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A B S T R A C T

We study the roughness of the log-volatility process by testing the self-similarity of the process
obtained by the de-Lampertized realized volatility. The value added of our analysis rests on
the application of a distribution-based estimator providing results which are more robust with
respect to those deduced by the scaling of the individual moments of the process. Our findings
confirm the roughness of the log-volatility process.

. Introduction

Rough volatility models incorporate the idea that volatility exhibits complex patterns like high frequency fluctuations, clustering
nd heavy tails, revealed by trajectories that are less Hölder continuous than those of Brownian motion. The growing interest in this
ield has motivated several variants of standard models: the Rough Fractional Stochastic Volatility model [1], the Rough Bergomi
odel [2] or the Rough Heston model [3], just to mention the main formulations.

Many contributions have focused on estimation and found evidence consistent with the roughness of volatility as initially
escribed in the work of Gatheral et al. [1], where the authors point out that the logarithm of realized variance behaves essentially
s a fractional Brownian motion (fBm) with Hurst exponent 𝐻 of order 0.1. Using the generalized Hurst exponent, Livieri et al.
4] analyze the spot volatility approximations given by implied volatilities of at-the-money options on the S&P500 index and find
level of roughness moderately higher (𝐻 ≃ 0.3) than that estimated by previous contributions (the authors explain this result by

he smoothing effect due to the remaining time to maturity of the considered options).
Motivated by simulations suggesting the presence of an estimation error of latent volatility which can result in an illusive scaling

roperty with a rough parameter, Fukasawa et al. [5] develops a quasi-likelihood estimator and concludes that the volatility is
ven rougher than what estimated in previous literature. Exploiting the GMM framework, similar findings (𝐻 ≲ 0.05) are obtained
y Bolko et al. [6] for a large panel of equity indices. To explain these close to zero values of 𝐻 , Peng et al. [7] introduce a
amily of random measures to consider within the same framework multifractal and rough volatility models. Bennedsen et al. [8]
onfirm roughness for the log-volatility of thousands of stocks by performing OLS estimates based on the second order variogram.
sing the multifractal detrended fluctuation analysis, Takaishi [9] finds roughness in Bitcoin volatility and non costant generalized
urst exponent, signature of a multifractality partly ascribable to the distributional properties of log-volatility. From a modeling
erspective, Fukasawa [10] proves that non-rough volatility models are inconsistent with a short-time power law of volatility skew
nd that, given a short-time power law of volatility skew in an option market, a continuous price dynamics of the underlying
sset with non-rough volatility admits an arbitrage. Brandi and Di Matteo [11] analyze the interplay between price multiscaling
nd volatility roughness and find that, although the rough Bergomi model with a low value of the Hurst exponent can reproduce
ultiscaling features of the prices’ time series, it fails to reproduce the negative dependency between prices’ multiscaling and the
urst exponent of the volatility process. Recent contributions have questioned the above results and suggested that the apparent
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roughness observed in realized volatility can be ascribed to microstructure noise rather than the volatility process itself. On this line is
the paper by Cont and Das [12], who use a non-parametric method based on normalized 𝑝th variation along a sequence of partitions
and show numerically that, even when the instantaneous volatility has diffusive dynamics with the same roughness as Brownian
motion, the realized volatility exhibits rough behavior corresponding to a Hurst exponent significantly smaller than 0.5. Rogers
[13] suggests that the roughness of volatility can be explained also by simpler models such as a bivariate Ornstein–Uhlenbeck
model. Angelini and Bianchi [14] consider a Fractional Stochastic Regularity Model and provide some evidence of potential highly
nonlinear biases when the Hurst exponent is estimated by smoothing moment-based methodologies.

In order to address the potential ambiguity associated with moment-based estimators, we assess the irregularity of log-volatility
directly through the analysis of how its realized probability distribution scales, as opposed to relying solely on its individual statistical
moments. We exploit the Lamperti transform to convert the realized log-volatility into a self-similar sequence 𝑋𝑡. Then we study
the self-similarity parameter of this sequence by the non parametric and distribution-based estimator introduced by Bianchi [15].
Roughly speaking, the estimator can be defined as the diameter of the space generated by the rescaled distribution functions of 𝑋𝑡
and it is calculated as the value which minimizes the maximal pairwise distance of the elements of this space. Being based on the
whole distributions, the estimates are more robust and can be evaluated not only by visual inspection but in terms of their statistical
significance. In fact, in the one-dimensional case, the diameter reduces to the Kolmogorov–Smirnov statistic, thus allowing to apply
a test to evaluate the statistical significance of the estimated self-similarity parameter. Applied to real financial data, the method
confirms the roughness of log-volatility for 21 out of 21 considered stock indices, with values of the Hurst exponent ranging from
0.060 to 0.151.

The remainder of the paper is organized as follows. In Section 2 we recall the definition of self-similarity, the Lamperti transform
and introduce the diameter of the space of rescaled distributions along with its main properties. In Section 4 we show that the
Lamperti transform of the Ornstein–Uhlenbeck process driven by a fBm of parameter 𝐻0 is self-similar with parameter 𝐻0, regardless
the value of 𝐻 used in the transform. Section 5 is devoted to the empirical application. Finally, Section 6 concludes.

2. Self-similar stochastic processes

In this Section we will recall some definitions and theorems that will be used in Section 4 to justify the methodology that we
ropose to estimate the roughness of the log-volatility.

efinition 2.1 (Lamperti [16]). The R𝑘− valued stochastic process {𝑋𝑡, 𝑡 ≥ 0}, nontrivial and stochastically continuous1 at 𝑡 = 0, is
self-similar with parameter 𝐻0 ≥ 0 (𝐻0-ss) if for any 𝑎 > 0,

{𝑋𝑎𝑡}
𝑑
= {𝑎𝐻0𝑋𝑡} (1)

where 𝑑
= denotes the equality of the finite-dimensional distributions of 𝑋𝑡.2

Remark 2.1. Since it can be proved that (a) 𝐻 = 0 if and only if 𝑋𝑡 = 𝑋0 almost surely for every 𝑡 > 0 and that (b) if E(|𝑋1|) < ∞,
then 𝐻 ≤ 1 [see [17]], to exclude degenerate cases in the following we will assume that 0 < 𝐻 ≤ 1.

Remark 2.2. Observe that equality (1) implies 𝑋0 = 0 a.s. Furthermore, from Definition 2.1 it readily follows that if 𝑋𝑡 is self-similar
nd has stationary increments then increments are also self similar with the same parameter 𝐻0 (𝐻0-sssi), that is:

{𝑋𝑡+𝑎 −𝑋𝑡}
𝑑
= {𝑎𝐻0 (𝑋𝑡+1 −𝑋𝑡)}. (2)

In fact, being 𝑋0 = 0 a.s., one has

{𝑋𝑎𝑡}
𝑑
= {𝑎𝐻0𝑋𝑡} ⟺ {𝑋𝑎𝑡 −𝑋0}

𝑑
= {𝑎𝐻0 (𝑋𝑡 −𝑋0)}

For 𝑡 = 1, it is

{𝑋𝑎 −𝑋0}
𝑑
= {𝑎𝐻0 (𝑋1 −𝑋0)}

and this, by stationarity, implies (2).
If 𝑋𝑡 was the log-price at time 𝑡, Eq. (2) would state that the 𝑎-lagged log-change distributes as 𝑎𝐻0 times the one-lag log-change,

provided of course that the returns form a self-similar sequence. This scaling property has relevant implications, for example to
assess dynamically the liquidity of the market [18].

