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Simple Summary: Neuroblastoma (NB) and Wilms’ tumor (WT) are the most common childhood
solid extracranial tumors. The current treatments consist of a combination of surgery and chemother-
apy or radiotherapy in high-risk patients. Such treatments are responsible for significant adverse
events requiring long-term monitoring. Thus, a main challenge in NB and WT treatment is the
development of novel therapeutic strategies to eliminate or minimize the adverse effects. The charac-
terization of the immune environment could allow for the identification of new therapeutic targets.
Herein, we described the interaction between these tumors and innate immune cells, in particular
natural killer cells and monocytes. The detection of the immunosuppressive activity of specific NB
and WT tumor cells on natural killer cells and on monocytes could offer novel cellular and molecular
targets for an effective immunotherapy of NB and WT.

Abstract: Natural killer (NK) cells play a key role in the control of cancer development, progression
and metastatic dissemination. However, tumor cells develop an array of strategies capable of
impairing the activation and function of the immune system, including NK cells. In this context, a
major event is represented by the establishment of an immunosuppressive tumor microenvironment
(TME) composed of stromal cells, myeloid-derived suppressor cells, tumor-associated macrophages,
regulatory T cells and cancer cells themselves. The different immunoregulatory cells infiltrating the
TME, through the release of several immunosuppressive molecules or by cell-to-cell interactions,
cause an impairment of the recruitment of NK cells and other lymphocytes with effector functions.
The different mechanisms by which stromal and tumor cells impair NK cell function have been
particularly explored in adult solid tumors and, in less depth, investigated and discussed in a
pediatric setting. In this review, we will compare pediatric and adult solid malignancies concerning
the respective mechanisms of NK cell inhibition, highlighting novel key data in neuroblastoma and
Wilms’ tumor, two of the most frequent pediatric extracranial solid tumors. Indeed, both tumors
are characterized by the presence of stromal cells acting through the release of immunosuppressive
molecules. In addition, specific tumor cell subsets inhibit NK cell cytotoxic function by cell-to-cell
contact mechanisms likely controlled by the transcriptional coactivator TAZ. These findings could
lead to a more performant diagnostic approach and to the development of novel immunotherapeutic
strategies targeting the identified cellular and molecular targets.
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1. Introduction

Natural killer (NK) cells play a major role in controlling tumor progression and
metastatic spread by mediating tumor cell killing and producing pro-inflammatory cy-
tokines and chemokines [1].

NK cells display a wide array of inhibitory and activating receptors on their cell
surface. Normally, NK cell-killing is blocked by the binding of some inhibitor killer-cell
immunoglobulin-like receptors (KIRs) with the major histocompatibility complex class I
(MHC-I) molecules on healthy cells, but tumor cells generally lose MHC-I, thus becoming
susceptible to NK-mediated killing. Moreover, ligands for the NK cell activating recep-
tors are often upregulated or de novo expressed in tumor cells. The most important NK
cell-activating receptors include natural cytotoxicity receptors (NCRs, NKp46, NKp30, and
NKp44), DNAX accessory molecule-1 (DNAM-1), and NK group 2 member D (NKG2D),
characterized in their transmembrane domains by sequences that, interacting with differ-
ent adaptor proteins, trigger signals leading to the release of perforin and granzyme B,
with consequent target cell lysis [2]. In addition, activated NK cells may also induce the
apoptosis of tumor cells by releasing TNFo or through cell-to-cell contacts that activate the
tumor necrosis factor (TNF)x-related apoptosis-inducing ligand (TRAIL) and FAS-ligand
(FAS-L) pathways [1,3 4].

For these properties, harnessing NK cells derived from tumor patients or from healthy
individuals has become major focus in tumor immunotherapy. For example, NK cells
may be expanded ex vivo using various approaches in order to produce large amounts for
adoptive transfer into cancer patients. However, adoptive cell transfer can be subverted by
a patient’s immunosuppressive tumor microenvironment (TME), where cancer and stromal
cells promote several immune evasion mechanisms targeting both innate and adaptive
immune cells. These mechanisms have been widely explored in adult solid cancer, while in
pediatric cancers, much fewer data are available.

