of the set of suspicious flows. In fact, as
previously explained, this type of traffic counter allows us to measure the volume of each SR flow.
Starting from this information, by means of the Equation 4.7, it is possible to calculate the amount
of traffic flowing over each network link in the ideal case (yI

L) of no packet loss occurred (either due
to black holes or for other causes).

yI
L = R · yP (4.7)

The goal is to determine the amount of traffic that is lost in the black hole, starting from the
knowledge of the ideal link count vector. To do that, as first it is required to understand how the
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packet loss events affect the traffic flows during their journey in the network. Specifically, the volume
of a flow is influenced in two different ways by loss events: i) localised on a link, and ii) cumulative
over the links that the flow has visited so far. Regarding the localised effect, it is due to the packet
loss events happening on a single link, such as congestion, transmission errors, TTL expired, etc.
With reference to the cumulative effect, it concerns the overall volume reduction that a given flow
has experienced due to packet loss events localised in the links that the flow has already visited. To
better explain the difference between these two contributions, we propose a simple example. Let
us consider a flow having a volume of 100 that is routed over a cascade of four links l1, l2, l3 and
l4. Furthermore, let us assume that 5 units of traffic are lost on each link due to congestion events.
Then, with reference to the link count yL(l3), its value is equal to 85, that is given by the initial
volume minus the packet loss occurred at link l3 (that represents the localised contribution) and
the sum of the packet loss happened in the already visited links (cumulative effect), i.e., l1 and l2.

To filter out the contribution of other sources of packet loss from the ideal link count of a generic
link l, calculated through the Equation 4.7, we need to compensate for both the localized and the
cumulative effects. With reference to the first one, it can be easily removed by means of the margin
(µ(l)), since it represents an estimation of the packet loss due to congestion occurring at link l. The
latter effect can be cancelled by deleting from the ideal link count the value calculated according to
the following Equation 4.8:

m(l) =
∑
a∈N

gi,a(l) ·
(
yI
B(i, a)− yB(i, a)

)
(4.8)

where the vector yI
B contains the ideal values of the PSID counters, that can be calculated

through the Equation 4.2. The intuition behind Equation 4.8 is that since PSID counters instanti-
ated in a node allow to measure the overall amount of traffic that the node has received, then they
can separate the cumulative contribution from the localised one. Then, the difference between the
ideal value of the PSID counters and the actual one allows to estimate the amount of traffic that
has been lost along the way (before reaching a given node).

Then, the vector representing the effects (in terms of packet loss) of the SR Black Hole over the
network links is given by Equation 4.9.

∆L = yI
L − µ−m− yL (4.9)

The principle of the SR-BHD+ algorithm is to reduce the set of suspicious flows by comparing
the amount of traffic lost due to the black hole with the size of each SR flow. In case the two
quantities are comparable, then the flow is suspected to be affected by an SR Black Hole. More in
detail, considering an SR flow xi,e,c that is suspected to fall in a black hole located at link l, then
SR-BHD+ uses the condition reported in Equation 4.10 to determine if it is likely that the flow is
actually affected by an SR Black Hole.

∆L(l)

yP (i, e, c)
∈ [smin, smax] (4.10)

The numerator of the left term of the Equation 4.10 represents the estimated amount of traffic
that is lost in a black hole, while the denominator is the volume of the suspected SR flow. The
right side of the Equation 4.10 represents an interval that indicates the tolerance of SR-BHD+. It
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Algorithm 2 SR-BHD+ algorithm pseudo code.
Require: yL, yB , yP , µ, G, B, R, smin, smax, FS , LS

1: initialize L+
S ← ∅ and F+

S ← ∅
2: calculate yI

B according to Equation 4.2
3: calculate yI

L according to Equation 4.7
4: calculate m(l) according to Equation 4.8
5: for all l ∈ LS do
6: calculate ∆(l) according to Equation 4.9
7: for all xi,e,c ∈ FS do
8: if ri,e,c(l) > 0 AND Equation 4.10 is true then
9: F+

S ← xi,e,c and L+
S ← l

10: end if
11: end for
12: end for
13: return the set of suspicious flows F+

S and links L+
S .

is composed of two parameters, namely smin and smax. In the performance evaluation it is shown
how, by properly setting these two values, it is possible to make SR-BHD+ robust also in critical
situations (e.g., heavy congestion, margin estimation errors, etc.). The main steps regarding the
SR-BHD+ execution are summarized in Algorithm 2.

Before concluding it is important to highlight again that, the use of SR-BHD+ requires the
support of POL counters in network devices.
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Chapter 5

Performance Evaluation

In this paragraph we conduct a performance evaluation based on simulations. As first the data set
is described, then the results related to three different experiments are presented.

5.1 Data Set description

SR-BHD performance is tested over three different real networks taken from [27] : Abilene (N = 12,
L = 30), Geant (N = 22, L = 72) and Germany (N = 50, L = 176). For these networks, real traffic
matrices are available. The shortest path policy is considered for routing the traffic demands. It
implies that the segment lists configured in the network contain only a single SID associated to the
destination node. Each traffic flow defined in the traffic matrix is steered by means of an SR Policy
installed at the source node. Capacity planning is performed as follows: i) the traffic matrix is routed
according to the shortest path policy, and ii) each link is assigned with a capacity that is randomly
(according to a uniform distribution) selected so that the utilization falls in the range [50%, 99%].
Packet loss due to congestion is simulated by dropping a percentage of the traffic flowing over a
link. In particular the number of lost packets on each link l, indicated to as Ql, is randomly selected
according to a Normal distribution having mean proportional to the link utilization. Furthermore
we introduce a congestion amplification factor (αC) that allows to tune the level of packet loss due
to congestion (by multiplying Q(l) for the congestion amplification factor). Finally, the packet loss
is shared among the flows routed over the link l, proportionally with respect to their intensity.

5.1.1 Experimental Evaluation

The first analysis we propose aims at evaluating the precision and the recall of the proposed algo-
rithms in detecting the black holes. During the experiment we assume the presence of a single black
hole. One at a time, all the possible couples link where the MTU violation occurs and the affected
flow are tested. The congestion amplification factor is set equal to αC = 10−3, and it is assumed
that when a flow is affected by a black hole, all its packets are lost. Figure 5.1 shows the obtained
results for different networks. In the figure, the x axis represents the different performed tests (i.e.,
a pair of link and flow involved in the black hole) sorted in increasing order with respect to the
precision. In case of SR-BHD+, the tolerance is set as follows: smin = 0.97 and smax = 1.05. We
chose to use a narrow interval for the tolerance with the aim of maximizing the precision. Both the
algorithms use the same neural network to assess the margin. Looking at the results reported in
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Figure 5.1 it can be seen that the two methods (SR-BHD and SR-BHD+) achieve a very high value
of recall. In all the experiments SR-BHD obtained 100% of recall in all the networks for all possible
configurations of link/flow pair involved in the black hole (for this reason we do not report it on
the figures). This means that SR-BHD is always able to detect the presence of an SR Black Hole.
Similar results are obtained for SR-BHD+ in the Abilene network, whereas, for very few tests, in
Geant and Germany networks, the algorithm did not correctly detect the black hole, i.e., the black
hole does not appear among the suspected link/flow pairs returned as output. This is evidenced
by the fact that, in these tests the recall is 0. This behavior is due to the estimation error in the
evaluation of the amount of traffic lost in the black hole performed by the Equation 4.9. Anyway,
the recall of SR-BHD+ can be easily made equal to the one obtained by SR-BHD by tuning the
width of the tolerance interval. Clearly this has a negative impact on the precision.

As far as the precision is concerned, results reported in figure 5.1 prove the huge performance
improvement achieved by SR-BHD+ due to the use of POL counters information. In particular,
considering the Abilene network (Figure 5.1(a)) SR-BHD+ achieves a mean value of the precision
equal to 97.22, while the mean value obtained by SR-BHD is 7.71. The relevance of the improvement
on the precision is better visible in the bigger networks (Geant and German). In fact, while in these
situations SR-BHD basically suspects about all the flows passing over the link affected by the black
hole (making impossible to fix the misconfiguration), SR-BHD+ suspects at most 3 flows (33% of
precision) in more than 90% of the cases. This improvement makes the proposed tool actually useful
for troubleshooting in productive environments. The next two experiments represent a sensitivity
analysis of SR-BHD+. In the first one the aim is to test the ability of SR-BHD+ to distinguish
between regular packet loss events (caused by congestion, transmission errors, etc.) from anomalous
packet loss events, due to the presence of the black hole. In the experiments, the amount of the
regular packet loss events is tuned by changing the value of the congestion amplification factor
(αC). To give the intuition of the entity of the anomalous events with respect to the regular ones,
we introduce the Anomalous over Regular Losses (ARL) ratio. In figure 5.2(a) it is shown the ARL
value for the different flows, considering different values of αC . In particular, for each flow we have
calculated the ratio between its volume and the amount of packet loss due to congestion. Then
the average value over all the links crossed by the flow is considered. Due to the large number of
tests, only results for the Abilene network are shown. Figures 5.2(b) and 5.2(c) show the average
recall and precision obtained by SR-BHD+ as a function of the congestion amplification factor,
for different values of the smin tolerance parameter (the smax is kept constant and equal to 1.1).
The main outcomes of this analysis are three: i) the performance decreases as the αC parameter
increases, ii) by tuning the smin tolerance parameter it is possible to make SR-BHD+ be robust
to the regular packet loss events, and iii) 100% of recall is feasible also for very low values of
ARL (in the order of −10 dB). With reference to the first two points, the performed experiment has
highlighted an interesting relation between the αC parameter and the performance of the algorithm.
On one hand, as expected the recall monotonically decreases as the congestion amplification factor
increases 5.2(b)). In particular, by reducing smin it is possible to keep the recall over the 90% also
for high values of αC , while keeping a good level of precision. For instance, the value smin = 0.2

allows for a 90% of recall when the congestion amplification factor is equal to 0.6, while having a
precision of 38%. Consider that this level of precision implies that there are on average less than
three suspected link/flow pairs. Then, although SR-BHD+ does not provide the highest precision,
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it drastically reduces the set of link/flow pairs that require further investigation.

