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Abstract: Background/Hypothesis: Motion sensitivity symptoms, such as dizziness or unsteadiness,
are frequently reported as non-headache symptoms of migraine. Postural imbalance has been
observed in subjects with vestibular migraine, chronic migraine, and aura. We aimed to assess the
ability of largest Lyapunov’s exponent for a short time series (sLLE), which reflects the ability to
cope with internal perturbations during gait, to detect differences in local dynamic stability between
individuals with migraine without aura (MO) with an episodic pattern between attacks and healthy
subjects (HS). Methods: Trunk accelerations of 47 MO and 38 HS were recorded during gait using
an inertial measurement unit. The discriminative ability of sLLE was assessed through receiver-
operating characteristics curves and cutoff analysis. Partial correlation analysis was conducted
between the clinical and gait variables, excluding the effects of gait speed. Results: MO showed
higher sLLE values, and reduced pelvic rotation, pelvic tilt, and stride length values. sLLEML and
pelvic rotation showed good ability to discriminate between MO and HS and were correlated with
the perceived pain, migraine disability assessment score, and each other. Conclusions: these findings
may provide new insights into the postural balance control mechanism in subjects with MO and
introduce the sLLEML as a potential measure of dynamic instability in MO.

Keywords: motion sensitivity; Lyapunov’s exponent; pelvic rotation; postural balance; accelerometry;
movement analysis; headache

1. Introduction

Motion sensitivity symptoms, such as dizziness or unsteadiness, are frequently re-
ported as non-pain symptoms of migraine [1,2]. Several possible explanations have been
put forward to explain this symptomatology, such as a malfunctioning of the multisen-
sory integration process [3] and peripheral and central disarrangements [4,5], including
structures of the inner ear, brainstem [6], basal ganglia, and cerebellum [7], leading to a
mismatch between proprioceptive cues and vestibular [8] or visual stimuli [9]. Balance im-
pairment has also been described in subjects with migraine, with imbalance increasing with
the manipulation of sensory inputs while standing [10]. Several studies were performed
on migraines using the sensory organization test, which is performed through a dynamic
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posturography system designed to assess quantitatively an individual’s ability to use visual,
proprioceptive, and vestibular cues to maintain postural stability while standing. With this
methodology, differences in postural balance between the subdiagnoses of migraine have
been described, with greater instability and fall risk in subjects with vestibular migraine,
chronic migraine, and migraine with aura [10–12], whereas subjects with episodic migraine
showed less pronounced balance alterations, compared with healthy controls and subjects
with chronic migraine [13]. However, regardless of the presence of chronic migraine and
aura, subjects with migraine may experience abnormalities during mobility tasks and walk-
ing, such as reduction in gait speed and increased step width [14,15], which are common
signs of dynamic imbalance [16,17]. This suggests the presence of dynamic instability also
in subjects with episodic migraine without referring the experience of aura. In this way,
instrumented assessing of balance during gait inertial measurement units (IMUs) may
provide insights into the subtle postural instability among the subcategory of subjects
with migraine that cannot be found out through the somatosensory orientation test [18].
Inertial measurement units (IMUs), which extract gait parameters from acceleration and
angular velocity data, are widely used for instrumented gait analysis due to their ease
of use and ability to retrieve motion data in real-world, non-laboratory settings. Aside
from the spatiotemporal and pelvic kinematic gait parameters, trunk acceleration-derived
gait quality indexes can be calculated using lower-trunk acceleration signals. Particularly,
nonlinear analysis of the trunk acceleration patterns through the short-term maximal Lya-
punov’s exponent (sLLE) has proven to accurately characterize gait imbalance in several
neurologic conditions [19–22]. sLLE quantifies the rate of divergence of the trajectories in a
system’s state space over a short period and assesses local dynamic stability by measuring
the sensitivity of the system to small perturbations in the initial conditions, where a positive
exponent indicates divergence (instability), and a negative exponent indicates convergence
(stability) of trajectories in the short term [23,24].

The aim of this study was to gain new insights into the mechanisms of motion sensi-
tivity symptoms in individuals affected by migraine without aura (MO) studied during
the inter-ictal phase. Therefore, using a wearable device, we assessed the ability of the
sLLE to detect differences in local dynamic stability between MO and healthy subjects.
Greater knowledge of how migraine symptomology and related disability interfere with
locomotor demands in patients with MO may facilitate targeted intervention strategies.
We hypothesized that the MO may exhibit dynamic imbalance due to abnormalities of the
multisensory integration process, and that the sLLE, a measure of the ability to cope with
internal perturbations during gait, might reflect local dynamic instability in MO.