Neuroblastoma (NB) and Wilms’ tumor (WT) are the two most common extracranial
solid tumors in childhood whose prognosis remains unfavorable [5,6]. We will discuss in
depth recent data revealing that, in both NB and WT, stromal and cancer cells display pow-
erful inhibitory activity on NK cell function, leading to the impairment of their cytotoxic
potential. In these pediatric tumors, the characterization of the immune environment and
the impact on tumor cells could facilitate the identification of new therapeutic strategies
capable of overcoming the inhibitory mechanisms, reducing toxicity and improving the
long-term efficacy of the current treatments.

2. From Neuroblastoma to Wilms” Tumor: The Impact on NK Cells

Several immunosuppressive cell subsets infiltrating the TME act through soluble
factors [7-13]. Among these, cancer-associated fibroblasts (CAFs) can suppress NK cell
function through the secretion of vascular endothelial growth factor (VEGF) by promoting
the proliferation of regulatory T cells (Tregs) and the accumulation of myeloid-derived
suppressor cells (MDSC) [13].

On the other hand, cancer cells themselves drive immunosuppressive activity on effector
cells, including NK cells, releasing immunoregulatory molecules such as transforming growth
factor 3 (TGF-$3), prostaglandin E2 (PGE2), adenosine, lactate and kynurenine [14-21].

Furthermore, cell-to-cell contact represents another NK immunosuppressive mecha-
nism operating in the TME. When NK cells were co-cultured with renal clear cell carcinoma
(RCC) cells, the expression of the CD94/NK group 2 member A (NKG2A) inhibitory recep-
tor on their surface was significantly increased and their cytolytic activity was reduced [22].
A number of studies have reported the existence of different soluble ligands of the NCR
released by tumor cells which, upon interaction with NK cell receptors, may cause the
blocking and /or modulation of NCR and its associated adaptor signaling molecules, with
a consequent inhibition of cytotoxicity [23]. Accordingly, a combination of specific neutral-
izing monoclonal antibodies (mAbs) against NCR inhibits NK-cell-mediated tumor cell
lysis in a more efficient way than the same mAbs used individually [24]. Importantly, both
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membrane-bound and soluble ligands can induce the down-regulation of NCR, while, in
case of DNAMLI, its inhibition is strictly dependent on cell-to-cell contact [24].

2.1. Immune Evasion Mechanisms of Neuroblastoma

NB is an embryonal tumor arising in tissues of the sympathetic nervous system,
typically in the adrenal medulla or paraspinal ganglia. It is characterized by a biological
heterogeneity resulting in a variety of clinical presentations, which may evolve either in
total complete spontaneous regression (age < 1 year) or in the development of widespread
metastatic tumors with very poor outcome [25]. Amplification of MYCN, a major oncogenic
driver in neoplastic neuroblasts, patients” age and the detection at diagnosis of a metastatic
tumor identify NB as being at a high-risk of treatment failure [26]. At this stage, TME is
described as cold or ‘immune-deserted’, since it is characterized by the presence of very
few cytotoxic immune effector cells and by the expansion of regulatory T cells (Tregs) and
MDSC. The latter cause the development of multiple immunomodulatory mechanisms,
including MHC-I downregulation, which renders NB tumor cells “invisible” to cytolytic
T lymphocytes [27,28].

By contrast, the detection of infiltrating immune effector cells is observed particularly
in low-risk NB, where the presence of tumor-infiltrating lymphocytes (TILs) correlates with
a favorable clinical outcome [29].

2.2. Neuroblastoma-NK Cell Interactions

In vitro data indicate that established neuroblastoma cell lines are highly susceptible
to NK cell-mediated cell lysis due to the low expression of MHC-I and the presence of PVR,
one ligand of the DNAM-1 activating receptor [30]. However, primary cultures from stage
IV patients are less susceptible to NK cell lysis [31].

Ex vivo analysis strengthens the role of NK cells in the control of NB, since the
combined infiltration of dendritic cells (DCs) and NK cells in NB-TME correlates with
a favorable prognosis [32]. By contrast, NK cell function and recruitment are impaired
in high-risk NB patients by the production of TGFf3 and by the overexpression of B7-H3
molecules, which down-regulate NK cell cytotoxicity [33-35]. Differences between low-risk
and high-risk NB may be explained either by the existence of two different tumor types or
by an evolution occurring between the low- and high-risk NB, possibly reflecting changes
in the TME. In the latter case, it would be important to understand the evolution occurring
in the TME spanning from a situation of tumor protection in low-risk patients to the stage
of “immune deserted TME” in high-risk patients. The emerging cell subsets inducing
these changes have been not extensively investigated. In this context, no information was
available, until recently, on the capacity of particular subsets of NB tumor cells or stromal
cells to impair the immune response.

