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Abstract
The Ablowitz–Ladik equations, hereafter called AL+ and AL−, are distin-
guished integrable discretizations of respectively the focusing and defocusing
nonlinear Schrödinger (NLS) equations. In this paper we first study the mod-
ulation instability of the homogeneous background solutions of AL± in the
periodic setting, showing in particular that the background solution of AL−
is unstable under a monochromatic perturbation of any wave number if the
amplitude of the background is greater than 1, unlike its continuous limit,
the defocusing NLS. Then we use Darboux transformations to construct the
exact periodic solutions of AL± describing such instabilities, in the case of one
and two unstable modes, and we show that the solutions of AL− are always
singular on curves of spacetime, if they live on a background of sufficiently
large amplitude, and we construct a different continuous limit describing this
regime: a NLS equation with a nonlinear and weak dispersion. At last, using
matched asymptotic expansion techniques, we describe in terms of elementary
functions how a generic periodic perturbation of the background solution (i)
evolves according to AL+ into a recurrence of the above exact solutions, in the
case of one and two unstable modes, and (ii) evolves according to AL− into
a singularity in finite time if the amplitude of the background is greater than
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1. The quantitative agreement between the analytic formulas of this paper and
numerical experiments is perfect.

Keywords: Ablowitz–Ladik lattice, cauchy problem, solitons,
modulation instability

1. Introduction

The Ablowitz–Ladik (AL) equations [2, 3]:

i u̇n+ un+1 + un−1 − 2un+ η|un|2 (un−1 + un+1) = 0, η =±1,
un = u(n, t) ∈ C, u̇n = dun(t)

dt , n ∈ Z, t ∈ R,
(1)

are distinguished examples of integrable nonlinear differential-difference equations reducing,
in the natural continuous limit

un (t) = ih v(ξ,τ) , hn= ξ, τ = h2t, h→ 0, (2)

to the celebrated integrable [79] nonlinear Schrödinger (NLS) equations

ivτ + vξξ + 2η|v|2v= 0, η =±1,
v(ξ,τ) ∈ C, vτ = ∂v

∂τ , vξξ =
∂2v
∂ξ2 , ξ,τ ∈ R, (3)

where h is the lattice spacing. The two cases η =±1 in (3) distinguish between the very dif-
ferent focusing (η= 1) and defocusing (η =−1) NLS regimes.

The AL equation (1) characterize [38] the quantum correlation function of the XY-model of
spins [48]. If η= 1, it is relevant in the study of anharmonic lattices [71]; it is gauge equivalent
to an integrable discretization of the Heisenberg spin chain [37], and appears in the description
of a lossless nonlinear electric lattice (η= 1) [51]. At last, if η= 1, the AL hierarchy describes
the integrable motions of a discrete curve on the sphere [23].

The well-known Lax pair of equation (1) reads [2, 3]

ψ⃗n+1 (t,λ) = Ln (t,λ) ψ⃗n (t,λ) , ψ⃗nt (t,λ) = An (t,λ) ψ⃗n (t,λ) ,

Ln (t,λ) =

(
λ un (t)

−ηun (t) 1
λ

)
,

An (t,λ) = i

(
λ2 − 1+ ηunun−1 λun− un−1

λ

η unλ − ηλun−1 1− 1
λ2 − ηunun−1

)
,

(4)

where f̄ is the complex conjugate of f, and the matrices Ln and An of the Lax pair (4) possess
the two symmetry

Ln (λ) = Pη Ln
(

1
λ

)
P†
η =−σ3Ln (−λ) σ3,

An (λ) = Pη An
(

1
λ

)
P†
η = σ3An (−λ) σ3,

(5)

where

σ3 =

(
1 0
0 −1

)
, Pη =

(
0 −η
1 0

)
(6)

implying that, if ψ⃗n(λ, t) = (ψ1n(λ, t),ψ2n(λ, t))
T is solution of (4), then
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ˇ⃗
ψn(λ, t) =

 −ηψ2n

(
1
λ
, t)
)

ψ1n

(
1
λ
, t)
)

 , ˆ⃗
ψn(λ, t) = (−1)n

(
ψ1n(−λ, t)
−ψ2n(−λ, t)

)
(7)

are also a solution of (4).
The inverse scattering transform (IST) [5, 78] of the AL equation (1) for localized initial

data was developed in [2, 3] (see [6] for the IST of vector generalizations of the AL equations).
For the IST of the AL equations for non zero boundary conditions see [1, 14, 60, 64, 65, 74].
The finite gap method (FG) [24, 39, 40, 46, 57] for periodic and quasi-periodic AL solutions
was developed in [53].

It is well-known that the homogeneous background solutions of the NLS equation (3)

aexp
(
2 iη |a|2 τ

)
, a complex constant parameter, (8)

is unstable under the perturbation of waves with sufficiently large wave length in the focusing
case η= 1 [9, 10, 77, 80], and always stable in the defocusing case η =−1, and the modulation
instability (MI) of the focusing case is the main cause for the formation of anomalous (rogue)
waves (AWs) [25, 34, 42, 43, 59, 61, 80]. Since (8) is also the exact homogeneous solution of
the AL equation (replacing τ by t), it is natural to investigate their linear instability properties
under monochromatic perturbations with respect to the AL dynamics, and study how such
instability develops into the full nonlinear regime.

We remark that, as in the NLS case, the AL equations have the elementary gauge symmetry
(if u is solution, also ũn = un exp(iρ), ρ ∈ R is solution); then a could be chosen to be positive
without loss of generality (but we shall not do it here). Unlike theNLS case, for which, if v(ξ,τ)
is a solution, also ṽ(ξ,τ) = bv(bξ,b2τ), b ∈ R is solution), the AL equations do not possess
any obvious scaling symmetry. It follows that a in (8) cannot be rescaled away as in the NLS
case. Therefore one expects that, unlike the NLS case, the amplitude a of the background (8)
play a crucial role in its stability properties under perturbation.

In the NLS Cauchy problem for a localized perturbation of the exact background (8), slowly
modulated periodic oscillations described by the elliptic solution of (3), for η= 1, play a rel-
evant role in the longtime regime [11, 12]. These features are universal and can be observed
also in the focusing AL equation [13].

The Cauchy problem of the periodic AWs of the focusing NLS equation (3) has been solved
in [28, 31], to leading order and in terms of elementary functions, for generic periodic initial
perturbations of the unstable background:

v(ξ,0) = a(1+ εw(ξ)) , 0< ε≪ 1, w(ξ+L) = w(ξ) ,
w(ξ) =

∑∞
j=1

(
cjei kjξ + c−je−i kjξ

)
, kj = 2π

L j,
(9)

in the case of a finite number N of unstable modes, using a suitable adaptation of the FG
method. In the simplest case of a single unstable mode (N= 1), the above FG solution
provides the analytic and quantitative description of an ideal Fermi–Pasta–Ulam–Tsingou
(FPUT) recurrence [26] without thermalization, of periodic NLS AWs over the unstable back-
ground (8), described, to leading order, by the well-known Akhmediev breather (AB)

A
(
ξ,τ ;k, X̃, T̃,ρ

)
= ãe2i|ã|

2τ+iρ cosh[σ̃(k)(τ−T̃)+2iϕ]+sinϕ cos[k(ξ−X̃)]
cosh[σ̃(k)(τ−T̃)]−sinϕ cos[k(ξ−X̃)]

,

σ̃ (k) := k
√
4|ã|2 − k2,

(10)

solution of focusing NLS for the arbitrary real parameters ã,ρ,k, X̃, T̃, but with different para-
meters at each appearance [28]. See also [30] for an alternative and effective approach to the
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study of the AW recurrence in the case of a single unstable mode, based on matched asymp-
totic expansions; see [33] for a FG model describing the numerical instabilities of the AB and
[32] for the analytic study of the linear, nonlinear, and orbital instabilities of the AB within the
NLS dynamics; see [29] for the analytic study of the phase resonances in the AW recurrence;
see [66] and [19] for the analytic study of the FPUT AW recurrence in other NLS type mod-
els: respectively the PT-symmetric NLS equation [4] and the massive Thirring model [52, 72],
showing the universality of the above behavior. The AB, describing the nonlinear instability
of a single mode, and its N-mode generalization were first derived respectively in [8] and [41].
The NLS recurrence of AWs in the periodic setting has been investigated in several numerical
and real experiments, see, f.i., [44, 54, 63, 75, 76], and qualitatively studied in the past via a
three-wave approximation of NLS [36, 73].