2. Materials and Methods
2.1. Participants

This cross-sectional study was conducted at the Traumatic Orthopedic Surgical In-
stitute (ICOT) in Latina, Italy, between March 2022 and April 2024. Fifty-six MO were
screened for eligibility and forty-seven MO were included in this study. Inclusion criteria
were (i) the diagnosis of migraine without aura according to the International Classification
of Headache Disorders (III edition) [25]; (ii) episodic migraine pattern, defined as 1 to 14
monthly migraine days during the preceding 3 months; (iii) migraine during the interictal
period at the day of the assessment, i.e., at least 3 days since the last and the next migraine
attack; and (iv) being without any migraine prevention during the preceding 3 months.
Exclusion criteria were (i) the presence of other primary or secondary headaches, includ-
ing migraine with aura; (ii) concomitance with the menstrual period for female subjects;
(iii) orthopedic, neuro-ophthalmologic, and neurologic conditions other than migraine; and
(iv) ongoing pharmacological therapy, including migraine preventives other than acute
migraine attack medications, and contraceptives. The presence of neuro-ophthalmologic
disease was verified through examination that included a visual acuity test, an intraoc-
ular pressure measurement, and indirect ophthalmoscopy. Subjects were administered
the migraine disability assessment (MIDAS), the most commonly used questionnaire to
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assess 3-month migraine-related disability, and the headache impact test (HIT-6) scales
to assess the impact of migraine on functioning of subjects over one month, the 12-item
allodynia symptom checklist (ASC-12), and the numeric pain rating scale (NPRS) to record
the perceived pain during migraine attacks [26–28].

For group comparison, a group of healthy subjects (HS) matched for age and gait speed
was enrolled. A 1:1 optimal data matching procedure using the propensity score difference
method was performed to match patients with MO with healthy subjects (HS) [29]. From
a dataset of 96 HS, as a result, 38 HS were included after the matching procedure, whose
effectiveness was assessed using an independent sample t-test using age and gait speed
as the variables. Every participant in the study was required to complete a headache
diary, which was sent to them by mail at least three months prior to their initial visit. The
characteristics of the included sample are described in Table 1. All participants provided
informed consent prior to the experimental procedure. The study was approved by the
local ethics committee (CE Lazio 2, protocol number 0139696/2021).

Table 1. Clinical and demographic features, spatio-temporal gait parameters, and pelvic kinematics of
study population. MO, subjects with migraine without aura; MIDAS, migraine disability assessment
test; HIT-6, headache impact test; ASC-12, allodynia symptom checklist; sLLE, short-term Lyapunov’s
exponent; AP, ML, V, antero-posterior, medio-lateral, and vertical direction of the acceleration signals,
and NSAIDs, non-steroidal anti-inflammatory drugs.

MO (N = 47) HS (N = 38)
Mean SD Mean SD

Age 34.13 13.89 38.27 12.46

Sex
Females 38 (81.25%) 27 (71.79%)
Males 9 (18.75%) 11 (28.20%)

Disease duration (months) 19.82 12.21
N. migraine days/month 5.64 4.63

Duration of migraine attacks (hours) 43.85 40.38
Days since the last attack 10.64 15.15

N. acute medication doses/months 6.78 6.30

Medication types (%)
Triptans 16.67%

Paracetamol 8.33%
NSAIDs 75%

MIDAS 25.48 23.85
HIT-6 62.15 7.23

ASC 12 4.21 3.54
Gait speed (m/s) 1.16 0.17 1.21 0.15

Stance phase (% gait cycle) 59.62 1.61 58.79 3.67
Swing phase (% gait cycle) 40.80 2.94 40.62 1.45

Single support (% stance phase) 40.48 1.54 40.33 1.55
Double support (% stance phase) 9.62 1.60 9.39 1.44

Stride length (m) 1.27 0.15 1.34 0.16
Cadence (steps/minute) 108.86 5.97 111.27 8.64