2.3. Neuroblastoma Stromal Cells

Different groups have recently identified, in primary human NB, a population of can-
cer associated fibroblasts (CAFs) that share phenotypic and functional characteristics with
bone marrow-mesenchymal stem cells (BM-MSC) [36]. Notably, their transcriptomic profil-
ing indicates that these CAF-MSCs were enriched in epithelial-mesenchymal transition
genes in comparison with BM-MSCs [37]. Immunohistochemical analysis of human NB
biopsies confirmed their presence inside the tumor stroma and their correlation with M2 tu-
mor associated macrophages (TAM) [36]. CAF-MSCs display important tumor-promoting
properties both in vitro and in vivo [36,38], and inhibit T cell functions much more effi-
ciently than BM-MSC [37]. Since CAF-MSCs are present in the more aggressive NB [30], it
is tempting to speculate that CAF-MSCs may be important players in the establishment of
an immunosuppressive TME in high-risk NB, adapting their properties to the tumor stage.
This has been reported, for instance, in pancreatic cancer, where the evolution and level
of activation of stromal cells drive cancer aggressiveness [39]. Thus, in low-risk NB, TME
could be composed of non-suppressive stromal cells while, in high-risk NB, an immunosup-
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pressive stromal subset would favor tumor progression by impairing T, DCs and NK cell
function. In this context, another putative stromal player is represented by Schwann cells,
whose number in NB directly correlates with a favorable outcome and inversely correlates
with a rich presence of CAFs [40]. Schwann cells display multiple immunomodulatory
properties whose evolution may counteract or favor tumor progression [41,42].

2.4. Neuroblastoma Cancer Cells

NB is characterized by a non-random intratumoral heterogeneity controlled by super-
enhancer-associated transcription factor (TF), which defines two divergent phenotypes:
the committed adrenergic cells and an undifferentiated primitive mesenchymal subset
identified by the expression of the CD133 marker [43]. Relapsing and metastatic NB
are characterized by the enrichment of this undifferentiated mesenchymal subset that is
more resistant to chemotherapeutic agents in vitro [43]. These cells acquire higher aggres-
siveness and potentially immunoregulatory function on T cells through the expression
and activation of the transcriptional co-activator WW domain-containing transcription
regulator-1 (WWTR1), also known as TAZ [43—47]. Indeed, TAZ and its paralog YAP are
important effectors of the Hippo signaling pathway. These TF have pro-tumorigenic and
immune-regulatory effects in multiple tumors [41-44], including NB, in which they have
been involved in invasiveness and dissemination [48,49].

According to these findings, a cancer cell subset displaying a mesenchymal phenotype
has been recently identified in NB cell lines, and thus termed neuroblastoma mesenchymal
stromal cell (NB-MSC). These cells display potent inhibitory properties on NK cell func-
tion by cell-to-cell contact [50]. Notably, they expressed two potential immunoregulatory
molecules: the ectoenzyme CD73 and the transcriptional coactivator TAZ. The extracellular
adenosine generated by the ectonucleotidase CD73 is a newly recognized “immune check-
point for cancer immunotherapy” that strongly inhibits anti-tumor immune responses [51].
TAZ displays important immunosuppressive effects [45-47], up-regulating the expression
of programmed cell death protein 1-Ligand (PD-L1), the ligand for the checkpoint PD-1
expressed by both T and NK cells at the tumor site [44]. In addition, TAZ activation in
NB has been reported to positively correlate with a worse prognosis [52]. Remarkably, the
modulation of TAZ expression in NB-MSCs by RNA interference alters the expression of
different immunosuppressive molecules such as platelet derived growth factor 3 (PDGER),
PD-L1 and PD-L2 [50,53-59], affecting the cytotoxic activity of co-cultured NK cells.

Overall, these data highlight the unprecedented evidence that TAZ is able to control
NK cell cytotoxic functions primarily thorough cell-to-cell contact mechanisms, which cause
the downregulation of NCRs, DNAM1 and DAP12 adaptor signaling polypeptide [47],
events that are sufficient to impair NK cell function. Contrary to what was previously
reported in several NB cell lines [30], NB-MSCs cells displayed high levels of MHC-I
and multifactorial resistance to NK cell-mediated lysis, including natural cytotoxicity
and resistance to antibody-dependent cell-mediated cytotoxicity (ADCC) using both anti-
CD105 IgG TRC105 and anti-GD2 mAb dinutuximab [50]. All these NB-MSC/NK cell
interactions are detailed in Figure 1.

