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Abstract: The electromagnetic interaction between a circular disk with finite conductivity and finite
thickness and a coaxial circular loop of constant current is addressed here. The finite conductivity and
thickness of the material disk lead to the adoption of suitable generalized boundary conditions, and
the problem is thereby reduced to the solution of two sets of dual integral equations in the Hankel
transform domain. Such equations are then solved by expanding the spectral unknowns in Neumann
series of Bessel functions. An alternative formulation that is valid for purely conductive screens with
no magnetic properties, which is computationally much faster, is proposed as well. The magnetic
shielding effectiveness of the structure is studied in detail, pointing out its dependencies and possible
critical situations.

Keywords: dual integral equations; electromagnetic shielding; regularizing Galerkin methods

1. Introduction

The interaction of electromagnetic fields with a circular disk (and its dual counter-
part, i.e., a circular aperture in a plate) is a canonical problem in electromagnetic theory;
research on this subject started in the 1950s and continues to attract the attention of the
electromagnetic research community, although most studies have considered plane–wave
excitation and/or perfectly-conducting (PEC) obstacles, ideally with zero thickness (see,
e.g., [1–11]). In connection with this, we point out that in [12–14] the method of analytical
preconditioning together with a Galerkin spectral Method of Moments with entire domain
basis functions has been used to study the scattering from an infinitesimally thin PEC disk.
Such a method has been adopted in those few studies which have considered thin disks,
including those with dielectric properties [15–17]. On the other hand, the screening of a
finite source (e.g., an electric or a magnetic dipole) by means of an infinite planar conductive
shield is well-documented in both the frequency [18–20] and time [21,22] domains. Recently,
the shielding of a thin conductive disk in the presence of an ideal vertical magnetic dipole
has been studied in details [23]; however, the main assumption in [23] is that the disk
thickness has to be smaller than the skin depth. Such an assumption introduces an upper
limit in terms of frequency, and makes the formulation essentially into a low-frequency
analysis. It is worth mentioning that the dual problem (i.e., a circular aperture in a thin
metallic plate) has only recently been addressed [24]. In general, for thick disks (and
as such for higher frequencies) analysis requires the adoption of generalized boundary
conditions (GBCs). In turn, such GBCs require the introduction of both equivalent magnetic
and electric current densities along the discontinuity interface [25–27]. This implies that,
for thick disks an integral formulation based on GBCs leads to the derivation of two sets of
dual integral equations (DIEs) to be solved.

In the present work, we solve such sets of DIEs (derived in the Hankel transform
domain) by expanding the spectral unknowns in two Neumann series of Bessel functions.
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Moreover, for thick metallic non-magnetic disks, a new generalized boundary condition is
derived which is a generalization of that used for thin metallic screens. This means that it
is sufficient to introduce only an equivalent surface electric current density as unknown.
In this way, only one set of DIEs needs to be solved, thereby reducing the problem in a
similar way to that of thin screens (preliminary results of this work have been presented
in [28]). Thus, we generalize the analysis presented in [23] considering a finite source (a
coaxial loop with finite radius and constant current) and a conductive disk with finite
thickness, now without any limitation in frequency and thickness.

Finally, we want to mention a possible limitation of the present study. For simplicity,
the electric current in the loop is assumed to be constant. In principle, the extension of
the proposed analysis to non-constant currents could be feasible; however, introducing an
azimuthal dependence of the exciting current would destroy the azimuthal invariance of
the problem, thereby making the incident and scattered field hybrid. We leave this analysis
for a future work.

It is clear that the focus of the paper is more on modeling than on the performance of
different materials. We considered copper as a typical conductive material for the purpose
of presenting numerical results that illustrate the proposed method; however, the validity
of the method is general and has been tested on different values of the screen parameters.

The rest of this paper is organized as follows. The electromagnetic problem is described
in Section 2, while in Section 3 the adopted Mitzner GBCs are discussed and two auxiliary
sub-problems are introduced, each of which leads to DIEs for which the unknown is an
equivalent spectral electric or magnetic current density. The procedure for the solution
of these two sets of DIEs is outlined in Section 4, where all the quantities of interest
are calculated as well. In Section 5, we propose a new boundary condition for thick
conductive disks with no magnetic properties. This allows for formulating the problem
in terms of only one set of DIEs, with consequent savings in terms of computation time
compared with the original full formulation. In addition, we propose a series expansion
(which in many practical case reduces to a single term) to efficiently evaluate the involved
improper integrals. It is worth pointing out that the linear algebraic system resulting
from the discretization of the involved DIEs defines a Fredholm problem, and as such
has guaranteed convergence. Numerical results are presented in Section 6, showing the
dependence of the magnetic shielding effectiveness on different geometrical parameters;
these point out possible critical situations in particular configurations. Our conclusions are
drawn in Section 7.