Pelvic tilt (◦) 3.88 1.19 4.91 1.48
Pelvic obliquity (◦) 8.63 3.27 10.00 3.02
Pelvic rotation (◦) 7.60 2.45 10.54 3.60

sLLEAP 1.08 0.35 0.88 0.23
sLLEML 1.17 0.27 0.96 0.18
sLLEV 1.16 0.31 0.98 0.19

2.2. Procedures

Participants were instructed to walk along a straight path that measured 30 m in
length, at a speed that they personally chose as their favorite walking pace. The corridor
floor was linoleum, with no visible pavement joints or demarcation lines, and indirect
lighting was evenly distributed along the path. Before the experiment, participants were
instructed to walk along the trail to familiarize themselves with the procedure. There were
no adverse events recorded during the procedures. There were no external stimuli given



Sensors 2024, 24, 7627 4 of 10

during the task. The trunk acceleration signals were recorded at a frequency of 100 Hz
using a single magneto-inertial measurement unit (GSensor, BTS, Milano, Italy). The unit
was positioned at the L5-S1 level and secured to the pelvis with a Velcro belt. Data were
acquired through the GStudio software (version 3.5.25.0, GStudio, BTS, Milano, Italy) using
the “Walk +” embedded tool, and spatio-temporal gait parameters, and pelvic kinematics
were calculated. To ensure a steady-state walking assessment, we removed the first and
last two strides from each 30 m walk. Any gait trials that had fewer than 20 accurately
recorded consecutive strides were not included in the study [30–32].

2.3. sLLE Calculations

The short-term maximum finite-time Lyapunov’s exponent (sLLE) is a nonlinear met-
ric that represents the stability of a dynamic system as the average logarithmic rate of
divergence between the system’s trajectory and its closest neighboring trajectory. Con-
vergent trajectories indicate local dynamic stability, while divergent trajectories indicate
local dynamic instability. As a result, when applied to gait data, it represents a mea-
sure of the ability to cope with internal perturbations during gait, thus reflecting local
dynamic instability [33,34]. It was calculated based on the acceleration patterns for antero-
posterior (sLLEAP), medio-lateral (sLLEML), and vertical (sLLEV) directions according to
the Rosenstein’s algorithm using the Lyaprosen toolbox for nonlinear time series analysis
in the MATLAB environment (MATLAB 7.4.0, MathWorks, Natick, MA, USA). Twenty
consecutive strides were considered for the calculations, and the acceleration signals were
time-normalized to obtain 100 datapoints per stride [35]. The embedding dimension was
calculated using the false nearest neighbor method, and time delay was calculated as the
first minimum of the average mutual information (AMI) function [35]. Consequently, in
this study, an embedding dimension = 5 and time delay = 10 were used for multidimen-
sional state space reconstruction from the recorded one-dimensional time series data by
juxtaposing the original data and delayed copies (Figure 1). Higher sLLE values reflect
higher local dynamic instability.
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Figure 1. Phase space reconstruction plots of a representative patients with MO (plots on the (left))
and a healthy subject (plots on the (right)) for the (a) vertical (V), (b) antero-posterior (AP),
and (c) medio-lateral (ML) directions of the acceleration signals. The color of each line segment
corresponds to the sLLE value at that point in time, as indicated by the colormap. Lighter colors
indicate higher divergence levels.

2.4. Statistical Analysis

A sample size of at least 48 subjects, 24 MO, and 24 controls, was calculated to identify
a good ability (AUC > 0.70) to discriminate between MO and controls at a 95% significance
level and 80% power.

Statistical analysis was conducted using JASP software (Version 0.17.2.1), and NCSS
2023 software. Correlation analysis was conducted using the “Pingouin” Python pack-
age [36], vers. 0.5.3.
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After verifying the homogeneity of the variances and the normality of the distributions
using the Levene’s test and Shapiro–Wilk test, and an independent sample t-test or Mann–
Whitney test was implemented to assess the differences in gait parameters between MO subjects
and HS. Cohen’s effect size (d) was also calculated to assess the magnitude of the differences.

Receiver operating characteristics (ROC) were plotted for the significant gait variables,
and the area under the ROC curve (AUC) was calculated to assess the overall ability of
the significant gait variables to discriminate between the groups. AUC values ≥ 0.70 were
considered as reflecting good discriminative ability. The optimal cutoff point (OCP) was
calculated as the value that maximizes the sum of sensitivity and specificity, and positive
and negative likelihood ratios (LR+ and LR−, respectively) at the OCP were calculated.
Positive and negative post-test probabilities (PTP+ and PTP−) were calculated by transforming
the likelihood ratios through a Fagan’s nomogram to estimate the likelihood of correctly
classifying at the OCP. To improve the generalizability of the results, the 12% [37] prevalence
of episodic migraine was used as the prior probability in the post-test probabilities calculations.