It is now clear that an efficient tumor eradication should contemporarily hit TME and
cancer cells [60]. Therefore, even though the induction of ADCC in vivo with anti-GD2
and anti-CD105 mAbs offers a promising immunotherapeutic tool (since both markers are
expressed by NB stromal and cancer cells) [36-38,61], this approach may be ineffective
in the case of resistant NB-MSC-like cells [50]. In this context, it has been reported that
the molecular mechanisms underlying the immune-suppressive activity of NB cells also
involves the p53 onco-suppressor gene. Indeed, a poor susceptibility to the NK-cell-
mediated killing of NB cell lines is associated with the presence of p53 mutations displayed
by NB-MSC cells [62]. Moreover, Nutlin-3a, a compound that antagonizes the interaction
between MDM?2 and p53, may restore p53 transcription factor function, with a consequent
increasing expression of ligands for NK cell-activating receptors on NB cells, enhancing
the NK cell-mediated killing both in vitro and in vivo [63].
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Figure 1. (A) NB-MSCs (CD105+/CD90+/CD73+/CD29+/CD146+/GD2+/TAZ+) exhibited mul-
tifactorial resistance to NK-mediated lysis. Activated NKs are unable to lyse NB-MSCs, even after
B7-H3 or MHC-I masking or through ADCC mediated by anti-CD105 IgG and anti GD2 IgG. (B) NB-
MSCs in contact with freshly isolated NK cells for 4 days induce a decreased capacity for killing
K-562 cells in the latter through cell-cell contact-mediated mechanisms. This behavior is associated
with a sharp decreased expression of natural cytotoxicity receptors (NCRs): NKp30, NKp46, and
NKp44, of the adhesion and activating molecule DNAM1 and of the adaptor protein DAP12. (C) The
latter property was partially controlled by TAZ, since its silencing in NB-MSC cells rescued freshly
isolated NK-cell cytotoxic activity on the K-562 cells after 4 days of the coculturing of NB-MSC with
NK cells efficiently. This is related to a reduction in the expression of platelet derived growth factor
(PDGF B), programmed death-ligand 1 (PDL-1), and sphingosine-1-phosphate receptor (S1PR1).

2.5. Diagnostic and Therapeutic Perspectives

An informative up-to-date diagnosis of NB will greatly benefit from the detection of
novel criteria able to identify patients with either favorable or severe prognosis. In this
context, as revealed by a recent paper, the detection of DCs and NK cells infiltrating the
NB-TME positively correlated with both T-cell infiltration and a favorable clinical outcome.



Cancers 2021, 13, 2374

6 of 16

In agreement with these findings, two specific gene signatures related to DCs and NK cells
were identified, showing that the expression of PD-1 and PD-L1 had a positive prognostic
value and allowed for the prediction of the survival of NB patients, respectively [32].
On the other hand, the detection of CD133*TAZ* cells [43], and that of the NB-MSC
subset, allowed for the identification of high-risk patients for whom different immune
therapeutic approaches should be explored. It would be also interesting to correlate the
presence and the proportion of NB-MSCs with the development of “immune-deserted
TME” [27]. From a therapeutic point of view, it would be important to eliminate or
neutralize NB-MSCs and CD133"TAZ" cells [44,64] by targeting, directly or indirectly,
TAZ [46]. This could be achieved using Food and Drug Administration-approved drugs
that indirectly block YAP/TAZ activation or critical downstream targets of YAP/TAZ,
inducing the reduction of drug resistance in clinical trials [46]. For instance, the YAP /TAZ-
TEAD inhibitor verteporfin could favor not only the elimination of immunosuppressive
NB cell subsets but, more importantly, will induce the apoptosis of tumor initiating cells,
sensitizing them to etoposide and cisplatin, the standard drugs used for NB therapy [65].
In addition, the elimination of CD133*TAZ* cells could be obtained through the delivery
of anti-miRNA using RNA nanoparticles targeting CD133, a treatment that, in preclinical
models, induced the massive apoptosis of CD133* cancer cells [66]. Finally, the in vivo
removal of NB-MSCs could be achieved through the combination of anti-CD73 and immune
checkpoint blockade, which has shown promising clinical results in patients with advanced
adult solid tumors [51].

