
Unsupervised Human Process Discovery
in Smart Homes

La Sapienza Università di Roma
Dipartimento di Ing. Informatica, Automatica e Gestionale “A. Ruberti”

Dottorato di Ricerca in Ingegneria Informatica – XXXVI Ciclo

Candidate

Silvestro V. Veneruso
ID number 1461229

Thesis Advisor

Prof. Francesco Leotta

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Engineering in Computer Science

28 February 2024

Thesis defended on 7 May 2024
in front of a Board of Examiners composed by:

Prof. Francesco Leotta (La Sapienza Università di Roma) (chairman)
Prof. Valeria Cardellini (Università degli Studi di Tor Vergata)
Prof. Giuliana Vitiello (Università degli Studi di Salerno)
Prof. Alberto Pretto (Università degli Studi di Padova)

Unsupervised Human Process Discovery in Smart Homes
Ph.D. thesis. Sapienza – University of Rome

© 2024 Silvestro V. Veneruso. This work is licensed under CC BY-NC-SA 4.0. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

This thesis has been typeset by LATEX and the Sapthesis class.

Version: May 17, 2024

Author’s email: silvestro.veneruso@uniroma1.it

http://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:silvestro.veneruso@uniroma1.it

ii

Contents

Extended Abstract v

1 Introduction 1
1.1 Classical ambient intelligence . 2

1.1.1 Sensor data aggregation methodologies 6
1.1.2 Sensors in smart spaces . 7

1.2 Process mining . 8
1.2.1 Process discovery: model quality metrics 9
1.2.2 Petri nets . 10

1.3 Ambient intelligence and process mining 11
1.3.1 Modeling the human behavior in smart spaces 13

2 Process discovery in smart spaces: a literature review 14
2.1 Applying process discovery to smart spaces data 14

2.1.1 Results . 17
2.1.2 Modelling formalisms . 21
2.1.3 Abstraction gap between sensor events and process events . . 22
2.1.4 Log segmentation into traces 23
2.1.5 Multi-user environments . 24
2.1.6 Routine evolution . 25

2.2 Discussion . 26
2.2.1 Used datasets . 26
2.2.2 Modelling formalisms . 27
2.2.3 Abstraction gap between sensor events and process events . . 27
2.2.4 Log segmentation into traces 28
2.2.5 Multi-user environments . 28
2.2.6 Routine evolution . 28
2.2.7 Threats to validity . 29

3 Generating smart home data 30
3.1 Behavior pattern models . 31
3.2 XES - eXtensible Event Stream . 33
3.3 Design and realization of the simulator 34

3.3.1 Original simulation framework 35
3.3.2 Model-based simulation . 37
3.3.3 Multi-inhabitant simulation 40

Contents iii

3.3.4 Data export in XES format 41
3.4 Validation . 42

3.4.1 Replicability of datasets available in literature 43
3.4.2 Truthfulness evaluation . 43
3.4.3 Results . 45

4 Representing smart home data 47
4.1 Existing standards for event logs . 47

4.1.1 Process mining using IoT data 48
4.1.2 Existing models bridging IoT and process mining 49

4.2 Format specification . 49
4.2.1 Meta-model . 50
4.2.2 Implementation . 50

4.3 Format validation . 52
4.3.1 Theoretical requirements fulfilment 52
4.3.2 Log description . 54
4.3.3 Log Analysis . 54
4.3.4 Comparison with the state-of-the-art 56

5 Unsupervised discovery of human habits 58
5.1 Proposed approach . 59

5.1.1 Data acquisition . 59
5.1.2 Log conversion . 60
5.1.3 Log filtering . 61
5.1.4 Time-based processing of the log 61
5.1.5 Discretization and segmentation 62

5.2 Validation and Results . 64

6 Unsupervised discovery of human activities 67
6.1 Proposed approach . 68

6.1.1 Data acquisition . 68
6.1.2 Log conversion . 69
6.1.3 Log filtering . 69
6.1.4 Session identification . 69
6.1.5 Session clustering . 70
6.1.6 Log segmentation . 70

6.2 Experimental evaluation . 71
6.2.1 Dataset selection . 72
6.2.2 Results . 74
6.2.3 Comparison with the state-of-the-art 76
6.2.4 Discussion . 76

7 User study 79
7.1 Mining process models through process discovery 79
7.2 Designing the user study . 80
7.3 Statistical tools for qualitative analysis 82

7.3.1 t-test . 82

Contents iv

7.3.2 Analysys of variance (ANOVA) 82
7.3.3 Choice of statistical tool by design 83

7.4 Results and discussion . 83

8 Conclusions and future work 87

Bibliography 94

Appendix 112

v

Extended Abstract

The advances in the Internet of Things (IoT) have enabled the automation of various
tasks like switching on the heating at home from work, seeing who is at your front
door from the couch, supporting nurses in elderly homes, or the efficient delivery of
packages. By enabling the connection between the physical and digital worlds, the
IoT has shown how environments can be augmented with technology to enhance
their capabilities, making them more intelligent, responsive, and adaptive. This
widespread adoption of embedded systems turned pervasive (or ubiquitous) computing
into reality: while sensors gather real-time data about the environment, actuators
are used to automate the execution of many tasks that help the users of such
environments. These environments, referred to as smart environments or smart
spaces, represent an emerging class of IoT-based applications and are centered on
their human users. Among smart spaces, smart homes and offices are representative
examples. The goal is to enhance the quality of life, improve productivity, and
provide personalized services by understanding and responding to the needs and
preferences of the users, realizing the paradigm known as Ambient Intelligence
(AmI) [185].

The literature presents various definitions of AmI. In [48], authors introduce a
set of distinct features that characterize AmI systems: sensitivity, responsiveness,
adaptivity, ubiquity, and transparency. Sensitivity pertains to the AmI system’s
ability to perceive and comprehend the surrounding environment and its interaction
context. Responsiveness and adaptivity, closely tied to sensitivity, indicate the
system’s capacity to promptly react, either proactively or reactively, to changes in the
context in accordance with user preferences. Collectively, sensitivity, responsiveness,
and adaptivity contribute to the overarching concept of context awareness. Lastly, the
terms ubiquity and transparency directly relate to the idea of pervasive computing.

Smart environments process and analyze the data collected from sensors to extract
meaningful information. In this context, AmI is realized by utilizing techniques such
as machine learning, artificial intelligence, and human-computer interaction (HCI).
The rich data automatically collected via IoT sensors in smart spaces is used to get
insights about the human behavior of the user (e.g., sleep tracking) or to perform
automated actions for the user (e.g., automatically opening the blinds). For instance,
current applications of human behavior monitoring in smart spaces include smart
thermostats (e.g., Google Nest Learning Thermostat) and ambient assisted living
(e.g., elderly fall detection systems).

Modeling human activities and habits is not a simple task, due to the flexible
and unstructured nature of human behavior. Recently, although it is still difficult to
represent them following a precise flow of tasks, approaches have been proposed that

vi

model human habits as workflows [124]. In particular, the research community and
manufacturers have shown a great interest in applying process mining (PM) to smart
spaces. Process mining [4] is a fairly recent research discipline that combines data
mining techniques with techniques used in Business Process Management (BPM) [67],
such as process modeling and process analysis. Process mining aims to extract,
monitor, and improve processes based on real-world data.

In particular, process discovery is a process mining technique used to discover
and generate the process model describing the underlying behavior shown in the
event log. The mined process model can be visualized in different forms, such as
Petri nets, process flowcharts, or BPMN diagrams. Visualization helps to understand
the structure and dynamics of processes within the smart space. However, even
though process models could be extracted from smart space data, multiple important
challenges arose [124].

The next section presents an overview of how some of the aforementioned research
challenges are handled and to what degree they are addressed by the author of this
thesis.

Research Contributions
Scientific contributions need to be validated against datasets, such as sensor logs
from smart environments. In order to acquire these datasets, expensive facilities are
needed, including sensors, actuators, and an acquisition infrastructure. In addition,
frequently employed smart home hubs (e.g., voice assistants like Amazon Echo Dot)
do not allow access to raw data.

Even though several freely accessible datasets are available, each of them features
a very specific set of sensors, which can limit the introduction of novel approaches
that could benefit particular types of sensors and deployment layouts. Additionally,
acquiring a dataset requires a considerable human effort for labeling purposes, thus
further limiting the creation of new and general ones. Also, labeling is an error-prone
activity, which makes the quality of the available datasets unclear. As a consequence,
the vast majority of approaches available in the literature are evaluated against
datasets gathered in university labs, i.e., datasets that are not general and whose
quality cannot be taken for granted.

For this reason, smart environments are one of the many disciplines where we
are witnessing the replication crisis (or replicability crisis or reproducibility crisis),
i.e., an ongoing methodological crisis in which it has been found that many scientific
studies are difficult or impossible to replicate or reproduce [11][74]. We define the
following objective:

O1 Analysis of available datasets in literature and subsequent development of a
dataset generation tool able to generate synthetic datasets that take into account
features that we can find in a real-world setting, not only in an experimental
setting.

With reference to objective O1, the following research contributions have been
achieved:

vii

R1-1 In [24] we provide several insights on the datasets used by the research community
across the primary studies surveyed in this work (e.g., available sensors, number
of users involved, number of measurements, labeled activities, and others).

R1-2 In [195] we propose a model-based simulator capable to generate synthetic
datasets that emulate the characteristics of the vast majority of real datasets
while granting trustworthy evaluation results. The datasets are generated using
the eXtensible Event Stream (XES) international standard commonly used for
representing event logs. This format is then further extended by the work
presented in R2. The simulator and related resources can be downloaded at the
link in the footnotea.

ahttps://github.com/silvestroveneruso/smart_space_model_based_simulation

As the utilization of IoT devices in support of business processes (BPs) becomes
more frequent, there is a growing recognition of the potential to leverage the data
collected by these devices for process mining (PM). Most current PM methods that
can incorporate IoT data follow a similar approach: the IoT data are pre-processed
with event abstraction and event-case correlation techniques to be translated into
an event log in XES format [26, 97, 164, 171].

Although this is an interesting initial approach to integrating IoT data into PM
and it allows for the application of existing control flow and data-aware techniques,
this method does not fully exploit the potential of IoT data. Often, the resulting
high-level event log lacks contextual information (i.e., properties that can influence
process execution [26, 166]) that could be derived from the IoT data, or it has limited
capability to incorporate such context information. Furthermore, by separating the
abstraction phase from the analysis phase, the true potential of advanced algorithms
to optimize both abstraction and model discovery together cannot be harnessed. For
example, the development of an IoT-enhanced decision mining algorithm requires
direct access to lower-level IoT data to learn the most relevant features directly
from the source data instead of relying on an error-prone event abstraction step that
might leave important information behind at a lower granularity level [27].

This shortcoming of existing approaches is to a large extent due to limitations of
the most common event log standards, i.e., the eXtensible Event Stream [86] (XES)
and the Object-Centric Event Log [81] (OCEL), and has been acknowledged in the
IoT PM literature [95] and beyond [20]. In [27], the authors listed ten requirements
for the storage of IoT-enhanced event logs and showed that both XES and OCEL
failed to meet more than half of these requirements. We define the following objective:

O2 Definition of a suitable event log format integrating IoT data to process data.
In particular, the format has to follow the list of requirements for the storage of
IoT-enhanced event logs outlined in [27].

With reference to objective O2, the following research contribution has been
achieved:

https://github.com/silvestroveneruso/smart_space_model_based_simulation

viii

R2 In [28] we present the Native Iot-Centric Event (NICE) log, a new event log format
designed to incorporate IoT data into a process event log, ensuring traceability,
flexibility, and limiting data loss. We evaluated our format against requirements
previously established for an IoT-enhanced event log format, showing that it
meets all requirements, contrary to other alternative formats. We then performed
an analysis of a synthetic log to show how IoT data can easily be used to explain
anomalies in the process. Furthermore, the new format was linked to the smart
space data simulator presented in R1-2 [195].

The rationale behind applying process mining techniques in a smart space is
to exploit the vast set of data mining methodologies targeting classical business
processes to so-called cyber-physical processes [115]. In order to apply techniques
from the PM area, a sensor log must be converted into an event log. However, as
pointed out in [124, 192], turning sensor measurements into events is a complex
challenge that can hardly be solved without human manual labeling, additional
knowledge, or probabilistic reasoning.

From a more practical point of view, many of the challenges are related to the
difference between sensor logs produced by smart spaces and event logs produced
by information systems, which are usually fed as input to PM algorithms. Whereas
events in event logs record the execution of tasks, e.g., their start and their completion,
sensor logs contain fine-grained sensor measurements, e.g., the temperature in a
room at a certain point in time or the presence of a user near a piece of furniture.

The converted event log must contain at least three elements [158]: (i) the case id,
which identifies a specific process instance, (ii) the label of the task performed, and
(iii) the timestamp. Since (i) and (ii) are absent from the sensor log, a pre-processing
step is required to infer events from the sensor log. This task usually consists of two
steps, respectively: (1) bridging the gap between sensor measurements and events in
order to derive the task label, and (2) segmenting the event log into traces in order
to assign a case ID to each event. For this purpose, we define two objectives:

O3 Investigation on techniques available in literature to convert sensor logs into
event logs.

With reference to objective O3, the following research contribution has been
achieved:

R3 In the work already presented in R1-1 [24, 129] we provide an overview of the
techniques used by the research community to convert sensor events into process
events and how they deal with the challenges related to the conversion task,
i.e., bridging the abstraction gap between sensor and event logs and segmenting
logs in traces. The main contribution of this article is two-fold: (i) providing
the research community with an analysis of the existing applications of process
discovery to smart spaces and how they address the common challenges in the
field, and (ii) assisting further research efforts by outlining opportunities for
future work.

When discussing smart spaces, the following terminology is usually em-
ployed [126]:

• Action, i.e., atomic interaction with the environment or a part of it (e.g.,

ix

turning on the TV).

• Activity, i.e., a group of human atomic interactions with the environment
(actions) that are performed with a final goal (e.g., cleaning the house).

• Habit, i.e., a group of actions or activities (one in the extreme case) that define
what happens in specific contextual conditions (e.g., what the user usually
does in the morning between 08:00 and 10:00).

Being able to recognize the onset and end of an activity and/or a habit performed
by a human can be helpful for different purposes. Examples of applications include
the definition of automation rules or the detection of potentially harmful deviations
from usual behavior.

Unfortunately, the practical applicability of techniques proposed in the literature
is limited by the effort required by the final user to manually label smart home logs
to train recognition models. The vast majority of approaches are indeed based on
supervised learning, thus requiring the logs to be labeled with markers denoting the
onset and end of all (or at least of a consistent subset) of the activity (or habit)
occurrences.

Manual labeling of logs is perceived by the final users as annoying, which ends
up in imprecise labeling. Despite the fact that automatic techniques to label a smart
home log have been proposed, they suffer from several limitations when applied to
real-world scenarios [90].

First, many approaches (e.g., [112]) require manually specifying window lengths
or other kinds of numerical thresholds (e.g., number of events, minimum distance
between two events). The selection of such parameters is hard and does not take
into account the peculiarities of the different activity types. In second place, the
vast majority of proposed solutions are directly applied to raw sensor measurements.
This strategy does not exploit the meaning of a sequence of sensor measurements,
only highlighting the statistical distribution of occurrences and co-occurrences of
sensor events. Finally, in many cases, automatic segmentation techniques are only
used to complement manual segmentation and are not intended to segment the full
log (e.g., [46]). We define the following objective:

O4 Definition of an unsupervised segmentation methodology to automatically and
fully segment a smart home log by applying techniques such as machine learning,
artificial intelligence, and process mining. The methodology has to avoid the
annoying labeling task effort from final users.

With reference to objective O4, the following research contributions have been
achieved:

x

R4-1 In [73, 71] we propose a methodology allowing, given a sensor log, to automatically
segment human habits by applying a classical bottom-up discretization strategy
on the timestamp attribute. Such a class of discretization algorithms finds
the best division of a continuous attribute by iteratively merging contiguous
sub-ranges (also called “bins”) following a quality evaluation heuristic. In our
proposal, the heuristic is based on quality measures computed on the process
models automatically mined, through process discovery, from the intermediate
bins. In particular, we drive the discretization targeting process models with high
simplicity and low structuredness. Each obtained bin then represents a time
range in which the human is supposed to perform activities following a clearly
identifiable human process. This work has been extended with new experiments
in [128].

R4-2 In [127] we introduce a fully automated log segmentation technique able to mark
the beginning and end of each activity repetition in a sensor log. In order to
obtain this result, the proposed technique employs the information about human
position in the log to extract high-level actions (e.g., standing still or operating
in a specific area of the house). Then, inactivity periods are analyzed in order to
perform the first segmentation. Finally, clustering is employed to identify classes
of segments representing activities. The work introduced in R2-1 only focuses
on temporal-based segmentation targeted at defining habits. Conversely, in this
work, we focus on activities instead of habits, which allows for finer-grained
control over human routines.

Once the methodologies in R4-1 and R4-2 and their related quantitative results
are introduced, the need for a robust qualitative analysis of such results emerges. By
bridging the gap between quantitative and qualitative analysis, a more comprehensive
understanding of the problem is provided, offering a unique perspective that goes
beyond mere numerical comparisons.

To perform this kind of qualitative analysis, several statistical procedures exist.
The paired sample t-test, sometimes called the dependent sample t-test, is used to
determine whether the mean difference between two sets of observations is zero. In
a paired sample t-test, each subject or entity is measured twice, resulting in pairs of
observations. Common applications of the paired sample t-test include case-control
studies or repeated-measures designs. For instance, suppose you are interested in
evaluating the effectiveness of a SW tool for educational purposes. One approach
you might consider would be to measure the performance of a sample of users before
and after completing the program and analyze the differences using a paired sample
t-test (as done in [199]).

When there are two or more independent groups, the Analysis of Variance
(ANOVA) technique applies. The ANOVA procedure is used to compare the sample
sizes, sample means, and sample standard deviations in each of the comparison
groups and determine whether there are significant differences between the means of
the groups under analysis. We define the following objective:

xi

O5 Execution of qualitative analyses with ad hoc statistical tools to support the
results obtained through quantitative tests. This type of analysis aims to complete
and reinforce those already obtained.

With reference to objective O5, the following research contributions have been
achieved:

R5 To support the results already obtained in R4-1 and R4-2, a qualitative analysis
was carried out. Given the nature of the results, it was chosen to use ANOVA as
a statistical tool to carry out these analyses. In this way, the models mined by
three different mining algorithms (fuzzy, inductive, and heuristic) were compared
with each other, and their statistical significance was determined.

The work of the author is published in the following papers. Each paper is
labeled with the research challenges addressed.

[73] Lucia Esposito, Silvestro Veneruso, Francesco Leotta, Flavia Monti, Jerin
George Mathew, and Massimo Mecella Unsupervised Segmentation of Human
Habits in Smart Home Logs Through Process Discovery. 1st ITalian forum on Business
Process Management (ITBPM 2021).
Research Contributions: R4-1

[129] Francesco Leotta, Silvestro Veneruso VPM: Analyzing Human Daily Habits
through Process Discovery. Proceedings of the Best Dissertation Award, Doctoral
Consortium, and Demonstration and Resources Track at BPM 2021 co-located with
19th International Conference on Business Process Management (BPM 2021).
Research Contributions: R3

[71] Lucia Esposito, Francesco Leotta, Massimo Mecella, and Silvestro Veneruso.
Unsupervised segmentation of smart home logs for human habit discovery. 18th
International Conference on Intelligent Environments (IE), 2022.
Research Contributions: R4-1

[28] Yannis Bertrand, Silvestro Veneruso, Francesco Leotta, Massimo Mecella,
and Estefanía Serral Asensio. NICE: The Native IoT-Centric Event Log Model for
Process Mining. Lecture Notes in Business Information Processing. Springer Verlag
(Germany), 2023.
Research Contributions: R2

[195] Silvestro Veneruso, Yannis Bertrand, Francesco Leotta, Estefanía Ser-
ral, and Massimo Mecella A model-based simulator for smart homes: Enabling
reproducibility and standardization. Journal of Ambient Intelligence and Smart Envi-
ronments (JAISE), 2023.
Research Contributions: R1-1, R1-2

[25] Yannis Bertrand, Bran Van den Abbeele, Silvestro Veneruso, Francesco
Leotta, Massimo Mecella, and Estefanía Serral Asensio. A survey on the
application of process mining to smart spaces data. Process Mining Workshops: ICPM
2022 International Workshops.
Research Contributions: R1-1, R3

[24] Yannis Bertrand, Bran Van den Abbeele, Silvestro Veneruso, Francesco
Leotta, Massimo Mecella, and Estefanía Serral Asensio. A survey on the
application of process discovery techniques to smart spaces data. Journal of Engineering
Applications of Artificial Intelligence (EAAI) 126, 2023.
Research Contributions: R1-1, R3

[127] Francesco Leotta, Massimo Mecella, and Silvestro Veneruso. Unsupervised
Segmentation of Smart Home Position Logs for Human Activity Analysis. 2023 19th

xii

International Conference on Intelligent Environments (IE). IEEE, 2023.
Research Contributions: R4-2

[128] Francesco Leotta, Massimo Mecella, and Silvestro Veneruso. Discovering
Human Habits through Process Mining: State of the Art and Research Challenges.
Activity Recognition and Prediction for Smart IoT Environments. Cham: Springer
International Publishing, 2024.
Research Contributions: R4-1, R5

[197] Silvestro Veneruso, Francesco Leotta, and Massimo Mecella. On the Use-
fulness of Human Behaviour Process Models: a User Study. 2024 20th International
Conference on Intelligent Environments (IE). IEEE, 2024.
Research Contributions: R5

Thesis Outline
• Chapter 1 introduces background concepts and definitions related to smart

spaces, ambient intelligence, and process mining.
• Chapter 2 surveys existing approaches that apply process discovery to smart

space data.
• Chapter 3 proposes a model-based simulator capable of generating synthetic

datasets that emulate the characteristics of the vast majority of real datasets
while granting trustworthy evaluation results. The datasets are generated
using the eXtensible Event Stream (XES) international standard commonly
used for representing event logs. This format is then further extended by the
work presented in Chapter 4. Finally, the datasets produced by the simulator
are validated against two real-life scenarios’ logs from the literature.

• Chapter 4 presents the Native Iot-Centric Event (NICE) log, a new event
log format designed to incorporate and represent IoT data into a process
event log, ensuring traceability, flexibility, and limiting data loss. The new
format is linked to the smart space data simulator discussed in Chapter 3 to
generate synthetic logs. The presented format is evaluated against requirements
previously established for an IoT-enhanced event log format, showing that it
meets all requirements, contrary to other alternative formats. A final analysis
of a synthetic log shows how IoT data can easily be used to explain anomalies
in the process.

• Chapter 5 shows how concepts and techniques borrowed from the area of process
mining can be used to ease the operation of segmenting a smart home log in
an unsupervised manner, avoiding annoying labeling efforts from final users.
In particular, we propose a bottom-up discretization strategy to automatically
segment a smart home log into meaningful portions called habits.

• Chapter 6 proposes another unsupervised technique that segments smart home
logs containing position sensor measurements. With respect to the technique
discussed in Chapter 5, in this chapter, we focus on human activities instead
of habits, which allows for finer-grained control over human routines. The
proposed technique exploits information about the position of the human to
automatically extract basic actions, which are then segmented on a temporal
basis and clustered. The approach is evaluated against a seminal dataset from

xiii

the literature and a synthetic dataset produced by a smart home simulator.
Finally, results are compared with a state-of-the-art method.

• Chapter 7 presents the results of the qualitative analysis carried out with
ad hoc statistical tools on the output data obtained from the methodologies
discussed in Chapters 5 and 6.

• Chapter 8 concludes the discussion and highlights future works that might
arise on the basis of this thesis.

Additional Work
During the Ph.D. program, the author has been involved in other research projects
not directly connected to the area of smart spaces.

