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Abstract
We study infinitesimal deformations of autodual and hyper-holomorphic connections on
complex vector bundles on hyper-Kähler manifolds of arbitrary dimension. In particular,
we describe the DG Lie algebra controlling this deformation problem. Moreover, we prove
associative formality for derived endomorphisms of a holomorphic vector bundle admitting
a projectively hyper-holomorphic connection.
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Introduction

The notion of formality for (either commutative, or associative, or Lie) differential graded
algebras has been used in several settings in order to obtain deep geometric results.

The first big step dates back to thework byDeligne–Griffiths–Morgan–Sullivan [7], where
they proved that the de Rham algebra (A∗

R
, ddR) of a compact Kähler manifold X is formal,

hence deducing that the real homotopy type of X , controlled by the homotopy class of
(A∗

R
, ddR), is essentially determined by the cohomology algebra H∗(X ,R).

Using the same tecniques of [7], Goldman and Millson [11] studied the moduli space of
flat connections on a fixed complex vector bundle; this moduli space is hystorically a very
interesting object being related to the character variety of representations of the fundamental
group of the manifold and to the moduli space of Higgs bundles (which is an instance
of the famous non-abelian Hodge theory). More precisely, if ∇ is a flat connection on E ,
then ∇ extends to a differential on the graded algebra A∗(End(E)) of complex valued C∞
forms with coefficients in the endomorphism bundle End(E), whose formality implies that
the moduli space of certain representations of the fundamental group of a compact Kähler
manifold admits at most quadratic singularities.

Another big step forward has been achieved by Kontsevich in [19], where he proved that
every finite dimensional Poisson manifold admits a canonical deformation quantization. This
was obtained by showing the Lie formality of the Hochschild cohomology of the algebra A
of smooth functions on a differentiable manifold with coefficients in A.

More recently, the papers [2, 6] dealt with the so calledKaledin-Lehn formality conjecture,
which mainly arose in the paper [15]. First it has been proved in [6] that the homotopy class
of derived endomorphisms RHom(F, F) of a polystable coherent sheaf F on a K3 surface
is associatively formal, then in [2] it has been shown that RHom(F, F) is Lie formal for
every polystable coherent sheaf F on a smooth minimal surface of Kodaira dimension 0. In
particular, both results imply that the moduli space of semistable sheaves on a K3 surface
admits at most quadratic singularities.

It is natural to ask if the same result holds for higher dimensional hyper-Kähler mani-
folds, but both the proofs mentioned above fail and the situation seems to become much
more complicated. A milestone in such a higher dimensional setting is the paper [33] where
Verbitsky proved that the moduli space of stable vector bundles admitting a projectively
hyper-holomorphic connection on a hyper-Kähler manifold has at most quadratic singular-
ities. Roughly speaking, for a vector bundle E to have a projectively hyper-holomorphic
connection means that the associated Azumaya algebra End(E) deforms, as a holomorphic
vector bundle, along the twistor family (cf. the definition of modular sheaf given in [27]).

It is worth pointing out that on aK3 surface every stable holomorphic vector bundle admits
such a connection, while on a higher dimensional hyper-Kähler manifold this turns out to be
a particular restrictive assumption.

In the paper [31], O’Grady introduced the notion of modular sheaves, enlarging the class
studied by Verbitsky to torsion free sheaves that are not necessarily locally free sheaves, and
proving that for modular sheaves there exist a wall and chamber decomposition of the ample
cone that behaves as in the classical K3 case.

123



Hyper-holomorphic connections on HK manifolds Page 3 of 34 17

In the literature one also finds few classes of sheaves on hyper-Kähler manifolds for which
derived endomorphisms can be represented by a formalDGLie algebra: the first class consists
of some torsion sheaves supported on lagrangian submanifolds (see [29]), while the second
consists of so-called atomic sheaves (see [5]).

One of the main focuses of the present paper is the study of the associative Dolbeault
DG algebra

(
A0,∗(End(E)), ∂̄

)
of C∞-valued differential forms with coefficients in the

endomorphism bundle End(E) of a holomorphic vector bundle E admitting a projec-
tively hyper-holomorphic connection ∇ such that ∇ = ∇0,1 + ∂̄ . It is well known that
(A0,∗(End(E)), ∂̄) represents the homotopy class RHom(E, E) (see e.g. [9]). We prove the
following result.

Theorem (Theorem 4.3) Let E be a holomorphic vector bundle on a hyper-Kähler manifold
and assume that E admits a projectively hyper-holomorphic connection. Then the Dolbeault
DG algebra

(
A0,∗(End(E)), ∂̄

)

is associatively formal.

The same result has been proved, with a different method, in [5, Theorem 6.1] for powers
of slope stable vector bundles admitting a projectively hyper-holomorphic connection. Our
approach is completely different and highlights the hyper-Kähler structure.

When the holomorphic vector bundle admits a flat connection, which is an example of a
hyper-holomorphic connection, the same result is proved in [11, Section 9.2]. As a corollary
we recover Verbitsky’s quadraticity result. Our proof is easy, as it relies on the same ideas
already pointed out in [7, 11], where formality is obtained by either combining the de Rham
differential ddR with its adjoint dc

dR, or by showing that ∇ and its (0, 1)-part ∇0,1 satisfy
similar properties whenever ∇ is a flat connection. Following this idea, in this paper we
consider autodual connections, of which hyper-holomorphic connections are the metric case,
which can be thought of as a generalisation of flat connections since they “become flat" after
taking an appropriate quaternionic quotient (cf. Definition 3.4). Here is where the hyper-
Kähler structure comes into play. Indeed this additional structure induces an action of the Lie
group SU(2) on the real tangent space of the manifold, and hence on all of its tensor products.
Using this SU(2)-action one can define a special class of Yang–Mills connections that have
been called autodual by Kaledin–Verbitsky in [16]. Moreover, using Verbitsky’s terminology
[33], an hyper-holomorphic connection can be defined as an autodual connection arising as
the Chern connection of an hermitian metric.

Following the analogy with flat connections, we look for the DG Lie algebra con-
trolling infinitesimal deformations of an autodual connection. As already recalled, if a
connection ∇ is flat over E , then its deformations are controlled by the DG Lie algebra
(A∗(End(E)), [∇,−]). Since autodual connections are analogous to flat connections on the
quaternionic quotient, our first guess is to use such complex. More precisely, Verbitsky in
[34] describes the associative quaternionic Dolbeault DG algebra

(D∗(End(E)), [∇+,−]) ,

which is the quotient of the de Rham DG algebra A∗(End(E)) with coefficients in End(E)

by an ideal defined using the SU (2)-action (cf. Definition 3.4). Here the assumption on ∇
to be autodual ensures that the induced operator [∇+,−] on D∗(End(E)) squares to zero,
hence providing a differential on D∗(End(E)). We prove the following result.
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17 Page 4 of 34 F. Meazzini, C. Onorati

Theorem (Theorem 5.8) The infinitesimal autodual deformations of an autodual connection
∇ on a vector bundle E are controlled by the quaternionic Dolbeault DG Lie algebra

(
D∗(End(E)), [∇+,−], [−,−]) .

What we mean by an autodual deformation of an autodual connection is made precise in
Sect. 5, where we carefully define the corresponding deformation functor (cf. Definition 5.1).

Themain properties of the quaternionic Dolbeault complex are studied in Sect. 3. In Ques-
tion 3.15we askwhether this DGLie algebra is formal.When the corresponding holomorphic
vector bundle has a homotopy abelian DG Lie algebra, then we remark in Proposition 3.16
that this is the case for the quaternionic Dolbeault as well, hence being indeed formal. Never-
theless, the general behaviour is not known and we remark in Corollary 3.11 that the general
machinery due to [7] does not apply in this case, so the formality problem is more subtle.

Finally, given an autodual connection ∇ on E , its (0, 1)-part ∇0,1 defines a holomorphic
structure on E . It is natural to wonder how the holomorphic deformations of (E,∇0,1) are
connected to the autodual deformations of (E,∇). Our answer to this question can be resumed
as follows.

Theorem (Corollary 5.9) Let E be a complex vector bundle on a hyper-Kähler manifold.
Suppose E is endowed with a holomorphic structure ∂̄ and a hyper-holomorphic connection
∇ = ∇1,0 + ∂̄ . Then

(1) for every holomorphic deformation (E, ∂̄ ′) of (E, ∂̄) there exists an autodual connection
∇′ whose (0, 1)-part is ∂̄ ′,

(2) there exists a 1 : 1 correspondence
{
first order deformations of ∂̄

}

↔ {
first order autodual deformations of ∇whose (0, 1)-part is ∂̄

}

We conclude by making the following remark. Moduli spaces of autodual connections
has been constructed analytically and studied in [16]. In particular, in [16, Section 2.5] the
authors construct a symplectic form on the holomorphic tangent space of such a moduli
space. More generally they achieve these results for Yang–Mills connections on compact
Kähler manifolds. In [16, Conjecture 8.1], the authors foresee that this symplectic form
should come from an hyper-Kähler structure. From our point of view, an evidence for this
conjecture seems to be given by Proposition 3.19 and [33, Section 9]. More precisely, in
loc. cit. Verbitsky defines a (singular) hyper-Kähler structure on the tangent space (in the
Kuranishi family) of a holomorphic vector bundle admitting a hyper-holomorphic connection
and our Proposition 3.19 states that the tangent space of the corresponding hyper-holomorphic
connection is isomorphic to two copies of the said tangent space. In particular it has a hyper-
Kähler structure as well.

Structure of the paper

In Sect. 1we provide an abstract presentation of themethods developed in [7].More precisely,
we introduce a class of associative DG algebras, endowed with an extra structure miming
the main ingredients used by Deligne–Griffiths–Morgan–Sullivan. For this reason we call
them DGMS algebras, see Definition 1.5. For the sake of completness we state and prove
an abstract formality result for DGMS algebras (cf. Theorem 1.8). Despite the fact that the
proofs are essentially the same of [7], we found it useful to have an abstract account of the
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properties of this class of formal associative DG algebras, and we shall use them in different
situations. We also briefly discuss the analog constructions in the Lie case.

In Sect. 2we recall basic definitions and results from the theory of irreducible holomorphic
symplectic manifolds and autodual connections, while Sect. 3 is devoted to a characterisation
of autodual connections in terms of Maurer–Cartan equations, cf. Proposition 3.7. Here we
also recall the notion of quaterionic Dolbeault DG algebra (cf. Definition 3.4), andwe enlight
its main properties (cf. Lemma 3.10, and Theorem 3.14), which will play an important role
later on in the paper.

In Sect. 4 we recall the classical theory of infinitesimal deformations of holomorphic
vector bundles via DG Lie algebras and prove our formality statement, cf. Theorem 4.3. We
also give some examples and contextualise our result with the existing literature.

Finally, in Sect. 5 we study local properties of themoduli space of autodual connections on
a fixed complex vector bundle. More precisely, we define the deformation functor associated
to an autodual connection and prove that it is naturally isomorphic to the deformation functor
associated to the quaternionic Dolbeault DGLie algebra viaMaurer–Cartan equationmodulo
gauge action, cf. Theorem 5.8.

1 DGMS algebras

In this first section we work over a field K of characteristic 0. The following algebraic
data are inspired by the paper [7], so that the acronym DGMS in Definition 1.1 stands for
Deligne–Griffiths–Morgan–Sullivan.

Definition 1.1 A DGMS vector space (A, d0, d1) is the datum of a graded K-vector space
A = ⊕

i∈Z Ai endowed with two K-linear morphisms d0, d1 ∈ Hom1(A, A) of degree 1
satisfying the following properties:

(1) d2
0 = d2

1 = 0,
(2) [d0, d1] = d0d1 + d1d0 = 0,
(3) the strong d0d1-lemma holds ker(d0) ∩ ker(d1) ∩ (Im(d0) + Im(d1)) = Im(d0d1).

In literature (for example in [11, Sect. 7]), the strong d0d1-lemma is often referred to as
"principle of the two types", since in all applications we always think at d0 and d1 as the
(1, 0) and the (0, 1) part of a degree 1 differential d with respect to some additional structure.

Lemma 1.2 Let A = ⊕

j∈Z
A j be a graded vector space endowed with two differentials d0 and

d1. Under the hypothesis [d0, d1] = 0, the following conditions are equivalent.

a: Given an element x ∈ A which is both d0-exact and d1-closed, then there exists y ∈ A
such that x = d0d1y.

b: ker(d1) ∩ Im(d0) = Im(d0d1).
c: The subcomplex (Im(d0), d1) has trivial cohomology.