1 𝑋𝑡 is trivial if it is constant almost surely for every 𝑡 and it is stochastically continuous at 𝑡 if for any 𝜖 > 0, limℎ→0 𝐏{|𝑋𝑡+ℎ −𝑋𝑡| > 𝜖} = 0.
2 The two stochastic processes {𝑋𝑡 ∶ 𝑡 ≥ 0} and {𝑌𝑡 ∶ 𝑡 ≥ 0}, defined on probability spaces (𝛺,F ,𝐏) and (�̃�, F̃ , �̃�) respectively and sharing the same state

space (𝑅𝑘 ,B(R𝑘)), are said to have the same finite dimensional distributions if, for any integer 𝑛 ≥ 1 and real numbers 0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛 < ∞ and 𝐴 ∈ B(R𝑘),
it is:

𝐏((𝑋𝑡1 ,… , 𝑋𝑡𝑛 ) ∈ 𝐴) = �̃�((𝑌𝑡1 ,… , 𝑌𝑡𝑛 ) ∈ 𝐴).
2
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A theorem which is pivotal for our purposes is the following generalization to self-similar processes of the Doob [19] transform:

heorem 2.1 (Lamperti [16]). If {𝑋𝑡, 𝑡 ≥ 0} is 𝐻-ss and

𝑉𝑡 = 𝑒−𝑡𝐻𝑋𝑒𝑡 , 𝑡 ∈ R, (3)

then {𝑉𝑡, 𝑡 ∈ R} is stationary.
Conversely, if {𝑉𝑡, 𝑡 ∈ R} is a stationary process and if for some 𝐻 > 0

𝑋𝑡 = 𝑡𝐻𝑉log 𝑡, for 𝑡 > 0; 𝑋0 = 0, (4)

then {𝑋𝑡, 𝑡 ≥ 0} is 𝐻-ss.

When 𝑉𝑡 is the log-volatility and follows a fractional Ornstein–Uhlenbeck process (which is stationary), Eq. (4) of Theorem 2.1
ensures that its Hurst exponent can be estimated as the self-similarity exponent of its Lamperti transform. This is the focus of our
contribution: we exploit relation (4) to convert the log-volatility into a self-similar sequence, whose parameter we estimate by
analyzing how its distributions scale over a set of timescales. The self-similarity parameter thus estimated coincides with the Hurst
exponent of the log-volatility. Using the entire distribution for estimating the Hurst exponent appears more robust than using its
individual moments, because these are typically estimated through methods that can potentially bias the results due to both the
inherent variance of the estimators and the smoothing techniques often used.

Equality (1) [resp. (2)] can be tested through the Kolmogorov–Smirnov (KS) test applied to the diameter of the rescaled
probability distribution functions (pdf) [15]. In order to use the KS test, we will restrict ourselves to the one-dimensional case
(𝑘 = 1), although the theoretical results set forth apply for any 𝑘.

Given the compact set of timescales A = [𝑎, 𝑎] ⊂ R+, for any 𝑎 ∈ A, denote by 𝐹𝑋𝑎𝑡
(𝑥) the cumulative distribution function of

𝑎𝑡. Eq. (1) can be written as3

𝐹𝑋𝑎𝑡
(𝑥) ∶= 𝐏

(

𝑋𝑎𝑡 < 𝑥
)

= 𝐏
(

𝑎𝐻0𝑋𝑡 < 𝑥
)

= 𝐹𝑋𝑡
(𝑎−𝐻0𝑥), (5)

or, introducing the variable 𝐻 , as

𝐹𝑎−𝐻𝑋𝑎𝑡
(𝑥) ∶= 𝐏

(

𝑎−𝐻𝑋𝑎𝑡 < 𝑥
)

= 𝐏
(

𝑎𝐻0−𝐻𝑋𝑡 < 𝑥
)

= 𝐹𝑋𝑡
(𝑎𝐻−𝐻0𝑥). (6)

Let us denote now by 𝛹𝐻 ∶= {𝐹𝑎−𝐻𝑋𝑎𝑡
(𝑥), 𝑎 ∈ A, 𝑥 ∈ R} the set of the distribution functions of {𝑎−𝐻𝑋𝑎𝑡} and consider the distance

function 𝜌 induced by the sup-norm ‖ ⋅ ‖∞ with respect to A. The diameter of the metric space
(

𝛹𝐻 , 𝜌
)

is then defined as

𝛿𝑋𝑡
(𝛹𝐻 ) ∶= sup

𝑥∈R
sup
𝑎,𝑏∈A

|𝐹𝑎−𝐻𝑋𝑎𝑡
(𝑥) − 𝐹𝑏−𝐻𝑋𝑏𝑡

(𝑥)|

= sup
𝑥∈R

sup
𝑎,𝑏∈A

|𝐹𝑋𝑡
(𝑎𝐻−𝐻0𝑥) − 𝐹𝑋𝑡

(𝑏𝐻−𝐻0𝑥)|

= sup
𝑥∈R

|𝐹𝑋𝑡
(𝑎𝐻−𝐻0𝑥) − 𝐹𝑋𝑡

(𝑎𝐻−𝐻0𝑥)|. (7)

Remark 2.3. Eqs. (5), (6) and (7) are referred to the process 𝑋𝑡. Written for the (stationary) increments process 𝑍𝑡,𝑎 ∶= 𝑋𝑡+𝑎 −𝑋𝑡
hey become, respectively:

𝐹𝑍𝑡,𝑎
(𝑥) ∶= 𝐏

(

𝑍𝑡,𝑎 < 𝑥
) by 𝐻0−ss

= 𝐏
(

𝑎𝐻0𝑍𝑡,1 < 𝑥
)

= 𝐹𝑍𝑡,1
(𝑎−𝐻0𝑥),

𝐹𝑎−𝐻𝑍𝑡,𝑎
(𝑥) ∶= 𝐏

(

𝑎−𝐻𝑍𝑡,𝑎 < 𝑥
) by 𝐻0−ss

= 𝐏
(

𝑎𝐻0−𝐻𝑍𝑡,1 < 𝑥
)

= 𝐹𝑍𝑡,1
(𝑎𝐻−𝐻0𝑥)

nd

𝛿𝑍𝑡
(𝛹𝐻 ) = sup

𝑥∈R
|𝐹𝑍𝑡,1

(𝑎𝐻−𝐻0𝑥) − 𝐹𝑍𝑡,1
(𝑎𝐻−𝐻0𝑥)|.

The following Propositions are proved for 𝛿(𝛹𝐻 ) by Bianchi [15]:

Proposition 2.1. The process {𝑋𝑡, 𝑡 ≥ 0} is 𝐻0-ss if and only if 𝛿𝑋𝑡
(𝛹𝐻0

) = 0.

roposition 2.2. Let {𝑋𝑡, 𝑡 ≥ 0} be 𝐻0-ss. Then 𝛿𝑋𝑡
(𝛹𝐻 ) is non-increasing for 𝐻 ≤ 𝐻0 and non-decreasing for 𝐻 ≥ 𝐻0.

Proposition 2.3. Let {𝑋𝑡, 𝑡 ≥ 0} be 𝐻0-ss, 𝐱 ≧ 0 or 𝐱 ≦ 0, {A𝑖}𝑖=1,…,𝑛 be a sequence of timescale sets such that — denoted by 𝑎𝑖 = min(A𝑖)
nd by 𝑎𝑖 = max(A𝑖), with 𝑎𝑖 ≤ 𝑎𝑗 and 𝑎𝑖 ≥ 𝑎𝑗 for 𝑖 > 𝑗, then, with respect to the sequence {A𝑖}, 𝛿𝑋𝑡

(𝛹𝐻 ) is: (i) non-decreasing, if 𝐻 ≠ 𝐻0;
ii) zero, if 𝐻 = 𝐻0.

3 In what follows we refer to process 𝑋, but – because of Remark 2.2 – the same results hold for the increments of 𝑋, provided of course that they are
3
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Fig. 1. Estimated diameter for only one path of Brownian motion (𝐻0 = 0.5) of length 4096, with 𝑎 = 1 and 𝑎 = 25. At the significance level 𝛼 = 0.05 the critical
value of the Kolmogorov–Smirnov test is about 0.0301. The plot exhibits the minimum estimated diameter (about 0.0127) for 𝐻0 = 0.503, corresponding to a
𝑝-value of about 0.8952. Given that the value of the minimum estimated diameter is smaller than the critical KS value, we accept self-similarity with parameter
�̂�0 = 0.503.