NOTAE project. The author is actively involved in the NOT A writtEn
word but graphic symbols (NOTAE) project1. The NOTAE project investi-
gates the presence of graphic symbols in documentary records as a historical
phenomenon from late antiquity to early medieval Europe. Graphic symbols
are meant here as graphic signs (including alphabetical ones) drawn as a vi-
sual unit in a written text and representing something other than a word of that text.

Videogames, virtual reality, and educational tools. The use of videogames has
become an established tool to educate users about various topics. Videogames can
promote challenges, cooperation, engagement, motivation, and the development of
problem-solving strategies, all of which have important educational potential. In
[79, 196], the author presents the design and realization of several virtual reality
(VR) tools that act as an interactive learning experience to improve user awareness
of cybersecurity-related issues. In particular, in [199] the author reports the results
of a user study showing that the videogame CyberVR is equally effective but more
engaging as a learning method toward cybersecurity education than traditional
textbook learning. Furthermore, in [198] the author proposes a real-time VDR
application titled V-DOOR that leverages the features of Oculus Rift to create
an immersive experience that enables customers to try on clothes virtually in the
comfort of their own home rather than physically in the retail shop.

We report the contributions to these projects here in terms of published
papers for sake of completeness, though the themes covered in their subjects are out
of scope for this thesis.

[79] Lauren S. Ferro, Andrea Marrella, Silvestro Veneruso, Massimo Mecella,
and Tiziana Catarci. An interactive learning experience for cybersecurity related
issues. International Workshop on Human-Centered Cybersecurity (In conjunction
with CHITALY 2019).

[196] Silvestro Veneruso, Lauren S. Ferro, Andrea Marrella, Massimo Mecella,
and Tiziana Catarci. A game-based learning experience for improving cybersecurity
awareness. CEUR WORKSHOP PROCEEDINGS. Vol. 2597. CEUR-WS, 2020.

1https://notae-project.digilab.uniroma1.it/

https://notae-project.digilab.uniroma1.it/

xiv

[198] Silvestro Veneruso, Tiziana Catarci, Lauren S. Ferro, Andrea Marrella,
and Massimo Mecella. V-DOOR: A Real-Time Virtual Dressing Room Application
Using Oculus Rift. Proceedings of the International Conference on Advanced Visual
Interfaces, 2020.

[199] Silvestro Veneruso, Lauren S. Ferro, Andrea Marrella, Massimo Mecella,
and Tiziana Catarci. CyberVR: an interactive learning experience in virtual reality
for cybersecurity related issues. Proceedings of the International Conference on
Advanced Visual Interfaces, 2020.

[23] Tiziana Catarci, Antonella Ghignoli, Francesco Leotta, Massimo Mecella,
Silvestro Veneruso, et al. Exploring the historical context of graphic symbols: the
NOTAE knowledge graph and its visual interface. CEUR WORKSHOP PROCEED-
INGS, Vol. 2816. CEUR-WS, 2021.

[22] Tiziana Catarci, Antonella Ghignoli, Francesco Leotta, Massimo Mecella,
Silvestro Veneruso, et al. NOTAE: NOT A writtEn word but graphic symbols.
CEUR WORKSHOP PROCEEDINGS, Vol. 3144. CEUR-WS, 2022.

1

Chapter 1

Introduction

Recent years have shown a growing interest in the market for embedding sensors
and actuators in physical environments to facilitate the execution of numerous tasks.
The idea is to use sensors to collect real-time information about the environment and
to use it to trigger actions through actuators in order to automate physical tasks,
aiding humans in their daily lives. The term pervasive (or ubiquitous) computing is
usually employed to indicate the set of techniques apt to this aim [206].

Smart environments, or smart spaces, represent an emerging class among perva-
sive computing application areas. Cook and Das [41] define a smart environment
as “a small world where different kinds of smart devices are continuously working
to make inhabitants’ lives more comfortable”. Smart environments aim to satisfy
the experiences of individuals and improve their lives, by replacing hazardous work,
physical labor, and repetitive tasks with automated agents, realizing the paradigm
known as Ambient Intelligence (AmI) [29]. Examples include smart homes, smart
cities, and smart factories.

An information system supporting AmI takes as input raw sensor measurements,
analyzes them in order to obtain a higher level of understanding of what is happening
in the environment, i.e., the current context, and eventually uses this information to
trigger automated actions through a set of actuators, following final user preferences
and needs. In particular, the context extraction and decision-making steps are
supported by a set of models representing [126]:

• Actions: atomic interactions with the environment or a part of it (e.g., turning
on the TV). Recognizing actions can be easy or difficult, depending on the
sensors installed in the environment.

• Activities: groups of human atomic interactions with the environment (i.e.,
actions) that are performed with a final goal (e.g., cleaning the house). They
can be collaborative, including actions carried out by multiple users, and can
overlap with each other. Human activity recognition (HAR) is a common
task in smart spaces that aims at recognizing various human activities (e.g.,
walking, sleeping, watching TV) using machine learning techniques based
on data gathered from IoT environments [99]. Authors in [137] argue that
HAR is part of a bigger picture with the ultimate aim of providing assistance,
assessment, prediction, and intervention related to the identified activities. An

1.1 Classical ambient intelligence 2

example of this is ambient assisted living (AAL), which supports the elderly
in their daily routines by using various technical systems (e.g., IoT devices)
and aims at increasing the quality of life, wellbeing, and safety of those elderly
people [64].

• Habits, routines, or behavior patterns: an activity, or a group of actions or
activities that happen in specific contextual conditions (e.g., what the user
usually does in the morning between 08:00 and 10:00).

• Context: the state of the environment, including the raw output of sensors and
actuators, as well as the state of the inhabitants, consisting of the actions/ac-
tivities/habits they are performing, and whatever high-level consideration can
be automatically derived. In this very comprehensive sense, the term situation
is sometimes used.

1.1 Classical ambient intelligence
Models of human habits and activities can be either manually defined (i.e.,
specification-based methods) or obtained through machine learning techniques (i.e.,
learning-based methods).

In specification-based methodologies, models are usually based on logic for-
malisms, which are relatively easy to read and validate (once the formalism is known
to the reader), but their creation requires a major cost in terms of expert time and
effort. In the learning-based case, the model is automatically learned from a training
set (whose labeling cost may vary according to the proposed solution), but employed
formalisms are usually not “explainable” due to the statistical techniques they are
based on, making them less immediate to understand [88].

The effort and time of experts required by specification-based methods can
rapidly become unsustainable if sensor measurements are directly used as atomic
terms (i.e., basic modeling elements) of the models. As a consequence, such models
usually employ high-level actions and events as basic terms. Learning-based methods
usually directly refer to sensor measurements, thus losing focus on human actions
and making it even more difficult to visually inspect and validate the produced
models. On the other hand, taking as input raw sensor measurements usually makes
learning-based methods easier to apply in a practical context, whereas, in the vast
majority of cases, specification-based methods do not face (and solve) the problem
of translating sensor measurements into actions.

Learning-based approaches can be further divided into three sub-categories:

1. Supervised learning is the machine learning task of inferring a function from
labeled training data. The training data consists of a set of training examples.
A vast collection of works employ supervised learning techniques in order to
learn models of habits, activities, and simple actions.

2. Unsupervised learning techniques are mainly based on machine learning tech-
niques that do not need the input data to be labeled.

3. Weakly supervised learning techniques need only a part of the input data to be
labeled.

1.1 Classical ambient intelligence 3

The practical applicability of techniques proposed in the literature is limited by
the effort required by the final user to manually label smart space logs. Approaches
based on supervised (or weakly supervised) learning require the logs to be labeled
with markers denoting the onset and end of all (or at least of a consistent subset) of
the occurrences.

Manual labeling of logs is perceived by the final users as annoying, which could
ends up in imprecise labeling, possibly tampering with the performance of algorithms
at runtime. Despite the fact that unsupervised techniques to label a smart home log
have been proposed, they suffer from several limitations when applied to real-world
scenarios [90]. First, many approaches (e.g., [112]) require manually specifying
window lengths or other kinds of numerical thresholds (e.g., number of events,
minimum distance between two events). The selection of such parameters is hard
and does not take into account the peculiarities of the different activity and habit
types. In second place, the vast majority of proposed solutions are directly applied to
raw sensor measurements. This strategy does not exploit the meaning of a sequence
of sensor measurements, only highlighting the statistical distribution of occurrences
and co-occurrences of sensor events. Finally, in many cases, automatic segmentation
techniques are only used to complement manual segmentation and are not intended
to segment the full log (e.g., [46]).

Human-readable formalisms should be used alongside unsupervised machine
learning techniques; this is the most important challenge in the field of AmI re-
search. Applying process mining to smart spaces allows you to get the best of both
worlds because processes are human-readable, formally grounded, and can be mined
automatically.

The vast majority of activity or habit recognition techniques are supervised. This
means that, in order to train the models, a smart space log must be segmented into
sub-traces representing activities or habits with assigned labels. Many approaches
in the literature are evaluated using datasets manually labeled by human operators,
thus limiting the suitability of such techniques in a commercial application scenario
where it is difficult to imagine a final user involved in annoying and imprecise
training sessions. On the other hand, automatic segmentation methods available in
the literature, aiming at partially or completely eliminating human effort in labeling,
often show limitations related to the absence of domain knowledge. In this section,
we will present automated approaches to log segmentation in the literature.

Authors in [16] introduce the concept of Active DataBase (ADB), composed of
event-condition-action (ECA) rules. An ECA rule generally takes the form of “ON
event IF condition THEN action”, i.e., once a specific event is triggered and certain
contextual conditions are satisfied, then the execution of an action is promptly
executed. These have been extended in Augusto et al. (2008) with more complex
temporal operators (ANDlater and ANDsim) and by adding uncertainty management.
In [17], authors propose the APUBS algorithm to automatically mine ECA rules.
The algorithm considers the typology of the sensors used in the measurements and
the time relationships between their activations. Specifically, their approach relies
on a distinct categorization of three types of sensors: (i) type O sensors that are
embedded within objects (e.g., a sensor detecting the opening of a bathroom door);
(ii) type C sensors that gather environmental data (e.g., temperature measurements);
(iii) type M sensors that track the user’s location within the house.

1.1 Classical ambient intelligence 4

Events in the event component of an ECA rule always come from type O and
type M sensors. Conditions are formulated based on the values acquired from type
C sensors. The action component exclusively involves type O sensors, which can
also operate as actuators. This collection of type O sensors is referred to as the
mainSeT.

The APUBS methodology computes, for each sensor in the mainSeT, the associ-
atedSeT composed of type M and O sensors that have the potential to be correlated
as triggering events. This computation is carried out by leveraging the seminal
APriori algorithm. Then, it discovers the temporal connections between the events
present in associatedSeT and those within the mainSeT. In this stage, irrelevant
relationships are eliminated, resulting in the extraction of the conditions necessary
for the ECA rules.

In [55], authors extract ECA rules by using a modified version of APUBS. In
particular, they used a variation of the seminal APriori algorithm employed in the
original approach.

Instead, [46] presents an approach that relies on the principle of minimum de-
scription length (MDL) to automatically extract activity patterns. Their algorithm
requires a dataset containing a sequence of sensor events representing human inter-
actions with the smart environment. At each iteration, the algorithm searches for
patterns that yield the best compression of the dataset. A pattern is defined as a
sequence of sensor events and their occurrences within the dataset.

Initially, a single pattern is associated with each different sensor event. Subse-
quently, the algorithm iteratively attempts to expand these patterns, with the goal of
achieving the most efficient compression. In particular, each occurrence of a pattern
is replaced with a symbol that corresponds to the specific pattern in question. The
algorithm stops once no additional compression can be achieved, returning all the
patterns found. A clustering step is then implemented to identify and distinguish
variations of human routines.

The method proposed by [46] is intended to implement a semi-supervised approach
where automatic techniques are only employed to segment the part of the log not
manually segmented by the final users. Nothing prevents the algorithm from being
applied to an entire log in a fully unsupervised fashion.

Authors in [112] propose a sliding window-based methodology to perform real-
time activity recognition from sensor data, enabling the recognition of activities as
new sensor events are recorded. Knowing that different activities can be defined by
different window lengths of sensor events, the authors consider the time decay and
apply mutual information-based weighting to the sensor events within a window.
Furthermore, they consider supplementary contextual information, such as the
preceding activity and the activity from the previous window. This automatic log
segmentation technique is only intended to be used at runtime, whereas at training
time, more precise segmentation techniques (manually or automatically) are required.

Similarly to what was done by [112], [92], derive representations for sensor data,
which are then aggregated into activity models. Also, [134] proposes a multi-task
deep clustering framework. By employing unlabeled multi-dimensional sensing
signals as input, they use a K-means clustering algorithm that relies on the extracted
features to divide the log into distinct groups. This process generates pseudo-labels
for the instances. However, these last two approaches rely on wearables, while in

1.1 Classical ambient intelligence 5

this thesis we focus on home sensors.
In [71], authors introduce a methodology that enables automatic segmentation of

human habits. This is achieved by implementing a bottom-up discretization strategy
specifically focused on the timestamp attribute of the sensor log. In particular, this
approach relies on merging small-range portions of the original log, taking account
of quality measures describing the structural behavior of the related process models.
The rationale is that adjacent intervals are merged only if the mined models result in
simpler and less structured models, i.e., if the underlying human habit is easy to read.
Differently from the approach seen in [46], they focus on habits instead of activities.
Additionally, in [46] patterns are extracted with the sole goal of recognizing them at
runtime, without providing neither a visual analysis tool nor a structured description
of human routines. This approach is described in detail in Chapter 5.

This last work, anyway, only focuses on temporal-based segmentation targeted
at defining habits. In [127], the same authors deal with the segmentation challenge
from another perspective: they focus on activities instead of habits, which allows for
finer-grained control over human routines. This process can then be employed to
later extract enactment rules. As for [71], they still employ the Visual Process Maps
(VPM) system [125] to convert sensor measurements into actions. This approach is
described in detail in Chapter 6.

The challenge of transforming low-level logs into high-level event logs, defined as
event log abstraction (ELA) in [193], is also addressed in [203] and [40]. Here, the
authors employ a reasoning algorithm to register a series of sensors and discover the
related activities. Activity recognition often has a data structure resembling IoT
data. In [165], the authors proposed a framework to transform location sensor data
into an event log via interaction mining so that business users can understand what
happened.

In [193], the authors identify three different families of ELA techniques:

1. pattern-based: local patterns in the log are identified and used to describe
frequent behavior in an event log in terms of local process-like patterns [184,
180, 149];

2. session-based: this type of abstraction is based on the idea that traces are
divided into batch sessions, and each session is abstracted into a high-level
activity execution. Then sessions are clustered based on similarity [122, 119];

3. hierarchical ELA: a framework takes a log at level i and discovers the applicable
abstraction classes at level i+1. A sub-log is generated for each class, containing
the sub-process data representing that class. A hierarchy of abstractions is
obtained by iteratively applying the framework until the user-specified level is
reached [130].

Recently, deep generative models have become dominant for unsupervised learn-
ing. There are two distinct phases to the activity recognition process: (i) feature
extractors, which are often deep generative models, receive the input data beforehand
in order to pre-train them to extract features; (ii) a top-layer or alternative classifier
is incorporated and subsequently trained in a supervised manner using labeled data
for classification. The feature extractor’s weights may be adjusted throughout the

1.1 Classical ambient intelligence 6

Figure 1.1. Illustration of the different segmentation approaches discussed in [112].

supervised training. In [9], deep belief networks (DBN) activity recognition models
are implemented. In [150], authors proposed to use autoencoders for unsupervised
feature learning as an alternative to principal component analysis (PCA) for activity
recognition in ubiquitous computing. Compared to discriminative models, deep
generative models are more robust against overfitting problems [141].

Although deep learning models have demonstrably succeeded in unsupervised
learning for human activity recognition (HAR), you still need to provide labeled
samples as ground truth. Consequently, these approaches are more accurately
categorized as semi-supervised learning, where both labeled and unlabeled data are
utilized for neural network training [39].

1.1.1 Sensor data aggregation methodologies

Performing learning techniques from sequences of raw sensor measurements require
to group them into aggregates of interests (i.e., actions, activities, and habits).
This is a fundamental and crucial task, even if the most proposed approaches in
the literature ignore this aspect (especially supervised learning ones). Windowing
mechanisms are required, and, as described in [112], we can identify three main
classes:

• Explicit segmentation: the sequence of sensor data is divided into chunks,
each chunk possibly corresponding to an activity/habit. Finding the appro-
priate chunk size for learning the activity/habit models during the training
phase is not trivial. Typically, a pre-segmented sequence of sensor events that
corresponds to an activity is used to train the classifier. However, a possible
drawback is that an instance of activity/habit could be broken down into
two or more chunks (Figure 1.1 shows how the activity A1 is broken down to
chunks C1 and C2). Since the chunks could not necessarily represent the entire
sequence of sensor events for a particular activity/habit, the performance of
the classifier is thus lowered, i.e., there could emerge instances of single activi-
ties/habits being divided into multiple chunks and multiple activities/habits
being merged.

• Time-based windowing: this approach splits the entire sequence of sensor

1.1 Classical ambient intelligence 7

data into equal-sized time intervals (Figure 1.1 shows the equal-sized chunks
T1, T2, ..., T9). It further reduces the computational complexity of the explicit
segmentation process. This is a good approach when dealing with data obtained
from sources that operate continuously in time (e.g., data from accelerometers
and gyroscopes). However, the choice of the window size is fundamental, as
a small window size could not contain any relevant activity or habit; on the
other hand, a wide window size could involve multiple activities or habits, and
the instance that dominates the time interval will influence the classification
decision. In the extreme case an interval could not include any sensor data
(e.g., T6 in Figure 1.1).

• Event-based windowing: this last approach splits the entire sequence into
windows containing an equal number of sensor measurements. Trivially, the
duration of the windows varies from one window to another. Furthermore, by
dividing the sequences on a quantity basis and not on a time basis, we avoid
the problem of having "silent" windows, i.e., windows where no actions are
performed by the resident and consequently no sensors are triggered. However,
it shows drawbacks similar to those introduced for time-based windowing, i.e.,
the identified window may not contain any relevant information or may contain
more than one activity or habit instance affecting the decision-making process.
Furthermore, in the presence of multi-resident environments, sensor firings
from two different activities performed by different inhabitants will be grouped
into a single chunk, thereby introducing conflicting influences for the decision
task.

1.1.2 Sensors in smart spaces

In the last few years, sensing technologies have made significant progress. Sensors
can thus be embedded in an environment and integrated into everyday objects and
human bodies without affecting users comfort. An initial rough division can be
made between physical sensors, which provide information about the environment
(e.g., humidity, brightness, temperature), the devices, and the users, and digital ones,
which provide information such as user calendars and weather forecasts. Different
types of sensors provide different types of information that are useful for different
purposes [17]. They define three distinct types of sensors: object sensors (type O),
context sensors (type C), and motion sensors (type M). In [156], authors argue that
activities can also be captured using wearable sensors (type W) and video-based
systems (type V). A short overview of each sensor type:

• Type O sensors are installed in objects and provide information about the
actions a user may perform (e.g., a sensor in the TV that is triggered when
the device is turned on).

• Type C sensors provide information about the context in which the user
performs actions (e.g., a temperature or light detector in the kitchen).

• Type M sensors capture motion and indicate where a user is located (e.g., a
motion sensor detecting the passage in the hallway).

1.2 Process mining 8

• Type W sensors offer a variety of information, including medical (e.g., smart-
watch) and location (e.g., smartphone).

• Type V sensors capture video information (e.g., security cameras).

1.2 Process mining
Business process formalisms can be used to model human activities and habits
in smart spaces [124]. A business process is a set of interrelated tasks performed
in a company in order to conduct specific functions (e.g., ordering goods). In
order to acquire such models, process mining techniques can be employed. Process
mining (PM) [4] is a fairly recent research discipline that combines data mining
techniques with techniques used in Business Process Management (BPM) [67]. Its
main objective is to extract meaningful information from event logs.

PM makes use of several techniques to analyze business processes by mining
traces left by their execution in information systems [3]. These traces take the form
of so-called event logs, recording all events that happened in the execution of the
process. An event log requires at least three components: 1) a case identifier, relating
events to the process instance they were executed in; 2) a timestamp, specifying
when the event happened; 3) an activity label, indicating which activity was executed
[3]. There are several types of PM techniques:

• Process discovery is used to discover the process model describing the behavior
recorded in the related event log. Thus, it takes as input an event log and
automatically generates the correspondent process model without using any
additional information. There are many algorithms that can be used for process
mining discovery. The most known ones are the fuzzy miner, the inductive
miner, the alpha miner, and the heuristic miner. Depending on the kind of
discovery algorithm chosen and the parameters used in the algorithm, the
output process model has specific characteristics and may be represented as
a Petri net (see Section 1.2.2) or in other formats, such as BPMN (Business
Process Modeling Notation), EPCs (Event-Driven Process Chains), and others.

• Conformance checking is used to check some properties of the given process
model. It takes as input an existing process model and an event log belonging
to the same process and compares them to identify deviations from the desired
process. It can be used, for instance, to check if the actual behavior recorded in
the log conforms to the model. In this way, we can detect possible deviations
between the process model and reality. It can also be used for models discovered
from the event log itself.

• Enhancement techniques that improve and refine an existing process model
with information recorded in the event log. As for the conformance checking,
it takes as input an existing process model and an event log belonging to the
same process. However, in this case, the objective is to extend or improve the
existing process model, considering the actual behavior of the process that is
recorded in the log. Some types of enhancement are “repair”, which changes
the model so that it better reflects the real process behavior, and “extension”,

1.2 Process mining 9

which adds to the model some new information to make other kinds of analyses,
such as identifying bottlenecks and computing throughput times.

Although initially focused on the analysis of traditional business processes, e.g.,
claims management processes, the scope of PM has expanded over time. For instance,
process mining has been applied to analyze healthcare processes [142] and even
blockchain processes [106]. One recent trend in PM is to leverage the development
of IoT devices to extract event logs from sensor and actuator data. Indeed, some
processes that are not supported by an information system generate large amounts of
IoT data at runtime. Extracting an event log from IoT data enables the analysis of
a whole range of processes previously out of the scope of PM, e.g., mining processes
[33] and human behavior [172].

1.2.1 Process discovery: model quality metrics

Process discovery algorithms should find a proper balance to avoid the so-called
overfitting and underfitting problems, i.e., to mine a general model that allows
for behavior that is not recorded in the given log but that is related to the same
process. To determine the quality of a model obtained through process discovery,
four different dimensions are considered:

• Fitness: it measures how much behavior present in the log can be replayed in
the discovered model. If a model has perfect fitness, it means that it represents
all the behavior present in the log, i.e., all the traces can be successfully
replayed. There are many definitions of fitness: it can be used to measure how
many traces of the event log are replayed (case level) or how many events of
the log are actually possible, according to the model (event level).

• Precision: it is used to avoid the underfitting problem. An underfitting model
allows for behavior that is not related to the one represented in the model
itself. This means that it has a low value of precision and, thus, does not
accurately represent the specific behavior observed in the log; instead, it is too
generalized and allows for behaviors very different from the ones represented
in the log.

• Generalization: it is used to avoid the overfitting problem, which is the
opposite of underfitting. An overfitting model is one that has a low value of
generalization, so it allows only for the behavior observed in the log, i.e., it is
too specific. We should avoid models that do not generalize because they do
not represent the actual process but only the example behavior recorded in
the log.

• Simplicity: it is based on Occam’s Razor ’s principle, which states that “one
should not increase, beyond what is necessary, the number of entities required
to explain anything." This means that we should find the simplest model
among the ones describing the behavior observed in the log. A practical usage
of this quality measure is described in Chapter 5.

1.2 Process mining 10

Figure 1.2. Example of a Petri net. Picture taken from [190].

1.2.2 Petri nets

Petri nets are one of the most commonly used notations for representing process
models. They have an intuitive graphical notation and allow for the modeling of the
concurrency of events. If two events can be concurrently executed, it is fundamental
to discover this behavior if we want to avoid the so-called “spaghetti models”, in
which the same activity is duplicated and the whole graph is complex and difficult
to understand and read.