Figure 5.1: Precision and Recall analysis of the SR-BHD and SR-BHD+ in different networks

Figure 5.2: Sensitivity analysis of SR-BHD+. Precision and recall as a function of the congestion level

A second interesting aspect that emerges from the performed experiment is the relation between
the congestion amplification factor and the precision of SR-BHD+ (Figure 5.2c). In particular, the
precision does not monotonically decrease if αC increases: i) initially the precision increases as the
congestion level increases, then ii) once reached a maximum value it starts decreasing. This behavior
is due to the working principle of SR-BHD+, which selects the suspected flows by comparing their
volume with the estimated amount of traffic that is lost in the black hole. If there are many flows
having a comparable intensity, then the resulting precision of SR-BHD+ is small. Also in the ideal
case of no regular packet loss, if all the flows had the same volume, the resulting precision would
be poor. In these situations, the presence of the regular packet loss creates a distance between
the intensity of the different flows, helping SR-BHD+ in correctly discriminating the flow that has
actually fallen into the black hole. Clearly, when the congestion level overcomes a threshold value,
the beneficial effect is lost and the performance starts to decrease as αC increases. With reference
to the third point (100% of recall is feasible also for very low values of ARL), SR-BHD+ has shown
a high tolerance to the presence of regular packet loss events on the traffic counters. In particular,
by looking at figure 5.2(b) it is evident that the highest value of αC at which SR-BHD+ gets 100%

of recall is 0.3. From Figure 5.2a it can be seen that, for such a value of congestion amplification
factor, the lowest level of ARL reached is of the order of −10 dB. It means that SR-BHD+ is able
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to correctly determine what flow is lost in the black hole, also in theiscase its volume is 10 times
smaller than the level of packet lost due to congestion. Furthermore, it is worth highlighting that,
in these circumstances, SR-BHD+ is still able to obtain an acceptable precision (see Figure 5.2(c)).
In particular, for αC = 0.3 and smin = 0.2 the average precision is close to 50%, meaning that
the suspicious link/flow pairs in output are 2. The last analysis we propose aims at evaluating the
precision and the recall of SR-BHD+ if only a portion of a flow is lost in the black hole. In fact
an SR flow represents the aggregation of many application flows, then it can happen that only a
subset of application flows falls into the black hole.

Figure 5.3: Sensitivity analysis of SR-BHD+. Precision and recall as a function of the percentage of flow
that gets lost in the SR Black Hole

The result of this sensitivity analysis is reported in figures 5.3(a) and 5.3(b). In particular, the
two figures show the precision and recall of SR-BHD+ as a function of the percentage of flow that
gets lost in the SR Black Hole, for different values of smin parameter (smax is kept constant and
equal to 1.1). The main outcome of the performed experiment is that SR-BHD+ is able to handle
this situation. In fact, also in case only 30% of a flow is lost in the black hole, the obtained recall
is 100% (meaning that it is always correctly detected) and the precision is approximately 33%, i.e.,
on average there are 3 link/flow suspicious pairs.

5.2 Performance evaluation

In this paragraph a description of the experimental prototype of SR-BHD that we have realized is
provided. The goal of the prototype is to prove the effectiveness of the proposed approach. Three
different aspects are discussed:

• the description of the design implementation of SR-BHD prototype,

• the methodology adopted to run the tests,

• the results obtained in the different types of performed tests.
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5.2.1 Prototype description

The proposed SR-BHD algorithm is intended to be integrated on a centralized monitoring system,
according to the SDN paradigm. In the prototype this task is accomplished by a bundle of scripts
whose execution is triggered with a timer based mechanism. By a logical point of view, the prototype
is composed by two main building blocks: i) the Stats Collector module, which is in charge of
collecting the SRTCs in each node, and ii) the Black Hole Detection module, that implements
the logic of SR-BHD on each link to detect potential black holes. Concerning the Stats Collector
module, it is implemented as a bash script that automatically queries the network routers to get
the required traffic statistics. On the contrary, the Black Hole Detection module is a Python script
that takes as input the traffic measurements and verifies the validity of the equations that are at
the basis of SR-BHD approach. This module requires the presence of a configuration file that
specifies the routing, i.e., the segment lists that are enforced on packets in the data plane as well
as the underlay paths, and the value of the margin.A timer component triggers the execution of
the two blocks. In our prototype implementation, VPP virtual routers are used to instantiate an
SRv6 capable network. With respect to the functionality available in an ideal SRv6 router, VPP
lacks the presence of the full suite of SRTCs. In particular, the availability of traffic counters in
VPP is as follows: i) INT counters, i.e., interface level traffic counters that account the number of
packets TX/RX to/from each interface, ii) POL counters do not exist, and iii) PSID counters are
updated only in case an SR operation is performed. With reference to the second point, it forced
us to prototype SR-BHD instead of SR-BHD+. Regarding the last point, it represents a critical
difference for the actuation of the proposed SR-BHD framework. In fact, it relies on statistics
coming from PSID counters that are collected at each node. On the contrary, in VPP this type of
SRTC counters are maintained only at nodes that perform SR related operation (e.g., a router that
accounts the packets on which it applies the END operation). In order to finalize our prototype,
we have applied the strict source routing policy, i.e., for each flow the segment list contains the
explicit set of intermediate nodes to go through. As a future step we aim at implementing the PSID
counters on every node (regardless the application of SR functions).

5.2.2 Adopted Methodology

The reference topology used in the conducted experiment is shown in figure 4.1, with the only
difference that in the performed experiments the initial MTU is set equal to 1500 Bytes in all the
links. Nodes E1 and E2 represent the edge of the considered SR domain and implement SR Policy
enforcement on the incoming traffic flows. The main features (source, destination, path) of the
four traffic flows included in the scenario are reported in Tab. 5.1. These are generated by using
the traffic generator included in VPP, that allows to create constant bit rate UDP flows, with the
possibility to decide the packet size and the throughput. All the traffic flows have the same data
rate of 100 Kbps

In each test a target flow and the link where the black hole occurs are selected. In order to
create the black hole in the desired link and to hit the target flow, two actions are performed:
i) packets of the target flow are generated with a higher size with respect to those of the other
flows, and ii) the MTU of the link where the black hole happens is reduced compared with those
associated to of the other links. Then, all the traffic flows are simultaneously started and ended 120
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Source Destination Segment List
a::1 b::1 C1,C2,E2
a::2 b::2 C1,C3,C4,C2,E2
b::1 a::1 C4,C3,E1
b::2 a::2 C4,C2,C1,C3,E1

Table 5.1: Main features of the traffic flows included in the emulated

seconds later. The Stats Collector module is triggered every 60 seconds, meaning that in each run
the Black Hole Detection module is executed 2 times. Furthermore, in order to account for possible
discrepancy among traffic counters, an extra execution of SR-BHD is repeated after 130 seconds
from the beginning of the test. The measurements obtained with the last collection phase allow to
test the performance of SR-BHD in an ideal condition, i.e., when there is a perfect synchronization
in the gathered statistics.

Figure 5.4: Average false positives as a function of the CD parameter

In order to carry out a sensitivity analysis, instead of considering congestion events, we have
defined two tuning parameters to regulate the level of the misalignment introduced on the traffic
counters. As a consequence of this, the value of the margin is manually set (no Neural Network
is used to set its value). The first tuning parameter is referred to as Target Rate Ratio (TRR)
being a scaling parameter that allows to reduce the intensity of the target flow with respect to the
others. The TRR is selected in the range (0, 1]. As an example, assuming that all the generated
flows have a throughput of 100 Kbps and the TRR= 0.5, then the target flow is generated with a
lower throughput, equal to 50 Kbps. The second tuning parameter is the Collect Delay (CD) and
represents a synthetic delay that is introduced between the counter gathering among different nodes.
In particular, assuming that the monitoring system sequentially queries the nodes (one at a time) for
the traffic statistics, the CD parameter represents the time interval between two consecutive queries.
By tuning this parameter we are able to synthetically introduce a discrepancy on the counter values
of different nodes. Since Equation 4.6 used by SR-BHD to enforce the flow conservation principle
considers traffic counters instantiated in different nodes, the discrepancy introduced by the CD can
lead to the violation of this condition, thus leading to the creation of false positives. As an example,
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considering that the link capacity is set to 100 Kbps, a CD of 0.1 seconds creates a mismatch
between the counters of neighbor nodes ranging between 1250 Bytes (in the best case that the
counters of the two nodes are queried one after the other) and 7500 Bytes (in the worst case that
one node is the first to be queried and the other is the last in the whole network). Regular packet
loss events have, on the traffic counters, an effect similar to the one caused by the CD. Then, in the
experiments we emulate the presence of different sources of packet loss by exploiting the CD, since
it offers the possibility to precisely tune the regular loss level.

5.2.3 Conducted Experiments

Three different experiments have been performed to assess the effectiveness of the implemented
prototype in the correct detection of the SR Black Holes. Before commenting the main obtained
results, we mention that, as expected, when SR-BHD has been tested in ideal conditions (CD= 0,
TRR= 1 and counters collected at t = 130 seconds), we have obtained as expected, the maximum
values of precision and recall for all possible combination of target flow and affected link.