In addition, a perturbation theory describing analytically how the FPUT recurrence of AWs
is modified by the presence of a perturbation of NLS has been recently introduced in [15], in
the simplest case of a small linear loss or gain, giving a theoretical explanation of previous
interesting real and numerical experiments [44, 69]. This theory has been applied in [18] to
the complex Ginzburg-Landau [56] and Lugiato–Lefever [49] models, treated as perturbations
of NLS (see also [16]).

These results suggest two interesting problems.

(i) the construction of the analytic and quantitative description of the dynamics of periodic
AWs of the AL lattices;

(ii) the understanding of the effect of a perturbation of the AL lattices on such a dynamics.

The solution of the first problem is the main goal of this paper; the solution of second
problem is contained in [20].

We remark that the established terminology ‘focusing’ and ‘defocusing’ AL equation (1) for
respectively the cases η= 1 and η =−1 is certainly adeguate whenever the NLS continuous
limits (2) is possible. But the AL lattice for η =−1 and sufficiently large amplitudes cannot
reduce to the defocusing NLS equation (3) in the continuous limit, and its focusing/defocusing
properties have to be clarified. As we shall see in the following, (i) not only the homogeneous
background is modulationally unstable, but this MI leads to blow up at finite time; (ii) the
proper continuous limit describing this case is a novel focusing NLS equation with nonlinear
and weak dispersion, making evident that this regime is strongly focusing. Therefore we feel,
from physical considerations, that the term ‘defocusing’ would not be appropriate in this case,
and we prefer to use the neutral terminology AL±.

The paper is organized as follows. In section 2 we investigate the linear stability properties
of the background (8), extending results already present in the literature [7, 58], and showing
that, unlike the NLS case, the background of AL− is unstable under any monochromatic per-
turbation if |a|> 1. In section 3 we present the exact solutions ofAL± describing the instability
of one and two unstable modes, and we show that: (i) the solutions of AL+ are always regu-
lar, but with an amplitude, relative to the background, growing as |a|2 and as |a|4 respectively
in the case of one and two unstable modes; (ii) the solutions of AL− develop singularities in
closed curves of spacetime, and when these curves intersect a line x= n0 ∈ Z (the generic
case), the solution blows up at finite time in the site n= n0. Motivated by these last features,
we construct the continuous limits of the AL equations exhibiting the same features, and show-
ing clearly that the case η =−1 is focusing for sufficiently large amplitudes. In section 4 we
use the matched asymptotic expansion approach developed in [30] to solve to leading order
the periodic Cauchy problem of the AWs, (i) describing in terms of elementary functions the
associated AW recurrence of one and two unstable modes (in this second case for non generic
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initial perturbations) in the AL+ model; (ii) showing analytically how a smooth perturbation
blows up at finite time in the AL− model. Section 5 is dedicated to conclusions and future
perspectives. In the appendix we construct the exact solutions studied in section 3 using the
Darboux transformations (DTs) of AL± [27].

To the best of our knowledge, known results concerning AWs of the AL models prior to our
work are the following. The exact solution over the background, corresponding to a spectral
parameter in general position, and containing as limiting cases the discrete analogues of the
Akhmediev breather (24), of the Kuznetsov–Ma [47, 50] and Peregrine [62] solutions, was first
constructed in [55] for η= 1 and in [60] for η =−1. The amplitude growth of (24) for large |a|
was investigated in [7], together with the linear instability properties of the background solu-
tion of AL+. Numerical experiments for the Cauchy problem of AWs for AL+ are reported in
[68]. The linear instability properties of the background solution for η =−1 were investigated
for Peregrine type solutions of any order in [58], using the Hirota method [35].

2. Linear stability properties of the background in the AL case

To study the (linear) stability properties of the background solutions (8) in the AL± dynamics,
we seek solutions of (1) in the form

un (t) = ae2 iη |a|2 t (1+ ϵξn (t)+O
(
ϵ2
))
, 0< ϵ≪ 1, (11)

obtaining, at O(ϵ), the linearized AL± equations for ξn:

iξ̇n+
(
1+ η|a|2

)
(ξn+1 + ξn−1)− 2ξn+ 2η|a|2ξn = 0, η =±1. (12)

If the perturbation is a monochromatic wave:

ξn (t) = γ+ (t)eiκn+ γ− (t)e−iκn, (13)

Equation (12) reduces to the system of ODEs

iḊ+ 2
[(
1+ η|a|2

)
cosκ−

(
1− η|a|2

)]
S= 0,

iṠ+ 2
(
1+ η|a|2

)
(cosκ− 1)D= 0,

S := γ+ + γ−, D := γ+ − γ−.
(14)

whose solution reads:

S(t) = νeσt+µe−σt, D(t) =
iσ (νeσt−µe−σt)

2(1+ η|a|2)(1− cosκ)
, (15)

where

σ (κ) = 2
√
(1+ η|a|2)(1− cosκ) [(1+ η|a|2)cosκ− (1− η|a|2)], (16)

and ν,µ are two arbitrary complex parameters. From now on we fix the following constraint
on the wave number

0< κ < π , (17)

since the negative values are covered by the second exponential in (11), and the growth rate (16)
depends on κ through cosκ.

The growth rate (16) implies the following stability features of the background solutions (8)
of the AL±.

The case η =−1. Equation AL− reduces to the defocusing NLS in the continuous limit, for
which the background (8) is stable under a perturbation of any wave number. The stability
properties of the AL− background are much richer [58]; indeed we distinguish three sub-cases:

5
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Figure 1. For η =−1 and |a|> 1 the perturbation is unstable with exponential growth.
The graph of the growth rate σ(κ) in the basic period κ ∈ (−π,π). In the left picture:
a= 1.3<

√
2; in the right one: |a|= 10>

√
2.

• |a|> 1 ⇒ σ> 0 ⇒ exponential growth and linear instability ∀ κ (see figure 1);
• |a|= 1⇒ σ= 0, S(t) = S0, D(t) =−4iS0t+D0 ⇒ instability if S0 ̸= 0 with linear growth,
stability otherwise, ∀ κ;

• 0< |a|< 1 ⇒ σ ∈ iR ⇒ oscillations and neutral stability ∀ κ.

Since σ depends on κ through cosκ, these stability properties are 2π-periodically extended to
the whole real κ axis, with basic period (−π,π). In the unstable case |a|> 1, there are two
subcases:

(i) 1< |a|<
√
2, then σ(k) has its absolute minimum at κ= 0 with σ(0) = 0, and absolute

maxima at κ=±π, with σ(±π) = 4
√
|a|2 − 1.

(ii) |a|>
√
2, then σ(k) has its absolute minimum at κ= 0 with σ(0) = 0, relative minima at

κ=±π, with σ(±π) = 4
√
|a|2 − 1, and absolute maxima at κ± =±arccos( 1

1−|a|2 ), with

σ(κ±) = 2|a|2 (see figure 1).

The case η= 1. The AL+ equation reduces to the focusing NLS (3) in the continuous limit, for
which the background (8) is unstable for monochromatic perturbations of wave number k such
that |k|< 2|a|, and the parameter a can be rescaled away due to the scaling and trivial gauge
symmetries of NLS. Also in this case the stability properties of the AL background are richer
than those of the NLS background, since now the amplitude |a| cannot be rescaled away, and
is involved in the following nontrivial way.