A Petri net is a bipartite graph consisting of places and transitions, where places
and transitions are nodes that are connected through direct arcs [190]:

Definition 1.1 (Petri net). A Petri net is a triplet N = (P, T, F) in which:

• P is the finite set of places

• T is the finite set of transitions, where P ∩ T = ⊘

• F is the finite set of directed arcs such that F ⊆ (P × T) ∪ (T × P)

Each transition and each place in a Petri net is a node. In particular, given two
nodes x and y, we say that x is an input node of y if and only if there exists a direct
arc that goes from x to y. In the same way, y is the output node of x.

Petri nets can easily model the concurrency of two or more events that must be
all executed and may happen in any order through the AND-join and AND-split
constructs. Instead, the choice among two or more events is modeled through the
XOR-join and XOR-split constructs, so only one event is executed (see Figure 1.2).

1.3 Ambient intelligence and process mining 11

Timestamp SensorID Value

...
2022-05-31 12:34:52 M003 ON
2022-05-31 12:34:58 M005 OFF
2022-05-31 12:35:04 M003 OFF
2022-05-31 12:35:22 T002 22
2022-05-31 12:38:17 M029 OFF

...

Table 1.1. Example of a sensor log used in smart spaces.

1.3 Ambient intelligence and process mining
The rationale behind applying process mining (PM) in a smart space is to exploit the
vast set of data mining techniques targeting classical business processes to so-called
cyber-physical processes [115]. As pointed out in [124], the application of PM to this
scenario is not trivial. Before discussing technical differences, we first introduce a
couple of differences in terms of the terminology employed between the smart space
and PM research communities:

• The term business process in PM may correspond to different smart space
concepts such as activities, habits, routines or behavioral patterns.

• The use of the term activity is a frequent source of confusion, as the smart
space community uses this term to refer to one particular type of human
process (e.g., sleeping, ordering food, walking), whereas the PM community
uses this term to denote the basic units of a process. Therefore, in order to
address this common misunderstanding, we will use the terms activity and
action, as intended by the smart space community (consider the terminology
introduced at the beginning of this chapter).

From a more practical point of view, many of the challenges are related to the
difference between sensor logs produced by smart spaces and event logs produced by
information systems, which are usually fed as input to PM algorithms.

We can imagine a smart space producing, at runtime, a sensor log containing
raw measurements from available sensors.

Definition 1.2 (Sensor Log). Given a set S of sensors, a sensor log is a sequence
of measurements of the kind ⟨ts, s, v⟩ where ts is the timestamp of the measurement,
s ∈ S is the source sensor, and v is the measured value, which can be either nominal
(categorical) or numeric (quantitative).

Measurements can be produced by a sensor on a periodic basis (e.g., temperature
measurements) or whenever a particular event happens (e.g., door openings). An
example of a sensor log is shown in Table 1.1.

As many of the algorithms proposed in the literature borrow the terminology of
data mining, the sensor log could be conceived as a sequence of events instead of a

1.3 Ambient intelligence and process mining 12

sequence of measurements. Hence, we can introduce an alternative definition of a
sensor log as an event log:

Definition 1.3 (Event Log). Given a set E = {e1, . . . , enE } of event types, an event
sequence is a sequence of pairs ⟨e, t⟩, where e ∈ E and t is an integer, the occurrence
time of the event type e.

Whereas events in event logs record the execution of tasks, e.g., their start and
their completion, sensor logs contain fine-grained sensor measurements, e.g., the
temperature in a room at a certain point in time or the presence of a user located
near a piece of furniture.

The possibility to model and analyze a process at different levels of granularity
is not new in the community and was recently acknowledged as one of the major
challenge to be addressed in the PM research area [20]. In [193], the authors propose
an empirical evaluation of event log abstraction (ELA) techniques in process mining,
i.e., the task of transforming a low-level log into a higher-level event log, where
events are grouped into more abstract concepts to increase the understandability of
the processes.

A sensor log, though, is not simply an extremely fine-grained equivalent of an
event log, as while events in event logs are explicit traces of process task executions,
sensor measurements are often only loosely related to tasks. Consider, for example,
the measurements generated by Presence InfraRed (PIR) sensors which are frequently
available in smart space datasets. A single PIR may be triggered during the execution
of several different tasks, and during the execution of a single task, different PIR
sensors can be triggered in any order, where the exact sequence does not really provide
any additional information about the task itself. Turning sensor measurements into
events is a complex challenge that can hardly be solved without human manual
labeling, additional knowledge, or probabilistic reasoning [192].

While an important pre-processing step has to be performed to obtain high-level
quality event logs from information systems too, e.g., to select a case notion or
resolve data quality issues, the pre-processing of sensor logs is much more complex.
In order to apply techniques from the PM area, a sensor log must be converted
into an event log containing at least three elements [158]: (i) the case id, which
identifies a specific process instance; (ii) the label of the task performed; and (iii)
the timestamp. Since (i) and (ii) are absent from the sensor log, the conversion
from a sensor log to an event log usually consists of two steps: (1) bridging the gap
between sensor measurements and events in order to derive the task label, and (2)
segmenting the event log into traces in order to assign a case ID to each event.

While event logs are typically supposed to be split into traces (process executions),
sensor logs are not segmented and may contain information related to different
processes or habits performed simultaneously.

In addition to this, new issues appear when tackling multi-user environments,
i.e., smart spaces where several individuals could contribute to the execution of an
activity (e.g., two people collaboratively cleaning the house). In these cases, it might
be difficult to identify people associated with specific actions and, in turn, to analyze
collaborative processes. The presence of multiple people also has an impact on the
above-mentioned segmentation problem, as multiple independent processes may be
carried out simultaneously.

1.3 Ambient intelligence and process mining 13

The smart space community usually addresses the presence of multiple users by
using invasive labeling techniques such as those based on wireless beacons [155] or
cameras [123]. The same techniques could be employed, in principle, to associate
an identified user with each task of the event log, but in some cases they cannot
be applied because of privacy or comfort issues. In these latter cases, indirect
identification methods, such as those based on tracking, can be applied [124].

1.3.1 Modeling the human behavior in smart spaces

As mentioned before, we distinguish two main types of human behavior in smart
spaces: activities and habits. What distinguishes them is primarily the importance
of intention in triggering and guiding behavior: activities are performed in order
to attain a conscious goal, whereas habits are executed automatically in specific
contexts, with a lower degree of consciousness. This distinction is in line with
findings in behavioral psychology, which suggest that habits follow a specific model
of action where intention is blurred by the automaticity of routine [145, 65].

Human behavior, and more specifically, human activities and habits, are flexible
and unstructured. Given their intrinsic nature, in [124], authors proposed to represent
them via a workflow and discussed approaches that model habits and activities
using techniques derived from the PM area. The application of PM in smart spaces
requires modeling human behavior as a business process (BP) [172]. The similarity
is straightforward: a BP is similar to an activity, as they are both composed of a
series of tasks that involve actors and decisions, and they both have a specific goal
or desired outcome [68]. One could see an activity as a rather simple BP, usually
executed by a single actor. However, there are also several important differences
between human behavior and business processes [58]:

• Context-dependency: the impact of context on BP execution is often assumed
to be limited in BPM but cannot be ignored in smart spaces, especially when
considering human habits.

• Variability: activities are typically less structured than BPs, in the sense that
a particular human behavior can be realized with more equivalent execution
pathways than a BP, among other reasons because there is no enforcement of
a model.

• Repetitions: an activity or habit can be repeated throughout the day in
different circumstances or with a different sequence of activities (e.g., preparing
a sandwich or cooking fish both come down to preparing a meal).

• Concurrency: a human being can execute several activities or habits simultane-
ously or stop an activity to perform another one before resuming the execution
of the first one.

14

Chapter 2

Process discovery in smart
spaces: a literature review

While both process mining (PM) and smart spaces have been evolving quickly as
separate fields of study during the last few years, researchers have recently explored
combining both disciplines and obtained interesting results that should be analyzed
and compared in order to move forward. Applying PM techniques, and in particular
process discovery, to smart spaces data enables modeling and visualizing human
habits and activities as processes [124]. However, even though process models could
be extracted from smart spaces data, multiple important challenges arose when
applying techniques designed for business processes (BP) to human behavior [124]:
(i) choosing or designing the proper modeling formalism for representing human
behavior, (ii) abstracting the gap between sensor and event logs, (iii) segmenting
logs into traces to be able to apply PM techniques, (iv) dealing with multi-user
environments, and (v) addressing the continuous evolution of human behavior.

This chapter provides an overview of the current approaches in literature that
handle the aforementioned challenges and to what degree they are addressed.

2.1 Applying process discovery to smart spaces data
This section surveys existing approaches that apply process discovery to smart spaces
and analyzes how they deal with the following challenges identified in Chapter 1.

To perform the survey, a systematic literature review protocol was followed to
maximize the reproducibility, reliability, and transparency of the results [105]. The
protocol consists of six phases: (1) research question specification, (2) search criteria
definition, (3) study identification, (4) screening, (5) data extraction, and (6) results.
Figure 2.1 shows the number of studies reviewed and excluded in each phase and
the reasoning behind the exclusion.

Research questions

In this work, we highlighted the following research questions (RQs), focusing on the
challenges identified in [124]:

2.1 Applying process discovery to smart spaces data 15

Figure 2.1. Search methodology: overview of the included and excluded papers.

• RQ-1: how do primary studies represent human behavior? The study of a
proper formalism to represent human behavior has been extensively studied
in the smart spaces’ literature for many years (see, e.g., [168]), but separated
from the PM literature. Also, within the Business Process Management field,
specifically in the BP modeling phase, we can find in the literature many
modeling proposals for IoT BPs [187], but they are not specifically designed
for human behavior or for PM. As such, the selection or design of a proper
formalism to be used to represent human behavior in PM is still a research gap,
as highlighted by [58]. In this RQ, we will analyze which specific formalisms
have been used to model the human behavior output of the existing PM
techniques.

• RQ-2: how do PM techniques address the gap between sensor events and
process events? Nearly all PM techniques are based on event logs that rep-
resent high-level data (i.e., tasks easily understandable by the average user)
[98]. However, most sensors used in smart spaces output low-level data that
represents sensor events (i.e., raw data that has little meaning to the average
user) [98, 102]. As a result, the application of process mining techniques to
smart space data first requires the sensor logs to be translated into event logs
[178, 177]. This RQ will analyze how existing techniques transform low-level
sensor events into high-level process events [178, 182].

• RQ-3: how do PM techniques tackle logs that are not split into traces?
Although PM requires the log to be segmented into traces, it cannot be
assumed that this is automatically the case for logs produced by a smart space
[124]. In addition, the abundance of available data automatically collected
at a very high frequency by the sensors installed in the smart space makes
it difficult to perform the segmentation manually [59]. In this RQ, we will
investigate how current PM techniques applied to smart space data are dealing
with the segmentation of logs into traces.

• RQ-4: how do PM techniques tackle multi-user environments? Multiple users
can perform actions separately but also collaboratively at any given time [126].
While it is very common to have multiple users in a smart environment, most
datasets do not include information about the user or users that triggered an
event. In this RQ, we will investigate if and how current PM techniques deal

2.1 Applying process discovery to smart spaces data 16

with data collected from more than one user.

• RQ-5: how do PM techniques tackle the evolution of routines over time? While
both human routines and business processes can change over time, human
routines tend to be more flexible and less structured. As a result, human
routines vary more frequently, often based on contextual information that is
not present in the sensor logs (e.g., the inhabitant has changed jobs and now
works from home regularly). This RQ will investigate if and how existing
techniques consider concept drift when applying PM.

Search criteria and studies identification

Since this survey is about applying process discovery techniques to model human
behavior from smart space data, three groups were identified: group 1 represents
process discovery, group 2 represents human behavior modeling, and group 3 repre-
sents the smart space environment. Frequently used synonyms were added to ensure
full coverage of the relevant literature on each topic, yielding the following search
query (SQ):

SQ: (“process mining" OR “process discovery") AND (“behaviour pattern" OR
"behavior pattern" OR “habit" OR “routine" OR “activity of daily living" OR
“activities of daily living" OR “daily life activities” OR “daily-life activities” OR
“daily behaviour” OR “daily behavior”) AND (“smart space" OR “smart home"
OR “smart environment" OR “smart building")

The base set of papers was identified by searching the title, abstract, and
keywords using the Scopus and Limo online search engines, providing access to
articles published by Springer, IEEE, Elsevier, Sage, ACM, MDPI, CEUR-WS, and
IOS Press.

Screening

The papers identified by the search string must pass a quality and relevance assess-
ment in order to be included in the survey. The assessment consists of exclusion
and inclusion criteria. The exclusion criteria (EC) are defined as follows:

• EC-1: the study is not written in English.

• EC-2: the paper is a duplicate of an item already included in the review.

• EC-3: the study is a survey or literature review primarily summarizing previous
work where no new contribution related to the research topic is provided.

The inclusion criterion (IC) is defined as follows:
• IC-1: the study is about discovering and modeling human behavior using

PM techniques based on smart space data and answers at least one research
question.

The first set of primary studies was formed by all articles that remained after the
inclusion and exclusion criteria screening. Once these studies were selected, forward
and backward snowballing was performed. Articles identified through snowballing
were screened using the same criteria.

2.1 Applying process discovery to smart spaces data 17

Data extraction

First, generic information was extracted, such as title, authors, year of publication,
etc. (see Table 2.1). Afterwards, the research questions were answered based on the
content of each article.

2.1.1 Results

In this section, we present the results of the systematic literature review. We start
with a general description of the primary studies and their smart space setting before
covering the five RQs one by one.

Primary studies’ settings

Table 2.1 gives an overview of the 25 primary studies identified in this survey. The
studies are shown ordered by the year of publication of the work, from oldest to
newest, covering a ten-year period from 2013 to 2022, with at least one study per
year. It also reports essential information about the settings used by each study,
specifically:

• Environment: the facility and/or the area in which the data are collected, i.e.,
the smart space outfitted with sensors and actuators to collect data. Among
the selected studies, the most common choice are smart homes, covering 19
out of these studies. In addition, three studies cover healthcare environments
(e.g., a nursing home); two studies cover commerce platforms (e.g., a shopping
mall); and two studies cover the workplace environment, such as an office. The
study S8 stands out as it covers multiple environments: building, home, office,
street, and transportation.

• Dataset(s): the dataset(s) used to validate the approach described in the study.
Among the selected studies, 14 use a freely available state-of-the-art dataset
(the related reference is provided); ten of them validate their methodology
with data collected on their own; S22 and S23 use synthetic data produced by
a smart home simulator [195]. Two studies use multiple datasets (S6 and S8).

Table 2.2 provides additional information on the 19 datasets used across the 25
primary studies analyzed in this work. We marked as N/A the information that
could not be obtained from the papers. This table shows:

• Dataset: the reference to the dataset.

• Employed by: it indicates which studies (from Table 2.1) used the dataset as a
validation benchmark.

• Origin: it defines the origin of the data collection: synthetic (produced in
the context of a simulation) or real (collected from real settings). Among the
selected studies, only three of them (S7,S22 and S23) used synthetic data for
their validation phase.

2.1 Applying process discovery to smart spaces data 18

Table 2.1. Overview of included primary studies.

ID Ref Title Year Environment Dataset(s)

S1 [76] Process Mining for Individualized Behavior Modeling
Using Wireless Tracking in Nursing Homes 2013 Healthcare Own

S2 [36] Learning and Recognizing Routines and Activities in SOFiA 2014 Office Own

S3 [37] Incremental Learning of Daily Routines as Workflows
in a Smart Home Environment 2015 Home [43]

S4 [76] Process mining methodology for health process tracking
using real-time indoor location systems 2015 Healthcare Own

S5 [59] Process-Based Habit Mining: Experiments and Techniques 2016 Home Own

S6 [181] Heuristic approaches for generating Local Process Models
through log projections 2016 Home [194, 32, 140, 148]

S7 [183] Event Abstraction for Process Mining Using Supervised
Learning Techniques 2016 Home [194], [30]

S8 [175] Self-tracking reloaded: applying process mining
to personalized health care from labeled sensor data 2016 Multiple Own

S9 [35] Discovering Process Models of Activities of Daily Living
from Sensors 2017 Home [47]

S10 [135] Revealing daily human activity pattern using PM approach 2017 Home [148]

S11 [173] Addressing multi-users open challenge in habit mining
for a PM-based approach 2018 Home -

S12 [179] Generating time-based label refinements to discover
more precise process models 2019 Home [194]

S13 [62] Analyzing of Gender Behaviors from Paths
Using Process Mining: A Shopping Mall Application 2019 Commerce Own

S14 [63] Individual behavior modeling with sensors
using process mining 2019 Home Own

S15 [34] Extraction of User Daily Behavior From Home Sensors
Through Process Discovery 2020 Home [47]

S16 [125] Visual process maps: a visualization tool for discovering
habits in smart homes 2020 Home [43]

S17 [186] Process Mining for Activities of Daily Living
in Smart Homecare 2020 Healthcare [174]

S18 [60] Discovering Customer Paths from Location Data
with Process Mining 2020 Commerce Own

S19 [98] Process Model Discovery from Sensor Event Data 2020 Home [44]

S20 [154]
A Multi-case Perspective Analytical Framework
for Discovering Human Daily Behavior from Sensors
using Process Mining

2021 Home [176]

S21 [133] Interactive Process Mining in IoT and
Human Behaviour Modelling 2021 Home Own

S22 [167] Supporting Users in the Continuous Evolution
of Automated Routines in their Smart Spaces 2021 Home [195]

S23 [120]
The Benefits of Sensor-Measurement Aggregation
in Discovering IoT Process Models: A Smart-House
Case Study

2021 Home [195]

S24 [71] Unsupervised Segmentation of Smart Home Logs
for Human Habit Discovery 2022 Home [43]

S25 [61] Understanding Patient Activity Patterns in Smart Homes
with Process Mining 2022 Home Own

2.1 Applying process discovery to smart spaces data 19

T
ab

le
2.

2.
O

ve
rv

ie
w

of
th

e
da

ta
se

ts
em

pl
oy

ed
in

th
e

st
ud

ie
s

in
vo

lv
ed

in
th

is
w

or
k

(N
/A

st
an

ds
fo

r
no

t
av

ai
la

bl
e)

.

D
at

as
et

E
m

p
lo

y
ed

b
y

O
ri

g
in

A
va

il
ab

le
se

n
so

rs
V

al
u

es
#

u
se

rs
L

en
g

th
L

ab
el

in
g

#
A

D
L

s
#

se
n

so
r

m
ea

su
re

m
en

ts
#

A
D

L
in

st
an

ce
s

[7
6]

S1
R

ea
l

9
lo

ca
ti

on
br

ac
el

et
s

D
is

cr
et

e
9

25
w

ee
ks

N
/A

N
/A

12
5k

N
/A

[3
6]

S2
R

ea
l

M
ot

io
n,

br
ig

ht
ne

ss
,

li
gh

t,
to

uc
h,

m
ag

ne
ti

c,
te

m
p

er
at

ur
e,

pr
es

su
re

M
ix

ed
1

45
da

ys
Y

es
11

90
k

45
0

[4
3]

S3
,S

16
,S

19
,S

24
R

ea
l

M
ot

io
n

,
te

m
p

er
at

u
re

,
m

ag
-

ne
ti

c
M

ix
ed

1
22

0
da

ys
Y

es
11

17
20

k
6.

5k

[7
6]

S4
R

ea
l

P
ro

xi
m

it
y

D
is

cr
et

e
N

/A
3

m
on

th
s

N
o

-
39

k
-

[5
9]

S5
R

ea
l

M
ot

io
n

(C
A

S
A

S
se

n
so

r
ki

t
[4

4]
)

D
is

cr
et

e
2+

gu
es

ts
4

m
on

th
s

P
ar

ti
al

N
/A

N
/A

N
/A

[3
2]

S6
R

ea
l

w
ri

st
-w

or
n

ac
ce

le
ro

m
et

er
re

co
rd

in
gs

M
ix

ed
16

N
/A

Y
es

7
N

/A
N

/A

[1
48

]
S6

,S
10

R
ea

l
3

P
IR

,
4

do
or

,
1

fl
us

h,
2

pr
es

-
su

re
,

2
el

ec
tr

ic
M

ix
ed

1-
2

14
da

ys
Y

es
12

N
/A

N
/A

[1
75

]
S8

R
ea

l
A

cc
el

er
om

et
er

,
de

vi
ce

or
ie

nt
at

io
n,

G
P

S
se

ns
or

da
ta

M
ix

ed
7

2
w

ee
ks

Y
es

8-
37

N
/A

N
/A

[4
7]

S9
,S

15
R

ea
l

M
ot

io
n

,
te

m
p

er
at

u
re

,
m

ag
-

ne
ti

c
M

ix
ed

1+
p

et
58

da
ys

Y
es

11
-1

5
43

3k
23

18

[1
94

]
S6

,S
7,

S1
2

R
ea

l
14

sw
it

ch
se

ns
or

s
on

de
vi

ce
s

an
d

do
or

s
D

is
cr

et
e

1
28

da
ys

Y
es

7
21

20
24

5

[3
0]

S7
Sy

nt
he

ti
c

N
ot

sp
ec

ifi
ed

N
/A

1
30

da
ys

Y
es

4
40

k
N

/A

[6
2]

S1
3

R
ea

l
P

ro
xi

m
it

y
(i

B
ea

co
ns

de
vi

ce
s)

D
is

cr
et

e
64

2
N

/A
N

o
-

78
0k

-

[6
3]

S1
4

R
ea

l
M

ot
io

n
D

is
cr

et
e

25
68

to
33

2
da

ys
N

o
-

N
/A

-

[1
74

]
S1

7
R

ea
l

N
/A

N
/A

Se
ve

ra
l

(n
ot

sp
ec

ifi
ed

)
N

/A
Y

es
16

N
/A

N
/A

[6
0]

S1
8

R
ea

l
P

ro
xi

m
it

y
(i

B
ea

co
ns

de
vi

ce
s)

D
is

cr
et

e
17

24
un

iq
ue

cu
st

om
er

s
8

m
on

th
s

N
o

-
20

00
N

/A

[1
76

]
S2

0
R

ea
l

84
ac

ti
va

ti
on

/d
ea

ct
iv

at
io

n
or

op
en

in
g/

cl
os

in
g

D
is

cr
et

e
1

16
da

ys
Y

es
5

55
45

17
9

[1
33

]
S2

1
R

ea
l

M
ot

io
n

D
is

cr
et

e
1

70
da

ys
Y

es
N

/A
80

k
N

/A

[1
95

]
S2

2,
S2

3
Sy

nt
he

ti
c

C
on

fi
gu

ra
bl

e
w

it
hi

n
th

e
si

m
ul

at
io

n
to

ol
M

ix
ed

1-
2

21
da

ys
Y

es
9

25
k

78
8

[6
1]

S2
5

R
ea

l
P

ro
xi

m
it

y
D

is
cr

et
e

1-
3

N
/A

N
o

-
N

/A
-

2.1 Applying process discovery to smart spaces data 20

• Available sensors: each dataset usually contains data collected from a set of
sensors. Sensors can be roughly divided between those providing information
about the environment (i.e., environmental sensors) and those providing direct
information about human behavior (i.e., behavioral sensors). Nonetheless,
environmental sensors may provide indirect information about humans (e.g.,
an increasing temperature measurement in the bathroom can be the result of
a human having a shower) and vice versa. Information obtained by sensors
is always affected by a certain degree of uncertainty and imprecision due to
noise and intrinsic characteristics of the sensor (e.g., a presence infrared sensor
provides information about the position of a human but not information about
which action the human is performing, with the exception of what can be
inferred by the position of the sensor). Among the selected studies, motion
sensors are the most common choice; 16 works use them. S17 did not specify
the kind of sensor(s) employed in their work.

• Values: values provided by sensors can be either discrete (e.g., switch sensors),
continuous (e.g., temperature sensors), or mixed if both types are present in
the dataset.