The aim of the first analysis is to show the impact of CD on the performance of SR-BHD . The
CD introduces a discrepancy on the value of the traffic counters instantiated in different nodes, which
could turn in large errors in the equations that regulate the logic of SR-BHD . For this reason the
impact of the CD is evaluated in terms of false positive (a flow is erroneously detected as falling into
a black hole) that it produces in the output of SR-BHD . In fact, the discrepancy between counters
of neighbor nodes can be high enough to overcome the value of the margin, thus generating a false
positive. The result of this analysis is reported in figure 5.4.

Figure 5.5: Average false negatives as a function of the TRR parameter

The setup for the experiment is as follows: i) results are averaged over all possible combinations
of target flows and affected link, and over all the counters collection periods, ii) the TRR parameter
is set to 1, iii) the measurements related to t = 130 seconds are neglected, and iv) the margin
is equal to the 1% of the flow rate. As expected, when the value of the CD parameter increases
SR-BHD erroneously detects some traffic flows to be affected by a black hole. In particular, in
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case of CD= 1 there are on average 1.4 false positives over 16 possibilities. Clearly this situation is
extreme, since it implies that in the worst case there are 6 seconds of difference among the time at
which the first and the last nodes are queried for the traffic stats. We expect that possible query
time interval is much shorter in actual networks. Finally, in the results shown in figure 5.4 the
margin is kept constant during all the different experiments. As it is discussed later, false positives
can be completely removed by properly adjusting the margin to the level of the regular packet loss.

The second analysis aims at determining the impact of the TRR parameter on the ability of
SR-BHD to detect black holes. Specifically, the TRR has as main effect a reduction of the data
rate of the target flow. Thus, for low values of this parameter, the intensity of the target flow could
become comparable with the margin, consequently, SR-BHD could not be able to correctly detect
Black Holes, generating a false negative. The result of this analysis is reported in figure 5.5, that
has been obtained considering the CD= 0 and the margin equal to the 30% of the flow rate.

Looking at figure 5.5 it is evident that, when the TRR decreases below a threshold value, the
volume of the target flow is low with respect to the margin. Consequently, SR-BHD neglects the
discrepancy among the traffic counters caused by the black hole (since this last is smaller than
the margin), thus leading to a false negative. As expected, this threshold value for the TRR is
equal to 0.3, that is the value chosen to set the margin. Despite the obtained result could seem
straightforward, it allows us to assess an important property of SR-BHD . In particular, the ability
of detecting a target flow falling into a black hole is not related to the ratio between the intensity
of the target flow with respect to the other ones, but only with the respect to the value of the
margin. This last is a tuning parameter of SR-BHD , then it is always possible to set it to a value
that completely avoids the presence of false negatives.

Figure 5.6: Analysis of the values of the margin that allows for the complete

On the basis of the last consideration, we investigate how to choose the proper value of the
margin. The aim is to show that in most of the considered cases there exists a value of the
margin such that it is possible to completely avoid false positives and false negatives, while correctly
detecting the existing black hole. The obtained result is shown in figure 5.6. The blue line represents
the Margin Upper Bound (MUB), which is the maximum value that the margin can assume while
avoiding the presence of false negatives. This line is obtained by running the tests with the variable
TRR and keeping the CD= 0. Considering the blue line, in figure 5.6 the x-axis represents the
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5.2. Performance evaluation

parameter (1.1−TRR), and the y-axis reports the value of the MUB. If the margin is set equal to
the MUB, the black hole cannot be detected, thus leading to the creation of a false negative. All
values of the margin that are below the blue line allow for a complete cancellation of false negatives.

On the contrary, the red line represents the Margin Lower Bound (MLB), i.e., the minimum
value of the margin that allows for the complete cancellation of the effects due to regular packet
loss, thus avoiding the presence of false positives. This line is obtained by running the tests with the
variable CD and keeping the TRR= 1. Considering the red line, in Fig. 5.6 the x-axis represents
the CD parameter, and the y-axis reports the value of the LBM. All values of the margin above the
red line allow for a complete cancellation of the false positives.

In figure 5.6 by moving to the right on the x-axis the ARL decreases. As a consequence, in
order to filter the contribution of regular packet loss, higher values of the margin are required (see
the red line). Unfortunately, when the margin increases, the sensitivity of SR-BHD decreases, since
the effect of a small flow falling into a black hole creates a discrepancy in the traffic counters that
do not allow a correct detection. In figure 5.6, the area that is below the blue line and above the
red line represents the setting for the margin that allows for a complete cancellation of the false
positives and false negatives. Interestingly, in almost all the situations (TRR and CD) it is possible
to find a value of the margin that makes SR-BHD to get the best possible performance in terms of
recall and precision. Only in case of TRR= 0.1 the cancellation of the effects of the regular packet
loss causes the creation of a false negative. Particularly, this happens in the case of CD ∈ (0.7, 1).
In fact, looking at figure 5.6 it can be seen that the value assumed by the blue line in TRR= 0.1 is
smaller than the value assumed by the red line when CD ∈ (0.7, 1). To conclude, the last presented
analysis has highlighted that the range of margin values that allow for a perfect detection of the
black holes is related to ARL value.
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Chapter 6

Conclusion

In this paper we have addressed the problem of logical failures in Segment Routing networks due to
the violation of the MTU constraint, named SR Black Hole. We have experimentally proven that:
i) in misconfigured SR domains SR Black Holes can occur, and ii) classical detection methods based
on active probing fail to detect the failure. Then, by exploiting specific SR Traffic Counters we have
introduced a passive monitoring framework, named SR-BHD , that is able to detect the presence
of black holes, also in presence of multiple sources of packet loss (e.g., congestion, transmission
errors, etc.). In particular SR-BHD imposes the flow conservation principle at different levels in
the network, being able to tolerate the presence of other sources of packet loss (e.g., congestion,
transmission error, etc.) by the introduction of a safety margin. An estimation framework based on
the use of Neural Networks is presented as a method to select the proper value for the margin. The
framework has further been extended in case specific traffic counters (POL counters) are available in
SR capable nodes. The enhanced version of SR-BHD , named SR-BHD+, allows to greatly improve
the precision in the detection of the black hole. Specifically, a tolerance interval can be set to
make SR-BHD+ robust against critical situations, such the case of high level of packet loss due
to congestion, or the case in which only a portion of a traffic flow is lost in the black hole. The
performance evaluation has shown how, by properly tuning the tolerance interval of SR-BHD+,
it is possible to find a good trade off between the precision of the algorithm and its robustness
with respect to the aforementioned critical situations. Finally, a prototype of SR-BHD has been
realized and tested over an emulated environment. The conducted experiments have confirmed the
effectiveness of the proposed framework in detecting the presence of SR Black Holes. As future
work we aim to design a tool to help Network Operators to configure their SR domain by avoiding
the creation of SR Black Holes.

As future works we aim at design a tool to help Network Operators to configure their SR domain
by avoiding the creation of SR Black Holes, and the integration of the full suite of SR traffic counters
in VPP and others programmable data planes.
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Appendix A

Appendix

A.1 VPP installation

apt-get update
cd /etc/apt/sources.list.d/
cat> 99fd.io.list
deb [trusted = yes] https://packagecloud.io/fdio/release/ubuntu bionic main deb [trusted = yes]
http://cz.archive.ubuntu.com/ubuntu bionic main universe deb [trusted = yes]
https : //nexus.fd.io/content/repositories/fd.io.ubuntu.xenial.main/. /
deb [trusted = yes]
https://nexus.fd.io/content/repositories/fd.io.stable.1804.ubuntu.xenial.main/ ./
deb [trusted = yes]
https://nexus.fd.io/content/repositories/fd.io.master.ubuntu.xenial.main/ ./ curl
-L https://packagecloud.io/fdio/release/gpgkey | sudo apt-key add - apt-get
update
apt-get install vpp vpp-plugin-core vpp-plugin-dpdk

A.2 Python script for executing commands

import subprocess
while True:
print ("Choose option:")
print ("0) Create topology (running VPP instances, configuring link and SRv6).")
print ("1) TCP traffic (top-policy (a1: :)).")
print ("2) ICMPv6 traffic (down-policy (a3: :)).") print
("3) Simultaneous TCP and ICMPv6 traffic.") print
("4) Enable Recovery Policy.")
print ("5) Disable Recovery Policy.") print
("6) MTU Path Discovery (TCP).")
print ("9) Exit and kill VPP instances & delete interfaces.") print ("10)
Exit without killing VPP instances & deleting interfaces.") option =
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A.3. File ’0-0-main.sh’

input ("Option:")
if str (option) == "0":
subprocess.call (["./ 0-create-topology / 0-0-main.sh"])
print ("Topology has been configured.")
print ("")
elif str (option) == "1":
subprocess.call (["./ 1-TCP-traffic / tcp.sh"])
print ("")
elif str (option) == "2":
subprocess.call (["./ 2-ICMPv6-traffic / 2-1-ping.sh"])
print ("")
elif str (option) == "3":
subprocess.call (["./ 3-TCP-ICMP / enable-flow.sh"])
print ("")
elif str (option) == "4":
subprocess.call (["./ 1-1-enable-rec-policy.sh"])
print ("")
elif str (option) == "5":
subprocess.call (["./ 1-2-disable-rec-policy.sh"])
print ("")
elif str (option) == "6":
subprocess.call (["./ 6-MTU-Path-Discovery.sh"])
print ("")
elif str (option) == "9":
subprocess.call (["./ 9-exit-kill-VPP.sh"])
print ("")
break
else:
print ("")
break