Finally, we want to clearly point out the contribution of the paper. The present
manuscript addresses thick circular plates, and its novel contribution is twofold: (i) for
general magneto-conductive plates, a set of established DIEs having both electric and
magnetic currents as unknowns is solved rigorously, and (ii) for nonmagnetic conductive
plates, an original alternative DIE formulation having only electric currents as unknowns
is introduced. This allows an original and efficient tool to be derived, allowing for the
evaluation of, e.g., the shielding effectiveness of material disks against a near-field source
such as a circular current loop coaxial with the disk.

2. Formulation of the Problem

The configuration of the electromagnetic problem is shown in Figure 1, where a circular
disk of thickness d and radius a with electrical conductivity σ and relative permeability
µr is reported. The disk is placed on the plane z = 0 of a cylindrical coordinate system
(ρ, φ, z) with the center at the origin. The source of the electromagnetic field is a circular
current loop of radius R and constant current I0 coaxial with the disk and placed at z = h.
The time-harmonic ejωt dependence is assumed and suppressed throughout. It should
be noted that thanks to the azimuthal invariance of the problem the considered source
produces a TEz field (with Einc

φ , Hinc
ρ , and Hinc

z ).
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Figure 1. A circular disk of thickness d and radius a characterized by a conductivity σ and relative
magnetic permeability µr, placed on the plane z = 0, in the presence of a current loop of radius R and
constant current I0 placed at z = h and coaxial with the disk.

3. Pair of DIEs through Mitzner GBCs

The finite thickness of the screen makes the analysis more complex with respect to
the infinitesimally-thin structure case. However, if the thickness d is sufficiently small (in
particular, k0d � 1, where k0 is the free-space wavenumber), it is possible to shrink the
thickness to zero (reducing the screen to an infinitely thin surface) and adopt the Mitzner
generalized boundary conditions (GBCs) [25]. The GBCs link the tangential electric and
magnetic fields at the surface interfaces as

1
2
[
Eφ

(
ρ, z = 0+

)
+ Eφ

(
ρ, z = 0−

)]
= ζ0ẐS

(
uz × uρ

)[
Hρ

(
ρ, z = 0+

)
− Hρ

(
ρ, z = 0−

)]
(1)

and

1
2
[
Hρ

(
ρ, z = 0+

)
+ Hρ

(
ρ, z = 0−

)]
= − ŶS

ζ0

(
uz × uφ

)[
Eφ

(
ρ, z = 0+

)
− Eφ

(
ρ, z = 0−

)]
, (2)

where ζ0 is the free-space impedance. Such GBCs have recently been used successfully in
different scattering problems [16,17,27,29,30].

The coefficients ẐS and ŶS are related to the thickness and the electromagnetic param-
eters of the screen, and different expressions have been proposed in the literature. In his
seminal paper [25], Mitzner derived

ẐSM = j
ζcr

2
cot
(

kcd
2

)
,

ŶSM = j
1

2ζcr
cot
(

kcd
2

) (3)

with

kc = k0
√

µrεcr ,

ζcr =

√
µr

εcr
,

(4)

where εcr = 1− jσ/(ωε0) indicates the relative complex permittivity.
It is worth noting that the condition k0d� 1 is not a limiting factor in all the practical

configurations, where the thickness d of the screen is much smaller than the operating
wavelength in air up to the microwave range.
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The GBCs in (1) and (2) define a combined electrically resistive/magnetically conduc-
tive sheet with infinitesimal thickness, which supports both electric and magnetic surface
currents that are related to the discontinuities across the sheet of the tangential magnetic
and electric fields, respectively. Because any plane containing the vertical z-axis is an odd
symmetry plane, the electric surface current density Js is azimuthally directed, whereas the
magnetic current density Ms is radially directed.