Proposition 2.4. Let {𝐵𝐻0
𝑡 , 𝑡 ≥ 0} be fractional Brownian motion of parameter 𝐻0, with 𝜎2 = E(𝐵𝐻0

1 ). Then

𝛿
𝐵𝐻0
𝑡

(𝛹𝐻 ) = sup
𝑥∈R

1

𝜎
√

2𝜋 ∫

𝑥𝑎𝐻−𝐻0

𝑥𝑎𝐻−𝐻0
𝑒−𝑢

2∕2𝜎2𝑑𝑢,

that is

𝛿
𝐵𝐻0
𝑡

(𝛹𝐻 ) = 𝛷(�̂�𝑎𝐻0−𝐻 ) −𝛷(�̂�𝑎𝐻0−𝐻 )

where 𝛷 denotes the cumulative distribution function of a standard normal random variable and

�̂� =

⎧

⎪

⎨

⎪

⎩

√

2(𝐻0−𝐻)
𝑎2(𝐻0−𝐻)−𝑎2(𝐻0−𝐻) log

𝑎
𝑎 , if 𝐻 ≠ 𝐻0

0, if 𝐻 = 𝐻0.

Propositions 2.1 and 2.2 jointly entail that function 𝛿𝑋𝑡
(𝛹𝐻 ) of a non-degenerate self-similar process has a unique zero-valued

minimum as a function of 𝐻 ∈ (0, 1], whose abscissa is attained precisely at 𝐻0. Clearly, this mathematical statement must be turned
into a statistical one, because – even for a genuine 𝐻0-ss process – the empirical estimate of 𝛿𝑋𝑡

(𝛹𝐻0
) does not necessarily return

zero. Since the empirical diameter 𝛿𝑋𝑡
(𝛹𝐻 ) reads as

𝛿𝑋𝑡
(𝛹𝐻 ) = max

𝑥∈R
|𝐹𝑋1 ,𝑛(𝑎

𝐻𝑥) − 𝐹𝑋1 ,𝑚(𝑎
𝐻𝑥)| (8)

where 𝐹 is the empirical cumulative distribution function

𝐹𝑋1 ,𝑁 (𝑎𝐻𝑥) = 1
𝑁

𝑁
∑

𝑖=1
1𝑋1,𝑖≤𝑎𝐻𝑥,

the parameter 𝐻0 should be estimated in practice as

�̂�0 = argmin𝐻∈(0,1]𝛿𝑋𝑡
(𝛹𝐻 ), (9)

provided that 𝛿𝑋𝑡
(𝛹�̂�0

) is statistically negligible. Fig. 1 provides an example of the estimated diameter for one path of Brownian
motion.

Statistic (8) is precisely the two samples Kolmogorov–Smirnov (KS) metric, which evaluates the significance of the distance
between the empirical cumulative distribution functions of two different i.i.d. samples of data. It is nonparametric, thus no
assumption is made regarding the underlying distributions from which the samples are drawn.
4
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Fig. 2. Kolmogorov–Smirnov tests performed for simulated time series arising from a Gaussian AR(1) process: observed significance levels as a function of the
first-order autocorrelation values. The nominal significance levels considered are: circles, 𝛼 = 0.01; squares, 𝛼 = 0.05; triangles 𝛼 = 0.10.
Source: Durilleul and Legendre [20].

3. Critical values of the KS test under fractional dependence

The only requirement which grounds relationship (8) is the statistical independence of the values within each sample. The
violation of this assumption typically leads to rates of rejection or acceptance of the null hypothesis that deviate from the nominal
ones. In the case of serially dependent data, Durilleul and Legendre [20] show that the KS statistic is too liberal for medium-to-high
positively autocorrelated values and that for negatively autocorrelated values, the behavior is asymmetrical with respect to positive
values. Thus, positive dependence leads to a reduction of the effective number of independent observations, even if the bias becomes
negligible when the first-order autocorrelation is constrained to the interval [−0.8, 0.3] and the number 𝑛 of observations increases,
see Fig. 2 reproduced from the study of Durilleul and Legendre [20]. If dependence more complex than the first or second-order
autocorrelation is taken into account, excess rejection or excess acceptance of the null hypothesis affects statistic (8), depending on
the sign of the dependence. For example, if the autocorrelation decays as a power law (as in the case of fBm), type I and type II
errors4 occur when 𝐻 > 1∕2 and 𝐻 < 1∕2, respectively.

Several remedies have been proposed in literature to face the dependence in data: Weiss [21] designs a procedure for data
modeled by second-order auto-regressive (AR) processes with known parameters; Chicheportiche and Bouchaud [22] include all the
lagged bivariate copulas, which encode the non-linear temporal dependences, and deduce some analytical results once the statistic
is made parametric; Lanzante [23] tests three approaches for dealing with dependence and concludes that the best performance is
achieved by a test based on Monte-Carlo simulations.

Beyond the rather articulated approach pursued by Chicheportiche and Bouchaud [22], to the authors’ knowledge, the literature
does not provide specific results (neither theoretical nor empirical) for the critical values of the KS statistic in the case of the rescaled
distributions of fractional Brownian motion (or its increments). As the process is self-similar, we expect the rescaled distributions to
be virtually indistinguishable, meaning that they exhibit a non-significant KS statistic. Since this problem is still unresolved from a
theoretical standpoint due to its analytical complexity and nonlinearity, we design the following Monte-Carlo experiment with the
aim to estimate the critical values of the test statistic depending on the sample sizes and the Hurst exponents, for different levels
of significance:

(1) We simulated 1000 trajectories of fractional Brownian motion (fBm) of length 𝑛 (𝑛 = 256, 512, 1024, 2048, 4096, 16384) and Hurst
parameter 𝐻 (𝐻 = 0.1,… , 0.9; step 0.1);

(2) for each simulation, we estimated the self-similarity parameter and the corresponding minimum diameter of the increments’
distributions, with a minimum timescale 𝑎 = 1 and maximum timescale 𝑎 = 25;

(3) we estimated the critical value (dependent on the value of 𝐻 and the sample size 𝑛) for three confidence levels: the 90-th,
95-th, and 99-th percentiles of the distribution of the mimimal diameters;

4 A type I error (false-positive) occurs when a null hypothesis that is actually true is rejected; a type II error (false-negative) occurs when a null hypothesis
that is actually false is not rejected.
5
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Fig. 3. Estimated critical values of the empirical KS statistic at 99-th (left column), 95-th (mid column) and 90-th (right column) percentile of 1000 simulated
paths of fBm, for different sample sizes (𝑛 = 256, 512, 1024, 2048, 4096, 16384). The KS test was performed for the increments of each trajectory with 𝑎 = 1 and
𝑎 = 25; the empirical cumulative distributions of the minimal diameters served to calculate the three percentiles (orange circles). These values are compared
with the critical value of the KS statistic in case of independence (blue solid line) and interpolated to get an approximate critical value for each value of 𝐻
(red dotted line).

(4) driven by the visual inspection of data, we interpolated the values obtained in step (3) with a second-degree polynomial to
obtain an estimate of the critical value for every possible value of 𝐻 .

The results are summarized in Table 1 and Fig. 3. We observe a change in curvature (from concave to convex) in the interpolating
polynomial as the sample size increases and (less evident) as the level of significance decreases. This behavior appears to be
consistent with the effect of long-term memory, whose bias on the critical values of the KS statistic becomes more pronounced
as the examined series becomes sufficiently long, since truncation errors in the simulated sequences become gradually less relevant.
6



Communications in Nonlinear Science and Numerical Simulation 127 (2023) 107582S. Bianchi et al.

c

L
K

•

•

Table 1
Parameters estimates of the interpolating polynomials for each sample size 𝑛 and considered significance level 𝛼. The values in parentheses under the estimated
oefficients 𝑐 indicate the 95% confidence interval. In all cases the SSE (Sum of Squared Error) is between 0 and 0.0002.