Similarly, the following conditions are equivalent.

a*: Given an element x ∈ A which is both d0-closed and d1-exact, then there exists y ∈ A
such that x = d0d1y.

b*: ker(d0) ∩ Im(d1) = Im(d0d1).
c*: The subcomplex (Im(d1), d0) has trivial cohomology.
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17 Page 6 of 34 F. Meazzini, C. Onorati

Proof Straightforward. 	

In the following we shall denote by Hd1(A) = ker(d1)

Im(d1)
the cohomology of A with respect

to d1, and similarly by Hd0(A) = ker(d0)
Im(d0)

the cohomology of A with respect to d0.

Lemma 1.3 Let A be a graded vector space endowed with two differentials d0 and d1 such
that [d0, d1] = 0.

• If ker(d1) ∩ Im(d0) = Im(d0d1) then the differential induced by d0 on Hd1(A) is trivial.
• If ker(d0) ∩ Im(d1) = Im(d0d1) then the differential induced by d1 on Hd0(A) is trivial.

Proof Consider a d1-closed element x ∈ A; notice that d0x ∈ ker(d1) ∩ Im(d0), being
[d0, d1] = 0. By hypothesis there exists y ∈ A such that d0x = d0d1y = −d1d0y, so that
d0x ∈ Im(d1) as required. The second item can be checked similarly. 	


Notice that the standard d0d1-lemma ker(d0) ∩ Im(d1) = Im(d0d1) and the analogous
d1d0-lemma ker(d1)∩Im(d0) = Im(d1d0) are not equivalent in general. The following result
essentially states that the strong d0d1-lemma of Definition 1.1 is equivalent to require both
the d0d1-lemma and the d1d0-lemma.

Lemma 1.4 Let A be a graded vector space endowed with two differentials d0 and d1. Assume
that [d0, d1] = 0. Then the strong d0d1-lemma

ker(d0) ∩ ker(d1) ∩ (Im(d0) + Im(d1)) = Im(d0d1)

holds if and only if all the items of Lemma 1.2 are satisfyied.

Proof We begin by showing that if the strong d0d1-lemma holds then ker(d1) ∩ Im(d0) =
Im(d0d1). To this aim it is sufficient to show the only non trivial inclusion ker(d1)∩Im(d0) ⊆
Im(d0d1). Take a d1-closed element x , such that x = d0y for some y ∈ A. Notice that

x = d0y ∈ ker(d0) ∩ ker(d1) ∩ (Im(d0) + Im(d1)) .

By assumption there exists an element z ∈ A such that x = d0d1z. Similarly one can prove
that ker(d0) ∩ Im(d1) = Im(d0d1).

For the converse, assume that conditions b and b* of Lemma 1.2 are both satisfied. We
need to show that

ker(d0) ∩ ker(d1) ∩ (Im(d0) + Im(d1)) ⊆ Im(d0d1) .

Take an element x ∈ A such that
⎧
⎪⎨

⎪⎩

d0x = 0

d1x = 0

x = d0y0 + d1y1

Now, since 0 = d0x = d0d1y1 we have d1y1 ∈ ker(d0) ∩ Im(d1) and by condition b* of
Lemma 1.2 there exists z1 ∈ A such that d1y1 = d0d1z1. Similarly d0y0 ∈ ker(d1) ∩ Im(d0)
and by condition b of Lemma 1.2 there exists z0 ∈ A such that d0y0 = d0d1z0. Hence
x = d0d1(z0 + z1) as required. 	


For the geometric applications of this paper, we will be interested in studying DGMS
vector spaces that are endowed with an associative (not necessarily commutative) product,
that is compatible with the differentials.
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Recall that an associative DG algebra (A , · , d) is a graded vector space A = ⊕
k∈Z Ak

together with a graded product · : Ai × A j → Ai+ j and a differential d : Ak → Ak+1

satisfying d2 = 0 and the (graded) Leibniz rule:

d(a · b) = d(a) · b + (−1)deg(a)a · d(b) .

for every homogeneous elements a, b ∈ A.

Definition 1.5 An associative DGMS algebra (A, ·, d0, d1) is the datum of a DGMS vector
space (A, d0, d1) such that both (A, ·, d0) and (A, ·, d1) are associative DG algebras.

Example 1.6 (de Rham algebra) Let (A,∧, d0 = ddR, d1 = dc
dR) be the de Rham algebra of

C∞-valued differential forms over a complex manifold endowed with the wedge product.
Here ddR is the de Rham differential and dc

dR is its Hodge adjoint. Then by the ddR dc
dR-lemma

(together with the Hodge theorem – see [7]) and Lemma 1.4 we have that A is an associative
DGMS algebra. Notice that in this case the associative product is graded commutative.

A morphism of associative DG algebras is simply a morphism of DG vector spaces that
preserves the products. Amorphismof associativeDGalgebras is called a quasi-isomorphism
if the induced morphism in cohomology is a degreewise isomorphism.

Given an associative DG algebra (A, ·, d), for every a, b ∈ A we have

da = db = 0 ⇒ d(a · b) = 0, and db = 0 ⇒ (da) · b = d(a · b) ,

so that the cohomology H(A) inherits the product and it is an associative DG algebra (with
trivial differential).

Definition 1.7 An associative DG algebra A is said to be formal if it is quasi isomorphic to
its cohomology; i.e. if there exists another associative DG algebra M together with a pair of
quasi-isomorphisms of associative DG algebras

(A , · , dA) ← (M , · , dM ) → (HdA (A) , · , 0) .

Formality for DG algebras has many geometric consequences. For example Deligne,
Griffiths, Morgan, Sullivan [7, Section 6] proved that the de Rham DG algebra (A,∧, ddR)

of a compact Kähler manifold X described in Example 1.6 is formal, hence showing that the
real homotopy type of X is uniquely determined by its cohomology algebra H∗(X ,R).

The following formality result is largely inspired to [7, Section 6].

Theorem 1.8 (Formality for DGMS algebras) Let (A, ·, d0, d1) be an associative DGMS
algebra. Then (A, ·, d0) is formal.

Proof Denote by A1 = ker(d1) ⊆ A the subspace of d1-closed elements. Notice that A1 is
an associative DG sub-algebra of A. Now consider the following morphisms of DG algebras

(A, ·, d0)
ι←− (A1, ·, d0)

ρ−→ (Hd1(A), ·, d0) ;
here ι is the natural inclusion and ρ is the natural projection. By Lemma 1.3 the induced
differential d0 on Hd1(A) is trivial, so that it only remains to be shown that both ι and ρ

induce isomorphisms in cohomology.

ι-step: Consider a d0-closed element x ∈ A and notice that d1x ∈ ker(d0) ∩ Im(d1). By
the strong d0d1-lemma there exists y ∈ A such that d1x = d0d1y = −d1d0y. Now
define x̃ = x +d0y ∈ A1, ιmaps the d0-cohomology class of x̃ in the d0-cohomology
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17 Page 8 of 34 F. Meazzini, C. Onorati

class of x . This proves the surjectivity of ι in cohomology. For the injectivity take
x ∈ A1 such that ι(x) = x is d0-exact in A, so that x ∈ ker(d1) ∩ Im(d0) and again
by the strong d0d1-lemma we have x = d0d1y for some y ∈ A so that x is d0-exact
also in A1.

ρ-step: Consider a class [x] ∈ Hd1(A) represented by a d1-closed element x ∈ A. Notice that
d0x ∈ ker(d1) ∩ Im(d0), being [d0, d1] = 0. By the d0d1-lemma there exists y ∈ A
such that d0x = d0d1y. Now consider the element x̃ = x−d1y ∈ ker(d1)∩ker(d0) ⊆
A1, which has the same d1-cohomology class as x so that ρ(x̃) = [x] in Hd1(A). This
proves the surjectivity of ρ in cohomology. For the injectivity take x ∈ A1 such that
ρ(x) = [x] = 0 in (Hd1(A), d0). Then x ∈ ker(d0) ∩ Im(d1) since d0 is trivial on
Hd1(A); therefore by the strong d0d1-lemma there exists y ∈ A such that x = d0d1y.
Hence [x] = [d0d1y] = 0 in Hd0(A1) as required.

We have proven that (A, ·, d0) is quasi-isomorphic to the DG algebra (Hd1(A), ·, 0), which
in turn is clearly isomorphic to (Hd0(A), ·, 0) via the cohomology composition map H(ι) ◦
H(ρ)−1. Therefore (A, ·, d0) is formal. 	

Remark 1.9 The proof of Theorem1.8 shows that the cohomologies of any associativeDGMS
algebra with respect to the two differentials are the same, i.e. Hd0(A) ∼= Hd1(A). By the
symmetry of Definition 1.1 we also proved that (A, ·, d1) is formal. Moreover, it is straight-
forward to check that the isomorphism of graded vector spaces Hd0(A) ∼= Hd1(A) preserves
the associative product so that (A, ·, d0) and (A, ·, d1) are quasi-isomorphic DG algebras.

The following result can be easily proved but it will lead to powerful applications.

Proposition 1.10 Let (A , · , d0 , d1) be an associative DGMS algebra. Then (A , · , d0 +
d1 , d1) is an associative DGMS algebra.

Proof For simplicity of exposition let us denote by δ0 = d0 + d1. It is immediate to see that

δ20 = d2
1 = [δ0, d1] = 0 .

Moreover, δ0 = d0+d1 is still a derivation. Let us prove the strong δ0d1-lemma.We begin by
showing ker(δ0)∩Im(d1) ⊆ Im(δ0d1). Fix an element a ∈ A such that δ0a = 0 and a = d1b.
Then d0a = δ0a = 0 so that by hypothesis there exists c ∈ A such that a = d0d1c = δ0d1c.
By Lemma 1.4, we are only left with the proof of ker(d1)∩ Im(δ0) ⊆ Im(δ0d1). To this aim,
fix a ∈ A such that d1a = 0 and a = δ0b. Then define a′ = a − d1b and notice that

d1a′ = 0 and a′ = d0b .

Therefore there exists c ∈ A such that a′ = d0d1c = δ0d1c. We have

a = δ0d1c + d1b = d1(b − δ0c) ∈ ker(δ0) ∩ Im(d1) ⊆ Im(δ0d1)

and the statement follows. 	


1.1 The Lie case

We briefly review some constructions in the Lie case. Fix a fieldK of characteristic 0. Recall
that a DG Lie algebra (L, d, [−,−]) is the data of a graded vector space L = ⊕

k∈Z Lk

together with a graded bracket [−,−]: Li × L j → Li+ j and a differential d : Lk → Lk+1

satisfying d2 = 0 and the following conditions
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(1) graded Leibniz rule: d[a, b] = [da, b] + (−1)deg(a)[a, db],
(2) graded skew-symmetry: [a, b] + (−1)deg(a) deg(b)[b, a] = 0,
(3) graded Jacobi identity: [a, [b, c]] = [[a, b], c] + (−1)deg(a) deg(b)[b, [a, c]],
for every homogeneous elements a, b, c ∈ L .

Notice that since char(K) = 0 the above conditions also imply

• [a, a] = 0 for every homogeneous element a of even degree,
• Bianchi identity: [a, [a, a]] = 0 for every homogeneous element a of odd degree.

Example 1.11 (Dolbeault DG Lie algebra) Let (E, ∂̄E ) be a holomorphic vector bundle on a
complex manifold X . Then

(
A0,∗(End(E)) , [∂̄E ,−] , [−,−])

is the Dolbeault DG Lie algebra, where A0,∗ is the algebra of C∞-valued (0, ∗)-forms, so
that A0,∗(End(E)) are the (0, ∗)-forms with values in the endomorphism bundle End(E).
Here

differential [∂̄E ,−] is the holomorphic structure on End(E) induced by the fixed holomor-
phic structure on E ;

bracket [α ⊗ e, β ⊗ f ] = α ∧ β [e, f ], where [e, f ] is the usual commutator between
holomorphic local sections of End(E).

A morphism of DG Lie algebras is simply a morphism of DG vector spaces that preserves
the brackets. We shall say that a morphism of DG Lie algebras is a quasi-isomorphism if the
induced morphism in cohomology is a degreewise isomorphism.