Define κa as [7]

κa := arccos

(
1− |a|2

1+ |a|2

)
> 0, 0< κa < π ; (18)

(see figure 2); then

• if |κ|< κa (cosκ >
1−|a|2
1+|a|2 ), σ> 0 ⇒ instability with exponential growth. The growth rate

has maxima at ±κM, with κM = arccos( 1
|a|2+1 ) and σ(±κM) = 2|a|2. The instability curve

is similar to that of focusing NLS, except for the 2π periodicity (see figure 2).

• if |κ|= κa (cosκ= 1−|a|2
1+|a|2 )⇒ σ= 0,D= D0, S=−4i|a|2D0t+ S0 ⇒ instability with linear

growth if D0 ̸= 0, otherwise stability;

• if |κ|> κa

(
cosκ < 1−|a|2

1+|a|2

)
⇒ σ ∈ iR ⇒ linear stability and small oscillations.
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Figure 2. Left: the critical wave number κa as function of the amplitude |a|, with κ0 = 0
and κ∞ = π. Right: the growth rate, 2π-periodic in κ, has support for |κ|< κa inside
the basic periodicity interval (−π,π). Here |a|= 3.5.

As before, these stability properties are 2π-periodically extended to the whole real κ axis.
Summarizing the results of this section, we have the following ‘instability regions’ of the

background (8):

|κ|< κa := arccos
(

1−|a|2
1+|a|2

)
, ∀|a|> 0, if η = 1,

|a|> 1, ∀κ, if η =−1,
(19)

where κa is the smallest positive branch of arccos. They were found in [7] for η= 1, and in
[58] for η =−1.

As we shall see in the following, in all the cases discussed above in which the back-
ground (8) is unstable, we find it convenient to introduce the parameter ϕ defined by

cosϕ =

√
1+

η

|a|2
sin
(κ
2

)
, 0< ϕ < π/2. (20)

We remark that ϕ is real in both unstable cases (19) (it is therefore an angle) and, in terms of
it, the growth rate σ (16) takes the same simple form

σ = 2|a|2 sin(2ϕ)> 0, (21)

as in the NLS case [28, 30, 31].
It is easy to verify, from (14), (15), and (20), that the perturbation ξn in (13) reads

ξn (t) =
1

sin(2ηϕ)

[
|α|eσt+iηϕ cos

[
κ
(
x−X+

)]
+ |β|e−σt−iηϕ cos

[
κ
(
x−X−)]] , (22)

where

X+ = argα+π/2
κ , X− = −argβ+π/2

κ , (23)

and the arbitrary complex parameters α,β are expressed in terms of ν,µ as follows: α=
−2isin(ηϕ) ν, β = 2isin(ηϕ) µ.

3. Exact periodic AW solutions of the AL equations

Since the background solution (8) is linearly unstable under monochromatic perturbations in
the cases (19), it is important to describe how the corresponding exponential growth evolves
into the nonlinear stage of MI described by the full nonlinear model. In this section we present
the exact periodic solutions of AL± describing the nonlinear instability of a single nonlinear
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mode and of two interacting nonlinear modes. The construction of these solutions using the
DTs of the AL equations [27] is presented in the appendix.

3.1. The case of a single unstable mode

The instability of a single nonlinear mode K1 of AL± is described by the solution:

N1 (n, t;K1,X1,T1,ρ,η) = ae2iη|a|
2t+iρ cosh [σ (K1)(t− T1)+ 2iηθ1] + ηG1 cos [K1 (n−X1)]

cosh [σ (K1)(t− T1)]− ηG1 cos [K1 (n−X1)]
, (24)

where

G1 =
sinθ1

cos
(
K1
2

) , (25)

K1 is the wave number and σ(K1), defined in (16), is the growth rate of the linearized theory
in the unstable cases (19), the angle θ1 is defined as in (20)

cosθ1 =
√
1+

η

|a|2
sin

(
K1

2

)
, (26)

and X1, T1 and ρ are arbitrary real parameters. Since θ1 is defined in terms of (K1,a,η), the
growth rate σ(K1) and the parameter G1 can be expressed in terms of (K1,a,η) or in terms of
(θ1,a,η) in the following way:

σ (K1) = 2
√
(1+ η|a|2)(1− cosK1) [(1+ η|a|2)cosK1 − (1− η|a|2)] = 2|a|2 sin(2θ1) ,

G1 =
sinθ1

cos
(
K1
2

) =√1− η

|a|2
1− cosK1

1+ cosK1
=

√
|a|2 + η sinθ1√
|a|2 sin2 θ1 + η

. (27)

If η= 1, (24) is the Narita solution [55] of AL+, discrete analogue of the AB solution (10)
of focusing NLS, reducing to it through the scaling

a∼ h ã, K1 ∼ h k ⇒ σ (K1)∼ h2σ̃ (k) , G1 ∼ sinϕ, h≪ 1,
ξ ∼ hn, τ ∼ h2t, X̃∼ hX, T̃∼ h2T, h≪ 1,

(28)

where h is the lattice spacing. If η =−1, (24) describes the MI present in the model for suffi-
ciently large amplitudes [60].

The solution (24) oscillates in n and is exponentially localized over the background in t in
the following way

N1 (n, t;K1,X1,T1,ρ,η)→ ae2 iη|a|
2t±2iηϕ+iρ, as t→±∞. (29)

To study its behavior, we first replace n ∈ Z by x ∈ R in (figure 3); it is legitimate, observing
that function N1(x, t;K1,X1,T1,ρ,η) solves AL± with n replaced by x:

iut+ u+ + u− − 2u+ η|u|2 (u+ + u−) = 0, η =±1,
u= u(x, t) ∈ C, u± = u(x± 1, t) , ut = ∂u

∂t , x, t ∈ R. (30)

If η= 1, equation (26) implies that sinθ1 < cos(K1/2) and equation (25) that G1 < 1. It
follows that the denominator of N1 is always positive. Therefore the solution N1 is always
regular in the (x, t) plane for all values of its arbitrary parameters, like in theNLS case. But there
is an important difference, since now the maximum of the absolute value of the solution (24),
reached at the point (x, t) = (X1,T1), reads [7]:

8
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Figure 3. 3D plot of |N1| for η= 1, a= 1.3, K1 = 2π/8, X1 = T1 = 0.

Max : = max
(x,t)∈R2

|N1(x, t;K1,X1,T1,ρ,1))|= |N1(X1,T1;K1,X1,T1,ρ,1)|

= |a|
∣∣∣∣cos(2θ1)+G1

1−G1

∣∣∣∣= |a|
[
2
(
1+ |a|2

)
cos

(
K1

2

)(
sinθ1 + cos

(
K1

2

))
− 1

]
,

(31)

implying that the relative maximum (the ratio of the maximum of the amplitude of (24) to the
background amplitude |a|) grows as O(|a|2) for |a| ≫ 1:

Max
|a|

= 4|a|2 cos2
(κ
2

)[
1+O

(
|a|−2

)]
, a≫ 1, (32)

unlike the NLS case, for which Max/|a|= 1+ 2sinϕ does not depend on a. We remark that,
if X1 /∈ Z, the maximum of |N1| is not reached in a lattice point (see figure 3).

If η =−1, equation (26) implies that sinθ > cos(K1/2) and equation (25) that G1 > 1.
Therefore the solution (24) is singular on the closed curve C of the (x, t) plane defined by
the equation

cosh [σ (t−T1)] = G1 cos [κ(x−X1)] ; (33)

this curve is centered at (X1,T1) and x-periodic with period 2π/K1 (see figure 4). If

|x−X1|<
arccos(1/G1)

K1
, (34)

the solution N1 blows up at the two points (x, t±(x)):

t± (x) = T1 ±
cosh−1 (Gcos [κ(x−X1)])

σ
; (35)

where arccos is here the smallest positive branch of the inverse of cos, and cosh−1 is the positive
branch of the inverse of cosh (see figure 4).