Spearman’s partial correlation coefficients (ρ) excluding the effects of gait speed were
conducted to assess the correlation between the gait variables with good discriminative
ability and the clinical and gait variables. To account for tied scores, the tie correction factor
was applied to the correlation coefficients using the following formula:

ρs = 1 −
6∑ d2

i
n(n2 − 1)− ∑

(
t3
i − ti

)
where di is the difference between the ranks of the values corresponding to the two variables,
n is the number of observations, and ti is the number of tied ranks for each tie group. The
term ∑

(
t3
i − ti

)
is the sum of the cubes of the number of ties minus the number of ties for

each distinct number of tied values, summed over all sets of ties.

3. Results

Forty-seven MO subjects, aged 34.13 ± 13.89 years, of whom thirty-eight (81.25%) were
females, and walking at an average speed of 1.16 ± 0.17 m/s, were included. Subjects had
been diagnosed with MO since 19.82 ± 12.21 months, with an average of 5.64 ± 4.63 days
of migraine per month, lasting 43.85 ± 40.38 h on average. NSAIDs were the most common
type of symptomatic medication, with an average of 6.79 ± 6.30 doses per month. Subjects
with MO were assessed 10.64 ± 15.15 days since the last migraine attack. The included
38 healthy participants were 38.27 ± 12.46 years old, 27 of whom were females, and walking at
an average gait speed of 1.21 ± 0.15 m/s. As a result of the matching procedure, no significant
differences in age and gait speed were found between subjects with MO and HS (age: p = 0.15,
Cohen’s d = 0.31; gait speed: p = 0.11, and Cohen’s d = 0.36).

Trunk Acceleration-Derived Gait Indexes

Compared with HS, subjects with MO resulted in higher sLLEAP (p < 0.01; d = 0.66),
sLLEML (p < 0.01; d = 0.89), and sLLEV (p < 0.01; d = 0.71) and reduced pelvic rotation
(p <0.01; d = 0.91), pelvic tilt (p < 0.01; d = 0.83), and stride length values (p = 0.03; d = 0.45)
(Figure 2).

sLLEML and pelvic rotation showed good ability to discriminate between MO and
HS (Table 2). After adjusting the post-test probabilities based on the 12% prevalence of
episodic migraine in the general population, sLLEML values higher than 1.18 and pelvic
rotation values lower than 11.50◦ showed 73% and 70% probability to correctly classify
patients with MO (Table 2).
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Table 2. ROC curve and cutoff analyses. sLLE, short-term maximum Lyapunov’s exponent; AP, antero-
posterior direction of the lower trunk acceleration signal; ML, medio-lateral direction; V, vertical
direction; AUC, area under the ROC curve; OCP, optimal cutoff point; LR+, positive likelihood
ratio; LR−, negative likelihood ratio; PTP+, positive post-test probability; PTP−, negative post-test
probability; and PTPadj, post-test probabilities adjusted on the 12% prevalence of episodic migraine
in the general population as the pre-test probability.

AUC (95% CI) OCP LR+ LR− PTP + adj PTP − adj

sLLEAP 0.68 (0.55; 0.78) ≥1.10 3.36 0.61 31% 8%
sLLEML 0.73 (0.60; 0.82) ≥1.18 20.32 0.47 73% 6%
sLLEV 0.65 (0.51; 0.76) ≥1.09 2.12 0.59 22% 7%

Pelvic tilt 0.67 (0.52; 0.77) ≤3.70 2.45 0.69 25% 9%
Pelvic rotation 0.71 (0.57; 0.82) ≤11.50 17.07 0.63 70% 8%
Stride length 0.66 (0.50; 0.77) ≤1.29 2.30 0.58 24% 7%

Regardless of gait speed, sLLEML positively correlated with MIDAS score (ρ = 0.43,
p = 0.01), and negatively correlated with pelvic rotation (ρ = −0.47, p = 0.00) and NRPS
(ρ = −0.33, p = 0.03). Pelvic rotation values also negatively correlated with NPRS (ρ = −0.35,
p = 0.00) and MIDAS score (ρ = −0.35, p = 0.03).