Given a DG Lie algebra (L, d, [−,−]), for every a, b ∈ L we have

da = db = 0 ⇒ d[a, b] = 0, and db = 0 ⇒ [da, b] = d[a, b] ,

so that the cohomology H(L) inherits the bracket and is a DG Lie algebra (with trivial
differential).

Definition 1.12 Let L = (L, d, [−,−]) be a DG Lie algebra. Then

(1) A DG Lie algebra is called formal if it is quasi isomorphic to its cohomology as a DG
Lie algebra.

(2) A DG Lie algebra is called homotopy abelian if it is quasi isomorphic to an abelian DG
Lie algebra.

The above definition plays a crucial role in several geometric application. As we will
recall more precisely later on, the idea is that in characteristic 0 to any DG Lie algebra it is
associated a deformation problem, and quasi isomorphic DG Lie algebras induce the same
deformation problem. Hence a deformation problem corresponding to a formal (or homotopy
abelian) DG Lie algebra enjoys particularly nice geometric properties, see e.g. Corollary 4.2.

Remark 1.13 Of course any associative DG algebra induces a DG Lie algebra, simply by
defining the (graded) bracket as the (graded) commutator. On the other hand, as in the
classical case, not every DG Lie algebra comes from an associative DG algebra. Therefore if
an associative DG algebra is formal, then the induced DGLie algebra is formal. The converse
does not hold in general.

123



17 Page 10 of 34 F. Meazzini, C. Onorati

Notice that the Dolbeault DG Lie algebra of Example 1.11 has a bracket that comes from a
natural associative product, so that we will often refer to it both as an associative DG algebra
and as a DG Lie algebra.

One of the main tasks for many geometric applications to moduli spaces is to understand
when the Dolbeault DG algebra is formal (either in the associative or in the Lie sense), see
e.g. [1, 2, 6, 15, 36]. In this paper we will provide sufficient conditions for the associative
Dolbeault DG algebra to be formal.

Remark 1.14 It is easy to see that a DG Lie algebra L is homotopy abelian if and only if it is
formal (in the Lie sense of Remark 1.13) and the bracket induced in cohomology is trivial.
In fact, if L is homotopy abelian then up to quasi-isomorphisms we may assume that L has
trivial bracket; then L → L

Im(dL )
← H(L) is a pair of quasi-isomorphisms and L is formal.

The converse is immediate. Notice in particular that there exist examples of DG Lie algebras
not formal (hence not homotopy abelian), whose bracket vanishes in cohomology, see e.g.
[25, Example 6.2.5].

One can define aDGMSLie algebra as aDGMSvector space (L, d0, d1)with aLie bracket
[−,−] such that both (L, d0, [−,−]) and (L, d1, [−,−]) areDGLie algebras. Everythingwe
said above can be rephrased verbatim for DGMS Lie algebras, with very little modifications.
Our choice to work with associative algebras is motivated by the applications to study the
local structure of moduli spaces of vector bundles.

1.2 Deformation functor associated to a DG Lie algebra

Let us briefly recall some well known facts about the approach to infinitesimal deformation
theory via DG Lie algebras. For details, we shall mainly refer to [25].

Definition 1.15 Let (L, d, [−,−]) be a DG Lie algebra, and fix an element x ∈ L1.

(1) x is a classical solution to the Maurer–Cartan equation if dx + 1
2 [x, x] = 0.

(2) x is a strong solution to the Maurer–Cartan equation if

dx = 0 and [x, x] = 0 .

Recall that to every homotopy class of DG Lie algebras L can be associated a deformation
functor DefL : ArtC → Sets via Maurer–Cartan equation modulus gauge action, where ArtC
denotes the category of local Artin C-algebras with residue field C, see e.g. [23, 25].

The leading principle behind this approach states that every deformation problem defined
by a deformation functor Def : ArtC → Sets is controlled by a DG Lie algebra L; i.e.
Def ∼= DefL (see e.g. [11]). Fundamental results concern homotopy invariance (cf. e.g. [25,
Corollary 6.6.3] or [26, Theorem 5.3] for a more abstract approach), so that quasi isomorphic
DG Lie algebras give rise to naturally isomorphic deformation functors. This clearly implies
that the notion of formality is crucial in deformation theory: indeed if a DG Lie algebra L is
formal then DefL ∼= DefH(L) so that one can reduce the study to the strong Maurer–Cartan
solutions. These are going to characterise the autodual connections (cf. Lemma 3.1).

We will not recall in detail the technical gauge action defining the deformation functor
associated to a DG Lie algebra L . Nevertheless, the non expert reader may think of it as a
perturbation (depending on the differential of L) of the exponential adjoint action

exp(L0 ⊗ mB) × MC(L1 ⊗ mB) → MC(L1 ⊗ mB)

(ead(a) , b) �→ ead(a)(b) =
∑

k≥0

(ad(a))k

k! (b)
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for any B ∈ ArtC. Anyway, for a DG Lie algebra with trivial differential the gauge action is
precisely given by such adjoint action. Hence for a formal DG Lie algebra the deformation
functor is DefL ∼= DefH(L) and the latter is simply given by the quadratic cone modulo the
exponential adjoint action

DefH(L)(B) = {
b ∈ H1(L) ⊗ mB | [b, b] = 0

}/ ∼ , for every B ∈ ArtC .

In the literature there exist several useful formality criteria for DG Lie algebras, see e.g. [24,
Proposition 7.2] or [2, Theorem 3.8].

Another useful way to concretely understand formality is the following. If a DG Lie
algebra L is formal, then the maps

DefL
(
C[t]/(tk)

)
→ DefL

(
C[t]/(t2)) and DefL

(
C[t]/(t3)) → DefL

(
C[t]/(t2))

have the same image for every k ≥ 3. Essentially this means that there are only quadratic
obstructions for “lifting” first order deformations to higher order ones. Moreover, if the
bracket induced in the first cohomology H1(L) ∼= DefL (C[t]/(t2)) is trivial then this obstruc-
tions vanish and the maps above are surjective; i.e. DefL is unobstructed.

2 Autodual and hyper-holomorphic connections on ihs manifolds

For background on the general theory of irreducible holomorphic symplectic manifolds we
refer to [13].

Definition 2.1 A compact Kähler manifold X is called irreducible holomorphic symplectic
if it is simply connected and H0(�2

X ) = C · σ , where σ is a holomorphic symplectic form.

By definition a symplectic form is non-degenerate, therefore σ induces a canonical isomor-
phism
X ∼= �1

X , where
X is the holomorphic tangent bundle of X . Moreover, the previous
isomorphism being symplectic, we have that dim X = 2n. The holomorphic volume form
σ n ∈ H0(�2n

X ) is also non-degenerate, so that �2n
X = K X is trivial. In particular, by Yau’s

solution of Calabi’s conjecture ( [35]), any Kähler class is represented by the class associated
to a Ricci-flat metric. More precisely, let us write X = (M, I ), where I is the complex
structure, and let us fix a Kähler class ω on X . Then there exists a Ricci-flat metric g on
M such that ω(·, ·) = g(I (·), ·). Moreover, since (M, g, I ) is also simply connected and
irreducible symplectic, its holonomy group with respect to g is the symplectic group Sp(n)

(recall that 2n = dim X ). By the holonomy principle, there exist other two complex Kähler
structures on (M, g), denoted by J and K , that satisfies the usual quaternionic relations,
i.e. I J = −J I = K . The corresponding Kähler classes are ω = ωI , ωJ and ωK , and the
symplectic form is σ = ωJ + iωK . The specification of the three complex Kähler struc-
tures I , J and K is called a hyper-Kähler structure on (M, g). If a, b, c ∈ R are such that
a2+b2+c2 = 1, then the quasi-complex structure L = aI +bJ+cK is integrable andKähler.
Viceversa, any complex Kähler structure L on (M, g) arising from the hyper-Kähler structure
as before is called an induced complex structure. The set of induced complex structures is
compactly encoded in the notion of the twistor family τ : X → P

1 (cf. [14, Sect. 3(F)]). The
spaceX is diffeomorphic to the product M × S2 (here S2 is the differential sphere underlying
P
1) and has a natural integrable complex structure such that the projection τ is holomorphic.

If (a, b, c) ∈ S2, then τ−1(a, b, c) = (M, aI + bJ + cK ). Vice versa, the twistor family
τ : X → P

1 recover the hyper-Kähler structure on M ( [14, Theorem 3.3]). Notice that the
other projection q : X → X is not holomorphic.
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17 Page 12 of 34 F. Meazzini, C. Onorati

In the following we fix once and for all a Kähler class ω on X = (M, I ). By the above
discussion there is then a fixed hyper-Kähler structure on the associated (M, g), which we
shorten by writing (X , ω) = (M, g, I , J , K ).

The three complex structures I , J and K act on the tangent bundle TM and so also on the
cotangent bundle T ∗

M and all of its tensor products. In particular, there is a natural action of
I , J and K on the cotangent algebra 
∗T ∗

M induced by forcing the Leibniz rule. Since I ,
J and K satisfy the quaternionic relations, there is a well-defined action of the Lie algebra
su(2) on 
∗T ∗

M . Moreover, since the Lie group SU(2) is simply connected, the Lie algebra
action integrates to an action of the Lie group. We resume here two important remarks due
to Verbitsky.

Proposition 2.2 ([33, Proposition 1.1, Proposition 1.2]) Keep notations as above.

(1) A k-form α is SU(2)-invariant if and only if k = 2p and α is of type (p, p) with respect
to any induced complex structure.

(2) The action of SU(2) on 
∗T ∗
M commutes with the laplacian operator. In particular it

descends to an action on the cohomology H∗(M,R).

We recall here the main definitions and notations used in the rest of the paper. First of all, on
the Kähler manifold X = (M, g, I ) with Kähler class ω we consider the Lefschetz operator

Lω : 
k T ∗M −→ 
k+2T ∗M

given by multiplying a cohomology class by the Kähler class ω, and its adjoint operator


ω : 
k T ∗M −→ 
k−2T ∗M

defined via the metric g.
If d is the usual de Rham operator, then we denote by ∂ and ∂̄ the Dolbeault operator

associated to the choosen complex structure I .
If E is a complex vector bundle on X = (M, g, I ), then we denote byAk(E) the sheaf of

complex-valued C∞ k-forms with coefficients in E , and by Ak(E) the corresponding space
of global sections. Furthermore, we denote by Ap,q

I (E) and Ap,q
I (E) the sheaf and space of

global section with respect to the complex structure I .
Recall that a connection on E is a C-linear map

∇ : A0(E) −→ A1(E)

satisfying the Leibniz rule

∇( f e) = d f e + f ∇(e)

for every C∞ function f and section e of E . Decomposing A1(E) in its±i-eigenspaces with
respect to I , we usually write ∇ = ∇1,0 + ∇0,1 accordingly.

Extending ∇ to a degree 1 operator on the DG vector space A•(E), one can easily check
that ∇2 is in fact A0(E)-linear and hence it defines an element R = ∇2 ∈ A2(End(E)),
where End(E) is the endomorphism bundle of E .

Recall also that a holomorphic structure on E is a C-linear map

∂̄E : A0(E) −→ A0,1(E)

satisfying the analogous Leibniz rule and such that ∂̄2E = 0. (This definition of holomorphic
structure on E is justified by the Koszul–Malgrange integrability theorem, [20].)

If (E, ∂̄E ) is a holomorphic vector bundle, a connection ∇ is compatible with the holo-
morphic structure if ∇0,1 = ∂̄E . Finally recall that if E admits a hermitian metric, then the
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Hyper-holomorphic connections on HK manifolds Page 13 of 34 17

Chern connection on E is the unique connection that is compatible with both the holomorphic
structure and the hermitian metric.

The Lefschetz operators Lω and 
ω are extended to forms with coefficients in a complex
vector bundle by acting with IdE on the coefficient side.

The following definition is due to Kaledin and Verbitsky (see [16]).

Definition 2.3 A Yang–Mills connection ∇ on E is a connection such that its curvature ∇2

is of type (1, 1) and


ω∇2 = 0.

Remark 2.4 In general one can require that 
ω∇2 = c Id, and in this case one talks of Yang–
Mills connections of charge c. Our choice to restrict to Yang–Mills connections of charge 0
will be clarified by Definition 2.8 and [33, Lemma 2.1].