9
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Figure 4. Density and 3D plots of the singular solution |N1| of AL−, where a= 1.3,
K1 = 2π/8, T1 = 0, X1 = 4.

We remark that the extension l of the singular curve (33) in the x direction is less than 1,
since:

l=
2
K1

arccos

(
1
G1

)
< 1 ⇔ 1

sinθ1
> 1. (36)

Consequently, if nX is the integer closest to X1 and

|nX−X1|>
arccos(1/G1)

K1
, (37)

then the appearance of the AW is not singular on the lattice, since the singular curve is located
in the region between two subsequent sites. But this situation is not generic, and the solutions
can be arbitrarily large if the singular curve is close enough to a site of the lattice.

3.2. The case of two unstable modes

The instability of two nonlinearly interacting modes K1 and K2 is described by the novel (to
the best of our knowledge) two-mode solution of AL±:

N2 (n, t;K1,K2,X1,X2,T1,T2,ρ,η) = ae2iη|a|
2t+iρ N(n, t)

D(n, t)
, (38)

where

N(n, t) = cosh [Σ1 (t−T1)+Σ2 (t−T2)+ 2 iη (θ1 + θ2)]

+ (a12 (K1,K2))
2 cosh [Σ1 (t−T1)−Σ2 (t−T2)+ 2 iη (θ1 − θ2)]

+ 2a12 (K1,K2)

{
G2 cosh [Σ1 (t−T1)+ 2iηθ1] cos [K2 (n−X2)]

+G1 cosh [Σ2 (t−T2)+ 2iηθ2] cos [K1 (n−X1)]

}
10
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+ b−12 (K1,K2)cos [K1 (n−X1)+K2 (n−X2)]

+ b+12 (K1,K2)cos [K1 (n−X1)−K2 (n−X2)] , (39)

D(n, t) = cosh [Σ1 (t−T1)+Σ2 (t−T2)]+ (a12 (K1,K2))
2 cosh [Σ1 (t−T1)−Σ2 (t−T2)]

− 2a12 (K1,K2)

{
G2 cosh [Σ1 (t−T1)] cos [K2 (n−X2)]

+G1 cosh [Σ2 (t−T2)] cos [K1 (n−X1)]

}
+ b−12 (K1,K2)cos [K1 (n−X1)+K2 (n−X2)]

+ b+12 (K1,K2)cos [K1 (n−X1)−K2 (n−X2)] , (40)

and where

cosθj =
√
1+ η

|a|2 sin
(
Kj
2

)
, j = 1,2,

Gj =
sin(θj)

cos
(
Kj
2

) , j = 1,2,

Σj = σ (Kj) = 2|a|2 sin(2θj) , j = 1,2,

(41)

a12 =
sin(θ1+θ2)
sin(θ1−θ2)

,

b±12 =
sin(θ1) sin(θ2)
sin2(θ1−θ2)

(√
cos
(
K2
2

)
cos
(
K1
2

) cos(θ1)±
√

cos
(
K1
2

)
cos
(
K2
2

) cos(θ2)) . (42)

Also this solution oscillates in n and is exponentially localized in time over the background:

N2 (n, t;K1,K2,X1,X2,T1,T2,ρ,η)→ ae2iη|a|
2t+i[ρ±2η(θ1+θ2)], as t→±∞.

In the rest of the paper we shall limit our considerations to the case K2 = 2K1; then the
solution is periodic with period 2π/K1.

As in the case of a single mode, in the natural continuous limit (see (28)) the solution for
η= 1 reduces to the two breather solution of Akhmediev type [30], while it does not have a
continuous limit in the case η =−1.

As in the case of a single mode, it is possible to show the following.
(i) If η= 1, the solution (38) is always regular. If |T1 −T2|> O(1) the two nonlinear modes are
separated into two weakly interacting Narita solutions with wave numbers K1 and K2. If |T1 −
T2| ≪ 1 the two nonlinear modes appear almost at the same time interacting nonlinearly. If
T1 = T2, K2 = 2K1, and X2 = X1 +

2π
4K1

the two modes are amplitude-locked and phase-locked
in a characteristic configuration similar to the one of NLS (see figure 5).

The maximum height of |N2| can be calculated in terms of elementary functions in two
cases: when |T1 −T2| ≫ 1 and the solution describes two separated Narita solutions (24), and
when they are amplitude- and phase-locked:

T1 = T2, X2 = X1 +
2π
4K1

. (43)

11
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Figure 5. 3D plots of |N2| for η= 1, a= 1.3, K1 = 2π/12, and K2 = 2K1. Top left:
T1 =−1, T2 = 1.5, X1 = 0 and X2 = 1. |T2 − T1|⩾ 1, and the solution appears as
two separate Narita solutions of wave numbers K1 and K2. Top right: T1 = T2 = 0,
X1 = 0 and X2 = 1. Since T1 = T2, the two modes appear together and strongly inter-
act. Bottom: the phase locking choice of the parameters: T1 = T2 = 0, X1 = 0 and
X2 = X1 +

2π
4K1

= 3.

In the second case, the maximum height reached by the solution is given by:

max
∣∣∣N2|= |N2

(
X1,T1;K1,K2,X1,X1 ±

2π
4K1

,T1,T1,ρ,1

)∣∣∣
= |a|

[
2
(
1+ |a|2

)
cos

(
K1

2

)(
cos(θ1)+ cos

(
K1

2

))
− 1

]
×
[
2
(
1+ |a|2

)
cos

(
K2

2

)(
cos(θ2)+ cos

(
K2

2

))
− 1

]
, (44)

implying that the maximum amplitude of |N2|, relative to the background, grows as |a|4 for
|a| large: max |N2|/|a|= O

(
|a|4
)
, |a| ≫ 1 (see the last of figure 5).

(ii) If η =−1, N2 develops always singularities at finite time on three closed curves of the
(x, t) plane; one curve for the mode K1 and two curves for K2 (see figure 6).

12
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Figure 6. 3D plots of |N2| for η =−1, a= 1.3, K1 = 2π/12, K2 = 2K1. Left: T1 = 0,
T2 = 1, X1 = 0 and X2 = 3. Since |T1 − T2|= 1, the solution describes two separate
weakly interacting singular solutions of the type N1, with modes K1 and K2 = 2K1.
Right: T1 = T2 = 0, X1 = 0 and X2 = X1 +

2π
4K1

= 3 (the phase-locking choice of the
parameters).

3.3. Another continuous limit of the AL equations

We remark that the AW solutions (24) and (38) for η =−1 do not have a continuous limit to
defocusing NLS, since the instability condition |a|> 1 is not consistent with the limit (2). This
fact strongly suggests to explore the following different continuous limits of the AL equations

un (t) = w(ξ,τ) , hn= ξ, τ = t, 0< h≪ 1,
un (t) = w(ξ,τ1) , hn= ξ, τ1 = ht, 0< h≪ 1,

(45)

leading respectively to the following equations

iwτ + h2wξξ

(
1+ η|w|2

)
+ 2η|w|2w= 0, η =±1, 0< h≪ 1,

ihwτ1 + h2wξξ

(
1+ η|w|2

)
+ 2η|w|2w= 0, η =±1, 0< h≪ 1,

(46)

up to smaller terms of order O(h3). Both equations are NLS type equations with an interest-
ing nonlinear and weak dispersion. If η= 1 the nonlinear dispersion and the self-interacting
potential have the same sign; therefore we are in the focusing regime. If η =−1, as in the AL
case, the situation is richer and we distinguish to cases. (i) If |w|< 1 the nonlinear dispersion
and the self-interacting potential have opposite sign and we are in the defocusing regime [17].
(ii) If |w|> 1 the nonlinear dispersion and the self-interacting potential have the same negat-
ive sign and we are in the focusing regime; the homogeneous background is unstable, and a
small periodic perturbation of it gives rise to a blow up at finite time, exactly like the AL case
[17]. We expect that the continuous limit of solutions (24) and (38) should provide an analytic
description of this blow up. In addition the NLS type equations (46) are quasi integrable, since
they can be obtained as compatibility condition of a certain Lax pair, up to O(h3) corrections
[17].