A.3 File ’0-0-main.sh’

#! / usr / bin / sudo bash

# Close VPP instances and delete links
sh ./9-exit-kill-VPP.sh

function pause () {
read -p "$ *"
}
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A.4. File ’0-1-linking-vpp-instances.sh’

# Starting VPP instances
sudo vpp unix {cli-listen /run/vpp/cli-vppE1.sock} api-segment {prefix vppE1}
# pause ’E1 instance starts. Press enter. ’
sudo vpp unix {cli-listen /run/vpp/cli-vppC1.sock} api-segment {prefix vppC1}
# pause ’C1 instance starts. Press enter. ’
sudo vpp unix {cli-listen /run/vpp/cli-vppC2.sock} api-segment {prefix vppC2}
# pause ’C2 instance starts. Press enter. ’
sudo vpp unix {cli-listen /run/vpp/cli-vppE2.sock} api-segment {prefix vppE2}
# pause ’E2 instance starts. Press enter. ’
sudo vpp unix {cli-listen /run/vpp/cli-vppC3.sock} api-segment {prefix vppC3}
# pause ’C3 instance starts. Press enter. ’
sudo vpp unix {cli-listen /run/vpp/cli-vppC4.sock} api-segment {prefix vppC4}
# pause ’C4 instance starts. Press enter. ’
pause ’E1, E2, C1, C2, C3, C4 instances starts. Press enter. ’

# Linking VPP instances
sh ./0-create-topology/0-1-linking-vpp-instances.sh
pause ’VPP instances linked. Press enter. ’

# Creating hosts instances
sh ./0-create-topology/0-2-creating-hosts.sh pause ’Hosts
created and linked to router. Press enter. ’

# Setting SRv6
sh ./0-create-topology/0-3-setting-SRv6.sh pause
’BSID and Policy configured. Press enter. ’

A.4 File ’0-1-linking-vpp-instances.sh’

#! / usr / bin / sudo bash
# This file is used to create connections between routers and set routes for adjacent
IPs.

# Set up all connections
# E1C1 connection
ip link add name E1C1-E1 type veth peer name E1C1-C1
vppctl -s /run/vpp/cli-vppE1.sock create host-interface name E1C1-E1
vppctl -s /run/vpp/cli-vppC1.sock create host-interface name E1C1-C1

vppctl -s /run/vpp/cli-vppE1.sock set int state host-E1C1-E1 up
vppctl -s /run/vpp/cli-vppC1.sock set int state host-E1C1-C1 up
vppctl -s /run/vpp/cli-vppE1.sock set int ip address host-E1C1-E1 fc00 :: 1: 0: 1/112 vppctl
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A.4. File ’0-1-linking-vpp-instances.sh’

-s /run/vpp/cli-vppC1.sock set int ip address host-E1C1-C1 fc00 :: 1: 0: 2/112

vppctl -s /run/vpp/cli-vppE1.sock set interface mtu 1500 host-E1C1-E1
vppctl -s /run/vpp/cli-vppC1.sock set interface mtu 1500 host-E1C1-C1
# C1C2 connection
ip link add name C1C2-C1 type veth peer name C1C2-C2
vppctl -s /run/vpp/cli-vppC1.sock create host-interface name C1C2-C1
vppctl -s /run/vpp/cli-vppC2.sock create host-interface name C1C2-C2

vppctl -s /run/vpp/cli-vppC1.sock set int state host-C1C2-C1 up
vppctl -s /run/vpp/cli-vppC2.sock set int state host-C1C2-C2 up
vppctl -s /run/vpp/cli-vppC1.sock set int ip address host-C1C2-C1 fc00 :: 2: 0: 1/112 vppctl
-s /run/vpp/cli-vppC2.sock set int ip address host-C1C2-C2 fc00 :: 2: 0: 2/112

vppctl -s /run/vpp/cli-vppC1.sock set interface mtu 1500 host-C1C2-C1
vppctl -s /run/vpp/cli-vppC2.sock set interface mtu 1500 host-C1C2-C2
# C2E2 connection

ip link add name C2E2-C2 type veth peer name C2E2-E2
vppctl -s /run/vpp/cli-vppC2.sock create host-interface name C2E2-C2
vppctl -s /run/vpp/cli-vppE2.sock create host-interface name C2E2-E2

vppctl -s /run/vpp/cli-vppC2.sock set int state host-C2E2-C2 up
vppctl -s /run/vpp/cli-vppE2.sock set int state host-C2E2-E2 up
vppctl -s /run/vpp/cli-vppC2.sock set int ip address host-C2E2-C2 fc00 :: 3: 0: 1/112 vppctl
-s /run/vpp/cli-vppE2.sock set int ip address host-C2E2-E2 fc00 :: 3: 0: 2/112

vppctl -s /run/vpp/cli-vppC2.sock set interface mtu 1500 host-C2E2-C2
vppctl -s /run/vpp/cli-vppE2.sock set interface mtu 1500 host-C2E2-E2
# E1C3 connection
ip link add name E1C3-E1 type veth peer name E1C3-C3
vppctl -s /run/vpp/cli-vppE1.sock create host-interface name E1C3-E1
vppctl -s /run/vpp/cli-vppC3.sock create host-interface name E1C3-C3

vppctl -s /run/vpp/cli-vppE1.sock set int state host-E1C3-E1 up
vppctl -s /run/vpp/cli-vppC3.sock set int state host-E1C3-C3 up
vppctl -s /run/vpp/cli-vppE1.sock set int ip address host-E1C3-E1 fc00 :: 6: 0: 1/112 vppctl
-s /run/vpp/cli-vppC3.sock set int ip address host-E1C3-C3 fc00 :: 6: 0: 2/112

vppctl -s /run/vpp/cli-vppE1.sock set interface mtu 1500 host-E1C3-E1
vppctl -s /run/vpp/cli-vppC3.sock set interface mtu 1500 host-E1C3-C3
# Connection C1C3
ip link add name C1C3-C1 type veth peer name C1C3-C3
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A.4. File ’0-1-linking-vpp-instances.sh’

vppctl -s /run/vpp/cli-vppC1.sock create host-interface name C1C3-C1
vppctl -s /run/vpp/cli-vppC3.sock create host-interface name C1C3-C3

vppctl -s /run/vpp/cli-vppC1.sock set int state host-C1C3-C1 up
vppctl -s /run/vpp/cli-vppC3.sock set int state host-C1C3-C3 up
vppctl -s /run/vpp/cli-vppC1.sock set int ip address host-C1C3-C1 fc00 :: 7: 0: 1/112 vppctl
-s /run/vpp/cli-vppC3.sock set int ip address host-C1C3-C3 fc00 :: 7: 0: 2/112

vppctl -s /run/vpp/cli-vppC1.sock set interface mtu 1500 host-C1C3-C1
vppctl -s /run/vpp/cli-vppC3.sock set interface mtu 1500 host-C1C3-C3
# C3C4 connection
ip link add name C3C4-C3 type veth peer name C3C4-C4
vppctl -s /run/vpp/cli-vppC3.sock create host-interface name C3C4-C3
vppctl -s /run/vpp/cli-vppC4.sock create host-interface name C3C4-C4

vppctl -s /run/vpp/cli-vppC3.sock set int state host-C3C4-C3 up
vppctl -s /run/vpp/cli-vppC4.sock set int state host-C3C4-C4 up
vppctl -s /run/vpp/cli-vppC3.sock set int ip address host-C3C4-C3 fc00 :: 5: 0: 2/112 vppctl
-s /run/vpp/cli-vppC4.sock set int ip address host-C3C4-C4 fc00 :: 5: 0: 1/112

vppctl -s /run/vpp/cli-vppC3.sock set interface mtu 1400 host-C3C4-C3
vppctl -s /run/vpp/cli-vppC4.sock set interface mtu 1400 host-C3C4-C4
# C2C4 connection

ip link add name C2C4-C2 type veth peer name C2C4-C4
vppctl -s /run/vpp/cli-vppC2.sock create host-interface name C2C4-C2
vppctl -s /run/vpp/cli-vppC4.sock create host-interface name C2C4-C4

vppctl -s /run/vpp/cli-vppC2.sock set int state host-C2C4-C2 up
vppctl -s /run/vpp/cli-vppC4.sock set int state host-C2C4-C4 up
vppctl -s /run/vpp/cli-vppC2.sock set int ip address host-C2C4-C2 fc00 :: 8: 0: 1/112 vppctl
-s /run/vpp/cli-vppC4.sock set int ip address host-C2C4-C4 fc00 :: 8: 0: 2/112

vppctl -s /run/vpp/cli-vppC2.sock set interface mtu 1500 host-C2C4-C2
vppctl -s /run/vpp/cli-vppC4.sock set interface mtu 1500 host-C2C4-C4
# C4E2 connection
ip link add name C4E2-C4 type veth peer name C4E2-E2
vppctl -s /run/vpp/cli-vppC4.sock create host-interface name C4E2-C4
vppctl -s /run/vpp/cli-vppE2.sock create host-interface name C4E2-E2

vppctl -s /run/vpp/cli-vppC4.sock set int state host-C4E2-C4 up
vppctl -s /run/vpp/cli-vppE2.sock set int state host-C4E2-E2 up
vppctl -s /run/vpp/cli-vppC4.sock set int ip address host-C4E2-C4 fc00 :: 4: 0: 1/112 vppctl
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A.5. File ’0-2-creating-hosts.sh’