Remark 2.5 Let (E, ∂̄E ) be a hermitian holomorphic vector bundle, and let∇ be a connection
compatible with the holomorphic structure. If ∇2 is of type (1, 1) and 
ω∇2 = c Id, then c
must be a multiple of μ(E) = degω(E)/ rk(E). In particular, holomorphic vector bundles
having a hermitian Yang–Mills connection (compatible with the holomorphic structure) must
have first Chern class of degree 0.

Remark 2.6 Notice that in the literature one usually talks about Yang–Mills hermitianmetrics
on a holomorphic vector bundle E , and the associated Chern connection is referred to as the
Yang–Mills connection.On the other hand, the connections inDefinition 2.3 are not necessary
hermitian (nor the bundle is assumed holomorphic a priori). In [16] these connections are
called non-hermitian Yang–Mills, but we find the name a bit misleading, since hermitian
connections are in fact of this type. When referring to a Yang–Mills connection that is
the Chern connection of a Yang–Mills metric, we simply call it a hermitian Yang–Mills
connection.

Remark 2.7 If ∇ is a Yang–Mills connection on E , then ∇0,1 is a holomorphic structure on
E and ∇ is tautologically compatible with it.

An historical-interesting set of examples of Yang–Mills connections is provided by flat con-
nections, that is by those connections ∇ such that ∇2 = 0. Notice that such connections are
in 1 − 1 correspondence with local systems on X .

As we will shortly see, the next definition provides a set of examples of Yang–Mills
connections that is bigger than flat connections.

Definition 2.8 ([16, 33]) Suppose that X = (M, I ) is an irreducible holomorphic symplectic
manifold and (M, g, I , J , K ) is the hyper-Kähler structure on X associated to a Kähler class
ω.

(1) Let E be a complex vector bundle on X and ∇ a connection on E . Then ∇ is called
autodual if the curvature ∇2 ∈ A2(End(E)) is SU(2)-invariant.

(2) Let (E, ∂̄E ) be a holomorphic vector bundle. A hermitian metric h on E is called
hyper-holomorphic if the Chern connection is autodual. In this case, we call the Chern
connection hyper-holomorphic.

Remark 2.9 The definition of autodual connection first appeared in [16], while the definition
of hyper-holomorphic connection first appered in [33]. The main difference between the two
is the fact that the latter is hermitian, while the former is not in general. Our formality result
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(see Theorem 4.3) relies heavily on the metric aspects of the connection; on the other hand,
our discussion on deformations in Sect. 3 is not bounded to themetric and relates the existence
of a hyper-holomorphic connection to the existence of (many) autodual connections.

Remark 2.10 We want to stress that the notion of autoduality is associated to the choice of
a hyper-Kähler structure, that is to the choice of a Kähler class ω, and so one should talk
of ω-autoduality (and ω-hyper-holomorphicity). Nevertheless, we will always work with a
fixed Kähler structure, therefore we can safely drop the reference to ω from the notation.

Example 2.11 Thefirst non-trivial example of vector bundle having a hyper-holomorphic con-
nection is the holomorphic tangent bundle
X . In fact, let (M, g, I , J , K )be the hyper-Kähler
structure associated to the fixed Kähler class ω on an irreducible holomorphic symplectic
manifold X . Then
X comes with a natural hermitian form induced by g. If∇X is the associ-
ated Chern connection, then we need to show that∇2

X is SU(2)-invariant. By Proposition 2.2,
this is equivalent to show that ∇2

X is of type (1, 1) with respect to any induced complex
structure L . On the other hand, the holomorphic tangent bundle 
(M,g,L) has a hermitian
structure induced by g as well and its curvature (which coincides with ∇2

X ) is of type (1, 1)
with respect to L .

Lemma 2.12 ([16, Proposition 3.9]) The following holds.

(1) An autodual connection is a Yang–Mills connection.
(2) A hyper-holomorphic hermitian metric is a Yang–Mills hermitian metric.

Proof First of all, by Proposition 2.2 we have that the curvature ∇2 of an autodual connec-
tion ∇ is of type (1, 1) with respect to any induced complex structure, in particular for I .
Furthermore, by [33, Lemma 2.1], any SU(2)-invariant 2-forms α satisfies 
ωα = 0.

The last statement follows similarly (see [33, Theorem 2.3]). 	

ByChern–Simon theory, theChern classes of a holomorphic vector bundle E are computed

in terms of the curvature of a connection ∇ on E . In particular, if ∇ is autodual, then ck(E)

is SU(2)-invariant for every k. The following result is a partial converse.

Proposition 2.13 ( [33]) Let X be an irreducible holomorphic symplectic manifold with fixed
Kähler form ω, and let (E, ∂̄E ) be a holomorphic vector bundle on E that is indecomposable.
If there exists a hyper-holomorphic connection on E, then E is slope stable.

Vice versa, if E is slope stable and c1(E) and c2(E) are SU(2)-invariant, then there exists
a connection on E that is hyper-holomorphic.

Proof By the Donaldson–Uhlenbeck–Yau theorem, an indecomposable holomorphic vector
bundle is slope stable if and only if it admits a unique Yang–Mills metric, and so a unique
Chern connection ofYang–Mills type. Since hyper-holomorphic connections areYang–Mills,
the first statement follows.

The last statement follows from [33, Theorem 2.5], where it is proved that, under the
hypothesis of SU(2)-invariance of the first two Chern classes, the Chern connection produced
by the Donaldson–Uhlenbeck–Yau theorem is hyper-holomorphic. 	


We conclude this section with the following characterisation of autodual connections.
Recall that if X is an irreducible holomorphic symplectic manifold andω a Kähler class, then
there is a twistor family τ : X → P

1 associated to the hyper-Kähler structure corresponding
to ω. Let q : X → X be the non-holomorphic projection.
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Lemma 2.14 ([16, Lemma 5.1]) Let E be a holomorphic vector bundle and ∇ an autodual
connection on it. Then the connection q∗∇ on the vector bundle q∗E has curvature of type
(1, 1). In particular, q∗∇0,1 is a holomorphic structure on q∗E.

In other words, the lemma is saying that holomorphic vector bundles on X admitting an
autodual connection are those for which the pullback q∗E is still holomorphic. In particular
q∗E can be tought of as a family of holomorphic vector bundles on the twistor family, so
that autodual vector bundles are those that “deform" along the twistor line.

3 The quaternionic Dolbeault complex

3.1 Amotivating example: flat connections

We start with the following examples which we hope will serve as a motivation for what we
will say next. For a more detailed account we refer to [11].

Let us consider a compact Kähler manifold X and a complex vector bundle E endowed
with a flat connection ∇. Decomposing ∇ in its (1, 0) and (0, 1) parts, according to the
complex structure of X , we see that the flatness condition can be written as

(∇0,1)2 = 0 , (∇1,0)2 = 0 and [∇0,1,∇1,0] = 0.

In particular, if we think of ∇0,1 as a differential on the graded vector space A∗(E), i.e. it is a
holomorphic structure on E , then the last two conditions can be compactly stated by saying
that ∇1,0 is a strong solution (see Definition 1.15) to the Maurer–Cartan equation in the DG
Lie algebra

(
End∗

C
(A∗(E)), d = [∇0,1,−], [−,−]) .

Moreover, since ∇ is flat, there always exists a hermitian metric on E such that ∇ is the
Chern connection of this metric. Using this observation, Goldman and Millson notice that
the strong ∇0,1 ∇1,0-lemma holds (see [11, Proposition 7.3]). The proof of this result is not
explicitly stated in loc. cit. but can be easily filled: using the parallel hermitian metric, one
can write down the usual Nakano–Kodaira identities and the Hodge decomposition, so that
the claim follows as in the classical case.

From our point of view, the triple

(
A∗(E),∇0,1,∇1,0)

is an example of a DGMS vector space, cf. Definition 1.1. One of the main results of [11] is
the statement that the infinitesimal deformations of ∇ are controlled by the DG Lie algebra

(
A∗(End(E)), [∇,−], [−,−]) ,

where [−,−] as usual denote the graded commutator of the natural associative product (see
[11, Proposition 6.6]). Now, by Proposition 1.10 and Theorem 1.8, it follows then that the
associative DG algebra (A∗(End(E)), [∇,−]) is formal (in particualr it is also Lie formal)
and then the obstructions to deform ∇ are quadratic (see [11, Theorem 1] and its proof in
[11, Sect. 7]).
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3.2 Autodual connections and quaternionic Dolbeault complex

Recall that the hyper-Kähler structure on X transfers to a SU(2)-action on the de Rham
complex A∗(E). In particular we see A∗(E) as a complex SU(2)-representation, which is
equivalent to being a sl(2)-representation; indeed su(2)C = sl(2) and that SU(2) is simply
connected, so that the set of SU(2)-representations is in bijection with the set of su(2)-
representations. We stress the fact that the action of SU(2) on A∗(E) is trivial on E .

The action of sl(2) on A∗(E) is easy to write down locally in terms of the actions of
the generators corresponding to the three Kähler structures I , J and K given by the hyper-
Kähler structure. In particular any irreducible subrepresentation of Ak(E) has weight smaller
or equal to k and any irreducible subrepresentation of A0,k(E) has weight k.

One can define an ideal I = ⊕
k I

k , where Ik is generated by the irreducible subrepre-
sentations of Ak(E) of weight strictly smaller that k. We refer to [34] for the details on the
definition of I and the fact that it is well-defined and well-behaved.

We shall denote the quotient by

A∗+(E) := A∗(E)

I
.

Notice that the Dolbeault complex A0,∗(E) canonically embeds as a graded vector space
in A∗+(E), since the quotient inherits the bi-graded structure Ak+(E) = ⊕

p+q=k Ap,q
+ (E)

and we have already remarked that any subrepresentation of A0,k(E) has weight exactly k.
Any connection ∇ on E induces a degree 1 operator ∇+ on the graded algebra A∗+(E).

Lemma 3.1 ∇ is autodual if and only if ∇+ is flat, i.e. ∇2+ = 0.

Proof First of all, by Proposition 2.2, if ∇ is autodual, then the curvature ∇2 is SU(2)-
invariant. In particular, it defines a 1-dimensional subrepresentation of weight 0 and hence it
must belong to the ideal I. It follows that ∇2+ = 0.

For the converse, notice that∇2 is a 2-form, hence the representation generated by it must
have weight either 0 or 2. Since ∇2+ = 0, it cannot have weight 2 and therefore it must be
SU(2)-invariant. 	


Let us define D∗(E) = ⊕
k D

k(E), where

Dk(E) = Symk V ⊗C A0,k(E),

where V is the irreducible 2-dimensional sl(2)-representation. As a vector space, Dk(E) is
nothing but the direct sum of k + 1 copies of A0,k(E). Moreover, the choice of a basis {x, y}
for V provides a bi-grading of D∗(E)

Dk(E) =
⊕

p+q=k

Dp,q(E) =
⊕

p+q=k

x p yq A0,p+q(E) ,

where we are thinking of x and y as formal central variables.
Recall that if L is any induced complex structure on (M, g, I , J , K ), then L acts on A∗

in a multiplicative way, i.e. L(α ∧ β) = L(α) ∧ L(β). Our next result is due to Verbitsky
and relates the two constructions introduced above.

Lemma 3.2 There is a SU(2)-equivariant isomorphism of bi-graded vector spaces

ϕ : D∗,∗(E) −→ A∗,∗
+ (E) .
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Proof First notice that Ak+(E) = ⊕

p+q=k
Ap,q

+ (E), and by [34, Proposition 2.7] we have

Ap,q
+ ∼= A0,p+q , so that in particular Ak+(E) is isomorphic to k + 1 copies of A0,p+q(E) as

a vector space. Now, fix a basis {x, y} of the irreducible 2-dimensional sl(2)-representation
V , and consider the isomorphism

ϕ1 : D1(E) = V ⊗ A0,1(E) → A1+(E)

defined by

x ⊗ (η ⊗ e) �→ J (η) ⊗ e and y ⊗ (η ⊗ e) �→ η ⊗ e .

Notice that ϕ1 extends, thanks to the algebra structure and the multiplicativity action of
SU(2), to a map

ϕk : Dk(E) = Symk(V ) ⊗ A0,k(E) −→ Ak+(E) ,

hence providing a morphism of graded algebras ϕ : D∗(E) → A∗+(E), which is the required
SU(2)-equivariant isomorphism, cf. [34, Proposition 2.9]. The inverse ϕ−1 is defined by

[α ∧ β] ⊗ e �→ xdeg(α)ydeg(β) (J (α) ∧ β) ⊗ e ,

for every homogeneous class [α ∧ β] ⊗ e ∈ Adeg(α),deg(β)
+ (E). Here we are again

tacitely using [34, Proposition 2.7] to think the class of a (p, q)-form in A∗+(E) as a
(0, p + q)-form. 	