Therefore the AL equations, constructed as integrable lattice generalization of the NLS
equations and reducing to them in the limit (2), possess different interesting continuous limits,
like equations (46), making even more clear that the case η =−1 is defocusing only if the
amplitudes are less than 1; otherwise it is focusing, and this focusing effect is so strong (now the
dispersion is nonlinear) to lead to the blow up of the solution at finite time. Another interesting
continuous limit is in [70].

13
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4. AW recurrence and blow up at finite time of periodic AWs of AL±

In this section we study the periodic Cauchy problem with period N ∈ N+ for AL±

i u̇n− 2un+
(
1+ η|un|2

)
(un−1 + un+1) = 0,

un+N (t) = un (t) , ∀n ∈ Z, ∀t⩾ 0,
(47)

in which the initial condition is a generic periodic perturbation of the background (8) (what
we call the ‘periodic AW Cauchy problem’):

un (0) = a

(
1+ ϵ

(
p∑

j=1

(
cjeiκjn+ c−je−iκjn

)
+ c0

))
, 0< ϵ≪ 1, (48)

where

κj =
2π
N
j, 1⩽ j ⩽ p, (49)

and

p=


N
2 , if N is even,

N−1
2 , if N is odd.

(50)

As we shall see in the following, it is convenient to define the parameters

σj = 2|a|2 sin(2ϕj) ,

X+
j =

arg(αj)+π/2
κj

, X−
j =

−arg(βj)+π/2
κj

,
(51)

where

cosϕj =
√
1+ η

|a|2 sin
(κj

2

)
, (52)

and

αj := cje
−iηϕj − c−je

iηϕj , βj = c−je
iηϕj − cje

−iηϕj . (53)

To construct the solution, to leading order and in terms of elementary functions, we use the
matched asymptotic expansion technique introduced in [30] for the focusing NLS model.

4.1. The AL+ case

We first concentrate on the case η= 1, giving rise to a recurrence of regular periodic AWs,
in the case of one and two unstable modes. The instability condition |κ|< κa implies that the
first M⩽ p modes ±κj, 1⩽ j ⩽M are unstable, where

M :=

⌊
Nκa
2π

⌋
, (54)

and ⌊x⌋ is the largest integer less or equal to x.
From equations (11), (22) and (23) it follows that the solution of the Cauchy problem (48),

for |t|⩽ O(1), reads as follows:

14
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un (t) = ae2i|a|
2t

{
1+ ϵ

M∑
j=1

[
|αj|

sin(2ϕj)
eσj t+iϕj cos

(
κj

(
n−X+

j

))
+

|βj|
sin(2ϕj)

e−σj t−iϕj cos
(
κj

(
n−X−

j

))]
+O(ϵ)oscillations

}
+O

(
ϵ2
)
, (55)

where σj, ϕj, X
±
j , αj, βj, 1⩽ j⩽M are defined respectively in (51), (52), and (53). This

solution grows exponentially and, when t= O(log(1/ϵ)), one enters the first nonlinear stage
of MI.

4.1.1. One unstable mode. In the simplest case of one unstable mode (M= 1) only, corres-
ponding to the case in which the period N satisfies the inequalities

M= 1 ⇔ 2π
κa

< N<
4π
κa
, (56)

only the mode κ1 is unstable, and the corresponding nonlinear stage of MI is described by the
solution (figure 3) for a suitable choice of its arbitrary parameters, obtained using matched
asymptotic expansions [30].

Matching the linearized solution (55) forM= 1 and the exact solution (24) in the interme-
diate time interval 1≪ t≪ T1 = σ1

−1 log(γ+/ϵ)), γ+ = O(1)> 0, we have

u∼ ae2i|a|
2t
[
1+ ϵ |α|

sin(2ϕ1)
eσ1t+iϕ1 cos

[
κ1
(
x−X+

1

)]]
,

N1 ∼ ae2i |a|
2tei(ρ−2θ1)

[
1+ ϵ 4G1 cosθ1

γ+
eσ(K1)t+iθ1 cos [K1 (x−X1)]

] (57)

inferring that ρ= 2ϕ1, K1 = κ1 (consequently σ(K1) = σ1, θ1 = ϕ1), X1 = X+
1 , and

γ+ =
2sin2 (2ϕ1)

|α1|cos(κ1/2)
⇒ t(1) = T1 =

1
σ1

log

(
σ2
1

2ϵ|a|4|α1|cos(κ1/2)

)
. (58)

It follows that the Narita solutionN1(x, t,κ1,X
+
1 , t

(1),2ϕ1,1) describes the first appearance
of the AW. To describe the recurrence of AWs, it is convenient to obtain the first appearance
for negative times [30], matching the linearized solution (55) for M= 1 and the Narita solu-
tion (24) in the time interval 1≪ |t| ≪ T0 = σ1

−1 log(γ−/ϵ)), γ− = O(1)> 0, t< 0:

u∼ ae2iη|a|
2t
[
1+ ϵ |β1|

sin(2ϕ1)
e−σ1t−iϕ1 cos

[
κ1
(
x−X−

1

)]]
,

N1 ∼ ae2i |a|
2tei(ρ+2θ1)

[
1+ ϵ 4G1 cosθ1

γ−
e−σ(K1)t−iθ1 cos [K1 (x−X1)]

]
,

(59)

Comparison gives ρ=−2ϕ1, K1 = κ1 (consequently σ(K1) = σ1, θ1 = ϕ1), X= X−
1 , and

γ− =
2sin2 (2ϕ1)

|β1|cos(κ1/2)
⇒ t(0) =−T0 =− 1

σ1
log

(
σ2
1

2|a|4ϵ|β1|cos(κ1/2)

)
. (60)

It follows that the solution N1(x, t,κ1,X
−
1 , t

(0),−2ϕ1,1) describes the first appearance of the
AW also at negative times. Comparing the two consecutive appearances at times t(0) and t(1),
and using the time translation symmetry of AL+, we infer the following periodicity law for the
general recurrence of the AL+ AWs (see [30] for more details)

u(x+∆x, t+∆t) = u(x, t)+O(ϵ) , (61)
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Figure 7. Density and 3D plots of |un(t)| coming from the numerical integration of
the Cauchy problem of the AWs for the AL+ equation (η= 1), in the case of a single
unstable mode. We used the 6th order Runge–Kutta method [67] with the initial condi-
tion un(0) = a(1+ ϵ(c+eikn+ c−e−ikn)), where N= 7, a= 1.1, ϵ= 10−4, c+ = 0.53−
i 0.86 and c− =−0.26+ i 0.22. The numerical output is in perfect quantitative agree-
ment with the theory described by (62) and (63).

where

∆x= X+
1 −X−

1 = arg(α1β1)
κ1

,

∆t= t(1) − t(0) = 1
σ1
log
(

σ4
1

4ϵ2|a|8|α1β1|cos2(κ1/2)

)
.