Following the same reasoning illustrated in [31], two sets of DIEs can be obtained in
the canonical form ∫ ∞

0
γi(ν)ψi(ν)J1(νr)dν = hi(r), 0 ≤ r < 1 (5)

∫ ∞

0
ψi(ν)J1(νr)dν = 0, r > 1, (6)

where r = ρ/a, J1(·) is the Bessel function of order 1. The unknown functions are

ψ1(ν) = ν J̃Sφ

(ν

a

)
,

ψ2(ν) = νM̃Sρ

(ν

a

)
,

(7)

while the expressions of the functions γi (i = 1, 2) are

γ1(ν) =

(
k0a
2λ

+ ẐS

)
,

γ2(ν) =

(
λ

2k0a
+ ŶS

)
,

(8)

and

h1(r) = −
I0k0aR

2

∫ ∞

0

e−jλ|h|/a

λ
J1

(
ν

R
a

)
J1(νr)ν dν ,

h2(r) = −
I0Rζ0

2

∫ ∞

0
e−jλ|h|/a J1

(
ν

R
a

)
J1(νr)ν dν .

(9)

The functions J̃Sφ(ν/a) and M̃Sρ(ν/a) appearing in (7) are the Hankel transforms of
order 1 of the surface current densities JSφ(ρ) and MSρ(ρ), respectively, while

λ =

√
(k0a)2 − ν2

is the z-component of the normalized spectral wavenumber [31].

4. Solution of the Pair of DIEs

As described in [24], the ψi(ν) functions (which are related to either to the J̃Sφ or M̃Sρ

functions) are expanded in Neumann series of Bessel functions, i.e.,

ψi(ν) = ν1−µi
+∞

∑
n=1

ψ
(i)
n J2n−1+µi (ν) ; (10)

thus, thanks to the Weber–Schafheitlin integral ([32], 6.574.3), (6) is spontaneously satisfied.
The parameters µi in (10) are arbitrary (provided that µi > 0), and can be used to guarantee
the convergence of the integrals arising in the analysis or to enforce a specific order of
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singularity of the spatial currents at the edge of the aperture [24]. In fact, all the addends
in (10) are the Hankel transforms of terms proportional to

r2
(

1− r2
)µi−1

P(1,µi−1)
n

(
1− 2r2

)
, (11)

where P(·,·)
n (·) are Jacobi polynomials of order n [33].

By using (10), (5) becomes

+∞

∑
n=1

ψ
(i)
n

∫ ∞

0
ν1−µi γi(ν)J1(νr)J2n−1+µi (ν)dν = hi(r) , (12)

which is valid for 0 ≤ r < 1. By Galerkin testing (12), the dual integral equations are
reduced to the matrix system

+∞

∑
n=1

A(i)
mnψ

(i)
n = U(i)

m , m = 1, . . . , (13)

where the matrix elements are provided by

A(i)
mn =

∫ ∞

0
ν1−2µi γi(ν)J2m−1+µi (ν)J2n−1+µi (ν)dν (14)

while it is easy to show that

U(1)
m = − I0k0aR

2

∫ ∞

0
ν1−µi J2m−1+µi (ν)J1

(
ν

R
a

)
e−jλ|h|/a

λ
dν (15)

and

U(2)
m = − I0Rζ0

2

∫ ∞

0
ν1−µi J2m−1+µi (ν)J1

(
ν

R
a

)
e−jλ|h|/a dν . (16)

From (8) and (14), it can be immediately derived that to make the integrals convergent
it must result µ1 > 1/2 and µ2 > 1; thus, we can set, e.g., µ1 = 1 and µ2 = 3/2, and the
coefficients in (13) may be obtained as

A(1)
mn =

∫ ∞

0

(
k0a + 2λẐS

)
2λν

J2m(ν)J2n(ν)dν ,

A(2)
mn =

∫ ∞

0

(
λ + 2k0aŶS

)
2k0aν2 J2m+1/2(ν)J2n+1/2(ν)dν,

(17)

i.e.,

A(1)
mn =

k0a
2

∫ ∞

0

J2m(ν)J2n(ν)

λν
dν +

ẐS
4m

δmn ,

A(2)
mn =

1
2k0a

∫ ∞

0

(
λ + 2k0aŶS

)
ν2 J2m+1/2(ν)J2n+1/2(ν)dν

(18)

and the known terms in (13) as

U(1)
m = − I0k0aR

2

∫ ∞

0
J2m(ν)J1

(
ν

R
a

)
e−jλ|h|/a

λ
dν ,

U(2)
m = − I0Rζ0

2

∫ ∞

0

J2m+1/2(ν)√
ν

J1

(
ν

R
a

)
e−jλ|h|/a dν .