Remark 3.3 When E is endowed with an autodual connection, the explicit isomorphism ϕ

of Lemma 3.2 together with Lemma 3.1 allow us to induce two differentials on D∗,∗(E). In
fact for every p, q ≥ 0:

(1) ∇1,0
+ is naturally taken to the differential operator

x∇0,1
J : x p yq A0,p+q

I (E)
J⊗id−−−→ x p yq Ap+q,0

I (E)
x∇1,0−−−→ x p+1yq Ap+q+1,0

I (E)

J−1⊗id−−−−→ x p+1yq A0,p+q+1
I (E)

so that

x∇0,1
J := (J−1 ⊗ id) ◦ (x ∇1,0) ◦ (J ⊗ id) = ϕ−1 ◦ ∇1,0

+ ◦ ϕ,

(2) ∇1,0
+ is naturally taken to the differential operator

y∇0,1 : x p yq p A0,p+q(E) −→ x p yq+1A0,p+q+1(E)

so that

y∇0,1 = ϕ−1 ◦ ∇0,1
+ ◦ ϕ.

Notice that by Lemma 3.1, assuming the connection to be autodual is equivalent to require
that D∗,∗(E) is a double complex, i.e.

(∇0,1)2 ≡ 0 (∇0,1
J )2 ≡ 0 ∇0,1∇0,1

J + ∇0,1
J ∇0,1 ≡ 0.

Definition 3.4 (quaternionic Dolbeault complex) Let (M, g, I , J , K ) be a hyper-Kähler
manifold. Let E be a complex vector bundle on X = (M, I ) equipped with an autodual
connection ∇ = ∇1,0 + ∇0,1. We shall call (D∗(E) , x∇0,1

J + y∇0,1) the quaternionic
Dolbeault complex.
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Remark 3.5 Notice that the quaternionic Dolbeault complex of Definition 3.4 can be also
seen as the total complex of the double complex

D∗,∗(E) =
⎛

⎝
⊕

k∈N

⊕

p+q=k

Dp,q(E) , x∇0,1
J , y∇0,1

⎞

⎠ .

For reference purposes we explicitly state the next result, which essentially says that the
isomorphism of Lemma 3.2 respects the double complex structure.

Proposition 3.6 Suppose that∇ is an autodual connection on E. There is aSU(2)-equivariant
isomorphism of double complexes

ϕ :
(
D∗,∗(E) , x∇0,1

J , y∇0,1
)

−→
(

A∗,∗
+ (E) , ∇0,1

+ , ∇0,1
+

)
.

Proof Immediate from Lemma 3.1, Lemma 3.2 and Remark 3.3. 	


Proposition 3.7 If a connection ∇ on E is autodual then

(1) ∇0,1 is a holomorphic structure, and
(2) ∇0,1

J = (J−1 ⊗ id) ◦∇1,0 ◦ (J ⊗ id) is a strong solution of the Maurer–Cartan equation
in the DG Lie algebra

(
End∗

C
(A0,∗(E)), d = [∇0,1,−], [−,−]).

Proof The statements are equivalent to the relations

(∇0,1)2 ≡ 0
(
∇0,1

J

)2 ≡ 0 ∇0,1∇0,1
J + ∇0,1

J ∇0,1 ≡ 0

already outlined in Remark 3.3. 	


Remark 3.8 Notice that the proposition above does not say that a solution of the Maurer–
Cartan equation in

(
End∗

C
(A0,∗(E)), [∇0,1,−], [−,−]) gives rise to an autodual connection.

In fact, given such a solution δ, this is true if and only if the operator∇δ := J ◦δ◦ J−1+∇0,1

is a connection on E .

When moreover the connection ∇ is hyper-holomorphic, i.e. it is the Chern connection
of a hermitian metric, we have the further result due to Verbitsky. Similarly to before, let us
define the differential ∇0,1

J on A0,∗(E) as the composition

∇0,1
J = (J ⊗ id)−1 ◦ ∇1,0 ◦ (J ⊗ id).

Lemma 3.9 ([33, Theorem 4.4]) Assume that the connection ∇ is hyper-holomorphic. Then
the strong ∇0,1 ∇0,1

J -lemma holds on A0,∗(E).

In particular
(

A0,∗(E),∇0,1,∇0,1
J

)
is a DGMS vector space.

Proof In [33, Theorem 4.4], Verbitsky proves a real version of the ∇0,1 ∇0,1
J -lemma, but the

proof holds verbatim in this case.
More precisely, Verbitsky proves analogs of the classical Hodge–Nakano–Kodaira identi-

ties, so that the proof is symmetric in ∇0,1 and ∇0,1
J , i.e. the ∇0,1

J ∇0,1-lemma holds as well.
Therefore, the claim follows by Lemma 1.4. 	
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3.3 Properties of the quaternionic Dolbeault complex

Let E be a complex vector bundle on an irreducible holomorphic symplectic manifold X and
suppose that ∇ = ∇1,0 + ∇0,1 is a hyper-holomorphic connection on E . In the rest of this
section we will need the DGMS structure on the quaternionic Dolbeault complex, for this
reason we restrict to hyper-holomorphic connections.

In this subsection we work with the quaternionic Dolbeault complex, see Definition 3.4.
Denote by V the irreducible 2-dimensional sl(2)-representation, and fix a basis {x, y} of V .
Then the quaternionic Dolbeault complex can be written as

(
D∗(E) , x∇0,1

J + y∇0,1
)

where Dk(E) = A0,k(E) ⊗C C[x, y]k . Here C[x, y]k ∼= Symk(V ) denotes the set of homo-
geneous polynomials of degree k in the formal central variables x and y.

Lemma 3.10 Let X be an irreducible holomorphic symplectic manifold. Consider a complex
vector bundle E on X, endowed with an hyper-holomorphic connection ∇ = ∇1,0 + ∇0,1.
Then

Hk
x∇0,1

J +y∇0,1(D
∗(E)) ∼= Hk

∇0,1(A0,∗(E)) ⊗C C[x, y]k ∼= Hk
∇0,1

J
(A0,∗(E)) ⊗C C[x, y]k .

Proof The proof is a standard spectral sequence argument. In fact, by Remark 3.3 the quater-
nionic Dolbeault complex is the total complex associated to the double complex

(
D∗,∗(E) , x∇0,1

J , y∇0,1
)

.

Taking cohomology with respect to the vertical differential y∇0,1, the first page E1 reads
like

E p,q
1 =

{
x p yq Hp+q

∇0,1 (A0,∗(E)) if q ≥ 1

x p ker
(∇0,1 : A0,p → A0,p+1

)
if q = 0

while the induced horizontal differentials vanish by Lemma 1.3 as soon as q ≥ 1. Therefore
the second page E2 will be

E p,q
2 =

{
x p yq Hp+q

∇0,1 (A0,∗(E)) if q ≥ 1

x p Hp

∇0,1
J

(
ker

(∇0,1 : A0,∗ → A0,∗+1
))

if q = 0.

Now we want to show that

E p,0
2 = x p Hp

∇0,1
J

(
ker

(∇0,1 : A0,∗ → A0,∗+1)) ∼= x p Hp

∇0,1
J

(
A0,∗(E)

) ∼= x p Hp
∇0,1

(
A0,∗(E)

)
.

The last isomorphism immediately follows by Remark 1.9. Let us show the former. Suppose
that a class [a] ∈ Hp

∇0,1
J

(
ker∇0,1

)
is trivial, then a = ∇0,1

J b for some b ∈ A0,p−1 such that

∇0,1b = 0. In particular, the map

g : Hp

∇0,1
J

(
ker

(∇0,1 : A0,∗ → A0,∗+1)) −→ Hp

∇0,1
J

(
A0,∗(E)

) [a] �→ [a]

is well-defined. To show the surjectivity of g, consider a class [a] ∈ Hp

∇0,1
J

(
A0,∗(E)

)
and

notice that ∇0,1a ∈ ker(∇0,1
J ) ∩ Im(∇0,1). Hence there exists an element b ∈ A0,p−1 such
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that ∇0,1a = ∇0,1∇0,1
J b, so that it is sufficient to consider a′ = a − ∇0,1

J b which satisfies

[a′] ∈ Hp

∇0,1
J

(
ker

(∇0,1 : A0,∗ → A0,∗+1)) and [a′] = [a] ∈ Hp

∇0,1
J

(
A0,∗(E)

)
.

For the injectivity, let us consider an element a ∈ A0,p(E) such that∇0,1a = 0 and g[a] = 0.
This is equivalent to say that

⎧
⎪⎨

⎪⎩

∇0,1a = 0

∇0,1
J a = 0

∃b ∈ A0,p−1(E) such that a = ∇0,1
J b

so that ∇0,1b ∈ ker(∇0,1
J ) ∩ Im(∇0,1). Therefore there exists c ∈ A0,p−2(E) such that

∇0,1b = ∇0,1∇0,1
J c. In particular we may define b′ = b − ∇0,1

J c so that

[a] = [∇0,1
J b′ ] ∈ Hp

∇0,1
J

(
ker

(∇0,1 : A0,∗ → A0,∗+1))

and the injectivity of g follows.
By the strong ∇0,1∇0,1

J -lemma, the spectral sequence degenerates at the second page E2,
so that the k-th cohomology of the total complex is given by the direct sum

Hk
x∇0,1

J +y∇0,1(D
∗(E)) =

⊕

p+q=k

x p yq Hk
y∇0,1(D

∗(E)) .

The same argument taking the first page with respect to the horizontal differential x∇0,1
J

provides the latter isomorphism in the statement. 	

Corollary 3.11 The triple

(
D∗,∗(E), y∇0,1, x∇0,1

J

)
is not a DGMS vector space.

Proof If it were a DGMS vector space, then by Lemma 1.3 the associated spectral sequence
would degenerate at E1, but we have seen in Lemma 3.10 that it degenerates at E2. 	


Recall that on theDolbeault algebra A0,∗(End(E)) there is an associative product, defined
as

(α ⊗ f ) · (β ⊗ g) = α ∧ β ⊗ ( f ◦ g) (3.1)

for every α, β ∈ A0,∗ and every sections f and g of End(E). In particular

(A0,∗(End(E)), ·, [∇0,1,−])
is an associative DG algebra. This of course extends to an associative product on the quater-
nionic Dolbeault complex D∗(End(E)). It is therefore natural to ask if this product endows
the quaternionic Dolbeault complex with a structure of associative DG algebra, i.e. if the
differential of D∗(End(E)) behaves as a derivation.

Remark 3.12 Given a holomorphic vector bundle E and a connection ∇ on it, the connection
∇̃ on End(E) induced by E is ∇̃ = [∇,−]. More explicitly, for any section h of End(E)

we have

(∇̃h)(s) = ∇h(s) − h(∇s).

We claim that ∇̃ behaves like a derivation with respect to the associative product on
A0,∗(End(E)).

In fact, let us take two sections f and g of End(E) and a vector field ξ (i.e. ξ is a section
of the complexified tangent bundle TM ). Then
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• ∇̃ξ ( f ◦ g)(s) = ∇ξ (( f ◦ g)(s)) − ( f ◦ g)(
(∇ξ (s)

)

• ∇̃ξ ( f )(g(s)) = ∇ξ (( f ◦ g)(s)) − f
(∇ξ (g(s))

)

• ∇̃ξ (g)(s) = ∇ξ (g(s)) − g(∇ξ (s)).

and by the arbitrariety of s and ξ we deduce ∇̃( f ◦ g) = ∇̃( f )g + f ∇̃(g).

Proposition 3.13 Both differentials [∇0,1,−] and [∇0,1
J ,−] act as derivations with respect to

the associative product on A0,∗(End(E)). In particular, all of the following are associative
DG algebras:

(
A0,∗(End(E)), ·, [∇0,1,−]) ,

(
A0,∗(End(E)), ·, [∇0,1

J ,−]
)

,

(
D0,∗(End(E)), ·, [x∇0,1

J + y∇0,1,−]
)

.