(62)

Summarizing, the nth AW appearance in the FPUT recurrence generated by the Cauchy
problem (48), in the case of the single unstable mode κ1, is described, in the time interval
|t− t(n)|= O(1), by the Narita solution N1(x, t;κ1,x(n), t(n),1,ρn) up to O(ϵ) errors, where

x(n) = x(1) +(n− 1)∆x, x(1) = arg(α1)+π/2
κ1

, mod N,

t(n) = t(1) +(n− 1)∆t, t(1) = 1
σ1
log
(

σ2
1

2ϵ|a|4|α1|cos(κ1/2)

)
,

ρn = 2ϕ1 +(n− 1)4ϕ1,

(63)

and∆x and∆t are defined in (62). This is the analytic and quantitative description of the FPUT
recurrence of AWs of theAL+ equation in term of the initial data through elementary functions.
x(1) and t(1) are respectively the first appearance time and the position of the maximum of the
absolute value of the AW; ∆x is the x-shift of the position of the maximum between two
consecutive appearances, and ∆t is the time interval between two consecutive appearances
(see figure 7).
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The quantitative agreement between the above theory and numerical experiments is per-
fect, as one can see from the following table, in which one compares the values (x( j), t( j)) of
the position and time of the jth appearance of the AW, for j = 1, . . . ,6, as predicted by (62)
and (63), with the values coming from the numerical experiment of figure 7. E.g., for ϵ= 10−4,
the first disagreement in the 6th appearance is in the 7th decimal digit, corresponding to the
9th significant digit!

Numeric Theory

(x(1), t(1)) (1.879 770 83, 4.178 924 77) (1.879 770 74, 4.178 924 29)
(x(2), t(2)) (3.084 433 57, 12.807 7003) (3.084 433 36, 12.807 6998)
(x(3), t(3)) (4.289 096 33, 21.436 475 86) (4.289 095 97, 21.436 475 49)
(x(4), t(4)) (5.493 759 10, 30.065 251 40) (5.493 758 59, 30.065 251 08)
(x(5), t(5)) (6.698 421 86, 38.694 026 94) (6.698 421 21, 38.694 026 68)
(x(6), t(6)) (0.903 084 62, 47.322 802 49) (0.903 083 83, 47.322 802 28)

In addition, using the fact that, at each appearance, the AW is exponentially localized in
time, and that, from (29), after each appearance, the background exhibits a 4ϕ1 phase shift, the
FPUT recurrence can be described by the following expression, uniform in space-time, with
t⩽ t(n) +O(1):

u(x, t) =
n∑

j=0

N1

(
x, t;κ1,x

( j), t( j),ρj,1
)
− ae2i|a|

2t 1− e4iϕ1n

1− e4iϕ1
+O(ϵ) . (64)

We remark, from (63), that the maximum of the AW at the first appearance is located on a
lattice point x(1) ∈ Z, if the initial data are such that

argα1

κ1
+
N
4
∈ Z, (65)

If, in addition,∆x ∈ Z, i.e. from (63) and (62)

argβ1
κ1

− N
4
∈ Z, (66)

then the maxima of the FPUT recurrence are all located on the lattice points.

The distinguished case α1β1 ∈ R. As in the NLS case, a very distinguished situation occurs
when the initial data are such that

α1β1 ∈ R. (67)

Indeed, from (53) and (62):

• If α1β1 > 0, then ∆x= 0 and the FPUT recurrence is periodic with period ∆t.
• If α1β1 < 0, then ∆x= N/2 and the FPUT recurrence is periodic with period 2∆t .

It is easy to verify that

α1β1 ∈ R ⇔ |c1|= |c−1|=: |c|, (68)

with

α1β1 = 2|c|2 [cosγ− cos(2ϕ1)] , γ := arg(c1)+ arg(c−1) , (69)
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Therefore, in terms of the initial data :

• |c1|= |c−1|, |γ|< 2ϕ1 ⇔ α1β1 > 0,
• |c1|= |c−1|, |γ|> 2ϕ1 ⇔ α1β1 < 0,

Particularly interesting subcases are un(0) ∈ R and un(0) ∈ iR.

(a) If un(0) ∈ R, then |c1|= |c−1|, γ = 0, implying α1β1 > 0, ∆x= 0, and a periodic FPUT
recurrence with period ∆t.

(b) If un(0) ∈ iR, then |c1|= |c−1|, |γ|= π, implying α1β1 < 0, ∆x=M/2, and a periodic
FPUT recurrence with period 2∆t.

We remark that the condition (67) is not generic with respect to the AL dynamics, since it
arises imposing the real constraint |c1|= |c−1| on the initial data. But, as we shall see in the
forthcoming paper [20], it becomes the generic asymptotic state when the AL+ dynamics is
perturbed by a small loss or gain.

4.1.2. Two unstable modes. In the case of two unstable modes (M= 2), corresponding to
the case in which the period N satisfies the inequalities

M= 2 ⇔ 4π
κa

< N<
6π
κa
, (70)

only the modes κ1 and κ2 are unstable, and the corresponding nonlinear stage of MI is
described by the solution N2 for a suitable choice of its arbitrary parameters.

Matching the linearized solution (55) for M= 2 and the AL+ solution (38) in the interme-
diate time interval 1≪ t≪

(
σ1

−1 +σ2
−1
)
| log(ϵ))|/2, we have

u∼ ae2i|a|
2t

[
1+ ϵ

2∑
j=1

(
|αj|

sin(2ϕj)
eσjt+iϕj cos

[
κj

(
n−X+

j

)])]
,

N2 ∼ ae2i |a|
2tei(ρ−2(θ1+θ2))

[
1+

2∑
j=1

(
2a12 sin(2θj)

cos
(
Kj
2

) eΣj(t−Tj)+iθj cos [Kj (n−Xj)]

)]
,

(71)

inferring that ρ= 2(θ1 + θ2), Kj = κj (consequently θj = ϕj and Σj = σj), Xi = X+
i , for

i = 1,2, and

Tj = t+j :=
1
σj

log

(
a12 σ2

j

2ϵ|a|4|αj|cos(κj/2)

)
, j = 1,2. (72)

It follows that the solution N2(n, t;κ1,κ2,X
+
1 ,X

+
2 , t

+
1 , t

+
2 ,2(θ1 + θ2),1) describes the first

appearance of the AW.
Proceeding as in the case of a single unstable mode, we describe the first appearance for

negative times, matching the linearized solution (22) for M= 2 and the solution (38) in the
time interval 1≪ |t| ≪

(
σ1

−1 +σ2
−1
)
| log(ϵ))|/2, t< 0:

u∼ ae2i|a|
2t

[
1+ ϵ

2∑
j=1

(
|βj|

sin(2ϕj)
e−σjt−iϕj cos

[
κj

(
x−X−

j

)])]
,

N2 ∼ ae2i |a|
2tei(ρ+2(θ1+θ2))

[
1+

2∑
j=1

(
2a12 sin(2θj)

cos
(
Kj
2

) e−Σj(t−Tj)−iθj cos [Kj (n−Xj)]

)]
,

(73)
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inferring that ρ=−2(θ1 + θ2), Kj = κj (consequently θj = ϕj and Σj = σj), Xj = X−
j , and

Tj = t−j :=− 1
σj

log

(
a12 σ2

j

2ϵ|a|4|βj|cos(κj/2)

)
, j = 1,2. (74)

It follows that the solution N2(n, t;κ1,κ2,X
−
1 ,X

−
2 , t

−
1 , t

−
2 ,1,−2(θ1 + θ2),1) describes the first

appearance of the AW at negative times. As in the one mode case, comparing the two consecut-
ive appearances we construct the solution of the Cauchy problem to leading order. Introduce:

∆xj = X+
j −X−

j =
arg(αjβj)

κj
, j = 1,2,

∆tj = t+j − t−j = 2
σj
log

(
σ2
j

2|a|4ϵ
√

|αjβj|cos(κj/2)

)
.