• #users: the number of subjects involved in the dataset acquisition process can
have a profound impact on tasks usually performed in a smart environment.
As an example, when sensors do not directly allow them to recognize which
user is responsible for triggering a specific sensor event, activity and habit
recognition can be very complex.

• Length: the size of the dataset, in terms of days, weeks, or months of acquisition,
which affects the robustness of the extracted models or the validity of the
performance evaluation.

• Labeling: some datasets are labeled with a certain set of activities of daily
living (ADLs). Having ADL labels allows you to perform ADL-specific tasks
such as recognition and prediction. Labels usually refer to which ADL is
performed in a specific time range. The labeling could cover the data collected
in its entirety or just partially; in both cases, specific ADL tasks could be
implemented. Among the selected studies, 15 of them worked on fully or
partially labeled data, while eight of them worked on unlabeled data. On
studies S1 and S11, we cannot derive any useful information about this topic.

• #ADLs: the number of different activities included in the labeled dataset
for the evaluation phase. Excluding unlabeled ones and datasets for which
we cannot infer any information about the labeling (i.e., S1 and S11), we
have a minimum number of labeled ADLs equal to 5 and a maximum number
of labeled ones equal to 37 in S8, where the own dataset contains optional
sub-activity labels, e.g., to specify which meal the "eating" activity refers to.

• #sensor measurements: the number of raw sensor measurements in the dataset,
which in their entirety compose the sensor log.

• #ADL instances: the number of instances of ADL in the dataset (if the dataset
is labeled). Each instance groups together a sequence of sensor events (e.g.,

2.1 Applying process discovery to smart spaces data 21

the cooking activity is composed of the measurements of the sensors triggered
by the subject during the performance of the activity itself). Such grouping
is reflected in the difference in terms of numbers between sensor events and
ADLs. For example, in the aruba dataset [43] the number of ADL instances is
6.5k against the 1720k sensor events.

Figure 2.2. Number of publications per year

Figure 2.2 shows the publication trend over the years, which shows the number
of papers on the topic has considerably increased in the last 5 years.

2.1.2 Modelling formalisms

An overview of the modeling formalisms used by the primary papers is shown in
Figure 2.3 (note that some papers used more than one modeling language, e.g., to
compare the output of several PM techniques). Petri Nets (see Section 1.2.2) are
by far the most used formalism. This is consistent with the fact that it is a very
popular process modeling formalism that can be output by several state-of-the-art
discovery algorithms, such as the inductive miner [118].

Petri Nets is followed by weighted directed graphs, mostly as the output of
the fuzzy miner algorithm [85]. This algorithm allows to mine models flexibly by
determining the level of detail of the models.

A third noteworthy modeling language is timed parallel automata, a formalism
introduced in [78] that is designed to be particularly expressive. Other formalisms, i.e.,
first-order logic, unweighted directed graphs, causal nets, process trees, DECLARE,
and context-adaptive task models, are less widespread, only being used by at most
two studies. In addition, only S22 uses a modeling formalism that incorporates the
process execution context. Also note that S11 only derived an event log from the
sensor log and did not mine a model; hence, no formalism is used.

2.1 Applying process discovery to smart spaces data 22

Figure 2.3. Number of publications per formalism.

2.1.3 Abstraction gap between sensor events and process events

This section gives an overview of the techniques that the primary studies use to
convert sensor events into process events. Among them, S17, S18, S22, and S23 do
not require any conversion steps because they already work with event logs instead
of sensor logs. In particular, S22 and S23 make use of synthetic event logs produced
by a simulator. All the other studies have validated their approaches with real-life
datasets, as shown in Table 2.2. Ten studies (i.e., S1, S2, S4, S8, S11, S13, S14,
S18, S21, and S25) have performed the validation step on datasets they generated
themselves; all the other ones have applied their methodologies to state-of-the-art
datasets, namely [44, 194, 148, 174, 176].

Two general approaches to making groups of sensor measurements that correspond
to higher-level events can be identified from the literature: (i) classical window-based,
time-based, or event-based segmentation, and (ii) more complex time-series analysis.

In order to translate raw sensor measurements into proper event labels, the most
common method is to derive information from the sensor’s location, as in S1, S4, S6,
S13, S14, S15, S18, S21, and S25. For instance, if the triggered sensor is above the
bed, then the task “sleeping” is derived. However, this method has its drawbacks,
as acknowledged in S5: the information provided by motion sensors is not always
detailed enough to derive tasks accurately. These ambiguities could be addressed
by introducing other types of sensors in the environment (e.g., cameras), but that
would make the approach more intrusive.

In S4, S14, and S25, no real conversion step is performed; the models directly
show the successive locations users have been in. While this approach may seem
naive, it can yield interesting results, as in S4, where it was employed to monitor
clinical pathways, showing the flows of patients through different units of a hospital.

In S16, authors perform the conversion task by adapting an already existing
algorithm [116] to automatically segment and assign human actions’ labels (i.e.,
MOVEMENT, AREA, or STAY), combined with their relative location inside the smart
environment (e.g., STAY Kitchen_table). A more detailed explanation and practical

2.1 Applying process discovery to smart spaces data 23

ID Log Segmentation
Approach

Multi-user
Approach

Routine Evolution
Approach

S1 / Sensor-based Non-automated incremental learning
S2 Manual / Fully-automated incremental learning
S3 Manual / Fully-automated incremental learning
S4 / Sensor-based /
S5 Manual Algorithm-based /
S6 Time-based / /
S7 Time-based / /
S8 Time-based / /
S9 Manual / /
S10 / / /
S11 / Sensor-based /
S12 Time-based / /
S13 Time-based Sensor-based /
S14 Time-based / Non-automated incremental learning
S15 Manual / /
S16 Task-based / /
S17 Manual / /
S18 Time-based Sensor-based /
S19 Time-based Algorithm-based /
S20 Task-based / /
S21 Time-based / /
S22 Time-based / Semi-automated incremental learning
S23 Time-based / /
S24 Time-based / /
S25 Time-based Sensor-based /

Table 2.3. Summary of the approaches used in the studies to manage (i) log segmentation,
(ii) multi-user environments, and (iii) routine evolution. The symbol ‘/’ indicates that
the related study did not provide any meaningful information about the related topic.

application of this approach can be found in Chapters 5 and 6.
Using a labeled dataset facilitates this conversion task. Studies S7, S12, S14,

and S20 have used such labeling to manually deduce event names. However, this
approach can be very time-consuming and error-prone, and labels often correspond
to tasks at a higher level of abstraction with respect to atomic events.

2.1.4 Log segmentation into traces

PM techniques typically require a log to be segmented into traces with a case ID
[158], a requirement that is often not met by sensor logs. S4 is an exception, as each
trace in the log represents the path followed by one patient undertaking surgery at
a hospital. The beginning and end of each instance of the process were therefore
defined as the arrival and discharge of the patient; hence, no further segmentation
was necessary. To account for the lack of segmentation in most cases, most of the
included studies use a form of segmentation to obtain an event log made of distinct
cases, as shown in Table 2.3. We assume that all studies, even those that do not
state it explicitly, at least segment the sensor log in one trace per day to meet the

2.1 Applying process discovery to smart spaces data 24

requirement posed by PM techniques.
There are two types of segmentation applied in the studies: manual and automatic.

In manual segmentation approaches, the user is requested to explicitly mark the
beginning and/or the end of an ADL. Authors in S15, for example, use this approach
to segment a day into ADLs. Based on the annotations added by the user, S15 adds
artificial trace start and end events to the sensor log. For instance, when a user
indicates that he or she is starting the cooking ADL, a start event is added to the
sensor log.

Manual labeling is unfortunately time-consuming and error-prone. Alternatively,
some approaches try to automatically segment the log, which appears to be more
feasible in real-life scenarios.

Automatic segmentation is usually task-based or time-based. Authors in S9,
for example, perform task-based segmentation to segment a log by creating one
trace per day. Their approach uses the sleeping activity to determine when two
consecutive days should be split. Examples of approaches using time for automated
segmentation are instead the following:

• Using the time-based technique to split days using midnight as a cut-off point,
such as in S6, S8, or S25. We want to highlight that, even though this kind
of trivial approach may appear arbitrary, it is reasonable with respect to the
employed logs (recording elderly activity).

• Segmenting each day into ADLs or visits by measuring the gap between two
sensor events. When the gap is larger than a predefined threshold, the log is
split into two traces, such as S13 or S23.

In addition, if the sensor log contains different versions of human ADLs, a
clustering step is usually implemented, such as in S14 and S23.

2.1.5 Multi-user environments

In smart spaces (e.g., smart homes and smart factories), multiple entities can be
present at the same time in the same environment. It has to be ensured that the
analyzed events are all associated with the correct entity.

Among the included works, only eight studies support multiple users, i.e., S1,
S4, S5, S11, S13, S18, S19, and S25. Table 2.3 shows that the included studies rely
on two types of techniques to handle multi-user environments: (i) a sensor-based
approach and (ii) an algorithm-based one.

The sensor-based approach involves the use of additional sensors and/or smart
devices, whose sole purpose is to identify every user within the smart space. The
most common application of this approach is to track an individual using their
smartphone and Bluetooth Low Energy (BLE) sensors. Sensor events are associated
with a certain inhabitant based on their proximity to the sensor itself. In S11,
the authors propose an approach based on exploiting BLE beacons to discriminate
between the different users interacting in the same smart space, then applying
techniques from the area of business process mining. Here, inhabitants interact with
beacon sensors by moving near them with their registered smartphones. Sensor data
produced at a certain timestamp is then associated with that specific user. In S4

2.1 Applying process discovery to smart spaces data 25

and S25, users wear wristbands that are recognized by motion sensors to identify
the user activating them. In S13 and S18, BLE technology is used in the context
of a shopping mall, allowing authors to derive a pathway for the customer that
moves within it. In particular, authors in S13 use the collected data to discover
and discriminate between male and female customer paths. In S1, inhabitants wear
radio-frequency identification (RFID) bracelets that connect periodically with the
server by using the Zigbee protocol, which computes an estimation of the distance
[1].

The algorithm-based approach does not rely on additional sensors to recognize
which user performed which task. Instead, it makes use of an algorithm that
estimates an association between triggered sensors and users interacting within the
same smart space. In S19, the users’ velocity information is used by the algorithm
to infer whether consecutive sensor events could be triggered by the same user. If
the time span between two sensor events is considered too short for the user to have
moved the distance between both sensor locations, it is assumed that a new user
has entered the smart space. In S5, authors also manually derived a distance policy,
representing logical distances between couples of sensors within the observed smart
environment. Such additional information has been used to enrich the association
algorithm between triggered sensors and users.

2.1.6 Routine evolution

As shown in Table 2.3, the included studies struggle to deal with routine evolution
as only four of them manage to account for changing behavior, i.e., S1, S2, S3, S14,
and S22. The included studies rely on three approaches: (i) non-automated, (ii)
semi-automated, and (iii) fully-automated incremental learning.

The approach employed in S1 is denoted as non-automated. The authors use a
process mining algorithm called PALIA [77] to infer models from location-based log
samples. Such models can be filtered at specific time intervals, allowing us to see the
model’s evolution over time. A distance measure is then used to detect differences
from the same model captured at different time intervals. The algorithm captures
the differences in terms of transitions and nodes added or deleted. The weights of
each type of difference can be customized in order to prioritize some differences
over others. This allows them to identify and visualize changing behavior (e.g., an
inhabitant who no longer has lunch in the common room), but this approach does
not adapt the model based on new behavior. S14 proposes a related approach where
traces are clustered to identify variants of the process. The variant executed each
day is represented in a calendar view, which enables the visual detection of temporal
patterns in the habits of the user (e.g., the user’s habits differ on the weekend and
during the week) and evolution in the behavior. If the behavior changed radically,
generating a new process variant, a model of this variant could easily be discovered.

In S2 and S3, the authors implemented a fully automated approach to handle
the routine evolution. Firstly, their algorithm divides the dataset into daily training
cases. Then, it takes a new training case and uses it to update an existing workflow
model, if any, or to build a new model from scratch, if that is the first case considered.
They adopt a process mining perspective to incrementally learn models of routines
on a daily basis.

2.2 Discussion 26

The most recent, among the analyzed studies, follows a semi-automated approach.
This technique is similar to the fully automated one, but it also relies on user input to
assist the incremental learning process and update the model. In S22, they employ a
combination of two techniques called Cortado and MAtE. Cortado is used to identify
traces present in the captured sensor log but absent in the existing model. These
missing traces are then presented to the user using MAtE, allowing the user to select
the traces they would like to have supported by the model.

2.2 Discussion
This section discusses the datasets used by the identified solutions, the investigated
challenges, and explains how validity threats were mitigated in the survey.

2.2.1 Used datasets

As shown in Section 2.1.1, the most common kind of sensors used to collect data in
the studied solutions are motion ones. Motion sensors provide a low-cost, low-power,
small, and lightweight alternative in many applications if exploited in the right
way [144]. For instance, in comparison with cameras, another sensing system very
present in smart spaces, motion sensors consume less power for sensing a large
area, and they pose fewer privacy concerns. Cameras require often sophisticated
image processing algorithms and expensive lenses to improve their detection, while
typically a motion sensor consumes approximately 3µW for movement detection.
The approaches shown in Chapters 5 and 6 use this type of sensor.

Concerning the labeling, being able to recognize when a certain activity of daily
living (ADL) started and ended can be used, for instance, to trigger automation rules
or to detect potentially harmful deviations from the usual behavior. Unfortunately,
such solutions require logs to be labeled with markers denoting the onset and the
end of all (or at least of a consistent subset) ADL occurrences. Such labeling tasks
can be performed manually or they can be derived with some automatic technique.
Manual labeling of logs is perceived by the user as a boring and laborious job, which
results in imprecise labeling, possibly tampering with the performance of algorithms
at runtime. On the other hand, automatic labeling techniques suffer from several
limitations when applied to real-world scenarios, e.g., in many cases, automatic
techniques are only used to complement manual segmentation and are not intended
to segment the full log [46]. The approaches shown in Chapters 5 and 6 are based
on automatic techniques to derive activity and habit models.

Regarding the number of different ADLs included in a labeled dataset, excluding
the extreme cases with 5 and 37 labeled ADLs, most of the logs used in these studies
employ an average of 10–11 labels to describe human behavior in smart environments.
For instance, the aruba dataset from the CASAS project [44] has the following labels:
Bed to toilet, Eating, Enter home, Leave home, Housekeeping, Meal preparation,
Relax, Sleeping, Wash dishes, and Work.

2.2 Discussion 27

2.2.2 Modelling formalisms

As discussed in Section 2.1.2, papers applying PM to smart spaces data must
explicitly or implicitly choose a formalism to represent human processes.

Interestingly, while it is suggested in [124] that human routines are rather
unstructured and unpredictable, the most used formalism in the reviewed studies is
Petri Nets, an imperative modeling language. This may simply be because Petri
Nets are one of the most widely used languages in PM, which allows process checking,
simulation, and enactment.

A certain number of studies opted for alternative formalisms that perform well in
practical situations and with results that are more readable and easy to understand
[201], e.g., weighted directed graphs. This enables the discovery of clearer and
potentially better-fitting models, though less precise and actionable. The assumption
of having a precise model that perfectly fits the log is limiting. For instance,
“spaghetti models” are not necessarily incorrect because they precisely describe
every structural detail found in the log. However, a more high-level and less precise
solution, which is able to abstract from details, would thus be preferable. In general,
the assumption of a perfect solution is not well-suited for real-life applications [85].
A solution to make models more actionable is to implement prediction techniques,
as in S10.

It is also remarkable that only one of the studies, S8, mined declarative models,
a widespread flexible paradigm that could be able to cope with the variability of
human behavior. This may be explained by the fact that declarative models are
usually harder to understand than imperative models, making it more complex for
users to interact with the smart space system.

Finally, another important aspect in smart spaces is context-awareness or context-
dependency: the process model should be context-aware to adapt to the changes in
the environment [18]. This is surprisingly still neglected in current research about
PM applied to smart spaces. Only S22 supports the modeling of context-adaptive
routines by using context-adaptive task models and process trees.

2.2.3 Abstraction gap between sensor events and process events

The abstraction gap has been recognized as one of the main challenges in PM applied
to smart space data [208]. The solutions proposed in the literature are dataset-
and/or sensor-specific. In most cases, only infrared sensor data (i.e., motion data) is
available, witnessing the human performing actions in specific areas of the house.
This also makes the techniques proposed very sensitive to the distribution of sensors
across the environment. In addition, the scarce availability of datasets makes it
difficult to evaluate the proposed approaches across multiple scenarios. In most
cases, datasets from the CASAS project1 are used. This does not provide sufficient
heterogeneity to ensure a reliable evaluation.

Finally, input from the broader PM literature could help address this issue.
More specifically, generic event abstraction techniques used in PM could also be
used to abstract sensor events into process events (see [207]). This being said,
in a benchmark study, authors in [192] suggest that typical unsupervised event

1See http://casas.wsu.edu/datasets/.

http://casas.wsu.edu/datasets/

2.2 Discussion 28

abstraction techniques do not always allow discovering more meaningful higher-level
models. As shown by this literature review, the vast majority of event abstraction
techniques in the case of smart spaces are not fully unsupervised, as even when no
labeling is provided, some kind of domain knowledge is employed in the abstraction
process. Moreover, IoT PM methodologies also propose techniques to extract an
event log from sensor data, such as, e.g., in S20; a deeper dive in this literature
could identify relevant abstraction techniques for smart spaces.

2.2.4 Log segmentation into traces

The proposed approaches for segmentation are usually naive (e.g., automatic daily-
based segmentation) or rely on extensive output from the user (i.e., manual task-based
segmentation). From this point of view, the open research challenge is to perform
segmentation by using process semantics and the context [124]. An initial proposal
has been given in S24, where process model quality measures are used to iteratively
segment the log.

In addition to this, segmentation is only a part of the problem, as traces must
be clustered in order to produce event logs that only contain instances of the same
ADL, which is a prerequisite for PM [190]. This is analogous to the general issue of
case ID definition in PM, i.e., pinpointing what an instance of the process is.

2.2.5 Multi-user environments

As described in Section 2.1.5, two techniques are mainly employed: a sensor-based
approach and an algorithm-based approach.

The first approach is not perfect, e.g., there is the possibility that two or more
different users get near the same beacon [163]. In this case, as proposed in S11, a
solution to this problem could be to duplicate and pair the interested portion of log
records with all the interested users. However, this approach does have its perks,
namely the availability of contextual information about the user that is performing
a task [60]. This contextual information proves to be valuable as it allows for the
creation of more detailed process models (e.g., creating a different process model for
men and women, supporting gender-based analysis of behavior, like in S13). The
main drawbacks of using a sensor-based approach include: (i) the lack of privacy
(i.e., location data of each user is recorded 24/7) [38] and (ii) the impracticality of
always needing to have your smartphone or bracelet with you.

In the second approach, the algorithm-based one, the lack of additional sensors
makes this approach easier to implement as opposed to the sensor-based approach.
The algorithm-based approach does not require the user to wear bracelets or smart-
phones, making it less intrusive and less reliant on battery-powered devices. However,
it does have one main drawback: it can be considered less accurate because it is less
resilient to noise [147], e.g., a pet might trick the algorithm into thinking a new user
has entered the smart space.

2.2.6 Routine evolution

As described in Section 2.1.6, the included studies rely on three approaches to
handling routine evolution. The non-automated approach, as opposed to the other

2.2 Discussion 29

two techniques, does not adapt the model based on the behavior’s changes in the
inhabitant. As a result, this technique is less suited for applications where the model
needs to account for changing routines. However, it is useful in the detection of
behavioral anomalies and could therefore be recommended in specific environments,
e.g., nursing homes, to implement elderly fall detection systems [76].

The other two kinds of approaches represent two sides of the same coin. The
semi-automated technique follows the user-in-the-loop paradigm, i.e., the final user
assists the learning process and validates learned models. Such an approach is useful
since it prevents undesired behavior from being included in the model (e.g., the
user was sick and spent a whole day in bed). However, manual validation can be
perceived by the user as an annoying and laborious job and could lead to wrong
choices [90]. Whereas fully-automatic techniques reduce the final user’s effort by
learning models in an autonomous way, even reaching excellent levels of accuracy, it
is not possible to exclude that learned models include some undesired behavior.

2.2.7 Threats to validity

When conducting a literature review, threats to validity should be considered and
mitigated [12]. The following actions were taken to mitigate:

• study selection validity risks: (i) search criteria were selected and modified
based on pilot searches; (ii) forward and backward snowballing were used to
find relevant literature; (iii) articles were retrieved from the most well-known
digital libraries; (iv) duplicate articles were managed consistently.

• data validity threats: (i) a data extraction form was used; (ii) variables from
the extraction form were mapped to research questions; (iii) results were
compared to existing studies.

• research validity risks: (i) the review protocol used in this paper was defined
in detail before it was executed; (ii) the related work was studied beforehand
to ensure the research relevance.

30

Chapter 3

Generating smart home data

Scientific contributions in the field of smart spaces need to be validated against
datasets, for example, sensor logs acquired from smart environments. In order to
acquire these datasets, expensive facilities are needed, including sensors, actuators,
and an acquisition infrastructure. In addition, frequently employed smart home
hubs (e.g., voice assistants like Amazon Echo Dot) do not allow access to raw data.

Even though several freely accessible datasets are available, each of them features
a very specific set of sensors, which can limit the introduction of novel approaches
that could benefit particular types of sensors and deployment layouts. Additionally,
acquiring a dataset requires a considerable human effort for labeling purposes, thus
further limiting the creation of new and general ones. Also, labeling is an error-prone
activity, which makes the quality of the available datasets unclear. As a consequence,
the vast majority of approaches available in the literature are evaluated against
datasets gathered in university labs (i.e., datasets that are not always general and/or
whose quality cannot be taken for granted).

For this reason, smart environments are one of the many disciplines where
we are witnessing the replication crisis (or reproducibility crisis), i.e., an ongoing
methodological crisis in which it has been found that many scientific studies are
difficult or impossible to replicate or reproduce [11][74].

Even if the crisis is more evident in the social sciences, the inability to replicate
the studies of others has important impacts in the smart environment area. In
order to advance in this area, researchers need open datasets, as without them,
developed techniques can neither be compared nor validated in a reproducible way,
which hinders innovation in the area. Without comparable and proven techniques,
practitioners, industries, and users will not be confident in large investments and
deployments, thus, in turn, not increasing the number of testbeds, living labs, and
datasets: a dramatic spiral that hinders the whole research community.

In addition to the above-mentioned aspects, a recent research trend [95] focuses
on the possibility of analyzing smart environments in terms of the ongoing processes
by relying on the Internet of Things. A business process is a collection of related,
structured activities or tasks performed by people or equipment with a specific
goal. A Cyber-Physical System (CPS) [115] integrates computation with physical
processes, i.e., business processes, where the vast majority of tasks happen in the
physical world. As such, modern smart spaces can be considered examples of CPSs,

3.1 Behavior pattern models 31

where human routines are the processes of interest. In CPS, embedded computers
and networks monitor and control the physical processes, usually with feedback loops
where physical processes affect computations and vice versa. Physical processes
in smart spaces are called Activities of Daily Living (ADLs). ADLs are usually
employed as high-level labels without considering the inner details. In order to fully
support CPSs, datasets must be labeled not only for higher-level processes (e.g.,
human activities of daily living) but also for fine-grained actions (e.g., opening a
door).

In order to tackle the above challenges, we present a model-based simulator able
to generate synthetic datasets using the eXtensible Event Stream (XES) international
standard format and containing all the necessary labels. The simulator is based on
human activity models and is able to emulate the characteristics of the vast majority
of real datasets while granting trustworthy evaluation results.

Such datasets can be employed to propose, for instance, challenges organized in
conferences and workshops, to produce fair comparisons between different approaches,
and/or to replicate the features of already available datasets and extend them.