Proof It is sufficient to show that both differentials [∇0,1,−] and [∇0,1
J ,−] act as derivations

with respect to the product on A0,∗(End(E)). This is quite classical and can be checked
directly for [∇0,1,−], so that the only non-trivial case is for [∇0,1

J ,−]. Recall that by
Remark 3.12, ∇̃ acts as a derivation and then so does

∇̃1,0 = ∇̃ − ∇̃0,1 = ∇̃ − [∇0,1,−] .

Now, since J acts multiplicatively on A0,∗, we obtain that the conjugation

∇̃0,1
J = (J−1 ⊗ id) ◦ [∇1,0,−] ◦ (J ⊗ id)

is a derivation with respect to the product of A0,∗(End(E)). Therefore, to conclude it is
enough to show that ∇̃0,1

J = [∇0,1
J , −], which is straighforward. 	


Notation. Let E be a complex vector bundle. If a Chern connection ∇ on E induces
a hyper-holomorphic connection [∇,−] on End(E), then ∇ is called projectively hyper-
holomorphic.

Theorem 3.14 Consider a complex vector bundle E endowed with a projectively hyper-
holomorphic connection ∇. Then

(
A0,∗(End(E)), [∇0,1,−]) is a formal associative algebra.

Proof ByLemma 3.9 and Proposition 3.13, the triple
(

A0,∗(End(E)), [∇0,1,−], [∇0,1
J ,−]

)

is an associative DGMS algebra. Therefore the claim follows from Theorem 1.8. 	

As we already remarked in Corollary 3.11, the quaternionic Dolbeault algebra is not a

DGMS algebra. Nevertheless, following the analogy with the case of flat connections studied
in [11], it is natural to ask whether it is formal or not (we will clarify better this analogy in
Sect. 5).

Question 3.15 Is
(
D∗(End(E)), [x∇0,1

J + y∇0,1,−]
)

a formal associative algebra?

We conclude by highlighting an interesting relation between the classical Dolbeault
DG Lie algebra

(
A0,∗(End(E)),∇0,1

)
and the quaternionic Dolbeault DG Lie algebra(

D∗(End(E)), [x∇0,1
J + y∇0,1,−]

)
.

Proposition 3.16 The classical Dolbeault DG Lie algebra is homotopy abelian if and only if
quaternionic Dolbeault DG Lie algebra is homotopy abelian.
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Proof First suppose
(
D∗(End(E)), [x∇0,1

J + y∇0,1,−]
)
is homotopy abelian. There is an

injective morphism

g : (
A0,∗(End(E)), [∇0,1,−]) −→

(
D∗(End(E)), [x∇0,1

J + y∇0,1,−]
)

given by themultiplicationwith the central variable y. Thismap is injective in cohomology by
Lemma 3.10. Therefore the conclusion follows by the standard homotopy abelianity transfer
(see e.g. [17, 22, 24] and for a detailed proof [25, Theorem 12.7.3]).

For the converse, define the extended quaternionic Dolbeault complex(
eD∗(End(E)), [x∇0,1

J + y∇0,1,−]
)
, as

eDk(End(E)) =
⊕

p+q=k

x p yq A0,k(End(E))

where p, q ∈ Z can be negative. There is a natural injectivemorphism of associative algebras

f :
(
D∗(End(E)), [x∇0,1

J + y∇0,1,−]
)

−→
(
eD∗(End(E)), [x∇0,1

J + y∇0,1,−]
)

.

Since
(
eD∗,∗(End(E)), [y∇0,1,−], [x∇0,1

J ,−]
)
is a DGMS algebra, it is easy to check that

Hk
[x∇0,1

J +y∇0,1,−](eD
∗,∗(End(E))) =

⊕

p+q=k

Extk(E, E).

In fact one can argue as in the proof of Lemma 3.10 and noticing that, by Lemma 1.3, the
spectral sequence degenerates to the first page. In particular, f is injective in cohomology.

Now, if
(

A0,∗(End(E)),∇0,1
)

is homotopy abelian, it is easy to see that also
eD∗(End(E)) is homotopy abelian. In fact it is formal (Proposition 1.10 and Theorem 1.8)
and the associative product is commutative in cohomology, since it is induced by the com-
mutative product on the cohomology of A0,∗(End(E)). 	


Remark 3.17 Concerning Proposition 3.16, it is important to point out that the strong
y∇0,1 x∇0,1

J -lemma fails for the quaternionic Dolbeault bi-complex exactly at the hedge
of the bi-complex, i.e. either at D0,∗(End(E)) or at D∗,0(End(E)). This is due to the
fact that the indices are supposed to be positive. We can then fix this defect by con-
sidering the extended quaternionic Dolbeault complex introduced in the proof above.(
eD∗(End(E)), [x∇0,1

J + y∇0,1,−]
)
, where

eDk(End(E)) =
⊕

p+q=k

x p yq A0,k(End(E)).

Notice that here p, q ∈ Z can be negative.
It is easy to check now that the strong y∇0,1 x∇0,1

J -lemma holds on(
eD∗,∗(End(E)), [y∇0,1,−], [x∇0,1

J ,−]
)
(just use Lemma 3.9 and the fact that the variable

x and y are central). In particular, the extended quaternionic Dolbeault complex is a formal
associative algebra by Proposition 1.10 and Theorem 1.8.
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3.4 Deformation functor of the quaternionic Dolbeault DG Lie algebra

To state the next result, let us recall that every DG Lie algebra (L, d, [−,−]) induces a
deformation functor DefL : ArtC −→ Sets defined by

DefL(B) = MC(L ⊗C mB)

∼ ,

where mB is the maximal ideal of B ∈ ArtC, see Sect. 1.2. We shall adopt the standard
notation C[ε] = C[t]/(t2) for the so-called algebra of dual numbers. The tangent space of
the deformation functor DefL is by definition

T 1DefL = DefL(C[ε]) .

If E is a complex vector bundle on X endowed with a projectively hyper-holomorphic
connection ∇, we shall denote by DefD∗(End(E)) the deformation functor associated to the
quaternionicDolbeault DGLie algebra, whose Lie bracket is given by the graded commutator
of the associative product, see Proposition 3.13.

Proposition 3.18 Let E be a complex vector bundle and ∇ = ∇1,0 + ∇0,1 a projectively
hyper-holomorphic connection. Consider the vector bundle End(E) with the induced hyper-
holomorphic connection [∇,−]. Then the span of DG Lie algebras

(
A0,∗(End(E)) , [∇0,1,−]) π̂y←− D∗(End(E))

π̂x−→
(

A0,∗(End(E)) , [∇0,1
J ,−]

)

given by evaluation maps induces natural transformations of deformation functors

Def(A0,∗(End(E)) , [∇0,1,−])
πy←− DefD∗(End(E))

πx−→ Def(
A0,∗(End(E)) , [∇0,1

J ,−]
)

that are surjective for every B ∈ ArtC.

Proof First notice that the maps πx and πy are induced by the natural projections of DG Lie
algebras

(
A0,∗(End(E)) , [∇0,1,−]) π̂y←− D∗(End(E))

π̂x−→
(

A0,∗(End(E)) , [∇0,1
J ,−]

)

where πx (respectively, πy) is given by evaluating x = 1, y = 0 (respectively, x = 0, y = 1)
in the quaternionic Dolbeault complex.

Now, [∇,−] is hyper-holomorphic on End(E) by hypothesis. Therefore, as in the proof
of Theorem 1.8, it follows that the natural injection

(
ker([∇0,1

J ,−]) , [∇0,1,−]
)

↪→ (
A0,∗(End(E)) , [∇0,1,−])

is a quasi-isomorphism of DG Lie algebras, hence inducing a natural isomorphism

Def(
ker(∇0,1

J ) , [∇0,1,−]
) ∼= Def(A0,∗(End(E)) , [∇0,1,−]) .

This means that in order to prove surjectivity of πy it is sufficient to show the following
implication

bB ∈ Def(
ker([∇0,1

J ,−]) , [∇0,1,−]
)(B) �⇒ y bB ∈ DefD∗(End(E))(B)
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for every B ∈ ArtC. To this aim, fix an element bB as above and consider the equalities
[
x∇0,1

J + y∇0,1 , ybB

]
+ 1

2
[ybB , ybB ] = y2

(
[∇0,1 , bB

] + 1

2
[bB , bB ]

)
= 0 ,

where we used that bB is in the kernel of [∇0,1
J , −] and that it satisfies the Maurer–Cartan

equation in the DG Lie algebra
(

A0,∗(End(E)) ⊗ mB , [∇0,1,−] ⊗ idmB

)
by assumption.

Therefore y bB satisfies the Maurer–Cartan equation in the DG Lie algebra
(
D∗(End(E)) ⊗ mB , [x∇0,1

J + y∇0,1,−] ⊗ idmB

)

as required. A similar argument shows the surjectivity of the map πx . 	

Proposition 3.19 Let E be a complex vector bundle and ∇ = ∇1,0 + ∇0,1 a projectively
hyper-holomorphic connection. Then:

(1) there exists a natural transformation of deformation functors

DefD∗(End(E))

πy× πx−−−−−→ Def(A0,∗(End(E)) , [∇0,1,−]) × Def(
A0,∗(End(E)) , [∇0,1

J ,−]
)

that is an isomorphism on tangent spaces,
(2) there is a natural isomorphism of deformation functors

θ : Def(A0,∗(End(E)) , [∇0,1,−])
∼=−→ Def(

A0,∗(End(E)) , [∇0,1
J ,−]

) .

Proof The existence of the natural transformation of item (1) follows by Proposition 3.18.
It is an isomorphism on B = C[ε] by Lemma 3.10. The last claim is a consequence of the
homotopy invariance of deformation functors (cf. Sect. 1.2) and of Remark 1.9, being

(
A0,∗(End(E)) , [∇0,1,−]) and

(
A0,∗(End(E)) , [∇0,1

J ,−]
)

quasi-isomorphic DG Lie algebras. 	


4 Deformations of holomorphic vector bundles

4.1 Background on deformations of sheaves

To any coherent sheaf F on a smooth complex projective manifold X it is associated the
homotopy class of DG Lie algebras of derived endomorphisms RHom(F,F). In particular
such class can be described by different quasi-isomorphic representatives (cf. e.g. [9, 30])
but the associated deformation functor DefRHom(F,F) does not depend on this choice, see
Sect. 1.2. It is well known that the deformation functor DefF describing infinitesimal defor-
mations of F is naturally isomorphic to DefRHom(F,F), see [1, 6, 9, 21, 30]. This turns out to
be a very powerful tool since the geometric properties of certain moduli spaces of sheaves
on X can be understood, locally around [F], by the algebraic properties of RHom(F,F).
For instance, it has been proven that for any polystable coherent sheaf F on X the class of
DG Lie algebras RHom(F,F) is formal when X is a K3 surface (cf. [6]) and even more
generally whenever X is a minimal surface of Kodaira dimension 0 (cf. [2]).

For future reference we state here a very useful technical tool, whose proof can be found
either in [10] or in [9].
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Proposition 4.1 Let X be a smooth and projective variety and let (E, ∂̄E ) be a holomorphic
vector bundle on X. Then the Dolbeault algebra (A0,∗(End(E)), [∂̄E ,−], [−,−]) represents
the homotopy class RHom(E, E).

As a consequence of Sect. 1.2 and Proposition 4.1 one has the following geometric inter-
pretation, which nowadays is folklore, and for which a good account can be found in the
seminal paper [12]. Let us denote by Def(E, ∂̄E ) the Kuranishi family of a holomorphic
vector bundle (E, ∂̄E ).

Corollary 4.2 Keep notations as before.

(1) If (A0,∗(End(E)), [∂̄E ,−], [−,−]) is Lie formal, then Def(E, ∂̄E ) is an intersection of
quadrics.

(2) If (A0,∗(End(E)), [∂̄E ,−], [−,−]) is homotopy abelian, then Def(E, ∂̄E ) is smooth.

With the above result in mind, the aim of Sect. 4.2 will be to provide sufficient conditions
for

(
A0,∗(End(E)), [∂̄E ,−], [−,−])

to be associatively (hence Lie) formal. Notice that the implications of Corollary 4.2 are
strong, indeed a priori there is no reason to expect the above conditions to be equivalent.
In particular homotopy abelianity is stronger than smoothness. Nevertheless, if (E, ∂̄E ) is
polystable with respect to any polarisation and X is a smooth projective surface it has been
proved in [3] that formality is equivalent to quadraticity (in fact, it has been proven a more
general statement for coherent polystable sheaves satisfying certain conditions on a complex
projective scheme of arbitrary dimension, cf. [3, Theorem 1.2]).