(75)

Then the nth AW appearance in the FPUT recurrence generated by the Cauchy problem, in the

case of two unstable modes κ1 and κ2, is described, in the time interval |t−
(
t(n)1 + t(n)1

)
/2|=

O(1), by the solution
N2
(
n, t;κ1,κ2,x

(n)
1 ,x(n)2 , t(n)1 , t(n)2 ,−2(θ1 + θ2),1

)
up to O(ϵ) errors, where

x(n)j = x(1)j +(n− 1)∆xj, x(1)j = X+
j =

arg(αj)+π/2
κj

, mod N,

t(n)j = t(1)j +(n− 1)∆tj, t(1)j = t+j = 1
σj
log

(
σ2
j

2|a|2ϵ|αj|cos(κj/2)

)
,

ρ(n) = 2(ϕ1 +ϕ2)+ 4(n− 1)(ϕ1 +ϕ2) ,

(76)

and ∆xj and ∆tj are defined in (62). This is the analytic and quantitative description of the
FPUT recurrence of AWs of the AL equation in term of the initial data through elementary
functions (see figure 8).

Equivalently, using the fact that, at each appearance, the AW is exponentially localized
in time and the background exhibits a 4(ϕ1 +ϕ2) phase shift, the FPUT recurrence can be

described by the following expression, uniform in space-time, with t⩽
(
t(n)1 + t(n)1

)
/2+O(1):

u(x, t) =
n∑

j=0
N2

(
n, t;κ1,κ2,n

( j)
1 ,n( j)2 , t( j)1 , t( j)2 ,ρ( j)

)
− ae2i|a|

2t 1−e4i(ϕ1+ϕ2)n

1−e4i(ϕ1+ϕ2)
+O(ϵ) . (77)

It is important to remark that the recurrence results of this subsection for the case of two
unstable modes are valid if the initial data are such that the first appearance times of the two
unstable modes, for positive and negative t, are approximately the same: |t( j)1 − t( j)2 | ≪ 1, j =
0,1, implying that the unstable modes appear approximately at the same time for many recur-
rences (see figure 8). If the appearance times of the two modes are sensibly different, the
picture is more complicated and the FG approach is the proper tool to analyze it, as it was
done in [31] for the NLS model.

4.2. The AL− case

If η =−1 and |a|> 1, all modes ±κj, 1⩽ j ⩽ p are unstable, and the solution of the Cauchy
problem (48), for |t|⩽ O(1), reads as follows:

19



J. Phys. A: Math. Theor. 57 (2024) 015202 F Coppini and P M Santini

Figure 8. Density and 3D plots of |u(n, t)|, with two unstable modes, with N= 10,
a= 0.8 and ϵ= 10−5. The numerical integration is performed using the 6th order
Runge-Kutta. The initial condition is un(0) = a(1+ ϵ(c1e

iκ1n+ c−1e
−iκ1n+ c2e

iκ2n+
c−2e

−iκ2n)), where κ1 =
2π
N , κ2 = 2κ1, c1 =−0.2541+ i 0.6967, c−1 =−0.3492+

i 0.6642, c2 = 1.016+ i 16.87, c−2 =−6.402− i 15.19, and ϵ= 10−5. The coefficients
c±j are chosen to have |t( j)1 − t( j)2 | ≪ 1, j = 0,1; these two conditions imply that the two
unstable modes appear approximately at the same time for many recurrences.

un (t) = ae−2i|a|2t
{
1− ϵ

p∑
j=1

[
|αj|

sin(2ϕj)
eσj t−iϕj cos

(
κj

(
n−X+

j

))
+

|βj|
sin(2ϕj)

e−σj t+iϕj cos
(
κj

(
n−X−

j

))]
+O

(
ϵ2
)
, (78)

where σj, ϕj, X
±
j , αj, βj, 1⩽ j⩽ p are defined respectively in (51), (52) and (53).

This solution grows exponentially and generically develops singularities of the type dis-
cussed in section 3 in the first nonlinear stage, when t= O(log(1/ϵ)). Therefore it does no
make sense to study its recurrence properties, but it does make sense to see how a smooth
initial condition (48) evolves into a singularity in finite time.
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If p= 1, then the period isN= 3, and κ1 is the only unstable mode. The matching procedure
of the previous section leads to the comparison between the linearized solution (78) and the
one mode solution (figure 3) in the intermediate region O(1)≪ t≪ σ−1

1 log(|ϵ|):

u∼ ae−2i|a|2t
[
1− ϵ |α1|

sin(2ϕ1)
eσ1t−iϕ1 cos

[
κ1
(
x−X+

1

)]]
,

N1 ∼ ae−2i |a|2tei(ρ+2ϕ1)
[
1− ϵ 4G1 cosθ1

γ+ eΣ1(t−T1)−iθ1 cos [K1 (x−X1)]
]
,

T1 = 1
σ1
log
(

γ+

ϵ

)
,

(79)

inferring that ρ=−2ϕ1, κ= κ1 (consequently θ1 = ϕ1 and Σ1 = σ1), X1 = X+
1 , and

γ+ =
2sin2 (2ϕ1)

|α1|cos(κ1/2)
⇒ T1 = t(1) :=

1
σ1

log

(
σ2
1

2ϵ|a|4|α1|cos(κ1/2)

)
. (80)

Therefore the smooth initial condition un(0) = a
[
1+ ϵ

(
c1eiκ1n+ c−1e−iκ1n

)]
evolves into the

generically singular solution

un (t)∼N1

(
n, t;κ1,X

+
1 , t

(1),−2ϕ1,−1
)
, |t− t(1)|= O(1) , (81)

whose singularity properties have been studied in section 3. Analogously, in the case p= 2,
corresponding to the two unstable modes κj, j = 1,2 and to the periodN= 5, the smooth initial
condition

un (0) = a

1+ ϵ
2∑

j=1

(
cje

iκjn+ c−je
−iκjn

) (82)

evolves into the generically singular two-breather solution

un (t)∼N2

(
n, t;κ1,κ2,X

+
1 ,X

+
2 , t

(1)
1 , t(1)2 ,−2(ϕ1 +ϕ2) ,−1

)
, (83)

where X+
1 ,X

+
2 , t

(1)
1 , t(1)2 are the same as in the η= 1 case, shown in (76) (see figure 6).

5. Conclusions and future perspectives

In this paper we have first introduced known and new periodic exact AW solutions of the AL
equations, using classical DTs, and we have established their relevance in the description of
the AW dynamics for generic periodic initial perturbations of the background, in the case of
one and two unstable modes only, using matched asymptotic expansions, in excellent agree-
ment with numerical simulations. If η= 1 the solution describes a FPUT recurrence of regular
AWs, while in the case η =−1 and for a sufficiently large background, the solution describes,
through elementary functions, how a generic regular periodic initial perturbation of the back-
ground evolves into a blow-up at finite time. This last regime cannot be captured by the defo-
cusing NLS equation, and the proper continuous limit describing it is also performed, leading
to NLS equations with a nonlinear and weak dispersion, from which it is transparent that the
case in which η =−1 and the amplitudes are sufficiently large describes a strongly focusing
regime. These results open several research directions. First, the FGmethod for AWs, partially
developed in [20], should be suitably implemented to study the periodic AL Cauchy problem
of AWs in the case of an arbitrary finite number of unstable modes, when matched asymp-
totics are not an adeguate tool since asymptotic regions are not well separated. Second, the
perturbation theory of AWs of the AL equations, developed in [20], should allow one to study
the dynamics of AWs of non integrable but physically relevant lattice NLS equations close
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to the AL lattices. Third, since the NLS equations with nonlinear and weak dispersion (46)
are quasi integrable, since they possess an approximate Lax pair [17], the corresponding IST
and FG methods should be developed; in addition the study of possible applications of these
equations should also be done. At last, a natural generalization of the results of this paper con-
sists in studying the AW dynamics of periodic AWs of vector/matrix generalizations of the AL
equations [6] (see [21, 22] for some studies of AWs for vector generalizations of NLS).
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Appendix. Darboux transformations and periodic AW solutions

We look for a gauge transformation matrix Dn(t,λ) (the so-called Darboux matrix) that pre-
serves the structure and the symmetries of the AL Lax pair. More precisely, let (u[0]n , ψ⃗