The rationale behind this effort is that while the evaluation of algorithms in
smart spaces through real datasets still remains important, the possibility to easily
create custom datasets by fine-tuning a virtual space and available sensors could
greatly improve the evaluation of proposed algorithms. In particular, thanks to the
proposed simulator, it will be possible to evaluate the performance of algorithms
depending on the availability and distribution of sensors and actuators. Also, this
simulator could be employed as a design tool for smart spaces targeted at improving
the performance of already available algorithms.

In order to assess the simulator, we evaluate the quality of the datasets that it
can generate in terms of how well they can emulate reality in comparison with two
real-scenario state-of-the-art datasets.

3.1 Behavior pattern models
Human processes in smart spaces may require specific formalisms. In particular,
authors in [168, 169] introduce a specific BPM formalism, extending the Hierarchical
Task Analysis (HTA) meta-model [14], that we will denote as context-adaptive
behavior pattern modeling formalism or simply behavior pattern modeling formalism
in the rest of the chapter, to deal with human processes in smart homes.

Figure 3.1 shows an example of a behavior pattern taken from [168]. As
it can easily be seen, the task “Waking up” is hierarchically defined as the se-
quence of tasks “BathroomHeating.turnOn”, “Adapt Bedroom”, and “Appliance-
Controller.makeCoffee”, where “Adapt Bedroom” is a composite task that is in its
turn refined into other tasks and so on. Tasks at the same level of the hierarchy can
be instantiated according to different constraints. For example, the symbol A|||B
denotes concurrent execution of tasks A and B; the symbol A ≫ B denotes that
task B is performed immediately after the end of task A; and the symbol A[] ≫ B,
in addition, denotes that the task A produces an output used by the task B. In
this work, we have chosen the behavior pattern modeling formalism introduced
in [168, 169] as a means to define human routines to be simulated. This formalism

3.1 Behavior pattern models 32

currentTime = 7.30AM
AND

isWorkindDay = true

>> [BobUser.currentLoca�on
= Kitchen] >>[10 mins] >>

[Bathroom Temperature < 28]
BathroomHeathing.turnOn ApplianceController.makecoffee

[isSunnyDay=true]
BedroomBlindController.raise

[isSunnyDay=false]
BedroomLigh�ng.switchLightOn

 BathController.turnWaterOn
[] >>

[temp]

UserAssistant.getPreferredTemperature

Adapt Bedroom

Waking Up

 |||
change_clothes Mul�media.turnTheRadioOn

 BathController.turnWaterOff
>> [preferredWaterLevel=bathLevel] >>

Prepare Bath ||| change_clothesManage Ligh�ng

Figure 3.1. An example of behavior pattern taken from [168].

extends HTA models with:

• A context situation, which is associated with a behavior pattern. It indicates
the set of context conditions that must be satisfied in order to execute the
full set of coordinated services. It is depicted by a note associated with the
root task of the hierarchy that defines the behavior pattern. For instance,
Figure 3.1 presents a context-adaptive version of the “WakingUp” behavior
pattern. Its context situation indicates that the behavior pattern should be
executed every working day at 7:30 a.m.

• Task context preconditions, which can be associated with any task of a hierarchy
except the root task. They indicate that the task (and therefore also its
subtasks) must be executed if and only if the task precondition is satisfied.
They are defined over contextual variables and are depicted between brackets
just before the task name. For instance, the system must turn the bathroom
heating on only if the bathroom temperature is < 18◦C.

• Context-dependent constraints, which can be defined to coordinate the execution
of tasks that have been obtained from the temporal refinement of the same
parent task. As explained earlier, constraints of this type are depicted by
means of arrows between subtasks. These constraints are the following:

– T1 ≫ [c] ≫ T2: after executing T1, T2 is performed only when the
condition c is fulfilled. For instance, the system could decide to prepare
coffee after adapting the room, but only when the inhabitant named Bob
is in the kitchen (BobUser.currentLocation.name=Kitchen). Similarly,
the task of turning the bath water off is performed after turning it on,
but only when the bath water level has reached the level preferred by the
inhabitant.

– T 1 t ≫ T 2: after executing T1, T2 is performed when the period of time
t has elapsed. For instance, ten minutes after turning on the bathroom
heating, the system must adapt the bedroom.

3.2 XES - eXtensible Event Stream 33

In this work, we used HTA to represent the models that are fed as input to
the proposed simulation tool. With respect to other modeling formalisms in the
BPM area, HTA are more suitable to represent human activities and habits, as they
easily make possible to model conditions, which are fundamental triggers for human
actions.

Noteworthy, the employment of HTA as a modeling tool for generation purposes
does not require using the same formalisms for analytics and process mining. In
particular, HTA is well suited for prediction and conformance checking but not for
discovery and enhancement [169].

3.2 XES - eXtensible Event Stream
Event logs are usually made available by the BPM and Process Mining community

in the form of eXtensible Event Stream (XES) files [200], an IEEE standard1 based
on XML.

XES event logs are divided into traces, each representing the execution log
of a specific instance of a process. Each trace contains a set of events ordered
by timestamp. An identification number is assigned to each trace and each event.
Attributes can be associated with logs, traces, and events, but XES does not prescribe
a fixed set of mandatory attributes for each element (log, trace, and event); an
event can have any number of attributes. However, to provide semantics for such
attributes, the log refers to so-called extensions.

An XES log also defines an arbitrary number of classifiers. Each classifier is
specified by a list of attributes. Any two events that have identical values with
respect to these attributes are considered to be equal for that classifier. These
attributes should be mandatory event attributes. For instance, if a classifier is
specified by both a name and a resource attribute, then two events are mapped onto
the same class if their names and resource attributes coincide. In this case, by equal
events, we mean actions that compose an activity that has the same name and the
same life cycle. The life cycle’s attribute defines whether the event refers to the start
or end of the related action (with the values start and complete, respectively). In
Figure 3.2, an example of an XES log has been provided. In particular, the header
provides information about the XES formalism and the classifiers used. The actions
are defined as a sequence of event tags (e.g., wash hands) and grouped into traces.
Each event provides information about the name of the action, when the action
occurred, and its life cycle through its attributes. In Section 3.3.2, it is shown how
a behavior pattern (like the one shown in Figure 3.1) can be translated using this
XES notation.

Our simulator produces logs in the XES format. The motivation for this choice
is twofold. In the first place, as part of the growing trend aiming at applying BPM
and process mining, we want to make datasets easily analyzable by using tools from
the community, which take as input XES files. In second place, XES is a standard
for storing streaming data, which makes it particularly suitable for data coming
from smart space sensors. However, an alternative format fully compatible with this
simulator will be discussed in Chapter 4.

1cf. https://xes-standard.org/

https://xes-standard.org/

3.3 Design and realization of the simulator 34

1 <log xesversion="1.0" xesfeatures="nested-attributes"
openxesversion="1.0RC7">↪→

2 <extension name="Time" prefix="time"
uri="http://www.xes-standard.org/time.xesext"/>↪→

3 <extension name="Lifecycle" prefix="lifecycle"
uri="http://www.xes-standard.org/lifecycle.xesext"/>↪→

4 <extension name="Concept" prefix="concept"
uri="http://www.xes-standard.org/concept.xesext"/>↪→

5 <classifier name="Event Name" keys="concept:name"/>
6 <classifier name="(Event Name AND Lifecycle transition)"

keys="concept:name lifecycle:transition"/>↪→

7 <string key="concept:name" value="XES Event Log"/>
8 <trace>
9 <string key="concept:name" value="0"/>

10 <event>
11 <string key="concept:instance" value="0"/>
12 <string key="concept:name" value="Wash hands"/>
13 <string key="lifecycle:transition" value="start"/>
14 <date key="time:timestamp" value="2010-11-04T05:40:44"/>
15 </event>
16 <event>
17 <string key="concept:instance" value="0"/>
18 <string key="concept:name" value="Wash hands"/>
19 <string key="lifecycle:transition" value="complete"/>
20 <date key="time:timestamp" value="2010-11-04T05:42:26"/>
21 </event>
22 <!--
23 list of event tags
24 -->
25 </trace>
26 <!--
27 list of trace tags
28 -->
29 </log>

Figure 3.2. An example of event log represented by using the XES formalism. This file
contains a set of traces (defined through the trace tag), each one composed of a sequence
of events (defined through the event tag).

3.3 Design and realization of the simulator
The simulator proposed in this chapter follows the framework described in [107],
in which the authors propose a model to simulate daily activities. Section 3.3.1
introduces the main features of the original framework. We enriched the simulator
with (i) the support for model-based simulation using context-adaptive behavior
patterns, which allow to model branches and conditions that are typical of human

3.3 Design and realization of the simulator 35

activities (see Section 3.3.2), (ii) the possibility to simulate multiple users (see
Section 3.3.3), and (iii) the possibility to export data as XES (see Section 3.3.4).

3.3.1 Original simulation framework

The original framework is based on three main components:

1. The house model models the environment in which the simulated inhabitant(s)
live (in our case, a smart house). With such a model, it is possible to set the
layout of the house. Walls, as in a real house, delimit areas of the virtual
environment, thus limiting the possible movement trajectories of simulated
human inhabitants. In Figure 3.3, a screenshot of the simulator’s component
used to design the layout of a house model has been provided. The position
of walls is considered fixed, and the positions of walls and doors are therefore
considered constant parameters. Next to this, variable parameters can also
be defined (e.g., temperature, humidity, and whether the television is on or
off). In addition, several positions can be defined within the already defined
layout. Positions represent all the locations with which an inhabitant may
interact during the day (e.g., the bed, the TV, the sink, the bookshelf). Finally,
the positions of sensors can also be defined through this model. They are
represented as a triple (x, y, α) where x and y are coordinates within the
2-dimensional layout of the house and α represents the orientation of the
sensor in degrees, i.e., what the sensor is “looking at”.

2. The human model is used to simulate different inhabitants with different
behavior profiles. It consists of a set of constant parameters describing the
character of each inhabitant, such as his or her speed or frequency of feeling
different needs (e.g., tiredness, thirstiness). For instance, an inhabitant could
need eight hours of sleep, while another would need much less. One could
drink a lot of water every day; the other consumes less. These parameters,
together with environmental parameters from the house model, describe the
overall state of the current situation. This information is used to control the
next event to be simulated. A detailed description of how events are handled
by the simulator will be given later in this section.

3. Finally, the acting model provides the mathematical definition of the simulated
events (described afterwards), and it is used to simulate the monitoring of an
inhabitant in his or her smart environment. Simulated motion sensors log if
they detect the inhabitant. The distance from the sensor and the angle of the
inhabitant relative to the sensor’s direction are also logged. The non-motion
sensors (e.g., temperature, humidity, and light sensors) are implemented as
environmental variables, e.g., the value of the temperature. Actions and other
custom functions can modify them. For instance, by opening the tap, the
variable related to water consumption will be increased by this action.

These three models together are used to simulate human daily activities by consider-
ing the environmental context in which the inhabitant(s) move(s) and interact(s),
each of them with their behavioral characteristics and needs.

3.3 Design and realization of the simulator 36

Figure 3.3. A possible smart home layout that can be designed through the Home Designer
tool. In particular, here we have recreated the smart environment used to extract the
state-of-the-art testbed, called aruba, from the CASAS project (see Section 3.4.2). The
original 2-dimensional map is provided by the authors of the testbed themselves.

The simulation is performed on the basis of a virtual clock, thus allowing to
generate data for long periods of time with short computation time. At each
simulation step (i.e., at each tick of the virtual clock), the values assigned to the
parameters (defined in the three models already discussed) are reevaluated according
to custom mathematical formulas. For instance, the tiredness of an inhabitant could
be expressed as a formula that increases the related value (from the human model) at
every simulation step. Such value could be increased more or less quickly, depending
on how the formula is defined by the final user.

The simulator supports two different kinds of events:

• main events, i.e., what we have defined as human activities in Section 1.
They represent a higher level of abstraction with respect to bottom events (see
below). A main event contains a sequence of actions (i.e., bottom events) to be
executed. For instance, the main event describing the activity cook_and_eat
(see Figure 3.4) is composed by the following list of actions: go_fridge,
get_ingredients_from_fridge, go_kitchen_shelf, and so on. This sequence of
actions, in their entirety, composes the main event itself.

• bottom events, i.e., what we have defined as actions in Section 1. They
represent a lower level of abstraction with respect to the main events. They are
executed by the inhabitant in the smart environment, and they influence human
and environmental variables during their execution. There is a sub-category
of bottom events called movement events. Movement events are labeled with
the prefix go_, and they trigger the movement of a person to a specific goal
position from the list of positions already defined in the house model.

3.3 Design and realization of the simulator 37

1 cook_and_eat MainEvent
2 Priority $min(@(hunger)*(0.5+@(c_f))+$attime(13,2)*20-25+@(warm_food_need)

,100)
3 Interrupt 80
4 Flow Simple
5 go_fridge get_ingredients_from_fridge go_kitchen_shelf

get_ingredients_from_shelf go_oven use_oven go_dining_table
eat_warm_meal go_oven pack_food go_fridge put_meal_to_fridge
plate_to_sink

Figure 3.4. Example of main event describing the activity cook_and_eat. This activity is
composed of a list of actions, also called bottom events. The priority of the event (see
row 2) is provided by a formula taking into account the fact of being in a particular
moment of the day (through the $attime built-in formula), the necessities (through
the human variables @(warm_food_need) and @(hunger)), and the preferences of the
specific inhabitant (through the human constant @(c_f)). The interrupt value (see row
3) defines the minimum priority another main event needs to interrupt this event. Finally,
at row 5, the sequence of bottom events to be generated (i.e., actions to be executed
by the human inhabitant to perform the activity) is reported. Among these bottom
events, we have movement actions (e.g., go_fridge that are automatically translated in
a movement of the inhabitant to the position named fridge) and other actions, such as
use_oven that are further specified.

Each main event has a priority parameter. This value is used by the tool to control
the sequence of main events (i.e., activities) that the inhabitant will perform through
the simulation by determining which main event will be executed next. Like in
real life, a person will drink if his/her priority in drinking is the highest (i.e., the
person is thirsty), and he/she will take a rest when is tired and there is nothing
more important to do.

Furthermore, all main events have an interrupt parameter. Main events can be
interrupted by other main events. The original event will only resume when the
interrupting one is concluded, if no other interruption happens. As happens in real
life, a person could interrupt lunch to answer an urgent call. Only when the call is
finished will he or she resume eating.

Then, at every simulation step the main event with the highest value of priority
(among all the main events defined in the acting model) is executed. Only a main
event with higher priority can interrupt it. In this case, the interrupted main event
is paused and pushed in a queue. It will be restored only after that the interrupting
main event is concluded. A detailed description of how it works can be found in [107].
Figure 3.4 and Figure 3.5 respectively show an example of a main event describing
the activity cook_and_eat, and a bottom event describing the action use_oven.

3.3.2 Model-based simulation

The main event construct in the original framework only allows to model activities
that are unconstrained flows of events [107]. We extended the simulator to support
behavior patterns for describing and modeling more complex activities [168, 169].

3.3 Design and realization of the simulator 38

1 use_oven BottomEvent
2 Duration 40*60
3 DurationDeviation 10*60
4 Results
5 cooked_food @(cooked_food)+$atstart()*(0)+$atend()*(2)+@(step)*(0)
6 power_use @(power_use)+$atstart()*(800)+$atend()*(-800)+@(step)*(0)
7 Home_Aired @(Home_Aired)-(3.0)*$atend()

Figure 3.5. Example of bottom event describing the action use_oven. In particular, the
duration of each action (in seconds) is randomly chosen in the interval Duration ±
DurationDeviation (in the figure 40 ± 10 minutes). During the execution of an action
(always following the virtual clock), the value of the variable is continuously updated.
For example, the @(power_use) variable is incremented by 800 at the beginning of the
action and decreased by 800 at the end.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <pros:TaskModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:pros="http://org/pros/BehaviourPatternModel.ecore">

↪→

↪→

3 <behaviourPatterns ID="housekeeping" name="housekeeping"
enabled="true" priority="30" interrupt="50">↪→

4 <!--
5 list of actions (i.e., bottom events)
6 -->
7 <contextSituation condition="Home_Presence">
8 <leftPart instanceName="Home_Presence"

propertyName="value"/>↪→

9 <rightPart value="0"/>
10 </contextSituation>
11 </behaviourPatterns>
12

13 </pros:TaskModel>

Figure 3.6. Example of task model translated by using the XML notation. The task
model includes a behaviourPatterns tag, which describes and models an activity (i.e.,
a main event), in this case housekeeping. It is composed of a list of actions (i.e., bottom
events) defined through the refinements tag (see Figure 3.7). In this case, there is also
a contextSituation tag: the entire activity can start only if the inhabitant is at home
(i.e., the Home_Presence parameter is set to 0).

The behavior pattern introduces an XML notation (as described in [168]), which
for our purposes has been extended to support some features of the simulator, such as
priorities and action durations. The behaviourPatterns tag (inside the taskModel
tag) models an activity. The tag has been enriched with two additional properties:
priority and interrupt (see example in Figure 3.6). With these parameters, the
simulator that parses the XML file can establish when the corresponding activity

3.3 Design and realization of the simulator 39

1 <refinements order="1" type="Temporal">
2 <refinementTo xsi:type="pros:CompositeTask" ID="housekeeping1"

name="housekeeping1"
refinedFrom="//@behaviourPatterns.0/@refinements.1">

↪→

↪→

3 <refinements order="0" type="BottomEvent">
4 <refinementTo xsi:type="pros:SystemTask" ID="clean_dust"

name="clean_dust"
refinedFrom="//@behaviourPatterns.0/@refinements.0"
serviceName="clean_dust"
serviceMethodName="clean_dust">

↪→

↪→

↪→

↪→

5 <contextPrecondition condition="High Temp"
operator="lower" explanation="High Temp">↪→

6 <leftPart instanceName="Temp"
propertyName="value"/>↪→

7 <rightPart value="20"/>
8 </contextPrecondition>
9 </refinementTo>

10 </refinements>
11 <refinements order="1" type="BottomEvent">
12 <refinementTo xsi:type="pros:SystemTask" ID="wash_floor"

name="wash_floor"
refinedFrom="//@behaviourPatterns.0/@refinements.0"
serviceName="wash_floor"
serviceMethodName="wash_floor">

↪→

↪→

↪→

↪→

13 <contextPrecondition condition="High Temp"
operator="greater" explanation="High Temp">↪→

14 <leftPart instanceName="Temp"
propertyName="value"/>↪→

15 <rightPart value="20"/>
16 </contextPrecondition>
17 </refinementTo>
18 </refinements>
19 </refinementTo>
20 </refinements>

Figure 3.7. An example of CompositeTask represented using the XML notation. In
this case, the task contains an exclusive branch: if the temperature registers a warm
day, then the BottomEvent wash_floor will be executed. Otherwise, the BottomEvent
clean_dust will be performed.

can start and, eventually, when it can be interrupted by another activity with the
highest priority.

Within the behaviourPatterns tag, a series of refinements tags are defined,
which represent the set of actions of which the activity is composed. Each refinement
can be enriched with a contextPrecondition, expressed as a boolean formula over
simulator variables, which determine whether the related action is executed or not.

3.3 Design and realization of the simulator 40

For instance, if the temperature outside is greater than 20 degrees, then perform the
action wash_the_floor (see example in Figure 3.7).

There exist three types of refinements, identified by the type property:

• BottomEvent maps to bottom events in the original simulator, thus modeling
an action performed by the smart space inhabitant that directly involves
an object or a service inside the smart environment (e.g., clean_dust in
Figure 3.7).

• moveevent refinements model a movement action of the inhabitant to reach a
specific point inside the smart house (e.g., go_computer);

• CompositeTask refinements are composed of a set of simple refinements (bot-
tom events and/or movement events) and/or other nested composite tasks.
This particular kind of refinement allows for the modeling of exclusive branches
inside the action flow. Depending on the current environmental context, the
simulator can make decisions about the next refinement to follow.

The refinementsTo tag contains the name of the refinement declared in the
refinements father tag and is used as an identifier within the simulation. Finally,
each refinementTo tag may contain a temporalRelationship tag that identifies
specific order restrictions among the actions of the activity modeled in task-model
language. For instance, as happens in the example provided in Figure 3.7, the
action wash_floor is executed only if the value related to the temperature in the
environment is greater than 20. Otherwise, the action clean_dust is executed.

Each behavior pattern optionally includes a contextSituation tag containing a
condition in the form of a logical expression, which must be checked to verify whether
the modeled activity can be executed or not, e.g., if it is a working day, then start
the work activity (see example in Figure 3.6). This tag differs from the previously
introduced contextPrecondition, which refers to the conditions required to start
the entire activity and not a single composing action.

3.3.3 Multi-inhabitant simulation

The simulator described in [107] allows to define different behavior profiles through
the human model. However, it is restricted to simulating the daily activity of a
single human inhabitant. In order to make the simulator capable of replicating
real-life scenarios, we added the possibility to instantiate more than one inhabitant
in the simulated environment, each with its own human model, i.e., its own human
behavioral profile.

In Section 3.3.1, we discussed how priority and interrupt parameters are handled
during the simulation. That process allows for the management of the sequence of
simulated activities performed by a single inhabitant.

To add the possibility to simulate multiple inhabitants within the same simulation,
that process is replicated n times, where n is the number of virtual inhabitants. In
this case, the simulator relies on common house and acting models (i.e., the same
environment and the same set of available events) and several human models in
order to differentiate the behavior of each simulated inhabitant.

3.3 Design and realization of the simulator 41

Each instance of this process (i.e., each simulated inhabitant) writes on a common
log and is labeled with a unique identifier. As a result, the simulator produces a
single event log containing the interleaved series of activities performed by the n
users, each with its own identifier.

3.3.4 Data export in XES format

Data generated in the context of the simulation is stored using the XES format
described in Section 3.2. In particular, the simulator produces as an output three
different logs: a segmented event log, an unsegmented event log, and a sensor log.

1. The segmented event log contains a different trace for each execution of an
activity. Each trace includes two attributes, traceId and name denoting re-
spectively the identifier of the trace and the name of the activity performed
in that trace. The presence of the name attribute represents an important
difference with respect to classical process mining event logs, where traces
represent different executions of the very same process. Instead, we have
different executions of different activities (the equivalent of processes in pro-
cess mining). Traces contain events representing the execution of actions by
virtual inhabitants. For each action, we can have one event in the case of
immediate actions or two events in the case of actions with a duration. Each
event included in a trace consists of (i) an eventId globally identifying the
event, (ii) a concept:name attribute indicating the name of the action, (iii)
a time:timestamp attribute indicating the occurrence time, in the virtual
clock, of the event, (iv) a lifecycle:transition attribute that can assume
the values start and complete denoting respectively the beginning of the
action and the end (immediate events only have the complete event), and (v)
a org:resource attribute indicating the identifier of the virtual inhabitant
performing the action. The attributes containing a colon represent standard
XES attributes identified by a name. Such a log easily allows for the application
of supervised machine learning methods for activity recognition and modeling,
as all of the occurrences of specific activities are labeled and encapsulated in
the concept of XES trace.

2. The unsegmented log is made up of a single trace containing a sequence of
events as described for the segmented log file. As such, events coming from
multiple activities and multiple users are interleaved and not labeled with
the corresponding activity. This log can be used for unsupervised learning
techniques where labels are either not relevant or must be automatically found.
In the latter case, the ground truth can be read from the segmented log file.

3. Finally, the sensor log file contains sensor measurements from the environment.
This XES file, as the unsegmented log, contains a single trace. Each event in this
trace represents a sensor measurement containing a set of attributes consisting
of (i) a concept:name attribute representing the name of the sensor, (ii) a
org:resource attribute whose value can be SYSTEM if the sensor measurement
is from the environment or an inhabitant identifier if the sensor is inhabitant
specific (e.g., the position sensor), (iii) a time:timestamp attribute indicating

3.4 Validation 42

the triggering time of the sensor measurement in the virtual clock, (iv) an
eventId attribute indicating the identifier of the event, corresponding to those
used in the segmented and unsegmented log files, that influences the sensor
measurement, and (v) a value attribute containing the measured value for the
sensor. The sensor log can be employed when the object of the analysis is the
direct recognition of activities from sensor measurements or when the goal is
to learn action models from sensor measurements.