4.2 Formality results for vector bundles with a projectively hyper-holomorphic
connections

Let X = (M, I ) be an irreducible holomorphic symplectic manifold with Kähler class ω,
and (M, g, I , J , K ) the associated hyper-Kähler structure. Let E be a complex vector bundle
endowed with a hyper-holomorphic connection ∇ = ∇1,0 + ∇0,1. Recall that in particular
∇0,1 is a holomorphic structure on E . As in Sect. 3 (cf.Remark 3.3) we shall denote by

∇0,1
J : A0,∗(E) → A0,∗+1(E)

the associated twisted differential.
Motivated by the deformation theory of a holomorphic vector bundle (E,∇0,1), we now

look at its endomorphism bundle. Recall that the Chern connection ∇ on an hermitian vector
bundle E is called projectively hyper-holomorphic if the induced connection on End(E) is
hyper-holomorphic.

Theorem 4.3 Consider a complex vector bundle E endowed with a projectively hyper-
holomorphic connection ∇. Then:

(1)
(

A0,∗(End(E)) , · , [∇0,1
J ,−] , [∇0,1,−]

)
is an associative DGMS algebra,

(2)
(

A0,∗(End(E)) , · , [∇0,1,−]) is a formal associative DG algebra.

Proof ByLemma 3.9 the Dolbeault complex is a DGMS vector space. Hence it is sufficient to
show that the differentials act as derivations with respect to the natural associative product of
A0,∗(End(E)), which follows by Proposition 3.13. The last statement is then an immediate
consequence of Theorem 1.8. 	
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Proposition 4.4 ([33, Theorem 11.1]) Let (E, ∂̄E ) be a stable holomorphic vector bundle on
X and consider the hermitian Yang–Mills metric induced by the Donaldson–Yau–Uhlenbeck
theorem. Then the Chern connection on E is projectively hyper-holomorphic if and only if

�(E) := 2rc2(E) − (r − 1)c1(E)2

is SU(2)-invariant.

Example 4.5 The Chern connection of any line bundle is projectively hyper-holomorphic.

Example 4.6 Let X be a K3 surface, and E be a stable holomorphic vector bundle. The
Yang–Mills Chern connection on E provided by Donaldson–Uhlenbeck–Yau theorem is
projectively hyper-holomorphic. Essentially this is due to the fact that in dimension 2 any
2-form α such that 
ωα = 0 is SU(2)-invariant, see [33, Proposition 11.2].

Remark 4.7 Hermitian holomorphic vector bundles on X whose Chern connection is projec-
tively hyper-holomorphic are examples of modular vector bundles, see [31, Definition 1.1].
As already remarked by O’Grady [31, Remark 1.3], the two definitions agree when X is
deformation equivalent to a Hilbert scheme of 2 points on a K3 surface, or when X is defor-
mation equivalent to the so-called OG10 manifold. Nevertheless it is not known in general
whether this is always the case or not: in particular, there are no examples of stable modular
vector bundles that do not admit projectively hyper-holomorphic connections.

Theorem 4.8 Let X be an irreducible holomorphic symplectic manifold X and ω a Kähler
class on X. If (E, ∂̄E ) is a stable holomorphic vector bundle on X such that �(E) is SU(2)-
invariant, then the associative Dolbeault DG algebra

(
A0,∗(End(E)) , · , [∂̄E ,−]) is formal.

Proof By Proposition 4.4, the hypotheses imply that E admits a projectively hyper-
holomorphic connection. Then the associative formality of the Dolbeault DG algebra follows
by Theorem 4.3. 	


By Remark 1.9 we get that H•
[∂̄E ,−]

(
A0,∗(End(E))

) ∼= H•
[∇0,1

J ,−]
(

A0,∗(End(E))
)
.

This should be compared to [33, Corollary 8.2], where it is shown that the vector spaces
Hk(End(E)) do not depend on the induced complex structure, when E is a projectively
hyper-holomorphic hermitian vector bundle.

Remark 4.9 (Polystable vector bundles) If E = ⊕m
k=1 Ek is a polystable vector bundle,

i.e. each Ek is stable, then the Donaldson–Uhlenbeck–Yau Yang–Mills Chern connection
∇ = ∑m

k=1 ∇k can be projectively hyper-holomorphic even if the single connections (Ek,∇k)

are not. In this case Theorem 4.3 still applies, but Proposition 4.4 does not a priori. In fact
the SU(2)-invariance of �(E) does not imply the SU(2)-invariance of each �(Ek) and we
cannot conclude that the Donaldson–Uhlenbeck–Yau Yang–Mills Chern connection ∇ is
projectively hyper-holomorphic. In fact, for this to be true, one has to further assume that
each summand ∇k is so.

In the following we state some geometric consequences of Theorem 4.8. If (E, ∂̄E ) is a
holomorphic vector bundle, we denote by Def(E, ∂̄E ) the Kuranishi space of infinitesimal
holomorphic deformations of E (cf. [12]).

The first consequence is a shorter proof of a result due to Verbitsky, [33, Theorem 11.2].

Corollary 4.10 (Verbitsky’s quadraticity theorem) Let X be an irreducible holomorphic sym-
plectic manifold X and ω a Kähler class on X. If (E, ∂̄E ) is a stable holomorphic vector
bundle that admits a projectively hyper-holomorphic connection, thenDef(E, ∂̄E ) is an inter-
section of quadrics.
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Proof This is a direct consequence of the formality of Theorem 4.8 and Corollary 4.2. 	

Remark 4.11 Verbitsky’s proof of quadraticity of Def(E, ∂̄E ) is very technical and heavily
uses the differential and Hodge theory of A0,∗(End(E)). Nevertheless his main tool can be
tracked back to the ∇0,1 ∇0,1

J -lemma, which is also our main tool to prove formality.

Another consequence is the following well known result (see [18]).

Corollary 4.12 Let X be an irreducible holomorphic symplectic manifold X and ω a Kähler
class on X. Let (E, ∂̄E ) be a stable holomorphic vector bundle that admits a projectively
hyper-holomorphic connection. If moreover Ext2(E, E) = C, then Def(E, ∂̄E ) is smooth.

Proof First of all, by Theorem 4.3 the algebra
(

A0,∗(End(E)) , · , [∂̄E ,−]) is formal. More-
over, recall thatH•(A0,∗(End(E)) = Ext•(E, E). By assumptionExt2(E, E) = C, so that in
particular the cap product defined on Ext1(E, E) = H1

∂̄
(A0,∗(End(E))) is skew-symmetric

and Def(E, ∂̄E ) is smooth (cf. Sect. 1.2). 	

Notice that in Corollary 4.12, the formal DG Lie algebra A0,∗(End(E)) need not be

homotopy abelian in general.

Remark 4.13 (Moduli space of semistable vector bundles on K3 surfaces)We already noticed
in Example 4.6 that every polystable vector bundle on a K3 surface admits a hyper-
holomorphic connection.Moreover, if (E, ∂̄E ) is stable thenExt2(E, E) ∼= Hom(E, E) = C.
Hence we recover the well known fact that the moduli space of semistable holomorphic vec-
tor bundles on a K3 surface is quadratic [3, 6], and it is smooth at those points that can be
represented by a stable holomorphic vector bundle.

Corollary 4.14 Let X be an irreducible holomorphic symplectic manifold X and ω a Kähler
class on X. Let (E, ∂̄E ) be a stable holomorphic vector bundle that admits a projectively
hyper-holomorphic connection. If moreover there exists a smooth projective variety Z such
that Ext∗(E, E) ∼= H∗(Z ,C), then

(
A0,∗(End(E)) , [∂̄E ,−] , [−,−])

is a homotopy abelian DG Lie algebra. In particular Def(E, ∂̄E ) is smooth.

Proof By Theorem 4.8, the associative Dolbeault DG algebra
(

A0,∗(End(E)) , · , [∂̄E ,−])
is formal. Hence to prove homotopy abelianity is enough to show that the associative product
is graded commutative in cohomology, see Remark 1.14. On the other hand, the associative
cap product on H∗(Z ,C) is graded commutative so that the claim follows by a standard
Eckmann-Hilton argument, [8]. 	

Corollary 4.15 ([6, Proposition 1.4]) Let X and Y be two projective irreducible holomorphic
symplectic manifolds and � : Db(X) → Db(Y ) a Fourier–Mukai equivalence between their
derived categories. Suppose that (E, ∂̄E ) is a hermitian holomorphic vector bundle admit-
ting a projectively hyper-holomorphic connection. Then Def(�(E), ∂̄�(E)) is given by an
intersection of quadrics.

Proof By Theorem 4.8 the Dolbeault associative DG algebra
(

A0,∗(End(E)) , · , [∂̄E ,−])
is formal. On the other hand, by [6, Proposition 1.4] the associative formality of derived
endomorphisms is preserved under Fourier–Mukai equivalences. The statement follows from
Corollary 4.2. 	
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Example 4.16 (Tangent bundle) In Example 2.11 we have seen that the Chern connection of
the holomorphic tangent bundle 
X of an irreducible holomorhic symplectic manifold X is
hyper-holomorphic with respect to the hermitian metric induced by X . Then the Dolbeault
algebra A0,∗(End(
X )) is formal and the Kuranishi space Def(
X ) is quadratic.

Example 4.17 (Vector bundles on Fano varieties of lines) This example is due to O’Grady
(see [31, Sect. 2.1]). Let Y ⊂ P(V6) be a smooth cubic fourfold and X = F(Y ) ⊂ G =
G(2, V6) its Fano variety of lines. It is known that X is an irreducible holomorphic symplectic
manifold of type K3[2] ( [4]). The Plücker embedding of G in P(

∧2 V6) provides X with
a canonical polarisation H and, if X is very general, it follows that Pic(X) = ZH . Let Q
be the tautological bundle on G parametrising the quotient spaces of V6; then Q has rank
4 and first Chern class equal to the Plücker class. One can check (e.g. Example (2) in [31,
Sect. 2.1]) that �(E) = c2(X) is SU(2)-invariant. Moreover, E is stable. In particular, E
admits a projectively hyper-holomorphic connection and Def(E) is quadratic.

Since Q is generated by global sections, one can check that also E is generated by global
sections (in particular one can compute that H0(X , E) ∼= H0(G, Q) = V6 – we thank E.
Fatighenti for this remark). The elementary transform of E is a vector bundle F on X of rank
2 that is isomorphic to the restriction to X of the tautological bundle on G of the subspaces
of V6. It is easy to check by hand that F is stable and that �(F) = 3

2h2 − 1
2c2(X) is not

SU(2)-invariant. Nevertheless, by Corollary 4.15, also A0,∗(End(F)) if formal, and hence
Def(F) is quadratic. From a geometric point of view these examples are easily understood:
both E and F are rigid vector bundles, so that their deformation spaces consist of just a point.

Example 4.18 In [32], O’Grady constructs a class of slope stable locally free sheaves on a
generalised Kummer fourfold whose discriminant is SU(2)-invariant. Therefore, by Theo-
rem 4.8, the associated Dolbeault algebra is formal. Notice that also in this case the locally
free sheaf is rigid.

4.2.1 Other examples

Constructing examples of projectively hyper-holomorphic connections on holomorphic vec-
tor bundles is in general a very difficult task. In fact, the only tool we have now is
Proposition 4.4 applied to stable holomorphic vector bundles. The biggest set of theoretical
examples is provided byMarkman in [27], when X is an irreducible holomorphic symplectic
manifold deformation equivalent to an Hilbert scheme of points on a K3 surface. Markman’s
examples are divided in three classes:

(1) vector bundles of the form �(OX ), where � is a Fourier–Mukai transform;
(2) vector bundles of the form �(Ox ), where � is as before and x ∈ X is a point;
(3) vector bundles of the form �(L), where � : Db(Z) → Db(X) a Fourier–Mukai equiv-

alence, Z ⊂ X is a lagrangian submanifold that deforms with X in codimension 1 and
L is a power of the anti-canonical bundle of Z .

All these examples, when stable, have a smooth Kuranishi space (actually, their Dol-
beault DG Lie algebra is homotopy abelian), as it follows from [6, Proposition 1.4] (see also
Corollary 4.15).