[0]
n ) and

(un, ψ⃗n) be solutions of the Lax pair (4). Then we look for the transformation

ψ⃗n = Dn (t,λ) ψ⃗
[0]
n , (84)

implying the following two equations for the Darboux matrix

Dn+1L
[0]
n = LnDn, Dnt = AnDn−DnA

[0]
n , (85)

where (L[0]n ,A
[0]
n ) are the matrices (Ln,An) in (4) in which un is replaced by u

[0]
n , together with

the symmetry

Dn (λ) = PηDn

(
1

λ

)
P†
η (86)

coming from (5) and (6).
Following [27], we look for the Darboux matrix in the form:

Dn (λ) =


λK+

N∑
l=1

a(K−2 l)
n λK−2 l

K∑
l=1

b(K−2 l+1)
n λK−2 l+1

K∑
l=1

c(K−2 l+1)
n λ−K+2 l−1 λ−K+

K∑
l=1

d(K−2 l)
n λ−K+2 l

 , (87)

for K ∈ N+, corresponding to the Darboux transformation

ψ⃗[K]
n = Dn (t,λ) ψ⃗

[0]
n ; (88)

then the symmetry (86) implies the following relations between the matrix elements of D(K)
n :
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d(l)n = a(l)n , c(l)n =−ηb(l)n . (89)

It is well-known that the Darbouxmatrix describes a one-parameter (the complex parameter
λ) family of transformations becoming singular at one or more values of λ. If λi is a singular
point such that detDn(λi, t) = 0, the symmetries of the Lax pair imply that also−λi and±1/λi
are singular points. At the singular points (±λi, ±1/λi) the matrix Dn(λ, t) has range 1 and,
if ξ

n
(t,λ),χ

n
(t,λ) are the columns of the fundamental matrix solution Ψ

[0]
n (t,λ) of the Lax

pair (4) for un = u[0]n :Ψ[0]
n (t,λ) =

(
ξ
n
(t,λ),χ

n
(t,λ)

)
, their images must be proportional in the

points (±λi, ±1/λi) where the matrix is singular:

Dn (λi) ·
(
ξ
n
(λi)− γiχn (λi)

)
= 0, (90)

where γi is the proportionality factor.
Equation (90) implies, for each λi, the system:(

λKi +
K∑
l=1

a(K−2 l)
n λK−2 l

i

)
+

(
K∑
l=1

b(K−2 l+1)
n λK−2 l+1

i

)
ri = 0,

(
1

λ
K
i

+
K∑
l=1

a(K−2 l)
n

λ
K−2 l
i

)
− η

(
K∑
l=1

b(K−2 l+1)
n

λ
K−2 l+1
i

)
1
ri
= 0,

(91)

where

ri =
(ξn (λi))2 − γi (χn (λi))2
(ξn (λi))1 − γi (χn (λi))1

. (92)

Note that a change of the basis of the eigenvectors
(
ξ
n
(t,λ),χ

n
(t,λ)

)
is equivalent to a res-

caling of the constant γi. If the number of singular points λi is equal to the order K of the
Darboux transformation, the relations (91) for i = 1, . . . ,K define a determined system of 2K
equations for the 2K unknowns a(l)n , b

(l)
n , l= 1, . . . ,K, that can be uniquely solved, leading to

the wanted Darboux matrix.
At last, from the first of equation (85), the dressed solution u[K]n (t) can be calculated from

the solution u[0]n (t) in the following way:

u[K]n (t) = u[0]n (t)a(−K)
n+1 (t)+ b(−K+1)

n+1 (t) . (93)

Now we specialize the previous formulas for the two simplest cases K= 1,2.

K = 1

If K= 1, the linear system (91) of two equations yields the solution

a(−1)
n (t) = ∆(1)

a

∆(1) =−
ηλ1+

|r1|2

λ1
|r1|2λ1+

η
λ1

,

b(0)n (t) =
∆

(1)
b

∆(1) =− r1
|r1|2λ1+

η
λ1

(
|λ1|2 − 1

|λ1|2

)
,

(94)
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where

∆(1)
a = det

−λ1 r1

− 1

λ1
− η

r1

 , ∆
(1)
b = det


1
λ1

−λ1

λ1 − 1

λ1

 , ∆(1) = det

 1
λ1

r1

λ1 − η

r1

 .
At last:

u[1]n (t) = u[0]n (t)a(−1)
n+1 (t)+ b(0)n+1 (t) . (95)

K = 2

If K= 2, we can write the relevant Darboux matrix elements a(−2)
n and b(1)n through the for-

mulas:

a(−2)
n (t) =

∆
(2)
a

∆(2)
, b(−1)

n (t) =
∆

(2)
b

∆(2)
, (96)

where

∆(2) = det



1 1
λ2
1

r1λ1
r1
λ1

1 1
λ2
2

r2λ2
r2
λ2

1 λ1
2 − η

λ1r1
−ηλ1

r1

1 λ2
2 − η

λ2r2
−ηλ2

r2


,

and∆(2)
a and∆(2)

b are obtained substituting in∆(2) the second and the fourth columns, respect-

ively, by the vector (−λ21,−λ22,−1/λ1
2
,−1/λ2

2
)T. As for the previous case, specializing (93)

for K= 2, we obtain the solution:

u[2]n (t) = u[0]n (t)a(−2)
n+1 (t)+ b(−1)

n+1 (t) . (97)

The Darboux dressing of the background solution

Now we specialize this construction choosing u[0]n (t) = ae2iη|a|
2t (the background solution);

then the matrix fundamental solution of the Lax pair reads:

Ψ[0]
n (λ; t) =

(
ξ
n
(t,λ) ,χ

n
(t,λ)

)
=
(
1+ η |a|2

) n
2 ei(|a|

2t+ arg a
2 )σ3

(
ei

η
2 (kn−ϕ)−σt

2 − e−i
η
2 (kn−ϕ)+σt

2

i√
η e

i η2 (kn+ϕ)−σt
2 i√

η e
−i η2 (kn+ϕ)+σt

2

)
eiν t,

(98)

where

cos
(
k
2

)
=

(λ+λ−1)
2
√

1+η|a|2
⇔ λ=

√
1+ η|a|2 cos(κ/2)+ |a|√η sinϕ,

cosϕ =
√
1+ η

|a|2 sin
(
k
2

)
,

ν = 2|a|
√
η+ |a|2 sinϕ cos k2 .

(99)
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Therefore the building blocks of the solutions (95) and (97), are the functions ri(n, t), cal-
culated from (98) and (92) in the following form:

ri =−√
η

sin

(
κi (n− ni)+ iησi (t− ti)+ϕi

2

)
cos

(
κi (n− ni)+ iησi (t− ti)−ϕi

2

) e−2iη|a|2t−iarga, (100)

where ni = η argγi
κi

and ti =− log(|γi|)
σi

, and the singularities λi are expressed in terms of the
modes κi and the angles ϕi via (99):

λi =
√
1+ η|a|2 cos(κi/2)+ |a|√η sinϕi. (101)

Substituting (100) and (101) into equations (94) and (96) we construct the relevant coefficients
of the Darboux matrices under construction; then formulas (95) and (97) give the wanted solu-
tions, equivalent to the one and two breather solutions (24) and (38), through the following
relations among the parameters.

For the one mode solution N1(n, t;K1,X1,T1,ρ,η) in (24): K1 = κ1, θ1 = ϕ1,
X1 = n1 − η

2 −
π
2K1

, T1 = t1, and ρ= π.
For the two mode solution N2(n, t;K1,K2,X1,X2,T1,T2,ρ,η) in (38): Kj = κj, θj = ϕj,

X1 = n1 − 1
2 −

π
2K1

, X2 = n2 − 1
2 +

π
2K2

, Tj = tj, ρ= 0, j = 1,2.
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