𝑃 (𝐻) = 𝑐2𝐻2 + 𝑐1𝐻 + 𝑐0 Goodness of fit

𝑐2 𝑐1 𝑐0 R-squared Adj R-sq RMSE

𝑛 = 256

𝛼 = 0.01 −0.0813 0.2028 0.0627 0.9740 0.9654 0.0063
(−0.1697, 0.0072) (0.1121, 0.2935) (0.0429, 0.0825)

𝛼 = 0.05 −0.0426 0.1384 0.0557 0.9903 0.9870 0.0030
(−0.0847, −0.0006) (0.0952, 0.1815) (0.0463, 0.0651)

𝛼 = 0.10 −0.0229 0.1083 0.0530 0.9892 0.9856 0.0028
(−0.0622, 0.0164) (0.0679, 0.1486) (0.0443, 0.0618)

𝑛 = 512

𝛼 = 0.01 −0.0365 0.1325 0.0440 0.9919 0.9892 0.0028
(−0.0749, 0.0020) (0.0931, 0.1719) (0.0354, 0.0526)

𝛼 = 0.05 −0.0229 0.0971 0.0393 0.9946 0.9928 0.0017
(−0.047, 0.0013) (0.0723, 0.1218) (0.0339, 0.0447)

𝛼 = 0.10 −0.0166 0.0812 0.0367 0.9913 0.9883 0.0019
(−0.0434, 0.0102) (0.0537, 0.1086) (0.0307, 0.0427)

𝑛 = 1024

𝛼 = 0.01 −0.0348 0.1075 0.0288 0.9810 0.9747 0.0032
(−0.0796, 0.0100) (0.0615, 0.1535) (0.0188, 0.0389)

𝛼 = 0.05 −0.0133 0.0689 0.0273 0.9852 0.9803 0.0022
(−0.0433, 0.0166) (0.0381, 0.0996) (0.0206, 0.0340)

𝛼 = 0.10 −0.0043 0.0513 0.0267 0.9904 0.9872 0.0015
(−0.0247, 0.0161) (0.0304, 0.0722) (0.0221, 0.0312)

𝑛 = 2048

𝛼 = 0.01 −0.0139 0.0672 0.0227 0.9925 0.9901 0.0015
(−0.0343, 0.0065) (0.0463, 0.0881) (0.0182, 0.0273)

𝛼 = 0.05 −0.0034 0.0440 0.0207 0.9954 0.9939 0.0009
(−0.0156, 0.0087) (0.0315, 0.0565) (0.0171, 0.0234)

𝛼 = 0.10 −0.0006 0.0353 0.0197 0.9955 0.9940 0.0007
(−0.0109, 0.0097) (0.0247, 0.0459) (0.0174, 0.0220)

𝑛 = 4096

𝛼 = 0.01 0.0107 0.0270 0.0193 0.9860 0.9814 0.0014
(−0.0091, 0.0305) (0.0067, 0.0473) (0.0149, 0.0238)

𝛼 = 0.05 0.0061 0.0238 0.0160 0.9938 0.9917 0.0007
(−0.0043, 0.0165) (0.0131, 0.0344) (0.0136, 0.0183)

𝛼 = 0.10 0.0072 0.0191 0.0147 0.9935 0.9913 0.0007
(−0.0022, 0.0167) (0.0095, 0.0288) (0.0126, 0.0168)

𝑛 = 16384

𝛼 = 0.01 0.0061 0.0150 0.0095 0.9874 0.9832 0.0008
(−0.0044, 0.0166) (0.0042, 0.0257) (0.0071, 0.0118)

𝛼 = 0.05 0.0043 0.0116 0.0080 0.9981 0.9975 0.0002
(0.0013, 0.0074) (0.0085, 0.0148) (0.0073, 0.0087)

𝛼 = 0.10 0.0057 0.0085 0.0075 0.9975 0.9966 0.0002
(0.0025, 0.0088) (0.0053, 0.0118) (0.0068, 0.0082)

Assuming that realized log-volatility behaves like a fractional Ornstein–Uhlenbeck process, we exploit its stationarity to de-
ampertize it through transform (4). Once the process is converted into a self-similar sequence, we estimate its parameter by the
S test. In this regard, two issues deserve to be mentioned:

when one deals with real data, the self-similarity parameter of 𝑋𝑡 is not known in advance, so the Lamperti transform (4) can be
computed with any 𝐻 ∈ (0, 1]. In the next Section, it will be shown that the self-similarity parameter of 𝑋𝑡: (a) does not depend on
the value of 𝐻 chosen to apply transform (4) (Proposition 4.1), indeed using different parameters in relation (4) can help stabilize
the estimate of the self-similarity parameter; (b) is equal to the parameter of the fBm driving the fractional Ornstein–Uhlenbeck
(fOU1) process, when this is the solution of the Langevin equation (Proposition 4.2).
In Section 5, the empirical autocorrelation functions of the increments of the de-Lampertized sequences 𝑋𝑡 will be calculated to
evaluate whether the standard critical values of the KS test can be used to evaluate the significance of the estimated minimal
diameters, according to the findings of Durilleul and Legendre [20]. Given the sizes of the samples that we will investigate
7

(thousands of observations), we expect that no correction will be necessary for the critical values of the KS test.
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4. Fractional Ornstein–Uhlenbeck and its Lamperti transform

Studying the smoothness of the volatility process at high frequencies, Gatheral et al. [1] argue that the logarithm of realized
olatility behaves at any reasonable timescale as a fBm with Hurst exponent 𝐻 of order 0.1. On the strength of these empirical

observations, they propose the stationary Rough Fractional Stochastic Volatility (RFSV) model defined by the system
{

𝑑𝑆𝑡 = 𝜇𝑡𝑆𝑡𝑑𝑡 + 𝑆𝑡𝜎𝑡𝑑𝐵𝑡

𝜎𝑡 = exp(𝑉𝑡)

where 𝑆𝑡 is the stock price, 𝜇𝑡 is the drift, 𝐵𝑡 is the Brownian motion and the logarithm of the volatility 𝜎𝑡 is modeled by a fractional
Ornstein–Uhlenbeck (fOU) process 𝑉𝑡.

This process can be constructed in different ways. Lim and Muniandy [24] consider three types of fOU process: the stationary
process obtained by the Lamperti transform of the fBm, the process with stretched exponential covariance and the process obtained
by solving the fractional Langevin equation.5 Similarly, Cheridito et al. [25] and Kaarakka and Salminen [26],Kaarakka [27] study
two types of fOU process: the stationary solution of the Langevin equation driven by a fractional Brownian motion (fOU1), and the
stationary process obtained by applying the Lamperti transform (3) to the fractional Brownian motion (fOU2). Unlike what happens
for the ordinary OU process (for which the two routes provide the same process), the autocovariance of fOU1 decays like that of a
power function, whereas the autocovariance of fOU2 decays exponentially. This difference is not relevant for our analysis, because
in both cases the process obtained from the Lamperti transform (4) is self-similar with a parameter equal to that of the fBm driving
the Langevin equation (fOU1) (see Proposition 4.2) or to the parameter of the fBm in the inverse Lamperti transformation (3) (by
definition). An analysis involving the behavior and the estimation of the Hurst parameter with the Lamperti transform of an fBm
can be found in [28], where it is stated that the perceived Hurst exponent underestimates the Hurst exponent of the underlying
fBm. In this regard, the (nonparametric) distribution-based method that we propose to estimate the roughness of the log-volatility is
more robust with respect to other techniques based on the scaling of individual moments, which are affected by the characteristics
of the autocovariance functions and may therefore result in different estimates depending on which alternative is considered (fOU1
or fOU2).