2.6. General Characteristics and Tumor Microenvironment of Wilms’ Tumor

WT, or nephroblastoma, is the most frequent renal tumor in children and has the
second highest incidence, following leukemia, in patients aged less than five years. The
overall survival for children with WT has reached 90% and 75% for localized and metastatic
disease, respectively. However, WT patients with high-risk histology and /or tumor relapses
have a survival rate of 50% [67,68].

WT is characterized by the presence of the nephrogenic rests derived from the residual
embryonic renal cells resulting from the incomplete differentiation of metanephric blastema
into the mature kidney [69]. Several germline and somatic genetic mutations linked to
the control of fetal nephrogenesis characteristics are responsible for WT tumor histology
and development [70,71]. WT development and progression has mainly been considered
a genetic issue, while the existence and the role of TME in orchestrating an immunosup-
pressive response has been underestimated. In this context, a study has reported that the
leukocyte infiltrate in WT is composed largely of macrophages in the necrotic areas of the
tumor islands. A striking feature was represented by the rarity of DC, both within the
tumor islands and in the peritumoral areas [72].

Immunohistochemistry studies in WT patients have revealed a robust expression of
the inflammatory marker cyclooxygenase-2 (COX-2), strictly associated with the infiltration
of TAM [73]. The presence of COX2 in TME resulted in the increased production of
immunosuppressive cytokines such as IL-10 and TGF-f3, and the expression of chemokine
receptors such as C-C chemokine receptor type 5 (CCR5) and C-X-C motif chemokine
receptor 4 (CXCR4), which, in turn, favored the infiltration of immunosuppressive cells
such as plasmacytoid DC and Treg cells [74].

Moreover, the WT microenvironment is characterized by the presence of both tumor-
infiltrating CD4 and CD8 T, mast cells and neutrophils, indicating that both adaptive
and innate immune cells infiltrate WT [5,72-74]. The possible immunoregulatory role
of different lymphoid subsets is further illustrated by the fact that the peripheral blood
of children with WT is characterized by a significantly altered expression of Treg cells
and NKT cells. This could influence the immune response and tumor development [75].
Therefore, the analysis of interactions between immune cells and WT cancer cells may
be useful for identifying novel immunotherapies specifically targeting tumor cells and
resulting in a decreased toxicity as compared to the current treatments.
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2.7. WT Primary Cultures-NK Cell Interactions
2.7.1. WT Components in Primary Cultures

A fundamental tool for investigating the mechanisms involved in WT/immune cell
interactions is the availability of in vitro models reproducing such interactions. Up to now,
the establishment of primary WT cultures expressing a stable phenotype has been difficult,
and few cell lines expressing epithelial characteristics, but not blastemal or mesenchymal
morphology, have been obtained [74,76-79]. Until recently, very few studies from different
groups have reported the in vitro stabilization of WT primary cultures displaying mes-
enchymal [80,81], blastemal, or epithelial features [82-85]. Royer Pokora et al. stabilized
in vitro primary cultures from the stromal component (str-WT), and showed that they bear
the same mutations as the primary tumors. Gene expression profiling and phenotypic
analysis revealed that these str-WT cells are similar to human MSCs; however, the WT
cultures exhibit significant differences in their expression of transcription factors, thus
indicating that a tumor-specific transcriptional program is activated in these cells [81].
Moreover, str-WT cells expressed some major ligands for activating and inhibiting NK cell
receptors, as well as inhibitory checkpoint molecules involved in the negative regulation of
anti-tumor immune response. str-WT exhibited potent inhibitory effects in vitro on the IL-
2-induced proliferation of NK cells and on the expression of the activating receptors NKp30,
NKp44, NKG2D, and 2B4. All these inhibitory effects were mediated by tumor-derived
indoleamine-2,3-dioxygenase (IDO) metabolites and PGE2 [80].