The first two classes of examples are rigid, so that from a geometric point of view they are
not very interesting. Markman explicitly constructs stable vector bundles belonging to these
two classes of examples.

The third class of examples is much more interesting, because would provide examples
of non-rigid vector bundles. In [27, Example 3.11], Markman lists three known geometric

123



Hyper-holomorphic connections on HK manifolds Page 29 of 34 17

cases where a lagrangian submanifold Z ⊂ X deforms with X in codimension 1. The most
interesting geometric example is given by sheaves of the form �(i∗OF(Y )), where V is a
smooth cubic fourfold, Y is a linear section of V , F(Y ) and F(V ) are the respective Fano
varieties of lines, and i : F(Y ) → F(V ). Unfortunately, it is still unknown whether such a
sheaf is locally free and whether it is stable. Nevertheless, when stable and locally free such a
sheaf has a homotopy abelian Dolbeault DG Lie algebra by Theorem 4.8 and Corollary 4.14.
We remark that the formality of torsion sheaves of the form i∗L as above has been proved
by Mladenov in [29], see also [28, Theorem 0.1.3].

5 Deformations of autodual connections

To begin with, our aim is to define the deformation functor associated to an autodual con-
nection ∇ on a complex vector bundle on an irreducible holomorphic symplectic manifold.

First of all, if B ∈ ArtC is any local artinian C-algebra with residue field C, we define the
SU(2)-action on A∗(End(E))⊗C B as the natural SU(2)-action on A∗(End(E)) and as the
identity on B.

Definition 5.1 (Infinitesimal deformation of an autodual connection) Let X = (M, I ) be an
irreducible holomorphic symplecticmanifold and (M, g, I , J , K ) the hyper-Kähler structure
associated to a Kähler class ω. Let E be a complex vector bundle on X and ∇ an autodual
connection on E . A deformation of ∇ over B ∈ ArtC is a B-linear graded map

∇B : A∗(E) ⊗C B → A∗+1(E) ⊗C B

satisfying the following conditions:

(1) ∇B satisfies the Leibniz rule

∇B(α ⊗ e ⊗ b) = (d α) ⊗ e ⊗ b + (−1)kα ∧ ∇B(e ⊗ b),

where α is a k-form, e is a section of E and b ∈ B.
(2) ∇B ⊗B C = ∇,
(3) ∇2

B ∈ A2(End(E)) ⊗C B is SU(2)-invariant.

We refer to a ∇B satisfying item (1) of Definition 5.1 as a B-connection. Item (2) can be
understood as the commutativity of the diagram of B-modules

A∗(E) ⊗C B
∇B

A∗+1(E) ⊗C B

A∗(E)
∇

A∗+1(E)

where the B-module structure of A0,∗(E) is induced by the projection B → B/mB ∼= C that
annihilates the maximal ideal mB . Finally, notice that the composition ∇2

B = ∇B ◦ ∇B is
A0 ⊗C B-linear, so that item (3) is well defined and corresponds to the autoduality property.

Remark 5.2 We may prove a completely analogous statement to Proposition 3.7 simply by
working over B instead ofC in order to characterise autodual deformations in terms of strong
Maurer–Cartan solutions.
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Remark 5.3 Notice that a B-deformation ∇B of ∇ is equivalent to the data of an A0-linear

∇̂B : A0(E) → A1(E) ⊗C mB .

In fact, if such ∇̂B is given, then there is a unique way to recover the B-deformation ∇B by
extending

∇ ⊗ 1 + ∇̂B : A0(E) → A1(E) ⊗C B .

via B-linearity and the Leibniz rule.

Definition 5.4 (Equivalence of deformations) If E is a complex vector bundle over X and
B ∈ ArtC, then we denote by E ⊗C B the vector bundle over X B = X × Spec(B). If G(E)

is the gauge group of E and G(E)B is the gauge group of E ⊗ B, then we define G(E)0 the
kernel

G(E)0B = ker (G(E)B −→ G(E))

induced by the quotient map B → B/mB ∼= C.
If ∇B,1 and ∇B,2 are two B-connections, then we say that they are equivalent if there

exists an element gB ∈ G(E)0B such that the following diagram

A∗(E) ⊗C B
gB

∇B,1

A∗(E) ⊗C B

∇B,2

A∗+1(E) ⊗C B gB
A∗+1(E) ⊗C B

commutes.

In the diagram above, the automorphism gB is extended to the complex A∗(E) ⊗ B by
A0-linearity.

Remark 5.5 The definition above is classical, but let us explain it. First of all, recall that the
gauge group G(E) is the group of transformations of E as a vector bundle over X (same for
G(E)B ). Classically two connections (resp. B-connections) over E (resp. EB ) are said to be
equivalent if they are conjugated by a gauge transformation. The choice to act by the subgroup
G(E)0B is motivated by the fact that we want an equivalence between two deformations of ∇
to be the identity when quotiented by the maximal ideal (i.e. when restricted to the central
fibre).

Remark 5.6 The group G(E)0B is classically known in deformation theory, and it coincides
with the nilpotent Lie group exp(A0(End(E)) ⊗C mB) (see e.g. [11, Section 6.1]).

In particular, fromour point of view it is important to remark that exp(A0(End(E))⊗CmB)

is also the group of gauge transformations of the quaternionic Dolbeault DG Lie algebra
D∗(End(E)) ⊗C B (cf. Sect. 1.2).

Definition 5.7 (Deformation functor associated to an autodual connection) Let X be an irre-
ducible holomorphic symplectic manifold with a fixed Kähler class ω. Let E be a complex
vector bundle on X endowed with an autodual connection ∇. The deformation functor asso-
ciated to ∇ is defined by

Def∇ : ArtC → Sets Def∇(B) = {
autodual deformations of ∇ over B

}
/∼ ,

where ∼ denotes the equivalence relation given in Definition 5.4.
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Given an autodual connection∇ on E , we denote byDefD∗(End(E)) the deformation functor
associated to the quaternionic Dolbeault DG Lie algebra

(
D∗(End(E)) , x [∇0,1

J ,−] + y [∇0,1,−] , [−,−]
)

as in Sect. 3.
The main result of this section is the following.

Theorem 5.8 Let X be an irreducible holomorphic symplectic manifold with a fixed Kähler
class ω. Let E be a complex vector bundle on X. If ∇ is an autodual connection, then there
is a natural isomorphism of deformation functors

� : DefD∗(End(E)) → Def∇ .

Proof Fix B ∈ ArtC. A Maurer–Cartan element

x ξ1 ⊗ b1 + y ξ2 ⊗ b2 ∈ MC
(
D∗(End(E)) ⊗C mB ,

[
x ∇0,1

J + y ∇0,1,−
]

⊗ idmB

)

satisfies the equation

x2
([

∇0,1
J , ξ1

]
⊗ b1 + 1

2
[ξ1, ξ1] ⊗ b21

)
+ y2

([∇0,1 , ξ2
] ⊗ b2 + 1

2
[ξ2, ξ2] ⊗ b22

)

+ xy
([

∇0,1
J , ξ2

]
⊗ b2 + [∇0,1 , ξ1

] ⊗ b1 + [ξ1, ξ2] ⊗ b1b2
)

= 0 .

This can be rephrased as the following conditions

• ξ2 ⊗ b2 ∈ MC
(

A0,∗(End(E)) ⊗C mB , [∇0,1,−] ⊗ idmB

)
,

• ξ1 ⊗ b1 ∈ MC
(

A0,∗(End(E)) ⊗C mB , [∇0,1
J ,−] ⊗ idmB

)
,

•
[
∇0,1

J + ξ1 ⊗ b1 , ∇0,1 + ξ2 ⊗ b2
]

= 0.

where in the last equality we used
[
∇0,1

J , ∇0,1
]

= 0, being ∇ autodual by hypothesis. Once

again, we can repackage the above information as follows

• ∇0,1 + ξ2 ⊗ b2 is a holomorphic deformation of ∇0,1,
• ∇0,1

J + ξ1 ⊗ b1 satisfies the strong Maurer–Cartan equation in the DG Lie algebra
(

A0,∗(End(E)) ⊗C mB , [∇0,1 + ξ2 ⊗ b2,−] ⊗ idmB

)
.

Hence it is uniquely defined the A0-linear map

∇̂B = ξ2 ⊗ b2 + (J ⊗ id) ◦ (ξ1 ⊗ b1) ◦ (J−1 ⊗ id) : A0(E) −→ A1(E) ⊗C mB

which in turn gives us the definition of the B-deformation ∇B = ∇ + ∇̂B as explained by
Remark 5.3. Notice that the items above are equivalent to require that ∇B is autodual, see
Proposition 3.7 and Remark 3.8.

We defined a natural transformation from the Maurer–Cartan functor, i.e.

�̂ : MCD∗(End(E)) −→ Def∇ .

It is not difficult to check that such a natural transformation is surjective.
To conclude we need to understand how the natural transformation f behaves with

respect to the respective gauge transformations. First of all, recall from the definition that
D0(End(E)) = A0(End(E)) and so the gauge group acting on MC(D∗(End(E)) ⊗C mB)
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coincides with the group exp(D0(End(E)) ⊗ mB). On the other hand, the last group is the
same as the group of gauge equivalences of a B-deformation of∇ as defined in Definition 5.4.
To conclude the proof, we claim that

�̂ (x ξ1 ⊗ b1 + y ξ2 ⊗ b2) ∼ �̂
(
x ξ ′

1 ⊗ b′
1 + y ξ ′

2 ⊗ b′
2

)

if and only if

(x ξ1 ⊗ b1 + y ξ2 ⊗ b2) ∼ (x ξ ′
1 ⊗ b′

1 + y ξ ′
2 ⊗ b′

2) .

From this it follows both that �̂ descends to a natural transformation

� : DefD∗(End(E)) −→ Def∇
and that � is injective, hence an isomorphism.

On the other hand the claim holds by definition. In fact Definition 5.4 is given so that it
coincides with the natural gauge action in the deformation theory of a DG Lie algebra (see
Remark 5.6). 	


If E is a complex vector bundle and ∇ is a hyper-holomorphic connection, then (E,∇0,1)

is a holomorphic structure (that is polystable by the Donaldson–Uhlenbeck–Yau Theorem).
From this point of view it is natural to ask what is the interplay between holomorphic defor-
mations of (E,∇0,1) and autodual deformations of (E,∇).

Corollary 5.9 Let E be a complex vector bundle on an irreducible holomorphic symplectic
manifold with a fixed Kähler class. Suppose E is endowed with a holomorphic structure ∂̄

and a hyper-holomorphic connection ∇ = ∇1,0 + ∂̄ . Then

(1) for every holomorphic deformation (E, ∂̄ ′) of (E, ∂̄) there exists an autodual connection
∇′ whose (0, 1)-part is ∂̄ ′,

(2) there exists a 1 : 1 correspondence

{
First order deformations of ∂̄

} ↔
{

First order autodual deformations of ∇
whose (0, 1)-part is ∂̄

}

.

Proof Let us start from item (1). Infinitesimal deformations of the holomorphic vector bundle
(E, ∂̄) are controlled by the DG Lie algebra

(
A0,∗(End(E)), [∂̄,−], [−,−])

by Proposition 4.1. On the other hand, deformations of an autodual connection are controlled
by the DG Lie algebra

(
D∗(End(E)) , x [∇0,1

J ,−] + y [∂̄,−] , [−,−]
)

by Theorem 5.8. The projection

π̂y : D∗(End(E)) −→ A0,∗(End(E))

defined as the evaluation at x = 0, y = 1 is a morphism of DG Lie algebras, so that we have
the induced natural transformation

Def∇ ∼= DefD∗(End(E))

πy−→ Def(E,∂̄) .

The claim is equivalent to prove that πy is surjective, which is exactly the statement of
Proposition 3.18.
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Let us now turn to item (2). First order deformations are parametrised by elements in
the tangent space of a deformation functor. Recall that by Proposition 3.19 there is a natural
transformation

Def∇ ∼= DefD∗(End(E)) −→ Def(A0,∗(End(E)) , [∇0,1,−]) × Def(
A0,∗(End(E)) , [∇0,1

J ,−]
)

that is an isomorphism on tangent spaces, and moreover

T 1Def(A0,∗(End(E)) , [∇0,1,−]) ∼= T 1Def(
A0,∗(End(E)) , [∇0,1

J ,−]
) .

The claim follows. 	
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