(19)
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By solving the algebraic system (13), the coefficients ψ
(i)
n are derived and used to

compute the spectral currents as

J̃Sφ

(ν

a

)
=

+∞

∑
n=1

ψ
(1)
n

J2n(ν)

ν
(20)

and

M̃Sρ

(ν

a

)
=

+∞

∑
n=1

ψ
(2)
n

J2n+1/2(ν)

ν3/2 . (21)

From the knowledge of the spectral currents, any component of the field can easily
be calculated. In particular, the z-components of the scattered magnetic fields H(1)scat

z and
H(2)scat

z beyond the disk, (i.e., for z < 0) can be calculated as

H(1)scat
z (r, z) = − j

2a2

∫ ∞

0
J̃Sφ

(ν

a

) e−jλ|z|/a

λ
J0(νr)ν2 dν (22)

and

H(2)scat
z (r, z) = − j

2k0ζ0a3

∫ ∞

0
M̃Sρ

(ν

a

)
e−jλ|z|/a J0(νr)ν2 dν, (23)

i.e.,

H(1)scat
z (r, z) = − j

2a2

+∞

∑
n=1

ψ
(1)
n h(1)n (r, z) (24)

and

H(2)scat
z (r, z) = − j

2k0ζ0a3

+∞

∑
n=1

ψ
(2)
n h(2)n (r, z) (25)

with

h(1)n (r, z) =
∫ ∞

0

ν

λ
e−jλ|z|/a J0(νr)J2n(ν)dν (26)

and

h(2)n (r, z) =
∫ ∞

0

√
ν e−jλ|z|/a J2n+1/2(ν)J0(νr)dν, (27)

such that

Hscat
z (r, z) = H(1)scat

z (r, z) + H(2)scat
z (r, z) . (28)

The z-component of the incident magnetic field (i.e., that radiated by the original
current loop source in free space) is instead

Hinc
z (r, z) = −j

I0R
2a2

∫ ∞

0

e−jλ|z−h|/a

λ
J1

(
ν

R
a

)
J0(νr)ν2 dν . (29)

From (28) and (29), the magnetic shielding effectiveness SEH can easily be calculated
through [34]:

SEH = 20 log

∣∣Hinc
z (0, z)

∣∣∣∣Hinc
z (0, z) + Hscat

z (0, z)
∣∣ . (30)
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5. Single DIE for Conductive Disks

An approximate boundary condition is derived here for purely conductive disks.
The Mitzner GBCs allow for exact representation of the screen of infinite extent in a

spectral-domain equivalent transmission line (TL) as a T network, as shown in Figure 2 [35].
The expressions of the longitudinal impedance ZL and the transverse impedance ZT are
respectively

ZL = η0ẐL = jη0ζcr tan
(

kcd
2

)
,

ZT = η0ẐT = −jη0
ζcr

sin(kcd)
.

(31)

When a loop source radiates in the presence of the infinite screen, the equivalent TL of
the problem in a Schelkunoff approach [34,36] is as reported in Figure 3, where Zloop is the
impedance of the current loop and Z0 is the free-space impedance η0.

L
Z

L
Z

T
Z

Figure 2. T network representing a thick infinite screen in a spectral-domain TL.

0
Z

loop
V

loop
Z

L
Z

L
Z

T
Z

Figure 3. Equivalent TL for a loop radiating in the presence of an infinite screen of finite thickness.

For a magneto-conductive screen, this always results in |ZL| � Z0, and the presence
of the longitudinal impedances ZL in the TL network in Figure 3 can be neglected if the
result is |ZL| �

∣∣∣Zloop

∣∣∣. The impedance of a parallel loop is a function of the distance;
in particular, at the air-screen interface for a small loop, it results in [34,37]

Zloop ' jη0
k0h
3

. (32)

Therefore, the effects of ZL can be neglected if∣∣∣∣ζcr tan
(

kcd
2

)∣∣∣∣� k0h
3

. (33)
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Thus, it should be noted that for purely conducting screens (33) is always satisfied
provided that d� h, which always occurs in practice.