4.1. Fractional Ornstein–Uhlenbeck of type 1 (fOU1)

Let us consider the linear stochastic differential equation (Langevin-like equation) driven by an fBm of parameter 𝐻0

𝑑𝑉𝑡 = −𝛼𝑉𝑡𝑑𝑡 + 𝑑𝐵𝐻0
𝑡 , 𝑡 ≥ 0, (10)

with 𝛼 > 0. The solution of this equation is

𝑉𝑡 = 𝑒−𝛼𝑡
(

𝑉0 + ∫

𝑡

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠

)

where the initial value 𝑉0 ∶= ∫ 0
−∞ 𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠 with 𝐵𝐻0
𝑡 a two-sided fBm.6 In general, for every 𝑉0 ∈ 𝐿0(𝛺), 𝑉𝑡 is called a fractional

Ornstein–Uhlenbeck process (fOU1) with initial condition 𝑉0.
Cheridito et al. [25] (Theorem 2.3, p.7) show that the pathwise Riemann–Stieltjes integral exists and that, for 𝐻 ∈ (0, 1∕2) ∪

(1∕2, 1], 𝑁 = 1, 2,…, 𝑡 ∈ R fixed and 𝑠 → ∞ the covariance of 𝑉𝑡 is

Cov(𝑉𝑡, 𝑉𝑡+𝑠) =
1
2

𝑁
∑

𝑛=1
𝛼−2𝑛

(2𝑛−1
∏

𝑘=0
(2𝐻 − 𝑘)

)

𝑠2𝐻−2𝑛 +O
(

𝑠2𝐻−2𝑁−2) .

The decay of Cov(𝑉𝑡, 𝑉𝑡+𝑠) is very similar to the decay of Cov(𝐵𝐻
ℎ+𝑡 − 𝐵𝐻

ℎ , 𝐵𝐻
ℎ+𝑠+𝑡 − 𝐵𝐻

ℎ+𝑠) and exhibits short-range dependence if
𝐻 < 1∕2 and long-range dependence if 𝐻 > 1∕2.

The following two Propositions ensure that the self-similarity parameter of 𝑋𝑡 in relation (4): (a) does not depend on the value
𝐻 ∈ (0, 1] chosen to calculate the Lamperti transform and (b) equals the parameter of the fBm which drives the fOU1, solution of
the Langevin equation.

Proposition 4.1. Let {𝑌𝑡, 𝑡 ∈ R+} be strictly stationary. Then, for any 𝐻 ∈ (0, 1], there exists a unique 𝐻0 ∈ (0, 1] such that the Lamperti
transform 𝑋𝑡 = 𝑡𝐻𝑌log 𝑡 is 𝐻0-ss.

5 Actually, the fractional Langevin equation considered by Lim and Muniandy [24] is different from the one discussed by the more quoted paper of Cheridito

t al. [25]. The former discuss the not-easy-to-manage solutions of the two ‘fractionalized’ Langevin equations: 𝑑𝛽𝑌𝑡
𝑑𝑡𝛽

+ 𝑎𝑌𝑡 = 𝑊𝑡 or
(

𝑑
𝑑𝑡

+ 𝑎
)𝛽

𝑌𝑡 = 𝑊𝑡, where 𝛽 is
he order of the fractional derivative. The latter do not fractionalize the order of differentiation, but replace the Brownian motion by the fractional Brownian
otion, as will be more closely illustrated in the following.
6 The two-sided fBm can be defined letting (−)𝐵𝐻0

𝑡 be a fractional Brownian motion independent on 𝐵𝐻0
𝑡 and setting

𝐵𝐻0
𝑡 =

⎧

⎪

⎨

⎪

⎩

𝐵𝐻0
𝑡 , 𝑡 ≥ 0

(−)𝐵𝐻0
−𝑡 , 𝑡 < 0
8
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Proof. From the Lamperti transform one has

𝑋𝑡 = 𝑡𝐻𝑌log 𝑡 and 𝑋𝑎𝑡 = (𝑎𝑡)𝐻𝑌log 𝑎𝑡.

By definition, 𝑋𝑡 is self-similar of parameter 𝐻0 if {𝑎𝐻0𝑋𝑡}
𝑑
= {𝑋𝑎𝑡}, that is

{𝑎𝐻0 𝑡𝐻𝑌log 𝑡}
𝑑
= {𝑎𝐻 𝑡𝐻𝑌log 𝑎𝑡}

he factor 𝑡𝐻 can be canceled and this entails that the choice of 𝐻 in Eq. (4) does not affect the self-similarity parameter 𝐻0. In
act,

{𝑎𝐻0𝑌log 𝑡}
𝑑
= {𝑎𝐻𝑌log 𝑎+log 𝑡}.

y the stationarity of 𝑌𝑡, {𝑌log 𝑎+log 𝑡}
𝑑
= {𝑌log 𝑡}, therefore

{𝑎𝐻0𝑌log 𝑡}
𝑑
= {𝑎𝐻𝑌log 𝑡}

f and only if 𝐻 = 𝐻0, whatever 𝑡𝐻 is considered in the Lamperti transform. □

roposition 4.2. The Lamperti transform (4) of the fOU1 process driven by a fBm of parameter 𝐻0 is 𝐻0-ss.

roof. Without loss of generality, we set 𝑉0 = 0, so that

𝑉𝑡 = 𝑒−𝛼𝑡 ∫

𝑡

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠 .

or any 𝐻 , we have to prove that equality (1) holds with 𝑋𝑡 = 𝑡𝐻𝑉log 𝑡, that is 𝑋𝑎𝑡
𝑑
= 𝑎𝐻0𝑋𝑡. It is

𝑋𝑎𝑡 = (𝑎𝑡)𝐻𝑉log(𝑎𝑡)

= (𝑎𝑡)𝐻𝑒−𝛼 log(𝑎𝑡) ∫

log(𝑎𝑡)

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠

= (𝑎𝑡)𝐻−𝛼
∫

log(𝑎𝑡)

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠 (11)

nd

𝑎𝐻0𝑋𝑡 = 𝑎𝐻0 𝑡𝐻𝑉log(𝑡)

= 𝑎𝐻0 𝑡𝐻𝑒−𝛼 log 𝑡 ∫

log 𝑡

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠

= 𝑎𝐻0 𝑡𝐻−𝛼
∫

log 𝑡

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠 . (12)

Equating in distribution (11) and (12), we have

𝑎𝐻−𝛼
∫

log(𝑎𝑡)

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠
𝑑
= 𝑎𝐻0

∫

log 𝑡

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠 . (13)

et us prove that the above equality holds if and only if 𝐻 = 𝐻0. If this equality is true, then simplifying (13) we have

∫

log(𝑎𝑡)

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠
𝑑
= 𝑎𝛼 ∫

log 𝑡

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠 . (14)

Setting 𝑣 = 𝑠 + log 𝑎 yields to

∫

log(𝑎𝑡)

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠
𝑑
= 𝑎𝛼 ∫

log(𝑎𝑡)

log 𝑎
𝑒𝛼(𝑣−log 𝑎)𝑑𝐵𝐻0

𝑣−log 𝑎

∫

log(𝑎𝑡)

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠
𝑑
= 𝑎𝛼 ∫

log(𝑎𝑡)

log 𝑎
𝑒𝛼𝑣𝑎−𝛼𝑑𝐵𝐻0

𝑣−log 𝑎.

ince 𝑑𝐵𝐻0
𝑣−log 𝑎

𝑑
= 𝑑𝐵𝐻0

𝑣 and 𝑉 is a stationary process as well, we finally have

∫

log(𝑎𝑡)

0
𝑒𝛼𝑠𝑑𝐵𝐻0

𝑠
𝑑
= ∫

log 𝑡

0
𝑒𝛼𝑣𝑑𝐵𝐻0

𝑣 . (15)

hus, process 𝑋𝑡 is self-similar with parameter 𝐻0. The necessary condition follows from the uniqueness of the self-similarity
9

arameter. □
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4.2. Fractional Ornstein–Uhlenbeck of type 2 (fOU2)

A different type of fractional Ornstein–Uhlenbeck process can be constructed starting from the Lamperti transform (3) with
= 𝐵𝐻 . Following Kaarakka [27], one can first of all consider the Ornstein–Uhlenbeck process defined in terms of Brownian

otion 𝐵 as

𝑈𝑡 = 𝑒−𝛼𝑡𝐵 1
2𝛼 𝑒

2𝛼𝑡 (𝛼 > 0, 𝑡 ∈ R).