-s /run/vpp/cli-vppE2.sock set int ip address host-C4E2-E2 fc00 :: 4: 0: 2/112

vppctl -s /run/vpp/cli-vppC4.sock set interface mtu 1500 host-C4E2-C4
vppctl -s /run/vpp/cli-vppE2.sock set interface mtu 1500 host-C4E2-E2

# Routing Table
# Link E1C1
vppctl -s /run/vpp/cli-vppE1.sock ip route add fc00 :: 1: 0: 2/112 via fc00 :: 1: 0: 1
vppctl -s /run/vpp/cli-vppC1.sock ip route add fc00 :: 1: 0: 1/112 via fc00 :: 1: 0: 2
vppctl -s /run/vpp/cli-vppC1.sock ip route add fc00 :: 1: 2/112 via fc00 :: 1: 0: 1 ns1-
C1
# Link C1C2
vppctl -s /run/vpp/cli-vppC1.sock ip route add fc00 :: 2: 0: 2/112 via fc00 :: 2: 0: 1
vppctl -s /run/vpp/cli-vppC2.sock ip route add fc00 :: 2: 0: 1/112 via fc00 :: 2: 0: 2
# Link C2E2
vppctl -s /run/vpp/cli-vppC2.sock ip route add fc00 :: 3: 0: 2/112 via fc00 :: 3: 0: 1
vppctl -s /run/vpp/cli-vppE2.sock ip route add fc00 :: 3: 0: 1/112 via fc00 :: 3: 0: 2
vppctl -s /run/vpp/cli-vppC2.sock ip route add fc00 :: 2: 2/112 via fc00 :: 3: 0: 2 ns2-
C2
# Link E1C3
vppctl -s /run/vpp/cli-vppE1.sock ip route add fc00 :: 6: 0: 2/112 via fc00 :: 6: 0: 1
vppctl -s /run/vpp/cli-vppC3.sock ip route add fc00 :: 6: 0: 1/112 via fc00 :: 6: 0: 2
# Link C1C3
vppctl -s /run/vpp/cli-vppC1.sock ip route add fc00 :: 7: 0: 2/112 via fc00 :: 7: 0: 1
vppctl -s /run/vpp/cli-vppC3.sock ip route add fc00 :: 7: 0: 1/112 via fc00 :: 7: 0: 2
# Link C3C4
vppctl -s /run/vpp/cli-vppC3.sock ip route add fc00 :: 5: 0: 1/112 via fc00 :: 5: 0: 2
vppctl -s /run/vpp/cli-vppC4.sock ip route add fc00 :: 5: 0: 2/112 via fc00 :: 5: 0: 1
# Link C2C4
# ping
# ping

vppctl -s /run/vpp/cli-vppC2.sock ip route add fc00 :: 8: 0: 2/112 via fc00 :: 8: 0: 1
vppctl -s /run/vpp/cli-vppC4.sock ip route add fc00 :: 8: 0: 1/112 via fc00 :: 8: 0: 2
# Link C4E2
vppctl -s /run/vpp/cli-vppC4.sock ip route add fc00 :: 4: 0: 2/112 via fc00 :: 4: 0: 1
vppctl -s /run/vpp/cli-vppE2.sock ip route add fc00 :: 4: 0: 1/112 via fc00 :: 4: 0: 2

A.5 File ’0-2-creating-hosts.sh’

#! / usr / bin / sudo bash
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A.5. File ’0-2-creating-hosts.sh’

# This file is created to instantiate hosts and connect them to routers.

# HOSTS
ip netns add ns1
ip link add pc1 type veth peer name vethns1 ip
link set vethns1 netns ns1
ip netns exec ns1 ip link set lo up ip
netns exec ns1 ip link set vethns1 up ip
link set pc1 up
ip netns exec ns1 ip route flush table main #delete the existing routing table ip netns
exec ns1 ip addr flush dev vethns1 #delete all ip addresses present ip netns exec ns1
ip addr add fc00 :: 1: 2/112 dev vethns1
ip netns exec ns1 ip route add default via fc00 :: 1: 1

ip netns add ns2
ip link add pc2 type veth peer name vethns2 ip
link set vethns2 netns ns2
ip netns exec ns2 ip link set lo up ip
netns exec ns2 ip link set vethns2 up ip
link set pc2 up
ip netns exec ns2 ip route flush table main #delete the existing routing table ip netns
exec ns2 ip addr flush dev vethns2 #delete all ip addresses present ip netns exec ns2
ip addr add fc00 :: 2: 2/112 dev vethns2
ip netns exec ns2 ip route add default via fc00 :: 2: 1

# LINK HOSTS TO VPP
sudo vppctl -s /run/vpp/cli-vppE1.sock create host-interface name pc1 sudo
vppctl -s /run/vpp/cli-vppE1.sock set interface mtu 1300 host-pc1 sudo vppctl
-s / run / vpp / cli-vppE1.sock set interface state host-pc1 up
sudo vppctl -s /run/vpp/cli-vppE1.sock set interface ip address host-pc1 fc00 :: 1: 1/112

sudo vppctl -s /run/vpp/cli-vppE2.sock create host-interface name pc2 sudo
vppctl -s /run/vpp/cli-vppE2.sock set interface mtu 1300 host-pc2 sudo vppctl
-s / run / vpp / cli-vppE2.sock set interface state host-pc2 up
sudo vppctl -s /run/vpp/cli-vppE2.sock set interface ip address host-pc2 fc00 :: 2: 1/112

# SEND IPv6 Neighbor Discovery Messages
ip netns exec ns1 ping -c 1 fc00 :: 1: 0: 2 ip
netns exec ns2 ping -c 1 fc00 :: 3: 0: 1
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A.6 File ’0-3-setting-SRv6.sh’

#! / usr / bin / sudo bash

# This file is created to set SRv6

# Setting BSID
# E1
sudo vppctl -s /run/vpp/cli-vppE1.sock create loopback interface instance 0
sudo vppctl -s /run/vpp/cli-vppE1.sock set interface state loop0 up
sudo vppctl -s /run/vpp/cli-vppE1.sock set interface ip address loop0 e1 :: / 128
# E2
sudo vppctl -s /run/vpp/cli-vppE2.sock create loopback interface instance 0
sudo vppctl -s /run/vpp/cli-vppE2.sock set interface state loop0 up
sudo vppctl -s /run/vpp/cli-vppE2.sock set interface ip address loop0 e2 :: / 128

# BSID ROUTING TABLE
sudo vppctl -s /run/vpp/cli-vppE1.sock ip route add c1 :: / 128 via fc00 :: 1: 0: 2
sudo vppctl -s /run/vpp/cli-vppE1.sock ip route add c3: : / 128 via fc00 :: 6: 0: 2

sudo vppctl -s /run/vpp/cli-vppC1.sock ip route add e1 :: 9/128 via fc00 :: 1: 0: 1
sudo vppctl -s /run/vpp/cli-vppC1.sock ip route add c3 :: / 128 via fc00 :: 7: 0: 2 sudo
vppctl -s /run/vpp/cli-vppC1.sock ip route add c2 :: / 128 via fc00 :: 2: 0: 2

sudo vppctl -s /run/vpp/cli-vppC2.sock ip route add c1 :: / 128 via fc00 :: 2: 0: 1 sudo
vppctl -s /run/vpp/cli-vppC2.sock ip route add c4: : / 128 via fc00 :: 8: 0: 2 sudo
vppctl -s /run/vpp/cli-vppC2.sock ip route add e2 :: 9/128 via fc00 :: 3: 0: 2

sudo vppctl -s /run/vpp/cli-vppC3.sock ip route add c1 :: / 128 via fc00 :: 7: 0: 1 sudo
vppctl -s /run/vpp/cli-vppC3.sock ip route add c4: : / 128 via fc00 :: 5: 0: 1 sudo
vppctl -s /run/vpp/cli-vppC3.sock ip route add e1 :: 9/128 via fc00 :: 6: 0: 1

sudo vppctl -s /run/vpp/cli-vppC4.sock ip route add c3 :: / 128 via fc00 :: 5: 0: 2 sudo
vppctl -s /run/vpp/cli-vppC4.sock ip route add c2: : / 128 via fc00 :: 8: 0: 1 sudo
vppctl -s /run/vpp/cli-vppC4.sock ip route add e2 :: 9/128 via fc00 :: 4: 0: 2

sudo vppctl -s /run/vpp/cli-vppE2.sock ip route add c2 :: / 128 via fc00 :: 3: 0: 1
sudo vppctl -s /run/vpp/cli-vppE2.sock ip route add c4: : / 128 via fc00 :: 4: 0: 1