If the presence of the longitudinal impedances ZL can be neglected, then the screen is
represented only by the transverse impedance ZT. This results in only one boundary condition,

1
2
(Et+ + Et−) = ZTuz × (Ht+ −Ht−) = ZTJS , (34)

which is the same as in (1). Thus, we can derive a single set of DIEs which solves the
problem, which consists of (5) and (6) with i = 1 and ẐT instead of ẐS. Therefore, under
assumption (33), the solution of the original problem requires the introduction of only one
unknown (i.e., an equivalent surface electric current density) and the solution of only one
set of DIEs; this is exactly the same formulation adopted to solve the problem under the
assumption of thin screens [16,23]. In such a case, the scattered magnetic field is provided
by (24), with coefficients ψ

(1)
n provided by the solution of (13) with i = 1. Thus, it is clear

that with respect to the full formulation based on Mitzner GBCs, the savings in terms of
computation time are about 75%.

Another important advantage is that for k0a � 1 (a condition which in practice is
always met in EMC) the elements of the matrix (18) have an exceptionally simple expression.
In fact, using the series expression derived in [38] to express the integral term in (18),
we have

A(1)
mn '

ẐT

4m
δmn +

k0a
8

(−1)1−p
∞

∑
l=1

(−j)lΓ
(

p− l
2

)
Γ
(

q− l
2

)
(k0a)l

Γ
(

p + 1 +
l
2

)
Γ
(

q + 1 +
l
2

)
Γ
(
− l

2

)
Γ
(

1− l
2

) (35)

where Γ(·) is the Gamma function [33], p = m− n, and q = m + n. However, for k0a� 1,
only one addend is sufficient to reach convergence, such that

A(1)
mn '

ẐT

4m
δmn + j

(k0a)2

16π

Γ
(

p− 1
2

)
Γ
(

q− 1
2

)
Γ
(

p +
3
2

)
Γ
(

q +
3
2

) . (36)

Using the definitions of p and q and the properties of the recursive properties of the
Gamma function, we finally have

A(1)
mn '

ẐT

4m
δmn +

j
8π

(k0a)2[
2(m2 − n2)

2 − (m2 + n2) + 1
] , (37)

which makes the solution of the system dramatically faster.
Finally, by following the same line of reasoning as in [24], the linear system (13)

with coefficient matrix (37) can be shown to define a Fredholm operator (in particular,
a second-kind Fredholm equation) in the space of square-summable sequences, to which
the right-hand side of (13) belongs. Hence, the system (13) has a unique solution and
guaranteed convergence, and no regularization scheme is required [39].

6. Numerical Results

We first consider a copper disk (conductivity σ = 5.7 × 107 S/m) with thickness
d = 1 mm and radius a = 1.5 m in a frequency range from 100 Hz to 1 MHz. The electro-
magnetic source consisting of a circular current loop coaxial with the disk is assumed to
be placed at height h = 30 cm (i.e., h/a = 0.2) and with a radius R = 5 cm (i.e., R � a).
In Figure 4, the magnetic shielding effectiveness SEH is evaluated at a symmetric point with
respect to the loop position, i.e., at z = −h, and is reported as a function of the frequency.
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We have used different formulations here; in particular, it can be seen that the formulation
based on Mitzner GBCs (see Section 4, blue solid line) is perfectly superimposed with respect
to the proposed formulation based on the new boundary condition (34) (see Section 5, cyan
dashed-square line) in the entire frequency range; these results coincide with those obtained
with FEKO commercial software (not reported here).

On the other hand, the formulation based on the thin-screen approximation [23] (red
dashed line) is correct only up to about 5 kHz; in this low frequency range, the SEH is
essentially that of an infinite metallic screen having the same thickness of the disk [18–20],
which is reported in Figure 4 as a dot-dashed line for a fair comparison. In practice, at low
frequencies and for the considered values of R and a the metallic disk is seen by the loop as
if it were of infinite extent.

At high frequencies (that is, larger than 100 kHz), all the formulations (i.e., the full
Mitzner BC formulation, the new proposed BC formulation, the thin-screen formulation,
and FEKO) approach the PEC disk results [14], which are shown in Figure 4 as a dotted line.