It follows that

𝑑𝑈𝑡 = −𝛼𝑒−𝛼𝑡𝐵 1
2𝛼 𝑒

2𝛼𝑡𝑑𝑡 + 𝑒−𝛼𝑡𝑑𝐵 1
2𝛼 𝑒

2𝛼𝑡

= −𝛼𝑈𝑡𝑑𝑡 + 𝑒−𝛼𝑡𝑑𝐵 1
2𝛼 𝑒

2𝛼𝑡 , (16)

with ∫ 𝑡
0 𝑒−𝛼𝑠𝑑𝐵 1

2𝛼 𝑒
2𝛼𝑠 be the Brownian motion (the results directly follows from the Lévy’s characterization theorem). To generalize

q. (16) to the fBm of parameter 𝐻 ∈ (0, 1] one can consider the pathwise Riemann–Stieltjes integral

𝑈 (𝛼)
𝑡 = ∫

𝑡

0
𝑒−𝛼𝑠𝑑𝐵𝐻

𝐻
𝛼 𝑒

𝛼
𝐻 𝑠

, (17)

nd recognize that transform (3) with 𝑋 = 𝐵𝐻 is a solution of the linear SDE

𝑑𝑉𝑡 = −𝛼𝑉𝑡𝑑𝑡 + 𝑑𝑈 (𝛼)
𝑡

ith initial value

𝑉0 = 𝐵𝐻
𝐻
𝛼
∼ N

(

0,
(𝐻
𝛼

)2𝐻)

.

ince it can be proved that for any 𝛼 > 0 and 𝑡 ≥ 0

{𝛼𝐻𝑈 (𝛼)
𝑡∕𝛼}

𝑑
= {𝑈 (1)

𝑡 }

new Langevin stochastic differential equation can be defined having as driving process the two-sided version �̂� (1) of 𝑈 (1), i.e.

𝑑𝐿𝑡 = −𝛾𝐿𝑡𝑑𝑡 + 𝑑𝑈 (1)
𝑡 , 𝛾 > 0.

he solution of this equation,

𝐿𝑡 = 𝑒−𝛾𝑡 ∫

𝑡

−∞
𝑒𝛾𝑠𝑑�̂� (1)

𝑠 = 𝑒−𝛾𝑡 ∫

𝑡

−∞
𝑒(𝛾−1)𝑠𝑑𝐵𝐻

𝐻𝑒
𝑠
𝐻
, 𝛾 > 0,

is called fractional Ornstein–Uhlenbeck process of type 2 (fOU2).
𝐿𝑡 is locally Hölder continuous of any order 𝛽 < 𝐻 , but – unlike fOU1 – it is short range dependent. In fact, it can be shown

that for 𝐻 ∈
(

1
2 , 1

)

the covariance kernel of 𝐿𝑡 reads as

E
(

𝐿𝑡𝐿𝑠
)

= (2𝐻 − 1)𝐻2𝐻−1𝑒−𝛾(𝑡+𝑠) ∫

𝑡

−∞ ∫

𝑠

−∞

𝑒
(

𝛾−1+ 1
𝐻

)

(𝑢+𝑣)

|𝑒
𝑢
𝐻 − 𝑒

𝑣
𝐻
|

2(1−𝐻)
𝑑𝑢𝑑𝑣

and decreases exponentially as [see [27]]

E
(

𝐿𝑡𝐿𝑠
)

= O
(

𝑒−min
{

𝛾, 1−𝐻𝐻
}

𝑡
)

, as 𝑡 → ∞.

Even though the process is fractional, the fOU2 allows for greater analytical tractability: for example, the quick decay of the
autocorrelation could justify the use of the KS test in its standard form, without essential corrections due to the dependence in
data. Nonetheless, for volatility modeling purposes, fOU1 is the specification generally considered.

5. Data analysis

In this section, we discuss the results of the estimations of the self-similarity parameters for both simulated fOU1 processes
and realized volatilities of 21 stock indices. The fOU1 trajectories, of length 𝑛 = 5, 000, were simulated by generating fractional

aussian noises using the Wood and Chan [29] algorithm as implemented in Fraclab 2.2 Toolbox provided by INRIA. The self-
imilarity parameters of the realized volatilities were estimated using the 5-minute realized variance data released by the Oxford-Man
nstitute’s Realized Library. Data cover the period from January 3, 2000 to June 27, 2018 and relate to the 21 stock indices listed
n Table 2.

First, the validity of Propositions 4.1 and 4.2 is established by showing that the Lamperti transform 𝑋𝑡 of a fOU process driven by
fBm with parameter 𝐻0, is itself 𝐻0-ss, regardless of the parameter 𝐻 used in the transform (4). To do this, the surrogated fOU1
10

as de-Lampertized by applying transform (4) with any parameter 𝐻 ∈ (0, 1) with a step of 0.01. Then, with the set of timescales



Communications in Nonlinear Science and Numerical Simulation 127 (2023) 107582S. Bianchi et al.
Fig. 4. (Bottom panels) KS tests for three simulated fOU1 of length 𝑛 = 5, 000, with prescribed 𝐻0 = {0.25, 0.5, 0.75}. The diameter 𝛿𝑍𝑡
(𝛹𝐻𝑠𝑠

) is reported as a
function of the Lamperti transform parameter 𝐻 ∈ (0, 1], with step 0.01, and of the candidate self-similarity parameter 𝐻𝑠𝑠 ∈ (0, 1], with step 0.0001. (Top panels)
𝑝-values of the KS tests as a function of 𝐻 and 𝐻𝑠𝑠. The minimum 𝛿 (maximum 𝑝-value) is achieved precisely when 𝐻𝑠𝑠 equals the self-similarity parameter 𝐻0
prescribed for the fBm driving the simulated fOU1, regardless the value 𝐻 used to calculate the Lamperti transform (4). The set of timescales used is A = [[1, 5]].

A = [[1, 5]] fixed, for each potential self-similarity parameter 𝐻𝑠𝑠 ∈ (0, 1) with a step of 0.0001, the distance 𝛿(𝛹𝐻𝑠𝑠
) between the

empirical distributions 𝐹𝑍𝑡,1
(𝑥) and 𝐹𝑍𝑡,1

(5−𝐻𝑠𝑠𝑥) was calculated using Eq. (8), where 𝑍𝑡,1 = 𝑋𝑡+1 −𝑋𝑡. This process was iterated for
all 𝐻𝑠𝑠 and 𝐻 . The reason why the distributions are calculated only for 𝑎 and 𝑎 lies in Proposition 2.3, stating that – if the process
is 𝐻0-ss – the diameter is constant for 𝐻 = 𝐻0 and non decreasing with 𝑎𝑖 for values of 𝐻 other than 𝐻0. Thus the worst case is
given by maximizing the distance between timescales; this has also the advantage to greatly reduce the amount of computations
required to test self-similarity.

Fig. 4 shows the implementation of the previous procedure for three fOU1 samples with prescribed 𝐻0 = {0.25, 0.5, 0.75} and
timescales set A = [[1, 5]].