2.7.2. Blastemal and Epithelial Primary Cultures

Recently, our group reported the stabilization of four WT primary cultures expressing
either a blastematous (CD56* /CD1337) or epithelial (CD56~ /CD133*) phenotype, and
investigated the effect of their interactions with NK cells and monocytes [86]. Data showed
that both the blastemal and epithelial WT primary cultures expressed ligands for the NK
activating receptors, namely DNAM-1 (CD112 and CD155) and NKG2D (MICA/B, and
ULBP2-5-6). Accordingly, WT cells were efficiently killed by activated NK cells. Moreover,
cytotoxicity was inhibited by the simultaneous use of neutralizing mAbs recognizing
NCRs, DNAM-1 and NKG2D. However, both blastemal and epithelial WT primary cultures
contained a cell fraction (~30%) resistant to NK-mediated cytotoxicity. These WT tumor
cells, escaping NK-mediated killing, could represent a more aggressive subset. Notably,
when co-cultured with NK cells, they were able to impair NK cell function. Remarkably,
inhibition was not dependent on the release of soluble factors by WT cells, but could only
be achieved upon cell-to-cell contact [86]. Thus, WT blastemal and epithelial primary
cultures appeared to inhibit NK cell cytolytic function by a mechanism different from
str-WT, highlighting the existence of a complex interplay in the WT TME aiming at NK
cell anergy with different strategies. Moreover, NK cells, upon contact with WT primary
cultures, displayed a markedly decreased expression of the checkpoint molecule T-cell
immunoglobulin and the mucin-containing domain-3 (TIM-3). Interestingly, similar results
were previously reported demonstrating that TIM-3 expression was downregulated on NK
cells exposed to tumor targets, and this downregulation correlated with lower cytotoxicity
and interferon gamma (IFN-y) production [87]. In addition, T cell immunoglobulin and
ITIM domain (TIGIT), strongly expressed in control NK cells, slightly decreased after co-
culture with WT primary cultures and, in both situations, was associated with impaired NK
cell cytolytic functions [86], as reported elsewhere [88]. Concerning the checkpoint inhibitor
PD-1, it was strongly expressed in NK cells infiltrating several tumors [53,54,56-58]. Since
WT is infiltrated by numerous NK cells [78,86] and it is also characterized by several PDL-1
positive tumor cells [86,89], it is likely that the in vivo blastematous and epithelial cells
may lead to the impaired cytolytic activity of tumor-infiltrating NK cells. Interestingly,
a previous paper reports opposite results, showing that the WT cell line HFWT greatly
stimulates the proliferation of NK cells and of their PBMC precursors, leading to the robust
expansion of NK cells able to kill fresh HFWT and K562 cells [90]. The use of a multi-
passaged established cell line, differently to our data obtained using low passaged primary
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cells, could explain these discrepancies. On the other hand, we cannot rule out that, in
low risk WT patients, tumor cells may differentially interact with NK cells, triggering a
favorable immune response and limiting tumor expansion.

Finally, upon interaction with WT cells, monocytes became polarized towards alterna-
tively activated M2 macrophages. In turn, M2 macrophages could further impair NK cell
functions through cell-to-cell contact [86].

Remarkably, WT-driven M2 macrophages could represent a novel M2 subset, since
they display the ability to inhibit degranulation acting, in addition, through cell-to-cell
contact. Indeed, differently from what was reported, the IL-4- and MSC-induced M2 cells
impair NK cell cytotoxicity through the secretion of IL-10 and TGFf(3, which does not
interfere with degranulation [91]. By contrast, these data are in agreement with a recent
paper showing that murine peritoneal-, bone marrow-, and tumor-derived M2 cells inhibit
NK cell lytic activity by cell-to-cell contact [92]. This involves TGFf3 entrapped in the
extracellular matrix or in a biologically active membrane-bound form [93,94].

In conclusion, WT stromal, blastemal and epithelial components can contribute both
directly and indirectly to a broad immunosuppressive TME, which is likely to play a role in
tumor progression. All of these WT/NK cell and WT/M2/NK cell interactions are detailed
in Figure 2.

2.8. Diagnostic and Therapeutic Perspectives

For a long time, WT treatment strategies have been based on tumor staging and histol-
ogy. Subsequently, a wide variety of biomarkers have been identified, and several of them
could potentially allow for the better definition of more efficient treatment protocols [95].
Therefore, the current main aims of therapy are to prolong survival in patients with high-
risk tumors and to decrease the side-effects of treatment. Accordingly, the identification of
new specific targets is required to improve the clinical outcomes.