# configuring srv6
sudo vppctl -s /run/vpp/cli-vppE1.sock set sr encaps source addr e1 ::
sudo vppctl -s /run/vpp/cli-vppE1.sock sr policy add bsid a1 :: next c1 :: next c2 :: next e2 :: 9
encap
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sudo vppctl -s /run/vpp/cli-vppE1.sock sr policy add bsid a3 :: next c3 :: next c4 :: next e2 :: 9
encap
sudo vppctl -s /run/vpp/cli-vppE1.sock sr steer l3 fc00 :: 2: 2/112 via bsid a3 ::
sudo vppctl -s /run/vpp/cli-vppE1.sock sr localsid address e1 :: 9 behavior end.dx6 host-pc1 fc00
::1: 2

sudo vppctl -s /run/vpp/cli-vppE2.sock set sr encaps source addr e2 ::
sudo vppctl -s /run/vpp/cli-vppE2.sock sr policy add bsid a1 :: next c2 :: next c1 :: next e1 :: 9
encap

sudo vppctl -s /run/vpp/cli-vppE2.sock sr policy add bsid a3 :: next c4 :: next c3 :: next e1 ::
9 encap

sudo vppctl -s /run/vpp/cli-vppE2.sock sr steer l3 fc00 :: 1: 2/112 via bsid a3 ::
sudo vppctl -s /run/vpp/cli-vppE2.sock sr localsid address e2 :: 9 behavior end.dx6 host-pc2 fc00
::2: 2
# pause ’E2: SRV6 configured. Press enter. ’

sudo vppctl -s /run/vpp/cli-vppC1.sock sr localsid address c1 :: behavior end
sudo vppctl -s /run/vpp/cli-vppC2.sock sr localsid address c2 :: behavior end
sudo vppctl -s / run /vpp/cli-vppC3.sock sr localsid address c3 :: behavior end
sudo vppctl -s /run/vpp/cli-vppC4.sock sr localsid address c4 :: behavior end

python3 moving-node-graph.py

# All TCP traffic goes through policy1 (and if active, also through policy 2). The rest for the 3
sudo vppctl -s /run/vpp/cli-vppE1.sock classify table mask l3 ip6 src dst proto
# proto = next header, 58 = ICMPv6, 6 = TCP
sudo vppctl -s /run/vpp/cli-vppE1.sock classify session acl-hit-next 1 table-index 0 match l3 ip6 src
fc00 :: 1: 2 dst fc00 :: 2: 2 proto 6 action set-sr- policy-index 0
sudo vppctl -s /run/vpp/cli-vppE1.sock set interface input acl intfc host-pc1 ip6-table 0

sudo vppctl -s /run/vpp/cli-vppE2.sock classify table mask l3 ip6 src dst proto
sudo vppctl -s /run/vpp/cli-vppE2.sock classify session acl-hit-next 1 table-index 0 match l3 ip6 src
fc00 :: 2: 2 dst fc00 :: 1: 2 proto 6 action set-sr- policy-index 0
sudo vppctl -s /run/vpp/cli-vppE2.sock set interface input acl intfc host-pc2 ip6-table 0

# The next two lines are due to the fact that the linux kernel has problems in TCP-SRv6
in fully emulated environments (checksum).
ip netns exec ns1 ethtool -K vethns1 tx off ip
netns exec ns2 ethtool -K vethns2 tx off
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A.7 File ’tcp.sh’

#! / usr / bin / sudo bash
gnome-terminal - bash -c "ip netns exec ns2 iperf3 -s -V -p 80; exec bash"
sleep 2
gnome-terminal - bash -c "ip netns exec ns1 iperf3 -c fc00 :: 2: 2 -V -p 80 -l 1460; exec bash"

A.8 File ’tcp.sh’

#! / usr / bin / sudo bash
# ping of 1176 bytes
sudo ip netns exec ns1 ping -c 5 -M do -s 1176 fc00 :: 2: 2

A.9 File ’enable-flow.sh’

#! / usr / bin / sudo bash
echo ’Start TCP communication: start Server on Host B and client on Host A’ gnometerminal
- bash -c "ip netns exec ns2 iperf3 -s -V -p 80; exec sudo bash" # add to string;
exec sudo bash to keep the shell open after ctrl + c aborting the process

sleep 2
gnome-terminal –workingdirectory = ’/ home / giulio / Desktop / BlackHolesFinal3 /
3-TCP-ICMP’ - bash -c "sh. /tcp-client.sh; exec sudo bash"

echo ’Start ping’
gnome-terminal –workingdirectory = ’/ home / giulio / Desktop / BlackHolesFinal3 /
3-TCP-ICMP’ - bash -c "sh. /2-1-ping.sh; exec sudo bash"

A.10 File ’tcp-client.sh’

#! / usr / bin / sudo bash

while true
do
ip netns exec ns1 iperf3 -6 -c fc00 :: 2: 2 -V -p 80 -k 1 -F ’/ home / giulio / Desktop /
BlackHolesFinal3 / big-file’ # send big-file once (-k 1) ( the mtu regulates it himself (perhaps fol-
lowing a mtu discovery))
exec sudo bash #to remove if you want it to loop while true
# sleep 1.5
Done
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A.11 File ’1-1-enable-rec-policy.sh’

#! / usr / bin / sudo bash

# This file is created to set SRv6 policy
sudo vppctl -s /run/vpp/cli-vppC1.sock ip route of c2 :: / 128 via fc00 :: 2: 0: 2
sudo vppctl -s /run/vpp/cli-vppC1.sock sr policy add bsid a2 :: next c3 :: next c4 :: 1 encap
sudo vppctl -s /run/vpp/cli-vppC1.sock sr steer l3 c2 :: / 128 via bsid a2 ::

sudo vppctl -s /run/vpp/cli-vppC4.sock ip route add c3 :: 1/128 via fc00 :: 5: 0: 2
sudo vppctl -s /run/vpp/cli-vppC4.sock sr localsid address c4 :: 1 behavior end.dx6 host-C2C4-C4
fc00 :: 8: 0: 1
sudo vppctl -s /run/vpp/cli-vppC4.sock ip route of fc00 :: 8: 0: 1/112 via fc00 :: 8: 0: 2

sudo vppctl -s /run/vpp/cli-vppC2.sock ip route of c1 :: / 128 via fc00 :: 2: 0: 1
sudo vppctl -s /run/vpp/cli-vppC2.sock sr policy add bsid a2 :: next c4 :: next c3 :: 1 encap sudo
vppctl -s /run/vpp/cli-vppC2.sock sr steer l3 c1: : / 128 via bsid a2 ::

sudo vppctl -s /run/vpp/cli-vppC3.sock ip route add c4 :: 1/128 via fc00 :: 5: 0: 1
sudo vppctl -s /run/vpp/cli-vppC3.sock sr localsid address c3 :: 1 behavior end.dx6 host-C1C3-C3
fc00 :: 7: 0: 1
sudo vppctl -s /run/vpp/cli-vppC3.sock ip route of fc00 :: 7: 0: 1/112 via fc00 :: 7: 0: 2

A.12 File ’1-2-disable-rec-policy.sh’

#! / usr / bin / sudo bash

# This file is created to set SRv6 policy

sudo vppctl -s /run/vpp/cli-vppC1.sock ip route add c2 :: / 128 via fc00 :: 2: 0: 2
sudo vppctl -s /run/vpp/cli-vppC1.sock sr policy del bsid a2 ::
sudo vppctl -s /run/vpp/cli-vppC1.sock sr steer del l3 c2 :: / 128 via bsid a2 ::

sudo vppctl -s /run/vpp/cli-vppC4.sock ip route del c3 :: 1/128 via fc00 :: 5: 0: 2
sudo vppctl -s /run/vpp/cli-vppC4.sock sr localsid del address c4 :: 1 behavior end.dx6 host-C2C4-
C4
fc00 :: 8: 0: 1
sudo vppctl -s /run/vpp/cli-vppC4.sock ip route add fc00 :: 8: 0: 1/112 via fc00 :: 8: 0: 2

sudo vppctl -s /run/vpp/cli-vppC2.sock ip route add c1 :: / 128 via fc00 :: 2: 0: 1
sudo vppctl -s /run/vpp/cli-vppC2.sock sr policy del bsid a2 ::
sudo vppctl -s /run/vpp/cli-vppC2.sock sr steer del l3 c1 :: / 128 via bsid a2 ::
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A.13. File ’6-MTU-Path-Discovery.sh’

sudo vppctl -s /run/vpp/cli-vppC3.sock ip route of c4 :: 1/128 via fc00 :: 5: 0: 1
sudo vppctl -s /run/vpp/cli-vppC3.sock sr localsid del address c3 :: 1 behavior end.dx6 host-C1C3-
C3 fc00 :: 7: 0: 1
sudo vppctl -s /run/vpp/cli-vppC3.sock ip route add fc00 :: 7: 0: 1/112 via fc00 :: 7: 0: 2

A.13 File ’6-MTU-Path-Discovery.sh’

#! / usr / bin / sudo bash

ip netns exec ns1 traceroute -6 -T –mtu fc00 :: 2: 2 # to verify the happened mtu discovery
path: ip
netns exec ns1 ip route get fc00 :: 2: 2
sleep 3
echo "The MTU path discovery (TCP) result is:" ip
netns exec ns1 ip route get fc00 :: 2: 2

A.14 File ’9-exit-kill-VPP.sh’

#! / usr / bin / sudo bash

sudo pkill vpp
sudo ip netns of ns1 sudo
ip netns of ns2 sudo ip
link of E1C1-C1 sudo ip
link of C1C2-C2 sudo ip
link of C2E2-E2 sudo ip
link of E1C3-C3 sudo ip
link of C1C3-C3 sudo ip
link of C3C4-C4 sudo ip
link of C2C2

A.15 Python API installation

The following commands allow the installation of the Python API.

apt-get install vpp-api-python python3-vpp-api vpp-dbg vpp-dev curl
https://bootstrap.pypa.io/get-pip.py –output get-pip.py python getpip.
py
pip install vpp-papi
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A.16. Script ’moving-node-graph.py’

pip install cffi

A.16 Script ’moving-node-graph.py’

The following script allows adding the ’ip6-inacl’ node to the processing graph of VPP- This node
allows for traffic classification based on type, source address, destination address, and more.