The top panels show the 𝑝-values of the KS tests while the bottom panels display the surfaces 𝛿, both as functions of 𝐻 and 𝐻𝑠𝑠. In
all cases, the minima of 𝛿 (or the maxima of the 𝑝-values) are the images of values �̂�0 very close to the prescribed 𝐻0 of the starting
fOU1 trajectories, regardless the value of 𝐻 used in the Lamperti transform. For each 𝐻 ∈ (0, 1) step 0.01, we estimate �̂�0 as the
value which minimizes the diameter 𝛿; the mean value over the 100 values of 𝐻 used in transform (4) provides the final estimate.
The estimated self-similarity exponents are �̂�0 = {0.2592 ± 0.0036, 0.4978 ± 0.0041, 0.7572 ± 0.0044}, where the error is measured
through the standard deviation of the estimates over the 100 simulations; these values indicate that the Lamperti transform of a
fOU process driven by a fBm with parameter 𝐻0 is itself 𝐻0-ss, whatever the value of 𝐻0 and whatever the value of 𝐻 which is
used in the Lamperti transform. In addition, the methodology described in the previous sections seems very effective in accurately
identifying the self-similarity parameter.

Assuming that log 𝜎𝑡 computed from the realized variance follows a fOU process as in Eq. (10), the stationarity of the data was
tested using the Augmented Dickey–Fuller test (ADF) on the null model

log 𝜎𝑡 = 𝛽0 + log 𝜎𝑡−1 + 𝜆1𝛥 log 𝜎𝑡−1 + 𝜆2𝛥 log 𝜎𝑡−2 +⋯ + 𝜆𝑘𝛥 log 𝜎𝑡−𝑘 + 𝜖𝑡

against the alternative one

log 𝜎𝑡 = 𝛽0 + 𝛼 log 𝜎𝑡−1 + 𝜆1𝛥 log 𝜎𝑡−1 + 𝜆2𝛥 log 𝜎𝑡−2 +⋯ + 𝜆𝑘𝛥 log 𝜎𝑡−𝑘 + 𝜖𝑡

with drift coefficient 𝛽0, AR(1) coefficient 𝛼 < 1, and 𝜖𝑡 ∼ 𝑁𝐼𝐷(0, 1). As usual, 𝛥 denotes the differencing operator (𝛥 log 𝜎𝑡 =
log 𝜎𝑡 − log 𝜎𝑡−1) and 𝑘 is the number of lagged difference terms. The two rightmost columns of Table 2 report the value and the
𝑝-value of the ADF statistic, which for all indexes is smaller than the critical value, meaning that stationary for log 𝜎𝑡 cannot be
rejected.

Since the self-similarity parameter is estimated by calculating diameter (8) for the increments 𝑍𝑡,𝑎 ∶= 𝑋𝑡 − 𝑋𝑡−𝑎, 𝑎 ∈ A, of the
transformed process 𝑋𝑡, first and foremost, we verified the stationarity 𝑍𝑡,𝑎 using the ADF test with a null model

𝑍 = 𝛽 +𝑍 + 𝜆 𝛥𝑍 + 𝜆 𝛥𝑍 +⋯ + 𝜆 𝛥𝑍 + 𝜖
11
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Table 2
The first two columns report the 21 tickers and indices examined. The third column shows the number of observations for each
index. Finally, the two rightmost columns report the ADF statistic and the related 𝑝-values.
Ticker Index Obs. ADF 𝑝-value

SPX Standard & Poor 500 (USA) 4641 −14.390 <0.001
FTSE Footsie 100 (GBR) 4660 −15.886 <0.001
N225 Nikkei 225 (JPN) 4501 −16.238 <0.001
GDAXI Dax 30 (DEU) 4692 −14.267 <0.001
RUT Russell 2000 (USA) 4636 −18.909 <0.001
AORD All Ordinaries (AUS) 4665 −18.861 <0.001
DJI Dow Jones I. (USA) 4635 −15.354 <0.001
IXIC Nasdaq C. (USA) 4637 −13.526 <0.001
FCHI Cac 40 (FRA) 4713 −14.405 <0.001
HSI Hang Seng I. (HKG) 4532 −15.611 <0.001
KS11 Kospi C. I. (KOR) 4550 −11.902 <0.001
AEX Amsterdam Exchange I. (NLD) 4714 −13.850 <0.001
SSMI Swiss Market I. (CHE) 4636 −13.219 <0.001
IBEX Ibex 35 (ESP) 4681 −14.458 <0.001
NSEI Nifty 50 (IND) 4586 −15.644 <0.001
MXX Mexico Stock Exchange (MEX) 4640 −19.473 <0.001
BVSP Bovespa I. (BRA) 4556 −19.268 <0.001
GSPTSE Toronto Stock Exchange C. I. (CAN) 4043 −15.314 <0.001
STOXX50E Euro Stock 50 (EUR) 4713 −17.973 <0.001
FTSTI Straits Times I. (SGP) 2696 −16.045 <0.001
FTSEMIB Milano Indice di Borsa (ITA) 2307 −13.069 <0.001

Table 3
The ADF statistics and the 𝑝-values for the increments 𝑍𝑡,1 of the Lamperti transform of log 𝜎𝑡 with 𝐻 = �̂�0, as reported in Table 5 for each examined index.

Ticker ADF 𝑝-value Ticker ADF 𝑝-value Ticker ADF 𝑝-value

SPX −70.445 <0.001 IXIC −68.432 <0.001 NSEI −75.359 <0.001
FTSE −74.268 <0.001 FCHI −72.844 <0.001 MXX −74.510 <0.001
N225 −69.858 <0.001 HSI −76.352 <0.001 BVSP −70.117 <0.001
GDAXI −74.407 <0.001 KS11 −70.493 <0.001 GSPTSE −69.420 <0.001
RUT −72.623 <0.001 AEX −72.336 <0.001 STOXX50E −77.253𝑡 <0.001
AORD −78.525 <0.001 SSMI −71.929 <0.001 FTSTI −58.243 <0.001
DJI −72.912 <0.001 IBEX −72.401 <0.001 FTSEMIB −50.403 <0.001

against the alternative one

𝑍𝑡,1 = 𝛽0 + 𝛼𝑍𝑡−1,1 + 𝜆1𝛥𝑍𝑡−1,1 + 𝜆2𝛥𝑍𝑡−2,1 +⋯ + 𝜆𝑘𝛥𝑍𝑡−𝑘,1 + 𝜖𝑡.

For this purpose, given that the choice of the parameter 𝐻 in the Lamperti transformation is irrelevant (Propositions 4.1 and 4.2)
nd hence it is not necessary to repeat the test for all 𝐻 ∈ (0, 1) step 0.01, increments were calculated for the sequences 𝑋𝑡 obtained
sing the self-similarity parameter 𝐻0 estimated for each stock index, as reported in Table 5. Table 3 displays the value and the
-value of the ADF tests. Also in this case we obtained for all indexes an ADF statistic smaller than the critical value. Furthermore,
e cannot reject stationarity even for values of 𝐻 ≠ 0.1.

In order to verify whether the critical values of the KS statistic can apply to the examined dataset, the autocorrelations were
alculated for both the 21 indexes and the simulated fOU1 processes with prescribed 𝐻0 = {0.25, 0.50, 0.75}. Table 4 displays the
utocorrelations up to lag 5; with the exception of 𝑓𝑂𝑈1𝐻=075, the values for all the remaining lags are not significantly different
rom zero (this can be explained by the fact that 𝑓𝑂𝑈1𝐻=075 is the only one with long memory). In particular, for all indexes, we
bserve large first-order autocorrelation, while the following orders are negligible. Furthermore, considering that all series have
engths 𝑛 > 2300, we can evaluate the significance of the diameter using the critical values of the KS statistic for our dependent
ata, in the light of the results of Durilleul and Legendre [20] discussed in Section 2. On the strength of the results obtained in
he previous analyses, we proceeded to estimate the self-similarity exponent �̂�0 of each stock index as the point of minimum of

the diameter, provided that this is statistically negligible. As for the simulated fOU1 sequences, the diameter was calculated for the
distributions of the increments of the process 𝑋𝑡, obtained using different Lamperti parameters 𝐻 and self-similarity parameters
𝐻𝑠𝑠.