The described logs are automatically obtained from the simulator by mapping main
event repetitions to traces (which describe the execution of an activity), bottom
events to events (which denote the execution of an action), and sensor measurements
to virtual sensor output in the simulator as a consequence of a sensor event or of
bottom events. The three log files can be integrated by means of event and trace
identifiers, which allow for the mapping of sensor measurements to events and
events to traces.

The simulator, with all its new features, can be downloaded at the link in
the footnote2. The repository does not only include the executables needed to
run the tool but also a set of models, including human models, house models,
acting models, and behavior patterns, as described in this section. The goal of this
repository is to provide a shared workspace that the community can contribute to.
The creation of models is indeed an expensive task; thus, the availability of such a
repository can speed up the definition of scenarios to produce workbenches.

3.4 Validation
Simulators are usually evaluated by comparing a real dataset from a smart space
with a dataset generated by the simulator. Usual comparison-based approaches are:

• comparing the probability of each sensor event in both datasets [117];

• comparing the sequence order of sensor events in both datasets [117];

• applying activity recognition techniques to both datasets and comparing
accuracy metrics [103];

• use data similarity measures for time series [52].

Such comparisons are possibly accompanied by usability questionnaires [53, 8].
As the simulation tool proposed in this chapter is fully configurable, we do not
evaluate the features of the produced dataset, which vary according to the simulation
parameters. Instead, we propose a two-fold evaluation. In Section 3.4.1, we first
discuss which of the features available in free datasets are supported by our tool. Then,
in Section 3.4.2, we demonstrate how we can apply a seminal activity recognition
algorithm to a synthetically generated dataset, reproducing the features of the ones
originally employed for validation and obtaining very similar results in performance
evaluation, thus demonstrating how the synthetic dataset can be as good as a real

2https://github.com/silvestroveneruso/smart_space_model_based_simulation

https://github.com/silvestroveneruso/smart_space_model_based_simulation

3.4 Validation 43

one as a means to evaluate algorithms for smart spaces. Finally, in Section 3.4.3, we
show the results obtained in the evaluation’s phase.

3.4.1 Replicability of datasets available in literature

In order to assess the suitability of our tool to replicate the features of real and
freely available datasets in Chapter 2, we will discuss how each of them is supported.

As a first aspect, the proposed tool produces sensor measurements in the form
of stream. This is the most powerful of the sensor value representation modalities,
as it is always possible to turn a stream of sensor measurements into snapshots or
summaries, as these latter simply reduce the time granularity, whereas the opposite
is in general not possible. At this moment, it is not possible to directly choose the
last two modalities, which require performing a simple pre-processing of data.

Concerning the types of sensors supported, our tool can be used to easily introduce
any kind of environment-attached sensor. It is also possible, though more difficult, to
simulate body-worn sensors. Environment-attached sensors can provide information
about both humans and the environment itself. Sensors can produce both discrete
and continuous values.

Our tool can be configured to produce a dataset containing any number of
simulated inhabitants and any number of activities. Additionally, actions in datasets
and sensor measurements are precisely labeled with respect to the virtual inhabitant
doing or triggering them and the activity performed at that time. The tool does not
support collaborative activities between inhabitants that are found in some datasets
(e.g., in the CASAS project repository).

The tool allows for the production of datasets of any length, which is a great
advantage as real-life datasets are typically rather short (i.e., activities are not
performed many times, which makes it difficult for algorithms to pick up patterns in
the sensor log that correspond to specific activities). However, a long real dataset
may show a variability arguably higher than a synthetic dataset. Even though it
is possible to artificially add noise, as argued for example in [124], the description
of human activities in the form of a business process (especially using so-called
imperative modeling techniques, which behavior pattern formalism belongs to),
cannot catch the entire freedom and variability a human has, thus producing a
representation that is usually idealized.

One of the advantages of our simulator with respect to real datasets is that the
dataset includes both action events and sensor measurements, which is unprecedented
and allows for the analysis of not only activities but also actions.

3.4.2 Truthfulness evaluation

In order to evaluate the truthfulness of the datasets produced by our simulator and
their suitability as an evaluation mean for algorithms in the smart space community,
we have replicated as closely as possible two real-life scenario datasets from the
CASAS project. The goal of this project is to treat environments as intelligent agents,
where the status of the residents and their physical surroundings are perceived using
sensors. On the basis of this information, a smart home can select and automate
actions that meet the needs and preferences of its inhabitants, improving comfort,

3.4 Validation 44

safety, and/or productivity. The reason for this choice relies on the major impact this
project has had on the community and the availability of source code for algorithms
that are often used as benchmarks [54, 72, 124, 50, 49, 98].

Among the several ones available at the link in the footnote3, we selected two
real scenario datasets:

1. a single-user dataset, namely aruba [45]. This dataset is a partially labeled
sensor log that contains data collected in a real-life scenario. The inhabitant
interacts with 4 temperature sensors, 31 motion sensors, and 4 door closure
sensors. This dataset contains 6477 labeled activities. It includes eleven differ-
ent labels: Bed_to_toilet, Eating, Enter_home, Leave_home, Housekeeping,
Meal_preparation, Relax, Resperate, Sleeping, Wash_dishes and Work. We
replicated the dataset by modeling a similar set of activities performed by
the single inhabitant by using behavior pattern modeling formalism. We here
only consider seven of them, skipping the infrequent ones. In addition, the
Other_activity label is skipped as too generic. Additionally, we recreated the
original layout of the aruba’s smart environment, provided by the authors
of the testbed themselves, by using the Home Designer component of the
simulator (see Figure 3.3), including the same list and positioning of sensors.

2. a multi-user dataset, namely tulum [42]. This dataset is a partially labeled
sensor log that contains data collected in a real-life scenario by two inhabitants.
The two volunteers interact with 5 temperature sensors and 31 motion sensors.
This dataset contains 12637 labeled activities. It includes sixteen different
labels: R1_Sleeping_in_Bed, Personal_Hygiene, Bathing, Leave_Home, En-
ter_Home, Meal_Preparation, Watch_TV, Eating, Bed_Toilet_Transition,
R2_Sleeping_in_Bed, Work_Table, Work_Bedroom_2, Yoga, Wash_Dishes,
Work_LivingRoom and Work_Bedroom_1. Labels’ prefixes R1 and R2 denote
the inhabitant that performed the Sleeping_in_Bed activity. We replicated the
dataset by modeling a similar set of activities performed by the two inhabitants
using the behavior pattern modeling formalism. We only consider eight of
them here, skipping the infrequent ones. In addition, the Other_activity label
is skipped as too generic. Additionally, we recreated the original layout of the
tulum’s smart environment, provided by the authors of the testbed themselves,
by using the Home Designer component of the simulator, including the same
list and positioning of sensors.

Then, we evaluated the performance of a state-of-the-art human activity recogni-
tion (HAR) algorithm against both the real datasets (i.e., aruba and tulum from the
CASAS project) and the synthetic datasets produced by our simulator “emulating”
the original ones. Such datasets produced by our simulator can be found at the link
in the footnote4.

As a validation measure, we chose the Activity Learning (AL) software tool
from the CASAS project itself [45], which is freely downloadable from http://
casas.wsu.edu/tools/. AL contains a number of activity learning components,

3http://casas.wsu.edu/datasets/
4https://drive.google.com/file/d/1DUe5MpOtIgVZnWNgEjqccZvhtyPUkf2m/view?usp=

sharing

http://casas.wsu.edu/tools/
http://casas.wsu.edu/tools/
http://casas.wsu.edu/datasets/
https://drive.google.com/file/d/1DUe5MpOtIgVZnWNgEjqccZvhtyPUkf2m/view?usp=sharing
https://drive.google.com/file/d/1DUe5MpOtIgVZnWNgEjqccZvhtyPUkf2m/view?usp=sharing

3.4 Validation 45

which include activity modeling and recognition (AR), activity discovery (AD), and
activity prediction (AP). In particular, among the different algorithms included
in the repository, we used the AR component. Such a component learns models
of activities from sensor data and can use these models to automatically label a
sequence of sensor data with the corresponding activity. The AR algorithm is a
sliding window-based approach that learns models of activities from sensor data
and can use these models to automatically label a sequence of sensor data with
the corresponding activity. For the classification task and for learning the activity
models, AR adopts support vector machines (SVM). Further details are discussed
in [111]. The rationale behind this choice is that this algorithm is one of the most
representative examples of AR in the literature. In addition, AR is by far the most
frequently tackled problem in the community.

3.4.3 Results

Firstly, we can notice a difference in terms of sensor activations produced by the
simulation with respect to the dataset selected as the testbed. The aruba dataset
proposes an average of 6676 sensor activations/day, while its synthetic emulated
counterpart, produced by the simulator, has an average of 202 sensor activations/day.
The tulum dataset proposes an average of 8311 sensor activations/day, while its
synthetic emulated counterpart, produced by the simulator, has an average of 546
sensor activations/day.

These differences can be artificially filled by tuning up the simulator. For instance,
by increasing or decreasing the value related to the virtual clock, i.e., the mechanism
that manages the frequency of the simulation steps over time. Low values will
increase the number of sensor activations generated over time; conversely, high
values will decrease them. It is also possible to adjust the noise level of the produced
synthetic log, further increasing or decreasing the number of sensor activations
generated over time.

However, this discrepancy in terms of sensor activations per day does not imply
differences in the behavior or in the quality of the synthetic datasets produced by
the simulator. By running the AR algorithm, we computed the activity recognition
accuracy score for each pair of datasets, the state-of-the-art dataset used as a
benchmark and its synthetic emulated counterpart produced by the simulator.

The aruba dataset resulted in a score of 0.994607, while its synthetic counterpart
resulted in a score of 0.993711. The related confusion matrixes are shown in Tables
3.1 and 3.2. The differences in terms of numbers in such tables are due to the
discrepancy in sensor activations discussed at the beginning of this section.

In a similar way, the tulum dataset resulted in an activity recognition accuracy
of 0.994997, while its synthetic counterpart resulted in a score of 0.991672. The
related confusion matrixes are shown in Tables 3.3 and 3.4.

This shows that the synthetic logs produced by the simulator are comparable
to their state-of-the-art counterparts (aruba and tulum) used as benchmarks, and
therefore that the simulator is able to replicate a real behavior such as that collected
in the datasets used as testbeds, whether single-user or multi-user.

3.4 Validation 46

Table 3.1. The confusion matrix obtained by running the AR algorithm on the aruba
dataset.

Sleeping Relax Work Meal_preparation Housekeeping Bed_to_toilet Wash_dishes
Sleeping 5695 0 0 0 0 0 0

Relax 0 19751 0 2 1 0 0
Work 0 0 3597 0 1 0 0

Meal_preparation 0 3 0 15343 0 0 0
Housekeeping 0 5 1 1 5803 0 0
Bed_to_toilet 0 0 0 0 0 249 0
Wash_dishes 0 0 0 7 2 0 2207

Table 3.2. The confusion matrix obtained in output by running the AR algorithm on the
dataset produced by the simulator “emulating” the original aruba dataset.

Sleeping Relax Work Meal_preparation Housekeeping Bed_to_toilet Wash_dishes
Sleeping 267 0 0 0 1 0 0

Relax 0 269 0 1 2 0 0
Work 0 1 396 1 1 0 0

Meal_preparation 0 0 0 673 1 0 0
Housekeeping 0 1 0 1 141 0 0
Bed_to_toilet 0 0 2 0 0 145 0
Wash_dishes 0 0 0 0 0 0 152

Table 3.3. The confusion matrix obtained by running the AR algorithm on the tulum
dataset.

R1_Sleeping Personal_Hygiene Bathing Meal_Preparation Watch_TV Eating R2_Sleeping Wash_Dishes
R1_Sleeping 4655 7 3 0 3 0 28 0

Personal_Hygiene 6 20555 29 12 13 8 3 3
Bathing 5 31 12855 1 3 2 1 1

Meal_preparation 0 13 9 85121 44 99 1 8
Watch_TV 1 17 2 49 82782 66 0 8

Eating 0 13 3 135 106 60608 1 13
R2_Sleeping 13 6 3 0 0 1 33597 0
Wash_Dishes 1 4 0 20 16 20 0 7999

Table 3.4. The confusion matrix obtained in output by running the AR algorithm on the
dataset produced by the simulator “emulating” the original tulum dataset.

R1_Sleeping Personal_Hygiene Bathing Meal_Preparation Watch_TV Eating R2_Sleeping Wash_Dishes
R1_Sleeping 207 1 1 0 1 3 6 0

Personal_Hygiene 3 281 3 2 2 0 3 1
Bathing 2 6 137 0 0 0 1 0

Meal_preparation 0 4 2 3659 21 36 0 1
Watch_TV 0 5 0 13 4673 7 2 2

Eating 0 2 0 32 12 2932 0 3
R2_Sleeping 6 1 1 1 1 0 940 0
Wash_Dishes 0 0 1 5 0 3 0 418

47

Chapter 4

Representing smart home data

As the utilization of Internet of Things (IoT) devices in support of business processes
(BPs) becomes more frequent, there is a growing recognition of the potential to
leverage the data collected by these devices for process mining (PM). Most current
PM methods that can incorporate IoT data follow a similar approach: the IoT data
are pre-processed with event abstraction and event-case correlation techniques to be
translated into an event log in XES format [26, 97, 164, 171].

Although this is an interesting initial approach to integrating IoT data into PM
and it allows for the application of existing control flow and data-aware techniques,
this method does not fully exploit the potential of IoT data. Often, the resulting
high-level event log lacks contextual information (i.e., properties that can influence
process execution, as explained in [26, 166]) that could be derived from the IoT data,
or it has limited capability to incorporate such context information. Furthermore,
by separating the abstraction phase from the analysis phase, the true potential of
advanced algorithms to optimize both abstraction and model discovery together
cannot be harnessed. For instance, the development of an IoT-enhanced decision
mining algorithm requires direct access to lower-level IoT data to learn the most
relevant features directly from the source data instead of relying on an error-prone
event abstraction step that might leave important information behind at a lower
granularity level [27].

In this chapter, we present a new data format based on the conceptual model
described in [26]. We then describe an event log created following this format and
show that this new format greatly facilitates more in-depth analyses of IoT-enhanced
BPs.

4.1 Existing standards for event logs
When applying PM techniques to smart space data, the common approach is to
pre-process sensor data with event abstraction and event-case correlation techniques
and translate it into an event log in XES format [26, 97, 164, 171].

XES [86], the current standard event log model, is an XML-based model that
mainly consists of the notions of event, case, and log (see example in Figure 3.2).
The XES format has already been introduced and discussed in Section 3.2.

Recently, the increase in maturity of the PM field has increased the urge to

4.1 Existing standards for event logs 48

create alternative models. Multiple propositions that relax some assumptions of
XES and allow for more flexibility in event data storage have been presented, e.g.,
in [151, 81]. Among them, OCEL [81] was designed to be more suitable for storing
event logs extracted from relational databases and is widely considered the main
challenger of XES today. It introduces the concept of object, which generalizes the
notion of case by allowing one event to be linked with multiple objects instead of
a single case. This removes the necessity to "flatten" the event log by picking one
case notion from the several potential case notions that often coexist in real-life
processes.

Although these are interesting initial approaches to integrating IoT data into
PM and allow for the application of existing control flow and data-aware techniques,
these standard formats do not fully exploit the potential of IoT data. Often, the
resulting high-level event log lacks contextual information that could be derived from
the IoT data, or it has limited capability to incorporate such context information
[26, 166]. In [27], the authors listed ten requirements for the storage of IoT-enhanced
event logs and showed that both XES and OCEL failed to meet more than half of
these requirements. The definition of an alternative format suitable for integrating
sensor and event data is crucial in this context.

4.1.1 Process mining using IoT data

Challenges related to the application of PM to IoT data, and in particular to how
event logs are represented, are reported in [27, 124]. The vast majority of the PM
literature involving IoT data has focused on mining high-level events of the process
from low-level IoT data to create XES event logs. Various frameworks to extract high-
level logs from IoT data have been presented [207, 188, 164, 189, 110, 108, 97, 59, 125].
Traditional PM techniques can then be applied to these event logs to, e.g., discover
control-flow models of the processes. A recent survey of process discovery in smart
spaces, which represents a large chunk of the literature on PM applied to IoT, is
provided in [24].

Although most of the existing literature is on IoT event abstraction, some other
possible techniques have also been investigated. Banham et al. [19] propose to
perform data-aware process discovery with IoT-based attributes. The framework
proposed requires abstracting the IoT data to integrate it into an XES event log.
A second work is proposed by Rodriguez-Fernandez et al. [160], who present an
approach for IoT-enhanced deviation detection in the time series data directly (in a
so-called time-series log). Remark that all these papers bumped into the limitations
of traditional event logs and had to abstract the data first or use the raw sensor
data.

Another important research direction is represented by the automated segmenta-
tion of logs. Here, statistics-based techniques have been proposed [121], as well as
techniques based on the structure of possibly mined processes [71], as discussed in
Chapter 5.

4.2 Format specification 49

Figure 4.1. Core of the bridging model for IoT and PM (picture taken from [26]).

4.1.2 Existing models bridging IoT and process mining

A first model for bridging IoT and PM was presented in [26] (see Figure 4.1). This
model integrates IoT ontologies (like SOSA [96]) with typical PM concepts around
the central notion of event, which is decomposed into three types of events: (i) IoT
events, which correspond to events as understood in IoT systems; (ii) Process events,
which are events as understood in PM; (iii) Context events, which correspond to
changes in a parameter of the context of the process. For more information, see
Section 4.2.1 or [26].

4.2 Format specification
In this section, we outline the format we propose for IoT-enhanced event logs and
explain how we operationalized it to generate XML-based NICE logs. It builds
further upon the conceptual model presented by the authors in [26], which aimed at
integrating IoT ontologies and event log models. To do so, multiple event types were
defined to bridge the gap between the (physical) IoT world and the (mostly digital)
PM world. In this work, in line with design science research [91], we adopted an
iterative approach, moving between design and evaluation through prototyping in
order to continuously improve the quality of the event log format. The evaluation step
verified (i) that all constructs and relationships of the meta-model were transcribed
correctly in the XML and (ii) that the format was capable of representing event logs
from various types of IoT-enhanced BPs.

4.2 Format specification 50

4.2.1 Meta-model

At its core, our data format consists of lists of Data Sources, Objects, and Events
(see Figure 4.2a). An Event is related to one or several Objects, which can be digital
(defined in the format as Digital Object, e.g., an order) or physical (defined as
Feature of Interest, e.g., a fridge), or both (e.g., a parcel). All Objects can have a
collection of Properties, which can also be digital or physical (e.g., the total amount
of the order, the temperature in the fridge, the weight, and the value of the parcel),
and represent context parameters of the process. Events are derived from one or
several data entries or lower-level events that are logged by a given data source,
which can either be an information system or a sensor. We distinguish between
three types of events, which follow the hierarchy shown in Figure 4.2b:

• IoT Event: an instantaneous change in a real-world phenomenon that is
monitored by a sensor or derived from lower-level IoT events. For instance,
the temperature in a fridge is decreasing.

• Process Event: an instantaneous change of state in the transactional lifecycle
of an activity (corresponding to the usual notion of event in PM). This type of
event is deduced from one or more IoT events or taken from an IS data entry.
For instance, a product is taken from a fridge and loaded into a truck.

• Context Event: an instantaneous change in a real-world phenomenon or a
digital property that has an impact on the execution of a specific process
instance (i.e., it impacts a property of an Object) but does not change its
control-flow state. Such an event typically influences the path followed in
a process instance, how an activity is executed, etc. This type of event is
deduced from one or more IoT events or taken from an IS data entry. For
instance, the pressure in a tank exceeds a maximum threshold, prompting a
human intervention in a chemical production process.

Higher-level events can be derived from lower-level events via the notion of
Analytics, which represents any technique used for event abstraction (e.g., rule-based
reasoning techniques like CEP and data-driven models). IoT events can cascade
until a deduced event has a direct relationship with the process, i.e., it is a Process
Event or a Context Event.

4.2.2 Implementation

In this section, we describe how we translated the model in Figure 4.2a into an XML
format for NICE logs. XML was chosen for its flexibility and popularity, though the
model could also be transcribed in other languages such as JSON or YAML. The
XML schema of the processed log is structured as follows: the EventLog tag is the
root and contains three main elements, identified respectively by the tags:

1. ObjectList: this element contains a list of objects. In IoT-enhanced BPs,
different objects interact, and an event can involve a combination of objects
(e.g., users, locations). The properties of objects are represented as attributes,
which can be updated by Context Events.

4.2 Format specification 51

(a)

(b)

Figure 4.2. Figure (a) shows the core of the NICE meta-model. Figure (b) shows the
hierarchy of events in NICE logs (picture taken from [26]).

2. DataSourceList: this element contains a list of data sources available within
the observed environment. We distinguish between two types of data sources:
(i) physical data sources, typically sensors, that monitor physical properties,
e.g., the opening of a door or the temperature; and (ii) digital data sources,
like process-aware information systems (PAISs), that record digital properties
and Process Events.

3. EventList: this element contains a list of events. There are three types of
events: IoTEvent, ContextEvent, and ProcessEvent. IoTEvent is used to
represent low-level types of events, such as raw sensor measurements, and, if
relevant, mixed-level types of events, such as the aggregation of lower-level
IoTEvents into actions, i.e., atomic interactions with the environment or a part
of it (e.g., sitting on a chair, opening the fridge). A ContextEvent represents a
change in the value of a property of an object that impacts the execution of the
process (e.g., influences a decision). It is related to an object and the property
it updates, and it contains this property’s new value. Finally, ProcessEvent
is used to represent high-level types of events, e.g., groups of human atomic
interactions with the environment that are performed with a common goal. It

4.3 Format validation 52

represents the execution of a business activity (e.g., prepare dinner, register
an order). Each event is associated with an identifier, a timestamp, and
one or more objectIDs. An IoTEvent has an additional child element called
Observation that contains the raw sensor value or the action, if available.
While a ProcessEvent has two child elements that refer to the name of the
related Activity and its LifeCyclePhase (e.g., start, complete).
These three levels of events are connected through the Analytics element
that references the lower-level events that generate a higher level of event
and the Method used. For instance, the mixed-level IotEvent called “open
the fridge” in its Analytics has references to the lower-level events related
to the opening of the fridge door and the triggered motion sensors near the
fridge. The higher-level ProcessEvent related to the activity “cook”, in its
Analytics, has references to the mixed-level events that all together compose
the activity “cook”, including the mixed-level IotEvent “open the fridge”.
Figure 4.3 shows examples of Analytics elements used to derive mixed-level
IoT events and process events.

For our experiments, the simulator presented in Chapter 3 [195], which was
originally designed to produce logs in the XES standard format, has been extended
to generate NICE logs. Using a Python script, the synthetic log produced was then
processed to fit the meta-model proposed in this article, following the XML structure
described above. The Python script and the resulting log are available in this
repository: https://github.com/silvestroveneruso/NiceParsingTool.git.

4.3 Format validation
In this section, we evaluate our new format from two angles: (i) theoretically, we
compare it with the list of requirements outlined in [27]; (ii) in practice, by showing
how it can be used to gain a better understanding of a process.