At the present, very few data are available on the presence (and frequencies) of NK
cells infiltrating the blastemal and epithelial components of WT; thus, it is very difficult to
predict if a high level of NK cell infiltration may constitute a favorable prognostic parameter
or not.

Future immunohistological studies should assess the proportion of PD-1" NK cells,
both in the PB and within the tumor, in WT patients, and correlate these parameters with
the clinical outcome. In addition, since the stromal component is highly inflamed and
heavily infiltrated by macrophages [73,74], immunohistological studies should determine
their type of polarization and correlate this feature with the clinical outcome.

In order to define a new strategy for determining immune evasion mechanisms ex-
ploited by WT blastemal or epithelial cells, our group queried public datasets to investigate
if the parameter applied for NB setting could also be used on WT. This analysis revealed
that both WT and renal cancers express high levels of TAZ as compared to non-pathologic
tissue (Figure 3A). Indeed, it was found that higher levels of TAZ correlated with a worse
overall survival in WT patients (Figure 3B). For this reason, for NB-MSCs, the targeting of
TAZ could represent a possible treatment strategy [46]. Another useful strategy could be to
interfere with the macrophage recruitment, macrophage survival, and macrophage polar-
ization M2 [96], especially in association with combination therapies [97], using checkpoint
inhibitors acting on NK cells [98-102]. For example, this could be achieved by associating
the IL-15-based stimulation of NK cells with checkpoint inhibitors [98,99,101,102]. This
strategy is feasible due to the high expression in WT primary cultures of ligands for both
PD-1 and TIGIT.
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Figure 2. (A) WT-MSC cells inhibit the cytokine-induced proliferation of NK cells and the up-
regulation of NKp30, NKp44, NKG2D and 2B4 through the secretion of the soluble immunoregulatory
factors IDO and PGE2. (B) Efficient NK-mediated lysis (70%) of WT-blastemal and WT-epithelial
cells. (C) 30% surviving WT-blastemal and WT-epithelial cells after 4 days of coculture, efficiently
inhibiting the lytic function of activated NK cells against the K-562 target cells. (D) WT-blastemal
and WT-epithelial after 6 days of coculture with PB-monocytes, inducing their polarization into
M2 macrophages. M2 macrophages after 3 days of coculture with freshly isolated NKs inhibit their

production of CD107a and IFN-y.
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Figure 3. (A). “Megasampler” analysis across R2 public dataset (https:/ /hgserverl.amc.nl/, accessed
on 31 March 2021) revealed that both WT and renal cancers express high levels of TAZ compared to
normal non-pathological tissue. (B) A further analysis on WT dataset (TARGET-OCG-148-MAS5.0-
ul33a) underlined that, in WT patients, higher levels of TAZ correlated with a worse overall survival.
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3. Conclusions

The immunosuppression of NK cells represents an important pathogenic event oc-
curring in the TME of adult and pediatric solid cancers. Here, we discussed emerging
evidence showing that both tumor cells and different components of tumor stroma may
participate in this process through several mechanisms, including signals mediated by
cell-to-cell contact or by diffusible molecules. Notably, we described recent findings in NB
and WT suggesting that cell contact between NK and cancer cells, rather than the release of
diffusible molecules, may play a major role in NK cell immunosuppression in vitro. In addi-
tion, co-culture between WT primary culture and PB-monocytes induces, through both the
release of soluble factors and cell-to-cell contact, the appearance of immunosuppressive M2
macrophages. Further work is needed to understand whether similar immuno-modulatory
mechanisms also occur in vivo, and whether they can affect other potential anti-tumor
effector cells, primarily T lymphocytes. Furthermore, in view of clinical translation, it
is crucial to understand if these inhibitory effects could also hamper sophisticated cell-
based immunotherapies, including chimeric antigen receptor (CAR) engineered NK and
T cells [103-106].

According to the emerging role of YAP/TAZ in tumor immunity, our recent data
support a model in which an aberrant TAZ up-regulation could confer potent immuno-
modulatory properties on NK cells to cancer cells. However, the molecular pathways
implicated in NK cell immunosuppression, and their clinical significance in these pediatric
tumors, are far from being elucidated. The increased knowledge regarding the immunoreg-
ulatory properties of specific cancer cell subpopulations could pave the way for novel
diagnostic and immunotherapeutic approaches to foster NK cell anti-tumor activity, with
the potential for also broadening their application beyond pediatric solid tumors.
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