#! / usr / bin / env python

from –future– import print-function

import os
import fnmatch

from vpp-papi import VPP

VPP-JSON-DIR = ’/ usr / share / vpp / api / core /’
API-FILE-SUFFIX = ’* .api.json’

def load-json-api-files (json-dir = VPP-JSON-DIR, suffix = API-FILE-SUFFIX):
jsonfiles = []
for root, dirnames, filenames in os.walk (json-dir):
for filename in fnmatch.filter (filenames, suffix):
jsonfiles.append (os.path.join (json-dir, filename))

if not jsonfiles:
print (’Error: no json api files found’)
exit (-1)

return jsonfiles

def connect-vpp (jsonfiles, VPP-ID, prefix):
vpp = VPP (jsonfiles)
r = vpp.connect (VPP-ID, chroot-prefix = prefix)
print ("VPP api opened with code:% s"% r) return
vpp

# VppE1
vpp1 = connect-vpp (load-json-api-files (), ’vppE1’, ’vppE1’) vpp1.api.add-node-next
(node-name = ’ip6-inacl’, next-name = ’sr-pl-rewrite-encaps’)
# indicates that the next node in the graph of vpp and sr-pl-rewrite-encaps if that
just visited and ip6-inacl
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vpp1.disconnect ()

# VppE2
vpp2 = connect-vpp (load-json-api-files (), ’vppE2’, ’vppE2’) vpp2.api.add-node-next
(node-name = ’ip6-inacl’, next-name = ’sr-pl-rewrite-encaps’)
# indicates that the next node in the graph of vpp and sr-pl-rewrite-encaps if that
just visited and ip6-inacl
vpp2.disconnect ()
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Appendix

B.1 Main

clear all
close all
load (’test3.mat’)
statsSR =̄ zeros(1, 4);
k =̄ 1;
margine =̄ 0;
scaling-factor =̄ 0.6;
congestion-amplification =̄ 3*10̂-3;
perc-flusso-perso =̄ 1;
DP =̄ 3;

cammini, linkRete, flows, PSID, R, YbExp, G, BLUE, GREEN, B, ,̃ ,̃ SL, NH, NN

precalcola-dati(A, delay, scaling-factor * bandwidth, TM, congestion-amplification);
failures =̄ zeros(length(linkRete), 2);
links-BH =̄ zeros(length(linkRete));
flussi-BH =̄ zeros(length(flows), length(linkRete));
flussi-BH1 =̄ zeros(length(flows), length(linkRete));
for f =̄ 1:length(flows)
for l =̄ 1:length(linkRete)
if R(l, f) > 0
if linkRete(l, 2) =̄ flows(f, 2)
failures(k, :) =̄ [l f];

links-BH(:, k), flussi-BH(:, k), flussi-BH1(:, k)

start-failure-detection(failures(k, :), A, linkRete, flows, PSID, R, YbExp, G, BLUE, GREEN, B,
SL, cammini, NH, margine, congestion-amplification, perc-flusso-perso, DP, 0, NN);
k =̄ k + 1
end
end
end
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end
disegnaFigure

B.2 Pre-calculates data

function [cammini, linkRete, flows, PSID, R, YbExp, G, BLUE, GREEN, B, GREEN-eq, BLUE-eq,
SL, NH,NN] =̄ precalcola-dati(A, delay, bandwidth, TM, congestion-amplification)

split-color =̄ 1;ECMP =̄ 0;
num-color =̄ length(split-color);
N =̄ length(A);
L =̄ sum(sum(A));

linkRete =̄ zeros(L, 5);
l =̄ 1;

for i =̄ 1:N
for j =̄ 1:N
if A(i, j) =̄= 1
linkRete(l, :) =̄ [l i j delay(i, j) bandwidth(i, j)];
l =̄ l + 1;
end
end
end

A(A =̄= 0) =̄ inf;
K =̄ length(find(TM > 0)) * num-color;
flows =̄ zeros(K, 5);
k =̄ 1;

for c =̄ 1:num-color
for i =̄ 1:N
for e =̄ 1:N
if TM(i, e) =̄ 0
intensity =̄ split-color(c) * TM(i, e);
flows(k, :) =̄ [k i e c intensity];
k =̄ k + 1;
end
end
end
end
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K =̄ length(flows);

[G, cammini, NH] =̄ calcolaIGPpaths(L, N, A, linkRete, ECMP);

R =̄ zeros(L, K);

[SL1, R] =̄ calcolaSL-color1(N, R, G, linkRete, flows);
SL =̄ SL1;

[B, YbExp, PSID, GREEN, BLUE, GREEN-eq, BLUE-eq] =̄ aggiornaPSID(SL, G, flows, N,
linkRete);

NN =̄ CalcolaMargine(1,1,congestion-amplification);
return

B.3 Calculate IGP path

function [IGP-paths, cammini, NH] =̄ calcolaIGPpaths(L, N, A, linkRete, ECMP)

IGP-paths =̄ zeros(L, N * (N - 1));
cammini =̄ cell(N);
k =̄ 1;

if ECMP =̄= 0
NH =̄ zeros(N);
for s =̄ 1:N

, paths

=̄ graphshortestpath(sparse(A), s);
for d =̄ 1:N
if s =̄ d
NH(s, d) =̄ pathsd(2);
end
end
end
end

for s =̄ 1:N
for d =̄ 1:N
if s =̄ d
if ECMP =̄= 1
shortestPaths =̄ kShortestPath(A, s, d);
camminis, d =̄ shortestPaths;
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IGP-paths(:, k) =̄ costruisciSupporto(shortestPaths, linkRete, L);
else
path =̄ costruisciPathDaMatriceNH(NH, s, d, N);
camminis, d =̄ path;
IGP-paths(:, k) =̄ costruisciSupporto(camminis, d, linkRete, L);
end
k =̄ k + 1;
end
end
end

return

B.4 K shortestPath

function [shortestPaths, totalCosts] =̄ kShortestPath(netCostMatrix, source, destination)

k-paths =̄ inf;

k=̄1;
path cost

=̄ dijkstra(netCostMatrix, source, destination);

path-number =̄ 1;
Ppath-number,1 =̄ path; Ppath-number,2 =̄ cost;
current-P =̄ path-number;

size-X=̄1;
Xsize-X =̄ path-number; path; cost;

S(path-number) =̄ path(1);
shortestPathsk =̄ path;
totalCosts(k) =̄ cost;

if length(path) =̄= 2
return
end

while (k < k-paths && size-X =̄ 0 )
for i=̄1:length(X)
if Xi1 =̄= current-P
size-X =̄ size-X - 1;
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X(i) =̄ [];
break;
end
end

P- =̄ Pcurrent-P,1;
w =̄ S(current-P);

for i =̄ 1: length(P-)
if w =̄= P-(i)
w-index-in-path =̄ i;
end
end

for index-dev-vertex=̄ w-index-in-path: length(P-) - 1
temp-netCostMatrix =̄ netCostMatrix;
for i =̄ 1: index-dev-vertex-1
v =̄ P-(i);
temp-netCostMatrix(v,:)=̄inf;
temp-netCostMatrix(:,v)=̄inf;
end

SP-sameSubPath=̄[];
index =̄1;
SP-sameSubPathindex=̄P-;
for i =̄ 1: length(shortestPaths)
if length(shortestPathsi) >=̄ index-dev-vertex
if P-(1:index-dev-vertex) =̄= shortestPathsi(1:index-dev-vertex)
index =̄ index+1;
SP-sameSubPathindex=̄shortestPathsi;
end
end
end

v- =̄ P-(index-dev-vertex);
for j =̄ 1: length(SP-sameSubPath)
next =̄ SP-sameSubPathj(index-dev-vertex+1);
temp-netCostMatrix(v-,next)=̄inf;
end

sub-P =̄ P-(1:index-dev-vertex);
cost-sub-P=̄0;
for i =̄ 1: length(sub-P)-1
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cost-sub-P =̄ cost-sub-P + netCostMatrix(sub-P(i),sub-P(i+1));
end

[dev-p c] =̄ dijkstra(temp-netCostMatrix, P-(index-dev-vertex), destination);
if isempty(dev-p)
path-number =̄ path-number + 1;
Ppath-number,1 =̄ [sub-P(1:end-1) dev-p];
Ppath-number,2 =̄ cost-sub-P + c;
S(path-number) =̄ P-(index-dev-vertex);
size-X =̄ size-X + 1;
Xsize-X =̄ path-number; Ppath-number,1 ;Ppath-number,2 ;
end
end

if size-X > 0
shortestXCost=̄ X13;
shortestX=̄ X11;
for i =̄ 2 : size-X
if Xi3 < shortestXCost
shortestX=̄ Xi1;
shortestXCost=̄ Xi3;
end
end
current-P =̄ shortestX;

k =̄ k+1;
shortestPathsk =̄ Pcurrent-P,1;
totalCosts(k) =̄ Pcurrent-P,2;
end

if totalCosts(k - 1) < totalCosts(k)
shortestPaths =̄ shortestPaths(1:k - 1);
totalCosts =̄ totalCosts(1:k - 1);
return
end
end

return
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B.5 Dijkstra

function [shortestPath, totalCost] =̄ dijkstra(netCostMatrix, s, d)
=̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄=
shortestPath: the list of nodes in the shortestPath from source to destination;
totalCost: the total cost of the shortestPath;
farthestNode: the farthest node to reach for each node after performing the routing;
n: the number of nodes in the network;
s: source node index;
d: destination node index;
=̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄=
Code by:
++by Xiaodong Wang
++23 Jul 2004 (Updated 29 Jul 2004)
++http://www.mathworks.com/matlabcentral/fileexchange/5550-dijkstra-shortest-path-routing
Modifications (simplifications) by Meral Shirazipour 9 Dec 2009
=̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄==̄=
n =̄ size(netCostMatrix,1);
for i =̄ 1:n
initialize the farthest node to be itself;
farthestPrevHop(i) =̄ i; farthestNextHop(i) =̄ i;
end

visited(1:n) =̄ false;

distance(1:n) =̄ inf; parent(1:n) =̄ 0;

distance(s) =̄ 0;
for i =̄ 1:(n-1),
temp =̄ [];
for h =̄ 1:n,
if visited(h) temp=̄[temp distance(h)];
else
temp=̄[temp inf];
end
end;

t, u
=̄ min(temp);
visited(u) =̄ true;
for v =̄ 1:n,
if ( ( netCostMatrix(u, v) + distance(u)) < distance(v) )
distance(v) =̄ distance(u) + netCostMatrix(u, v); parent(v) =̄ u; end;
end;
end;
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shortestPath =̄ [];
if parent(d) =̄ 0 t =̄ d;
shortestPath =̄ [d];
while t =̄ s
p =̄ parent(t);
shortestPath =̄ [p shortestPath];

if netCostMatrix(t, farthestPrevHop(t)) < netCostMatrix(t, p)
farthestPrevHop(t) =̄ p;
end;
if netCostMatrix(p, farthestNextHop(p)) < netCostMatrix(p, t)
farthestNextHop(p) =̄ t;
end;

t =̄ p;
end;
end;

totalCost =̄ distance(d);