4. Discussion

The objective of this study was to investigate gait indexes reflecting mechanisms
of motion sensitivity symptoms in a well-characterized group of people suffering from
episodic migraine without aura between attacks by the evaluation of the ability of the sLLE
to detect gait instability. We found that, regardless of age and gait speed, patients with
MO exhibit greater sLLE values in all spatial directions compared with healthy subjects
(Figure 2). Particularly, sLLE values in the ML direction ≥ 1.18 characterized MO with 73%
probability (Table 2). Moreover, correlation analysis revealed that the sLLEML reflects the
level of pain and disability caused by migraine, with greater gait local instability correlating
with greater disability and severity of headache, as measured by the MIDAS questionnaire
and NRPS scale, respectively. No correlations between sLLE and disease duration, the
duration of the attacks, the monthly migraine days, nor the days passing since the last
migraine attack at the moment of the gait assessment were found, suggesting that subjects
with MO present local dynamic instability regardless of the global disease activity.

Postural balance impairment has been described in subjects with vestibular migraine
and chronic migraine, with subjects with episodic migraine reporting similar postural
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balance findings to healthy controls [11,38,39]. However, these observations are based on
static balance tests or on the somatosensory orientation test, which does not assess the
dynamic behavior during natural gait [40–42]. There is much compelling evidence that
subjects with episodic migraine without aura do exhibit significant cortical dysexcitability,
abnormalities in executive functions, and integrative pain processing [43,44], which could
influence sensorimotor activity. Consequently, effective balance function and motion,
i.e., dynamic stability, may be impaired as a result. Furthermore, data from functional
neuroimaging studies show altered brain network patterns committed to multisensory
integration, including sensorimotor and executive control, in migraine without aura [45,46].
These functional changes affect key brain regions related to pain perception, autonomic
responses, gait control, and cognitive processing, suggesting that migraine might hinder
the ability of the brain to process and integrate sensory information effectively [46]. We
argue that this interictal disrupted sensory processing, in conjunction with the well-known
abnormalities in the visual processing [3,47], may contribute to dynamic instability by
reducing individuals’ ability to respond to environmental changes and maintain balance.
Therefore, the findings of our study suggest that assessing local dynamic stability during
gait through the sLLEML may detect the subtle abnormalities in dynamic balance control
also in subjects with episodic migraine without aura as a result of the impairment of
multisensory integration process [3].

Furthermore, we found that participants with MO exhibited lower pelvic rotation
range during gait (Figure 2) compared with HS, and that pelvic rotation values lower than
11.50◦ characterized MO with 70% probability (Table 2). Reduction in pelvic rotation was
also correlated with higher sLLEML values, MIDAS questionnaire, and NPRS. Subjects
with migraine have been described to present decreased mobility of the cervical spine
and increased stiffness of neck muscles [48]. Moreover, the results are consistent enough
with other studies reporting the sLLEML to correlate with pelvic mobility [49]. Therefore,
another possible explanation of our results is that patients with MO stiffen their axial
movements in the context of cautious gait pattern due to perceived pain and instability
due to multisensory integration impairment, thus increasing local instability of the trunk
acceleration patterns. The other spatiotemporal gait parameters showed no significant
differences when compared to healthy subjects, except for a significant reduction in stride
length (Figure 2), which did not show to characterize the gait abnormalities of participants
with MO with adequate probability (Table 2). In this way, given sLLEML’s ability to
reflect the inability to cope with small perturbations, it may be considered a useful tool for
identifying subjects with MO who experience dynamic instability during gait.

This study presents several limitations. Although inclusion criteria satisfied the defini-
tion of migraine without aura according to the International Classification of Headache
Disorders, a complete vestibular screening was not conducted. Furthermore, although we
used the actual prevalence of episodic migraine in the general population as the pre-test
probability in the post-test probability calculations, our sample was relatively small and did
not reflect the prevalence of migraine. Therefore, further studies with broader populations
are needed to confirm our findings.

5. Conclusions

Subjects with episodic migraine without aura exhibit abnormalities in trunk local
dynamic stability during gait, as measured by the sLLE in the medio-lateral direction. This
parameter is correlated with disease-related disability levels, severity of pain during the
attacks, and reduction in pelvic rotation during gait. The sLLE in the ML direction can
be used as an index to quantify gait instability and the ability to face small perturbations
during gait in subjects with episodic migraine. Considering the previous evidence of
increased postural instability during the migraine attack compared with the interictal
phase [42], it is of interest to test whether the abnormalities noted here during the interictal
period become more manifest during the attack and in proportion to its severity.
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