Using the SPX index as an example, the top panels of Fig. 5 display the 𝑝-values of the KS tests (left) and the estimated diameters
(right), both with respect to 𝐻 and 𝐻𝑠𝑠. The bottom left panel shows the values �̂�0 estimated for a fOU process with 𝐻0 = 0.10 for
increasing 𝑎 ∈ [[2, 20]]. The values are dispersed around the prescribed 𝐻0 with a mean of 0.096 ± 0.003. This leads us to choose the
mean over the set of upper timescales 𝑎 as the best estimate �̂�0. The bottom right panel shows the same analysis for the log-volatility
of the SPX index with an estimated �̂�0 = 0.142 ± 0.009. We observe that the real data exhibit a slightly larger spread compared to
the simulated fOU process. This analysis was performed for each index and Table 5 summarizes the estimates �̂�0 averaged on upper
timescales 𝑎 ∈ [[2, 20]]. In every instance, we find notably low values for the self-similarity parameter, i.e. low Hurst exponents
12
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Table 4
First five-order autocorrelations for both indexes and fOU1 processes. Since most of the indices display estimated self-similarity
parameters close to 0.1 (see Table 5), we also reported the autocorrelations for the 𝑓𝑂𝑈1𝐻=0.1 process.

1st lag 2nd lag 3rd lag 4th lag 5th lag

SPX −0.4017 −0.0142 −0.0339 0.0078 −0.0029
FTSE −0.4336 −0.0118 −0.0308 −0.0007 0.0131
N225 −0.3715 −0.0565 −0.0018 −0.0421 0.0165
GDAXI −0.3999 −0.0550 0.0127 −0.0513 0.0492
RUT −0.4072 −0.0319 −0.0269 0.0137 −0.0105
AORD −0.4802 0.0131 −0.0313 0.0419 −0.0412
DJI −0.4338 0.0003 −0.0313 0.0146 −0.0121
IXIC −0.3414 −0.0629 −0.0478 0.0178 −0.0054
FCHI −0.3887 −0.0505 −0.0080 −0.0474 0.0756
HSI −0.4620 −0.0020 0.0075 −0.0149 −0.0245
KS11 −0.4065 −0.0161 −0.0194 −0.0320 0.0019
AEX −0.3855 −0.0483 −0.0124 −0.0453 0.0655
SSMI −0.3863 −0.0501 −0.0054 −0.0223 0.0319
IBEX −0.3753 −0.0650 −0.0079 −0.0351 0.0576
NSEI −0.4111 −0.0567 0.0238 −0.0152 0.0129
MXX −0.4528 0.0104 −0.0268 −0.0276 0.0245
BVSP −0.3752 −0.0503 −0.0499 0.0003 0.0365
GSPTSE −0.4527 0.0116 −0.0051 −0.0494 0.0160
STOXX50E −0.4172 −0.0594 0.0202 −0.0308 0.0261
FTSTI −0.4627 0.0072 −0.0306 0.0012 0.0002
FTSEMIB −0.3764 −0.0573 −0.0070 −0.0528 0.0858

𝑓𝑂𝑈1𝐻=0.10 −0.4463 0.0154 −0.0397 −0.0097 0.0038
𝑓𝑂𝑈1𝐻=0.25 −0.2979 −0.0487 −0.0059 −0.0414 0.0072
𝑓𝑂𝑈1𝐻=0.50 −0.0143 −0.0096 −0.0061 −0.0186 0.0077
𝑓𝑂𝑈1𝐻=0.75 0.4084 0.2724 0.2234 0.1858 0.1816

Table 5
For each index the estimate �̂�0 is reported. The values are averaged with respect to an increasing upper timescale, i.e. 𝑎 = 1 and 𝑎 ∈ [[2, 20]]. For AORD the
xact 𝑝-value is 0.997 ± 0.003.

Ticker �̂�0 𝛿 𝑝-value Ticker �̂�0 𝛿 𝑝-value

SPX 0.142 ± 0.009 0.015 ± 0.001 0.67 ± 0.04 AEX 0.139 ± 0.014 0.020 ± 0.002 0.30 ± 0.10
FTSE 0.110 ± 0.011 0.015 ± 0.001 0.71 ± 0.09 SSMI 0.117 ± 0.008 0.014 ± 0.002 0.73 ± 0.11
N225 0.133 ± 0.008 0.011 ± 0.001 0.94 ± 0.04 IBEX 0.137 ± 0.025 0.024 ± 0.002 0.14 ± 0.05
GDAXI 0.133 ± 0.011 0.017 ± 0.001 0.49 ± 0.09 NSEI 0.130 ± 0.013 0.013 ± 0.007 0.86 ± 0.05
RUT 0.122 ± 0.008 0.012 ± 0.007 0.91 ± 0.03 MXX 0.091 ± 0.009 0.011 ± 0.001 0.95 ± 0.03
AORD 0.060 ± 0.010 0.008 ± 0.005 1.00 ± 0.00 BVSP 0.137 ± 0.015 0.015 ± 0.001 0.70 ± 0.10
DJI 0.112 ± 0.017 0.023 ± 0.001 0.16 ± 0.04 GSPTSE 0.087 ± 0.008 0.010 ± 0.001 0.97 ± 0.03
IXIC 0.151 ± 0.011 0.014 ± 0.002 0.75 ± 0.16 STOXX50E 0.147 ± 0.012 0.017 ± 0.001 0.53 ± 0.09
FCHI 0.117 ± 0.030 0.028 ± 0.002 0.05 ± 0.02 FTSTI 0.067 ± 0.011 0.025 ± 0.003 0.39 ± 0.16
HSI 0.071 ± 0.009 0.011 ± 0.001 0.93 ± 0.05 FTSEMIB 0.122 ± 0.021 0.035 ± 0.003 0.13 ± 0.05
KS11 0.113 ± 0.013 0.018 ± 0.002 0.49 ± 0.13

for the log-volatility. Our findings are in robust agreement with the results presented in [1], further substantiating the notion that
log-volatility exhibits rough trajectories.

6. Conclusion

Our analysis focuses on estimating the self-similarity exponents of the Lamperti transforms of log-volatilities for 21 stock
ndices. We propose an innovative methodology that differs from the conventional approaches typically employed for estimating
he Hurst exponent of the volatility process. Specifically, we relate the estimation of the roughness parameter to that of the self-
imilarity exponent of the process obtained through the Lamperti transform of volatility, and assess the statistical significance of the
esulting estimates using the Kolmogorov–Smirnov test. Our analysis of the 21 stock indices, which has proven effective even when
enchmarked against the fractional Ornstein–Uhlenbeck process, is consistent with the findings that the volatility is indeed rough.
e observed values of the Hurst parameter ranging from 0.06 for the Australian index All Ordinaries (AORD) to 0.151 for the U.S.

ndex Nasdaq (IXIC) index. Further enhancements to the approach we propose could involve making the analysis dynamic in order
o assess both the stability of the roughness parameter over time and the presence of potential jumps in the volatility process. An
ndication that such a possibility exists is provided by the fact that, compared to the observations for the fOU process, in real data
13

e detect a greater dispersion in the estimation of the self-similarity parameter as the time scale increases.
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Fig. 5. Top panels: table displays the distances 𝛿 and the p-values for the KS tests about increments of Lamperti transform of log 𝜎𝑡 for SPX index with a set of
timescales A = [1, 5]. Bottom left: the �̂�0 values estimated for a fOU with 𝐻0 = 0.10 for different 𝑎 ∈ [[2, 20]]. �̂�0 are dispersed around the prescribed 𝐻0 with a
mean of �̂�0 = 0.098 ± 0.009. Bottom right: the same analysis is displayed for the log 𝜎𝑡 of the SPX index with an estimated Hurst exponent �̂�0 = 0.142 ± 0.009.
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