B.6 Build support

function supporto =̄ costruisciSupporto(shortestPaths, linkRete, L)

supporto =̄ zeros (L, 1);
P =̄ length(shortestPaths);

for p =̄ 1:P
path =̄ shortestPathsp;
for l =̄ 2:length(path)
link =̄ linkRete(:, 2) =̄= path(l - 1) & linkRete(:, 3) =̄= path(l);
supporto(link) =̄ supporto(link) + (1 / P);
end
end

return
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B.7 Build path from matrix

function path =̄ costruisciPathDaMatriceNH(NH, s, d, N)

path =̄ zeros(1, N);
path(1) =̄ s;
nh =̄ NH(s, d);
path(2) =̄ nh;

k =̄ 3;

while nh =̄ d
nh =̄ NH(path(k - 1), d);
path(k) =̄ nh;
k =̄ k + 1;
end

path =̄ path(1:k - 1);

return

B.8 Calculate SL color

function [SL, R] =̄ calcolaSL-color1(N, R, IGP-paths, linkRete, flows)

SL =̄ cell(N);

for s =̄ 1:N
for d =̄ 1:N
flusso =̄ flows(:, 2) =̄= s & flows(:, 3) =̄= d & flows(:, 4) =̄= 1;
if isempty(find(flusso =̄= 1, 1)) =̄ 1
SLs, d =̄ [s d];
f =̄ (s - 1) * (N - 1) + d - (d > s);
R(:, flusso) =̄ IGP-paths(:, f);
end
end
end

return
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B.9 Update PSID

function [B, Yb, PSID, GREEN, BLUE, GREEN-eq, BLUE-eq] =̄ aggiornaPSID(SL, G, flows, N,
linkRete)

PSID =̄ zeros(N * N, 3);
Yb =̄ zeros(length(PSID), 1);
GREEN =̄ zeros(N, N);
BLUE =̄ zeros(N, N);
B =̄ zeros(length(PSID), size(flows, 1));
GREEN-eq =̄ zeros(length(PSID), size(flows, 1));
BLUE-eq =̄ zeros(length(PSID), size(flows, 1));
p =̄ 1;

for i =̄ 1:N
for a =̄ 1:N
PSID(p, :) =̄ [p i a];
p =̄ p + 1;
end
end

for f =̄ 1:size(flows, 1)
sl =̄ SLflows(f, 4)flows(f, 2), flows(f, 3);
contatore =̄ PSID(:, 2) =̄= flows(f, 2) & PSID(:, 3) =̄= flows(f, 3);
B(contatore, f) =̄ 1; Yb(contatore) =̄ Yb(contatore) + flows(f, 5);
GREEN(flows(f, 2), flows(f, 3)) =̄ 1;
GREEN-eq(contatore, f) =̄ 1;
for a =̄ 2:length(sl)
contatore =̄ PSID(:, 2) =̄= sl(a - 1) & PSID(:, 3) =̄= sl(a);
if a < length(sl)
BLUE(sl(a - 1), sl(a)) =̄ 1; BLUE-eq(contatore, f) =̄ 1;
end
fid =̄ (sl(a -1) - 1) * (N - 1) + sl(a) - (sl(a) > sl(a -1));
tmp =̄ [linkRete(G(:, fid) > 0, :) G(G(:, fid) > 0, fid)];
for l =̄ 1:size(tmp, 1)
psid =̄ PSID(:, 2) =̄= tmp(l, 3) & PSID(:, 3) =̄= sl(a);
B(psid, f) =̄ B(psid, f) + tmp(l, 6);
Yb(psid) =̄ Yb(psid) + flows(f, 5) * tmp(l, 6);
end
end
end

Yb =̄ B * flows(:, 5);
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return

B.10 Calculate Margin

function [NN] =̄ CalcolaMargine(utilizzazione, CapacitaLink, congestion-amplification); L=̄10000;
P=̄[10,5];

utilizzazione=̄ rand(1,L);
linkCap=̄[105̂, 106̂, 6*106̂,107̂, 108̂ 109̂];
indexCapacitaLink=̄ randi(length(linkCap),L,1);
CapacitaLink=̄linkCap(1,indexCapacitaLink);

for cont =̄ 1:length(utilizzazione);
t(cont)=̄ probperdita(utilizzazione(cont),congestion-amplification);
t(cont)=̄ round( t(cont)*CapacitaLink(cont)*utilizzazione(cont) ); end
x=̄[utilizzazione;CapacitaLink];

net =̄ feedforwardnet(P);
net =̄ train (net,x,t);
NN =̄ net;

B.11 Probability of loss

function [Qx] =̄ probperdita(utilizazione,congestion-amplification ) x =̄ [0 0.6 0.85 0.95 1];
y=̄ [0 0.2 0.45 0.7 1];
xx =̄ [0:0.001:1];
yy =̄ interp1(x,y,xx);

tmp=̄=abs(utilizazione*ones(size(xx)) - xx);
index=̄find(tmp=̄=min(tmp),1);
Qx=̄ congestion-amplification * yy(index);

B.12 Draw figures

link-precision =̄ zeros(1, length(failures));
link-recall =̄ zeros(1, length(failures));

for f =̄ 1:length(failures)
TP =̄ links-BH(failures(f, 1), f);
FP =̄ sum(links-BH(:, f)) - TP;
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B.12. Draw figures

FN =̄ 1 - TP;
link-precision(f) =̄ 100 * TP / (TP + FP);
link-recall(f) =̄ 100 * TP / (TP + FN);
end

flow-precision =̄ zeros(1, length(failures));
flow-precision1 =̄ zeros(1, length(failures));
flow-recall =̄ zeros(1, length(failures));

for f =̄ 1:length(failures)
TP =̄ flussi-BH(failures(f, 2), f);
TP1 =̄ flussi-BH1(failures(f, 2), f);
FP =̄ sum(flussi-BH(:, f)) - TP;
FN =̄ 1 - TP;
FP1 =̄ sum(flussi-BH1(:, f)) - TP1;
flow-recall(f) =̄ 100 * TP / (TP + FN);
if flow-recall(f) =̄ 0
flow-precision(f) =̄ 100 * TP / (TP + FP);
flow-precision1(f) =̄ 100 * TP1 / (TP1 + FP1);
end
end

figure(1)
axis ’square’
grid on
box on
hold on
plot(sort(flow-precision), ’-’, ’LineWidth’, 2)
plot(sort(flow-precision1), ’r-’, ’LineWidth’, 2)
plot(sort(flow-recall), ’k-’, ’LineWidth’, 2)
legend(’precision 1’,’precision 2’,’recall’)
xlabel(’test ID’)
ylabel(’[

tmp =̄ sum(flussi-BH);
qualiLinks =̄ zeros(length(linkRete), 1);
qualiLinks(failures(:, 1)) =̄ 1;
qualiLinks =̄ find(qualiLinks =̄= 1);

figura =̄ zeros(length(qualiLinks), 2);

for l =̄ 1:length(qualiLinks)
figura(l, 2) =̄ max(tmp(failures(:, 1) =̄= qualiLinks(l)));
figura(l, 1) =̄ min(tmp(failures(:, 1) =̄= qualiLinks(l)));
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end

y =̄ [0.5 * (figura(:, 1) + figura(:, 2)) abs(figura(:, 1) - figura(:, 2))];
y =̄ sortrows(y, 1);

y1 =̄ [0.5 * (figura(:, 1) + figura(:, 2)) figura(:, 1) figura(:, 2)];
y1 =̄ sortrows(y1, 1);

figure(2)
axis ’square’
grid on
box on
hold on
plot(tmp, (100 / length(failures)) * tmp1, ’-’, ’LineWidth’, 2)
ylabel(’xlabel(’

figure(3)
axis ’square’
grid on
box on
hold on
plot(y1(:, 2), ’-’, ’LineWidth’, 2)
plot(y1(:, 3), ’r–’, ’LineWidth’, 2)
ylabel(’# of flows’)
xlabel(’link ID’)
legend(’min’,’max’)

tmp =̄ sort((100 / length(flows)) * sum(flussi-BH));
tmp1 =̄ zeros(length(tmp), 1);

for i =̄ 1:length(tmp)
tmp1(i) =̄ sum(tmp <=̄ tmp(i));
end
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