4.3.1 Theoretical requirements fulfilment

In this section, we confront our model with the requirements outlined in [27]. These
requirements were structured around four challenges for IoT-enhanced logs: data
granularity (C1), control-flow - context perspective convolution (C2), scope of
relevance (C3), and data dynamicity (C4):

• R1 (Store high-level events, C1): obtained with process and context events;

• R2 (Store low-level events, C1): obtained with IoT events;

• R3 (Store intermediary events, C1): obtained with IoT events derived from
others;

• R4 (Enable traceability between high-level and low-level events, C1): achieved
with the concept of Analytics, which links derived events with the events they
are derived from;

https://github.com/silvestroveneruso/NiceParsingTool.git

4.3 Format validation 53

1 ...
2 <IoTEvent id="66" timestamp="2020−01−01T00:31:58" objectID="objID_1,objID_2">
3 <Observation id="obs_66" resultTime="2020−01−01T00:31:58" value="Go_bathroom_sink"

featureOfInterest="objID_24"/>
4 <Analytics itGenerates="eventID_66" itAnalysesEvents="eventID_62,eventID_65">
5 <Methods> <Method name="CEP"/> </Methods>
6 </Analytics>
7 </IoTEvent>
8 ...
9 <IoTEvent id="86" timestamp="2020−01−01T05:36:18" caseID="objID_1,objID_2">

10 <Observation id="obs_86" resultTime="2020−01−01T05:36:18" value="Go_bed"
featureOfInterest="objID_26"/>

11 <Analytics itGenerates="eventID_86" itAnalysesEvents="eventID_68,eventID_70,eventID_75,
eventID_78,eventID_80,eventID_85">

12 <Methods> <Method name="CEP"/> </Methods>
13 </Analytics>
14 </IoTEvent>
15 ...
16 <IoTEvent id="88" timestamp="2020−01−01T05:36:22" objectID="objID_1,objID_2,objID_23">
17 <Observation id="obs_88" resultTime="2020−01−01T05:36:22" value="OFF" sensor="s3"

featureOfInterest="objID_23"/>
18 </IoTEvent>
19 <IoTEvent id="89" timestamp="2020−01−01T05:40:52" objectID="objID_1,objID_2,objID_23">
20 <Observation id="obs_89" resultTime="2020−01−01T05:40:52" value="ON" sensor="s3"

featureOfInterest="objID_23"/>
21 </IoTEvent>
22 <IoTEvent id="90" timestamp="2020−01−01T05:40:52" objectID="objID_1,objID_2">
23 <Observation id="obs_90" resultTime="2020−01−01T05:40:52" value="Go_in_bed"

featureOfInterest="objID_23"/>
24 <Analytics itGenerates="90" itAnalysesEvents="88,89">
25 <Methods><Method name="CEP"/></Methods>
26 </Analytics>
27 </IoTEvent>
28 <ProcessEvent id="91" timestamp="2020−01−01T05:40:52" objectID="objID_1,objID_2">
29 <Activity value="Sleeping"/>
30 <LifecyclePhase value="complete"/>
31 <Analytics itGenerates="91" itAnalysesEvents="66,86,90">
32 <Methods><Method name="CEP"/></Methods>
33 </Analytics>
34 </ProcessEvent>
35 ...

Figure 4.3. An example of events connected by the Analytics element. In particular, in
this portion of the log, there are five IoTEvents and one ProcessEvent. The mixed-level
IoTEvent with ID 90, which represents the atomic action Go_in_bed, is generated by
the analysis of the low-level IoTEvents with IDs 88 and 89, with the Method called
CEP. The high-level ProcessEvent with ID 90, which completes the Event Sleeping, is
generated by the analysis of the mixed-level IoTEvents with IDs 66, 86, and 90, with
the Method called CEP. The derivation of events with IDs 66 and 86 follows the same
principle, but the lower-level IoTEvents from which they are derived are not shown for
brevity.

• R5 (Represent context at event level, C3): done with the properties of the
objects linked to an event;

• R6 (Represent context at activity level, C3): done with properties of the
objects linked to the events of an activity; an additional activity object could
link events together for convenience (link the events to the activity object and

4.3 Format validation 54

the context to the activity object);

• R7 (Represent context at case/object level, C3): context is represented at the
object level with the object properties; case is a special object type;

• R8 (Represent context at process level, C3): this requirement can be completed
with a process-wide object (e.g., the house in a smart home log);

• R9 (Update context parameters independently from process events, C2): con-
text parameters (i.e., properties) are updated by context events and not by
process events;

• R10 (Update context parameters at a higher frequency (than process events),
C4): this requirement is achieved together with R9, as context events can
happen at any rate, distinguished from process events.

4.3.2 Log description

To showcase the usability of the data format, we generated a log simulating the
behavior of two users living in a smart home for four weeks, executing activities
such as Cook_and_eat, Do_the_dishes, Drink, Eat_cold, Eat_warm, Exercise,
Go_work, Sleep, Rest, Shop, Use_Computer, Watch_tv and Wc, recorded as process
events, and interacting with 30 motion sensors and a temperature sensor (each
change in sensor value being recorded as an IoT event). The simulator (described
in Chapter 3) was programmed so that during one week, the users show a different
behavior, i.e., they stay at home the whole day instead of going to work in the
morning and coming back home in the evening during weekdays. This change in
behavior is due to extremely high outside temperatures during that week, which are
tracked by temperature sensors and logged as IoT events.

4.3.3 Log Analysis

Based on these IoT events, a context event is derived when the temperature exceeds
the maximum acceptable temperature for work (set to 32.5 degrees for office workers
in Belgium) and sets the property “Temperature suitable for work” to false. When
the temperature decreases below the threshold again, another context event is
generated, which sets “Temperature suitable for work” back to true. Figure 4.4
contrasts directly-follows graphs (DFGs), while the “Temperature suitable for work”
property was false (see Figure 4.4a) and over the whole log (see Figure 4.4b). From
the figure, we can see that the behavior of the users differs in both circumstances,
as the activity Go_work is not performed during the heatwave period and more
activities are recorded at home.

These context events make the change in the behavior of the users easy to explain,
as the days of anomalous behavior are flagged with context events and characterized
by a value of “Temperature suitable for work” equal to true. This way, all relevant
information is stored in the log and is easily traceable, as lower-level IoT events
are still present. Moreover, this approach makes it possible to set or mine different
thresholds for “Temperature suitable for work”, e.g., for users working in different
sectors, and to create one context parameter for each user with different rules, which

4.3 Format validation 55

(a) DFG of the behavior of the users during the heatwave.

(b) Zoom in on the Go_work activity in the DFG of the behaviour of the users
over the whole log.

Figure 4.4. DFGs of the behavior of the users in the simulated log.

would be much more difficult in traditional event log formats. Once clearly identified
with the context events, deviating behavior can be removed from the log or treated
separately simply by removing the events recorded between the two context events.
Finally, storing the low-level data in the log enables the use of, e.g., decision mining
or trace clustering techniques to mine the finer-grained rules behind the break from
work from the low-level data directly, which is not possible in a XES or OCEL log.

4.3 Format validation 56

4.3.4 Comparison with the state-of-the-art

In the last years, several data formats have been adapted to IoT-enhanced event logs
[82, 136, 195, 160]. In this section, we present these new alternatives and compare
them to our data format with respect to the requirements identified in [27].

Of these models, the least tailored one to IoT-enhanced logs is D-OCEL [82]. It
is an extension of OCEL [81] which introduces dynamic attributes, thereby solving
one of the main issues faced by OCEL for IoT-enhanced event logs.

In [136], authors present the XES DataStream extension, which aims at facili-
tating the storage of IoT data in XES logs. DataStream introduces, among others,
the notions of point and datastream, which respectively represent individual sensor
observations and group together points that belong to the same event or trace. This
enables the storage of all IoT data in the log, together with the impacted events or
traces.

The simulator presented in Chapter 3 introduces another format based on XES. It
generates multiple files: a segmented high-level event log, an unsegmented high-level
event log, and a sensor log. The IoT-enhanced logs generated by this smart home
simulator have been used and properly extended to support the NICE format.

Finally, the TS-log, a model that is completely independent from existing stan-
dards like XES and OCEL, was presented in [160]. This model is designed exclusively
for TS data that is collected around a process and can be used to derive the execution
of activities (i.e., process events). A TS-log therefore contains a set of variable names,
a domain function for each variable, an index, and a function recording the value of
each variable at each timestamp.

Comparing our model to related works, the NICE log format is the most flexible
and balanced and the only one fulfilling all requirements expressed in [27] (see Table
4.1). OCEL does neither allow data attribute updates nor traceability and only has
one event type. XES and D-OCEL have the same limitations, except that they allow
for data attribute updates, but only with process events. XES with DataStream
does much better but still requires all sensor data points to be linked to one process
event, and the support for mixed-level events is uncertain. The simulator [195] does
not support all context representation and enables only limited traceability (and
information is scattered in multiple files). Finally, TS logs focus fully on low-level
data and cannot store traditional process data.

Compared to the conceptual model presented in [26], the format of the NICE
logs differs in several aspects. Primarily, NICE logs rely on the concept of object
instead of the concept of case. This is because objects offer more flexibility and
can be used to precisely define the scope of context parameters as object properties.
Then, while the original conceptual model gave a more detailed description of IoT
concepts than of process concepts, NICE logs harmonize both perspectives with
overarching concepts.

4.3 Format validation 57

XES
[86]

OCEL
[81]

D -
OCEL
[82]

DS
[136]

Simu-
lator
[195]

TS
log
[160]

NICE
log

R
eq

ui
re

m
en

ts

R1: Store high-level events ✓ ✓ ✓ ✓ ✓ ✓

R2: Store low-level events ✓ ✓ ✓ ✓

R3: Store intermediary/mixed-level
events ✓ ✓

R4: Enable traceability between
high-level and low-level events ✓ ✓

R5: Represent context at event level ✓ ✓ ✓ ✓ ✓ ✓

R6: Represent context at activity
level ✓ ✓ ✓

R7: Represent context at case/ob-
ject level ✓ ✓ ✓ ✓ ✓

R8: Represent context at process
level ✓ ✓ ✓ ✓

R9: Update context parameters in-
dependently from process events ✓ ✓ ✓

R10: Update context parameters at
a higher frequency ✓ ✓ ✓ ✓

Table 4.1. Comparison between the different solutions with respect to the requirements
described in [27].

58

Chapter 5

Unsupervised discovery of
human habits

It has been argued that business process formalisms can be used as models for
activities and habits [124]. In order to acquire such models, process mining (PM)
techniques can be employed. When PM techniques such as process discovery are
applied to data gathered from smart spaces, it is possible to model and visualize
human habits and activities as business processes.

In this chapter, we first introduce a state-of-the-art methodology [71] allowing,
given a sensor log, to automatically segment human habits by applying process
mining techniques. Such methodology relies on a bottom-up discretization strategy
for the timestamp attribute. Such discretization algorithms find the best division
of a continuous attribute by iteratively merging contiguous sub-ranges (also called
“bins”) following a quality evaluation heuristic. In this case, the heuristic is based
on quality measures computed on the process models automatically mined, through
process discovery, from the intermediate bins.

The structural behavior of a Petri net mined through process discovery can be
analyzed using several different quality measures (see Section 1.2.1). In the approach
shown in this chapter, we drive the discretization targeting process models with high
simplicity and low structuredness:

• Structuredness [114] is a measure obtained by disassembling the observed
process model into small sub-models, assigning a score to each of them, and
combining these scores. This metric gives higher penalties to sub-models that
have many layers of components that are embedded in other components,
which in general makes the whole net more difficult to understand, and also to
sub-models in which the number of joins and the number of splits components
do not match.
Considering the patterns in Figure 5.1, the sequence pattern is considered the
simplest one, so it has the lowest penalty value associated, which is obtained
by summing the weights of all the transitions that are involved. The most
complex component is the unstructured one, which thus has the biggest penalty
value because we do not know which behavioral pattern it represents.

• Simplicity is a metric depending only on the size and structure of the model

5.1 Proposed approach 59

Figure 5.1. Examples of patterns that are considered when the original process model is
iteratively disassembled into sub-models. Picture taken from [114].

without considering its behavior. Given the formal definition of a Petri net
provided in Definition 1.1, where |F | is the number of arcs, |P | is the number
of places, and |T | is the number of transitions inside the model, we can define
this metric as |P |+|T |

|F | .
A higher value of simplicity means that the Petri net is “simpler to understand”.
Conversely, if the equation returns a low value, we expect that the Petri net
has a complex structure. Lower values of simplicity may happen instead when
the number of arcs is much bigger than the number of nodes in the net, so
in general, this leads to Petri nets that are not easy to read. Each obtained
bin then represents a time range in which the human is supposed to perform
activities following a clearly identifiable human process.

5.1 Proposed approach
In this section, we present step-by-step the approach implemented in this work.
Figure 6.1 shows an overview of such an approach.

5.1.1 Data acquisition

A smart space produces data in the form of a sensor log S, i.e., an ordered sequence
of raw measurements. Measurements can be produced by a sensor within the smart
space on a periodic basis (e.g., humidity measurements) or whenever a specific
event is detected, such as the opening of a closet. In this work, we only consider
measurements obtained from Presence InfraRed sensors (PIRs).

PIRs are widely used in smart environments as they provide a low-cost, low-
power, small, and lightweight alternative in many application scenarios to other
devices [144]. With respect, for example, to cameras, PIRs (i) are cheaper and
consume less power; (ii) do not require sophisticated image processing algorithms;
(iii) are not perceived as a privacy threat by the final user; and (iv) are easier to

5.1 Proposed approach 60

Data acquisition Sensor log S

Log conversion Event log A

Log filtering Filtered event log A′

Time-based processing Sub-logs A′
1, A′

2, ..., A′
m

Discretization and segmentation Segmentated log

Figure 5.2. Overview of the proposed approach. Blue boxes represent the sequence of
steps of the unsupervised methodology described in this chapter. Yellow boxes represent
the output of each of these steps.

setup. Similar considerations can be drawn about other positioning technologies
(e.g., radio signal and audio-based positioning).

5.1.2 Log conversion

As pointed out in Chapter 1, a major requirement for applying process mining
to smart spaces is to convert the sensor log into a segmented and labeled event
log. To achieve this aim, we can employ the technique proposed in [125, 129].
Such a technique revolve around the TRACLUS algorithm [116]. TRACLUS is
a trajectory clustering algorithm, originally devised for describing trajectories of
hurricanes, consisting of two phases: (i) a trajectory partitioning technique using the
minimum description length (MDL) principle, and (ii) a density-based line-segment
clustering algorithm. The first part regarding the separation of the trajectory
into sub-trajectories can be seen as an unsupervised segmentation technique: by
considering the entire log as a long, complex trajectory, a sub-trajectory properly
identified can define portions of the log relative to the same action.

The Visual Process Maps (VPM) system [129] exploits the partitions found by the
first part of the TRACLUS algorithm to segment the log into sub-trajectories with a
homogenous velocity. Each of these trajectory is then classified into three categories
with labels MOVEMENT, AREA, and STAY by considering information features such as
duration, velocity, and heterogeneity. In particular:

• MOVEMENT, if the sub-trajectory contains a “fast” movement from a sensor to
another one;

• AREA, if the action involves many sensor measurements from the very area of
the house;

• STAY, if the user stays under a given sensor “long” enough.

5.1 Proposed approach 61

The classification allows for the replacement of sequences of measurements
with human actions consisting of a category and a location, the latter inferred by
the position of the corresponding sensors in the house. For example, the <AREA
Bathroom> action indicates that the human was wandering around the bathroom,
whereas <STAY Kitchen_table> represents the fact that the inhabitant remained
for a while sitting at the kitchen table. At this point, once the sensor log has been
turned into an action log, traces are defined by splitting the log on a daily basis.
The obtained action log A, which is a special case of an event log, is compatible
with process discovery tools, e.g., the inductive miner to mine Petri nets.
The action log A is a timestamped sequence of tuples ⟨d, s, e, a⟩ where:

• d is the day in the log;

• s and e are, respectively, the timestamps at which the action starts and ends.
Tuples follow a chronological order according to s;

• a is the result of the sensor aggregation. It is labeled as STOP, AREA or MOVEMENT
and it is followed by the identifier of the position.

5.1.3 Log filtering

The event log A, obtained from the previous conversion step, is further
processed. Consecutive repetitions of the same action within the log are
merged together. Specifically, given two consecutive tuples (representing con-
secutive actions) denoted as T1 = ⟨Day1, Start_TS1, End_TS1, Action1⟩ and
T2 = ⟨Day2, Start_TS2, End_TS2, Action2⟩, the following conditions must hold:
Day1 = Day2, Action1 = Action2, and End_TS1 = Start_TS2. If these con-
ditions are satisfied, T1 and T2 are merged into a single action, defined as
⟨Day1, Start_TS1, End_TS2, Action2⟩. This operation can be iteratively applied
to a chain of multiple subsequent tuples. Refer to Table 5.1 for an illustration of
this merging process.

5.1.4 Time-based processing of the log

Once the filtering task is completed, we can then proceed to the segmentation phase.
For this purpose, we apply a classical bottom-up discretization technique based on
the attribute referring to the time of day. Just to capture the underlying principle
behind our approach, we can refer to the well known Chi-merge’s [132] strategy:
this algorithm starts by dividing the entire range of an attribute at the finest level
of granularity possible. Then, adjacent bins/intervals that met a condition based on
χ2 (i.e., the statistical measure Chi) are iteratively merged. If this condition is not
met, the algorithm stops, and those bins/intervals remain separated.

We start our segmentation by dividing the entire range of the time-of-the-day
attribute (i.e., 00:00 - 24:00) into bins of constant width. For instance, if 15 minutes
is chosen as the minimum bin width, the time-of-the-day attribute will be divided
into 24 ∗ (60/15) = 96 bins. Each bin is associated with a correspondent sub-log (of
the unsegmented event log) where we have a case for each day in the dataset only
containing actions with start_timestamp included in the bin (e.g., all the actions in
a specific day happening since 00:00 to 00:15).

5.1 Proposed approach 62

Day Start_TS End_TS Action

...
1 11:34:00 11:54:00 AREA Living
1 11:54:00 11:56:32 STAY Kitchen_table
1 11:56:32 12:01:21 STAY Kitchen_table
1 12:01:21 12:02:04 STAY Kitchen_table
1 12:02:04 12:02:19 STAY Kitchen_table
1 12:02:19 12:05:05 STAY Dining_chair

...

(a)

Day Start_TS End_TS Action

...
1 11:34:00 11:54:00 AREA Living
1 11:54:00 12:02:19 STAY Kitchen_table
1 12:02:19 12:05:05 STAY Dining_chair

...

(b)

Table 5.1. In this example, the portion of the action log shown in Table (b) represents
the output of the merging of events from Table (a). In particular, four consecutive STAY
Kitchen_table events are merged into a single one.

Definition 5.1. Given an action log A, we define eventLog(A, [a, b]) as the event
log having the day as a case identifier and containing, for each case, the actions
performed between time a and b during the day associated with the case.

5.1.5 Discretization and segmentation

Once this initial segmentation of the log is provided, the Algorithm 5.1 is executed.
The algorithm takes as input (i) a finite set intervals of chronologically ordered
intervals/bins (96 in the previous example), (ii) a parameter minN denoting the
minimum number of intervals to be returned by the algorithm, and (iii) a parameter
minScore representing the stop criterion.

The algorithm finds the best possible segmentation of the event log in habits,
producing no less than minN intervals/bins (see row 1). At each iteration (see rows 2
to 16), the algorithm iterates on all the intervals/bins, and for each pair of adjacent
intervals/bins (see row 5), it applies the inductive miner (see row 6) to the event log
obtained by merging those intervals/bins. In order to also consider possible habit
intervals that cover two consecutive days (e.g., a time interval that lasts from 23:00
to 01:00 of the following day), the merging of two adjacent intervals/bins is circular,
so that the last interval/bin in the array is merged with the first.

For each couple of adjacent intervals/bins, the inductive miner produces a Petri
net pn. For each of these process models, we compute a score obtained starting from
the simplicity and structuredness measures introduced above. This equation allows

5.1 Proposed approach 63

Algorithm 5.1: Discretization algorithm.
Data: A, intervals, minN, minScore
while len(intervals) > minN do

maxScore = 0;
index = null;
for i in [0, len(intervals) - 2] do

pair = concat(intervals[i], intervals[i+1]);
pn = inductiveMiner(eventLog(A, pair));
score = 100 × pn.simplicity - pn.structuredness;
if score > maxScore then

maxScore = score;
index = i;

end
end
if maxScore < minScore then

return intervals;
end
intervals = merge(intervals, index, index+1);

end
return intervals;

us to find the pair of adjacent intervals/bins whose correspondent Petri net is the
most readable one. In fact, in general, the Petri nets that are more simple and easy
to understand have a high value for simplicity and a low value for structuredness.
Thus, in each iteration, the couple of adjacent intervals/bins that may actually be
merged are the ones that maximize the value obtained from this equation. Simplicity
in particular is multiplied by a factor of 100, which has been empirically chosen in
order to uniformize the two quality measures since simplicity values are always less
than 1. We keep track of the maximum score computed and of the corresponding
couple of adjacent bins (see rows 8 to 11).

Once all adjacent bins have been considered, if the maximum score computed
is above the minScore threshold, the intervals array is updated by merging the
adjacent bins corresponding to the maximum score. Otherwise, the algorithm ends,
as any additional merging would not be convenient.

Noticeably, the algorithm always terminates. The merging phase stops either
if it is not convenient to keep merging bins or if a minimum number of bins is
reached (note that iteration by iteration, the number of bins is always decreased
by one). After the algorithm terminates, the intervals variable contains a set of
intervals/bins each corresponding to a habit. Here the rationale is that bins will
be merged only if the resulting Petri net results are simpler and less structured,
meaning that the process model of the underlying habit is easy to read.

5.2 Validation and Results 64

Figure 5.3. The layout of the real smart house used within the context of the state-of-the-
art dataset aruba from the CASAS project.

5.2 Validation and Results
The approach described in Section 5.1 is validated against the aruba dataset from the
CASAS project (http://casas.wsu.edu/datasets/). The reason for this choice
relies on the major impact this project has had on the community and the availability
as source code of algorithms that are often used as benchmarks [54, 124, 98, 127, 195].

The aruba dataset is a partially labeled sensor log that contains data collected
in a real-life scenario for 220 days. It contains 6477 labeled activities, with the start
and end markers of activities performed by the resident, meaning that for a subset
of measurements, we know the activity correspondent to those activations of sensors.
The activities available in the dataset are the following ones: meal preparation,
relax, eating, work, sleeping, wash dishes, bed to toilet, enter home, leave home, and
housekeeping. The inhabitant interacts, among others, with 31 Presence InfraRed
(PIR) sensors that trigger as soon as a person enters their detection area, producing
discrete measures that can be easily associated with actions. The layout of the aruba
map with the arrangement of the sensors in the environment is shown in Figure 5.3.

Once obtained the action log A from the raw sensor log, Algorithm 5.1 is executed,
passing as arguments (i) the pre-processed action log, (ii) an array of 96 initial
bins obtained by segmenting the time-of-the-day attribute in equal-width bins of
15 minutes, (iii) a minimum number of bins equal to 2, and (iv) a minimum score
chosen empirically. The six best intervals from our discretization algorithm are the
following ones: 05:15-07:00, 07:00-13:45, 13:45-18:15, 18:15-21:45, 21:45-23:00, and
23:00-05:15. Each of these temporal intervals is considered a human habit.

In order to evaluate the result obtained, a simple statistical analysis of the dataset
has been performed. In particular, each habit was mapped to a set of activities to

http://casas.wsu.edu/datasets/

5.2 Validation and Results 65

Activity Most frequent intervals

Bed to toilet 00:30-00:45 03:30-06:15
Eating 08:00-08:15 09:15-10:45 12:00-12:15 13:45-14:15 18:00-19:00

19:15-19:45
Enter home 11:15-11:30 13:15-14:15 14:30-15:15 15:45-16:00
Housekeeping 10:30-11:45 14:30-15:15
Leave home 11:30-11:45 14:45-15:00
Meal prepara-
tion

06:00-06:30 06:45-10:45 12:00-12:30 13:15-14:45 15:15-20:15

Relax 08:45-09:30 13:30-00:00
Sleeping 23:30-07:30
Wash dishes 09:45-10:30 11:00-11:15 17:45-18:00 19:30-20:00 20:45-21:00
Work 12:00-12:30 14:15-14:30 15:45-16:45

Table 5.2. Most frequent temporal intervals for each activity.