However, it can clearly be seen that there exists an intermediate frequency range
in which neither the thin disk formulation nor the infinite metallic disk formulation can
reproduce the correct results. In such a frequency range, the finite thickness of the disk
must be carefully taken into account either through the formulation based on Mitzner
GBCs or the new boundary condition (34). It can be observed that in this intermediate
frequency range the SEH of the infinite solid conductive thick screen and the SEH of the
infinitesimally thin PEC disk are comparable; moreover, the SEH of the thick disk with
finite conductivity can be much larger (almost 30 dB larger) than the SEH of the equivalent
PEC disk, presenting a sharp peak.

In Figure 5, the dependence of SEH on the thickness-to-skin depth ratio d/δ is reported
for the same parameters as in Figure 4. As expected, the thin disk formulation is accurate
only for disk thicknesses smaller than the skin depth δ. Moreover, in this low-frequency
range there is no difference with the infinite solid conductive thick screen.

The dependence of SEH on the on the source-to-screen distance h is instead shown in
Figure 6. The distance h ranges from h = 20 cm (i.e., h/a = 0.13) to h = 1.5 m (i.e., h/a = 1).
Thus, it can be seen that a peak of SEH may or may not be present in the intermediate
frequency range, depending on h; furthermore, the asymptotic PEC limit is approached
faster as h increases. Therefore, the presence of the intermediate frequency range with the
presence of the SEH peak is strongly dependent on the source-to-screen distance h. It is
interesting to point out that at low frequencies the SEH increases for larger values of h,
while in the high-frequency range the SEH dramatically decreases with increasing h.

0

20

40

60

80

100

102 103 104 105 106

Thin screen

Mitzner BCs

New BC

f [Hz]

SE
H

 [dB]

PEC disk

Infinite screen

Figure 4. Magnetic shielding effectiveness SEH as a function of frequency for a purely conductive
disk with parameters d = 1 mm, a = 1.5 m, and σ = 5.7× 106 S/m (copper). The coaxial circular
current loop source has a radius R = 5 cm and is placed at a distance h = 30 cm from the disk. The
magnetic field is sampled along the z axis at z = −30 cm.
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Figure 5. Magnetic shielding effectiveness SEH as a function of the thickness-to-skin depth ratio d/δ.
The other parameters are the same as in Figure 4.

0

20

40

60

80

100

102 103 104 105 106

h = 30 cm

h = 45 cm

h = 60 cm

h = 20 cm

h = 1.5 m

f [Hz]

SE
H

 [dB]

Figure 6. Magnetic shielding effectiveness SEH as a function of the source-to-screen distance h. The
other parameters are the same as in Figure 4.

Finally, the dependence of SEH on the loop radius R is reported in Figure 7 for radius
values between R = 5 cm and R = 50 cm. While this always results in R < a, the loop
radius can be smaller or larger than the fixed source-to-screen distance h = 30 cm. In all of
the cases shown here, the PEC limit is achieved at frequencies higher than about 100 KHz;
however, the position and shape of the SEH peak in the intermediate range depends on R,
becoming more pronounced and shifting towards high frequencies as R decreases. On the
other hand, at the limit of large R the peak of SEH tends to disappear.

In summary, in the above figures the variations of SEH with frequency, thickness-to-
skin-depth ratio, source-to-screen distance, and loop radius are illustrated. Although these
results do not span the entire parametric space, they are both relevant and representative
of the typical electromagnetic response of the considered configuration. Thus, it is worth-
while to point out that although we have considered only copper as a typical conductive
material, the validity of the method is general and has been tested on different values of
the disk conductivity.
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Figure 7. Magnetic shielding effectiveness SEH as a function of the loop radius R. The other
parameters are the same as in Figure 4.

7. Conclusions

The magnetic shielding effectiveness of a finite screen consisting of a circular disk
with finite conductivity and finite thickness is evaluated when a circular current loop of
finite radius coaxial with the disk and with constant current is assumed as the electro-
magnetic field source. An original formulation is proposed to solve the problem using
suitable generalized boundary conditions to take into account the finite thickness of the
screen and solving the two dual integral equations derived by enforcing the boundary
conditions through an expansion of the unknowns in Neumann series of Bessel functions.
An alternative formulation that is valid for a purely conductive screen with no magnetic
properties is proposed as well, and is computationally much faster. The magnetic shield-
ing effectiveness is studied in different configurations while pointing out possible critical
situations. Additional work is currently in progress to extend the presented analysis to
non-constant exciting currents.
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