Habit Activities

05:15-07:00 sleeping, bed to toilet, meal preparation
07:00-13:45 sleeping, meal preparation, eating, relax, wash dishes,

housekeeping, enter home, leave home, work
13:45-18:15 enter home, meal preparation, relax, eating, work,

housekeeping, leave home, wash dishes
18:15-21:45 meal preparation, eating, wash dishes, relax
21:45-23:00 relax
23:00-05:15 relax, sleeping, bed to toilet

Table 5.3. Association between habit intervals and the activities occurring more frequently
in the same time interval.

show its plausibility. As already stated, these activities have been manually labeled
in the original sensor log S. According to the activity label available in the raw log,
we computed the temporal intervals in which each activity occurs more frequently
(see Table 5.2).

Table 5.3 introduces another kind of association obtained by comparing the
most frequent intervals for each activity with respect to the habits found by our
discretization algorithm. This association shows in which habit a certain activity
occurs more frequently. For instance, the activity sleeping occurs more frequently
during the time interval “23:30-07:30” and so can be associated with both the habit
intervals “23:00-05:15” and “05:15-07:00”.

In addition, for each of the six identified habit ranges, the percentage of time
spent in each of the related activities shown in Table 5.3 was calculated. Results

5.2 Validation and Results 66

Habit Percentage of time spent in each habit for relevant activities

05:15-07:00 80.1% sleeping 10.7% meal preparation 5.1% bed to toilet
4.1% other

07:00-13:45 35% work 18.06% meal preparation 10% housekeeping
8.90% relax 8.64% other 5.4% wash dishes
5% eating 4% sleeping 3% enter home
2% leave home

13:45-18:15 25% work 20.69% meal preparation 13.79% relax
13.52% other 10% eating 7% housekeeping
5% wash dishes 3% leave home 2% enter home

18:15-21:45 25% eating 23.01% meal preparation 21.25% relax
20.74% other 10% wash dishes

21:45-23:00 75.57% relax 24.43% other
23:00-05:15 85% sleeping 10.13% relax 3.02% bed to toilet

1.85% other
Table 5.4. The percentage of events related, for each habit interval, to the activities

occurring in the same time interval.

are shown in Table 5.4. For example, the habit “05:15-07:00” has a total duration
in the log of 105 ∗ 60 ∗ 220 = 13200 seconds, which are mostly distributed among
the activities sleeping, bed to toilet and meal preparation. Another example: during
the habit “05:15-07:00”, the sleeping activity is performed for 10567 seconds; thus,
the sleeping activity represents about 80% of that habit. The shown percentages
are helpful to understand how much a habit is linked to a specific activity. As we
can note from the table, only a part of the habit is related to specific activities,
while the rest of the time is either unlabeled or contains spurious activities and is
denoted with the class other. Noteworthy, these results are obtained by considering
the manual labeling of the human inhabitant in the original aruba log as the ground
truth. Obviously, this labeling may be subject to imprecision and noise.

67

Chapter 6

Unsupervised discovery of
human activities

Human activities have always been considered first-class citizens in research about
smart home automation. The term activity denotes a set of actions performed to
obtain a specific goal (e.g., cleaning the house, cooking). Being able to recognize the
onset and end of an activity performed by a single human or by a group of human
users can be helpful for different purposes. Examples of applications include the
definition of automation rules or the detection of potentially harmful deviations from
usual behavior.

Unfortunately, the practical applicability of techniques proposed in the literature
is limited by the effort required by the final user to manually label smart home logs
to train activity recognition models.

First, many approaches (e.g., [112]) require to manually specify window lengths
or other kinds of numerical thresholds (e.g., number of events, minimum distance
between two events). The selection of such parameters is hard and does not take
into account the peculiarities of the different activity types. In second place, the
vast majority of proposed solutions are directly applied to raw sensor measurements.
This strategy does not exploit the meaning of a sequence of sensor measurements,
only highlighting the statistical distribution of occurrences and co-occurrences of
sensor events. Finally, in many cases, automatic segmentation techniques are only
used to complement manual segmentation and are not intended to segment the full
log (e.g., [46]).

In this chapter, we introduce a fully automated log segmentation technique able
to mark the beginning and end of each activity repetition in a sensor log. In order
to obtain this result, the proposed technique employs the information about human
position in the log to extract high-level actions (e.g., standing still or operating in a
specific area of the house). Then, inactivity periods are analyzed in order to perform
the first segmentation. Finally, clustering is employed to identify classes of segments
representing activities.

The rationale behind the employment of position information to abstract human
actions is the frequent availability of sensors, such as Presence InfraRed sensors
(PIRs), that provide, at a different level of granularity, measurements reporting
the position of humans in the environment. Additionally, human positions provide

6.1 Proposed approach 68

Data Acquisition Sensor Log S

Log Conversion Action Log A

Log Filtering Filtered Action Log A′

Session Identification Sessions s1, s2, ..., sm

Session Clustering Clusters c1, c2, ..., cn

Log Segmentation Segmented Log AF

Figure 6.1. Overview of the proposed approach. Blue boxes represent the sequence of
steps of the unsupervised methodology described in this chapter. Yellow boxes represent
the output of each of these steps.

useful insights about the duration of human actions. Finally, the proposed technique
is evaluated by comparing the automatic segmentation obtained by applying our
method to the manual segmentation of logs available in the literature.

6.1 Proposed approach
In this section, we present step-by-step the data processing pipeline implemented in
this work. Figure 6.1 shows an overview of such an approach.

6.1.1 Data acquisition

A smart space produces data in the form of a sensor log S, i.e., an ordered sequence
of raw measurements. Measurements can be produced by a sensor within the smart
space on a periodic basis (e.g., humidity measurements) or whenever a specific
event is detected, such as the opening of a closet. In this work, we only consider
measurements obtained from Presence InfraRed sensors (PIRs), i.e., motion sensors
that are activated whenever a human crosses their detection cone. For this type of
sensor the same considerations made in Section 5.1.1 apply.

Position information, if a proper spatial resolution is granted, is very valuable
as a proxy for human actions, provided that an association between positions and
furniture is available. Noticeably, the approach described in this chapter can be
easily extended to other categories of sensors, provided that a proper log conversion
step (see Section 6.1.2) is implemented.

6.1 Proposed approach 69

6.1.2 Log conversion

As highlighted in Chapter 1, directly analyzing the raw sensor log S may be
counterproductive as measurements are too fine-grained, hiding behind variety and
noise the actual behavior of the human user. In order to address this issue, in this
work, we employ the technique we previously discussed in Section 5.1.2 to turn the
raw unsegmented sensor log S into an unsegmented action log A [125].

The classification allows for the replacement of sequences of raw sensor measure-
ments with human actions consisting of a category and a location. The location is de-
duced based on the positions of the associated sensors situated within the smart house.
The obtained action log A is a sequence of tuples ⟨Day, Start_TS, End_TS, Action⟩
where:

• Day represents the specific day in the log.

• Start_TS and End_TS denote the timestamps indicating the start and end
of each action. The tuples are organized in chronological order based on
Start_TS.

• Action is the outcome of the classification that replaces sequences of raw sensor
measurements. It is assigned one of these labels: STAY, AREA, or MOVEMENT,
followed by the identifier of the position.

6.1.3 Log filtering

The action log A, obtained from the previous conversion step, is further processed.
Consecutive repetitions of the same action within the log are merged together. In
order to address this task, we employ the same technique we previously discussed
in Section 5.1.3 Refer to Table 5.1 for an illustration of this merging process. The
resulting output of this merging step is referred to as A′.

6.1.4 Session identification

The action log A′ produced at the previous step is a continuous sequence of events
where the end timestamp of an event corresponds to the start event of the following
one. Some of the events, though, are represented by MOVEMENT actions, i.e., actions
representing the human moving between two positions in the environment to perform
more added-value actions, represented in the log through STAY and AREA. For example,
once the user has finished lunch, he/she could move to the living room to watch TV.
As a consequence, we remove the MOVEMENT events, thus obtaining a further filtered
action log that we will denote as A′′. With respect to A′, A′′ is discontinuous, i.e.,
it presents empty slots where a MOVEMENT action was previously present.

We now introduce the concept of session threshold ∆. In particular, we define
∆ as the mathematical median of the duration of the empty slots left by removing
the MOVEMENT actions. Intuitively, the value of ∆ represents the usual duration
of movements, allowing one to identify which movements are likely to represent a
change of scenario, i.e., of activity.

After computing ∆, the action log A′′ is segmented into sessions. A session
si = ⟨ei1, ..., ein⟩ in A′′ is defined as a sub-sequence of events where the time difference

6.1 Proposed approach 70

between the timestamp of the last event in the session and the timestamp of the
first event in the following session is larger than the threshold value ∆.

As an example, we consider a sample portion A′′
sample = ⟨a1, b3, c5, d11, e13⟩ of

an action log A′′, where the letter indicates the action name and the subscript is
the timestamp in which the action occurred (e.g., the action c occurred at time 5).
Let us assume a session threshold ∆ = 5. From this example, we can see that the
time difference between the action c and the action d is computed as 11 − 5 = 6,
which is greater than ∆. Then, we can derive two sessions ⟨s1, s2⟩ from A′′sample

where s1 = ⟨a1, b3, c5⟩ and s2 = ⟨d11, e13⟩. Notice that their concatenation results in
A′′sample.

At the end of this step, a sequence of m sessions s1, s2, ..., sm are identified,
and the action log can be represented as a concatenation of all of them, i.e., A′′ =
⟨s1, s2, ..., sm⟩.

6.1.5 Session clustering

Different sessions may represent several different ways of performing the same activity.
In order to group all the possible ways to execute an activity, session clustering is
performed. In this step, sessions are encoded as vectors to be subsequently fed into
the clustering algorithm. Several encoding techniques can be applied. We introduce
two of them, which are of general applicability and were implemented and used in
the evaluation of this approach (see later in Section 6.2).

Both methodologies generate vectors with one dimension for each different action
in the action log A′′ (e.g., AREA Living and STAY Kitchen_table). The complete
set of actions that can be found within A′′ is denoted as {x1, ..., xn}.

• Frequency-based encoding: it is useful when we want to cluster on the basis
of the frequency of the occurrence of actions in sessions. Each session sk is
encoded in a vector vk = ⟨vx1 , ..., vxn⟩ where the single component vxi is the
number of occurrences of the action xi in session sk.

• Duration-based encoding: each session sk is encoded in a vector vk =
⟨vx1 , ..., vxn⟩ where the single component vxi is the duration of instances of
action xi in the session sk. The duration of an action is trivially computed as
the time difference between the related end and start timestamps. If xi does
not occur in sk, then vxi = 0.

The output of the clustering phase is a set of clusters c1, c2, ..., cn, each cluster
grouping together a set of sessions representing different ways of performing an
activity.

6.1.6 Log segmentation

As we have seen in previous steps, the action log A′′ can be expressed as a sequence
of sessions, and each session is a sub-sequence of actions ⟨ei1, ..., ein⟩. Additionally,
in the clustering step, we mapped every session to a cluster ci. As a consequence,
we can label every action of a session with the cluster label of the session itself. For
example, if the session s1 = ⟨e1, e2, e3⟩ is clustered as c3. The sequence of actions
within the session ⟨e1, e2, e3⟩ can be labeled as c3.

6.2 Experimental evaluation 71

Figure 6.2. An example of the comparison between the labeled log L used as a benchmark
and the log AF generated by our approach. The red area represents the time intervals
in which the Cluster_0 coincides with Activity_1, while the blue area represents the
time interval in which the Cluster_0 coincides with Activity_2.

As a consequence, we can define the final segmented log AF by adding to all the
events in A′′ the label of the cluster to which they belong.

6.2 Experimental evaluation
The technique introduced in this work has been implemented as a Python script1.
The implementation features several algorithms for clustering, including K-means,
spectral clustering, DBSCAN and OPTICS.

To assess the validity of our approach, we compare the segmentation obtained
by using our tool to the labeling provided with the dataset used as a benchmark. In
Section 6.2.1, we discuss the criteria behind the selection of the dataset employed
for the evaluation. In Section 6.2.3 we present the results of the evaluation using a
state-of-the-art technique as a reference.

We will denote with L the labeled dataset selected for the evaluation and with
AF the log produced by applying our approach to L itself, ignoring the activity
labels (see Section 6.1). The labeling provided by L represents our ground truth for
the comparison.

L can be seen as a sequence of labeled n activities ⟨Activity_1, ..., Activity_n⟩.
For each Activity_i ∈ L we have a starting timestamp Astart and an ending
timestamp Aend, with Astart < Aend.

Similarly, AF can be seen as a sequence of m clusters ⟨Cluster_1, ..., Cluster_m⟩
identified by our approach. For any Cluster_i ∈ AF we have a starting timestamp
Cstart and an ending timestamp Cend, with Cstart < Cend.

The start and the end of the Cluster_i do not necessarily coincide with the
start and the end of the Activity_i. For instance, let us consider Cluster_0 and
Activity_0 from Figure 6.2: their initial timestamps (A0 and C0) match, but the
final ones (A1 and C1) do not.

For each identified Cluster_i ∈ AF , we establish how much it coincides with
each Activity_j ∈ L. Let us consider again the example provided in Figure 6.2
where two small portions of L and AF are provided. In particular, the example

1See: https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/Activity-Segmentation.git

https://github.com/DIAG-Sapienza-BPM-Smart-Spaces/Activity-Segmentation.git

6.2 Experimental evaluation 72

highlights the sequence of activities ⟨Activity_1, Activity_0, Activity_1, ...⟩ and
the sequence of clusters ⟨Cluster_0, Cluster_1, Cluster_0, ...⟩, respectively from
L and AF .

Considering only the portion of logs highlighted by the example, then Cluster_0
coincides with Activity_1 for a time span expressed as (C1−C0)+(C3−A2)

(A1−A0)+(A3−A2) . In a similar
way, Cluster_0 coincides with Activity_2 for a time span expressed as (A2−C2)

(A2−A1) .
Still considering the example provided in Figure 6.2, let us specify some values

for the constants: A0 = 0, A1 = 5, A2 = 10, A3 = 15 and C0 = 0, C1 = 4, C2 = 8,
C3 = 14. The relationship between Cluster_0 and Activity_1 is (C1−C0)+(C3−A2)

(A1−A0)+(A3−A2) =
(4−0)+(14−10)
(5−0)+(15−10) = 8

10 = 0, 8. Then Cluster_0 coincides with Activity_1 for the 80%
of the time in this portion of logs highlighted by this example. Similarly, the
relationship between Cluster_0 and Activity_2 is (A2−C2)

(A2−A1) = (10−8)
(10−5) = 2

5 = 0, 4.
Then Cluster_0 coincides with Activity_2 for the 40% of the time in this portion
of logs highlighted by this example.

This is repeated for every cluster/activity pair. Finally, each Activity_i ∈ L is
mapped to a Cluster_j ∈ AF that has the highest matching percentage among all
the identified clusters.

The remainder of this section presents (i) in Section 6.2.1 the process we followed
to select the datasets included in the evaluation, and (ii) in Section 6.2.2 the results
achieved.

6.2.1 Dataset selection

This section reports a preliminary analysis of the datasets widely employed by the
smart space community. The list of the datasets that have been taken into account
during this analysis is shown in Table 6.1. We considered only labeled datasets.
Having activities labeled allows for activity-specific tasks such as recognition and
prediction. In our case, labeling is used to make a comparison between the clusters
identified by our methodology and the activities performed within the dataset.
Furthermore, we are interested in the following features:

• Sensors: the kind of sensors used in the log.

• Inhabitants: the number of residents participating in the dataset. It is not
always possible to establish which inhabitant is responsible for triggering a
specific sensor.

• Length: the log size measured in terms of days of acquisition/number of sensor
measurements influences the robustness of the clustering task.

From the list provided in Table 6.1, we excluded:

1. datasets from multi-user environments, i.e., datasets in which more than one
inhabitant is involved (datasets 3, 4, 5, 7 and 10);

2. datasets that can be considered “small" in terms of days of acquisition/number
of sensor measurements. In particular, we excluded those shorter than 3
months;

6.2 Experimental evaluation 73

ID Dataset Sensors Inhabitants Length

1 [148] 3 PIR, 4 door, 1 flush, 2 pressure, 2 electric 1 14 days
2a [176] 77 activation/deactivation sensors 1 16 days
2b [176] 84 activation/deactivation sensors 1 16 days
3 [7] 6 photocells, 3 force, 3 contact, 6 distance,

1 IR, 1 temperature
2 30 days

4 [80] 6 PIR, 5 door, 1 temperature, 6 micro-
phones, 5 cameras and accelerometers (for
each subject)

10 -

5 [161] IMUs and accelerometers attached to sub-
jects (3 each), objects and devices

4 -

6 [194] 14 switch sensors on devices and doors 1 30 days
7 [13] Smartphone accelerometers 30 -
8 [51] About 200 device and environmental sen-

sors
1 28 days

9 [42] 30 PIR, 4 door switches, 3 temperature 1 2 years
10 [170] 50 PIR plus device and environmental sen-

sors
2 -

Table 6.1. List of the available and most widely used datasets for the smart space
community. They have been identified with an increasing ID from 1 to 10 (datasets
2a and 2b have the same prefix because they are from the same project). For more
information on these datasets see Table 2.2.

3. datasets with a poor distribution of PIR sensors within the environment.

With these considerations, from the list in Table 6.1, we choose the dataset identified
as 10: the aruba dataset from CASAS project [44]. It is a state-of-the-art sensor
log freely available at http://casas.wsu.edu/datasets/. It is a partially labeled
sensor log containing real-life data from a smart home. Specifically, the smart home
was inhabited by an adult woman. This resident moves in an environment with 31
motion sensors, 4 temperature sensors, and 4 sensors that detect and monitor the
closing of doors. This dataset contains 6438 labeled activities. The layout of the
aruba map can be seen in Figure 5.3.

The rationale behind this decision is also based on the significant influence that
this project has had on the community as well as the accessibility of source code for
algorithms frequently employed as benchmarks [54, 71, 125, 49, 98].

The aruba dataset includes eleven different labels: Enter_home, Leave_home,
Housekeeping, Meal_preparation, Eating, Wash_dishes, Relax, Resperate,
Bed_to_toilet, Sleeping, and Work. The other label is ignored as too generic.

We considered only measurements from PIR sensors in order to be able to use
the VPM system [125, 129] to perform the Log conversion task (see Section 6.1.2).

Furthermore, we also decided to evaluate our approach on a synthetic dataset
produced by using the smart space simulator [195] presented in Chapter 3. In
particular, we produced the synthetic dataset by simulating a series of activities
conducted by a single human, namely: Cook_&_eat, Do_dishes, Drink, Eat_cold,

http://casas.wsu.edu/datasets/

6.2 Experimental evaluation 74

Eat_warm, Exercise, Go_work, Sleep, Rest, Shop, Use_PC, Watch_tv and Wc. We
replicated the configuration of the aruba smart environment shown in Figure 5.3,
including the same list of sensors and the same positioning, by using the design tools
provided within the same simulator.

Other three datasets have also been considered for the evaluation, i.e., 2a, 2b,
and 6 in Table 6.1, but results are not included as they did not suit our approach
(see Section 6.2.4 for details).

6.2.2 Results

By following the evaluation methodology discussed in Section 6.2, we applied our
approach to the aruba dataset from the CASAS project and to a synthetic dataset
produced by our simulator (see Chapter 3). We repeated the evaluation using
four different clustering algorithms: Spectral clustering, K-means, DBSCAN, and
OPTICS.

First, we calculated the session threshold value ∆, which turned out to be 7
seconds for the CASAS dataset (with 8355 identified sessions) and 6 seconds for
the synthetic one (with 946 identified sessions). Then, we performed a preliminary
hyperparameter analysis. In particular, we selected, for each algorithm, the set of
optimal parameters whose values are used to control the clustering process:

• Spectral: random_state=0, assign_labels=cluster_qr and eigen_solver=amg;

• K-means: init=k-means++, algorithm=elkan;

• DBSCAN: eps was set to 0.3 for the CASAS dataset and 0.24 for the synthetic
dataset. minPts=2*dimensionality of the encoded log. Such dimensionality
was 35 for the CASAS dataset and 18 for the synthetic one;

• OPTICS: min_samples=50, xi=0.05 and min_cluster_size=0.05.

All four algorithms performed better with the duration-based encoding (see
Section 6.1.5). Then, the feature vector is normalized to ensure that the maximum
absolute value of each feature in the training set becomes 1.0.

While with DBSCAN and OPTICS there is no need to choose the number of
clusters a priori, for Spectral and K-means an estimation of the number of clusters
must be provided. In these latter cases, we employed the elbow method to determine
an optimal number of clusters to produce [101]. The estimation provided by the
elbow method balances the number of clusters versus the error within the clusters.
The error, in this context, refers to the average distances of points within a cluster
from their respective centroids. We applied the elbow method and determined the
result based on the knee of the elbow to define the number of clusters to create,
which is explicitly required by all algorithms.

Note that the number of clusters does not need to be equal to the number of
activities in the dataset used as a benchmark. From our experiments, we noticed
that they could also be more with respect to the number of activities, with some of
them remaining almost empty.

Finally, we computed a mapping between the activity labels in the dataset used
as a benchmark and the clusters identified by our approach. Table 6.2a presents

6.2 Experimental evaluation 75

CASAS Dataset Results
Activities Spectral K-means DBSCAN OPTICS

Bed_to_toilet 5 0 0 0
Eating 1 3 0 0
Enter_home 16 3 2 1
Leave_home 16 3 1 1
Housekeeping 9 3 1 0
Meal_prep. 19 3 1 0
Relax 9 3 0 1
Resperate 12 27 0 1
Sleeping 5 0 1 1
Wash_dishes 18 3 0 1
Work 16 23 0 0

(a)

Synthetic Dataset Results
Activities Spectral K-means DBSCAN OPTICS

Cook_&_eat 5 1 1 2
Do_dishes 0 7 3 3
Drink 5 1 1 2
Eat_cold 0 3 0 3
Eat_warm 0 1 1 2
Exercise 4 5 0 3
Go_work 8 1 0 2
Sleep 3 4 0 3
Rest 1 3 0 3
Shop 7 2 0 3
Use_PC 0 1 0 3
Watch_TV 4 5 0 3
WC 3 5 0 3

(b)

Table 6.2. Table (a) shows the clusters identified by applying the approach described
in this paper to the CASAS aruba dataset. Table (b) shows the clusters identified by
applying the approach described in this paper to the synthetic dataset produced by the
simulator. In the first column, all the labeled activities available in the related dataset
are listed, while on the first row is the list of algorithms used for the clustering task.

the results obtained for the aruba CASAS dataset: each column shows the clusters
identified for each activity by each clustering algorithm. Similarly, Table 6.2b
presents the results obtained for the synthetic dataset.

6.2 Experimental evaluation 76

CASAS Synthetic

Our approach 98% (9h) 90% (4h)
[46] 81% (37h) 91% (13h)
[46] + pre-processing 96% (42h) 97% (16h)

Table 6.3. Accuracy results obtained by (i) the approach described in this work (first line),
(ii) the state-of-the-art segmentation method, (iii) the same state-of-the-art method
applied to the pre-processed log. In brackets, the time spent by each method in terms of
hours.

6.2.3 Comparison with the state-of-the-art

To further evaluate our approach, we performed an empirical comparison with the
state-of-the-art log segmentation method developed by [46] already introduced in
Section 3.4.2. Their Activity Learning (AL) software tool (which can be freely
downloaded from http://casas.wsu.edu/tools/) contains various dedicated com-
ponents such as activity modeling and recognition (AR), activity discovery (AD),
and activity prediction (AP). For our comparison, we used the AD component, which
finds sequential patterns in time-ordered sensor data and computes a segmentation
of the input dataset. Noteworthy, with respect to the state-of-the-art presented in
Section 1.1, the comparison with [46] was the only option as other available methods
have different inputs or outputs.

In addition, to simply evaluating the proposed approach, we were interested to
see whether or not the pre-processing step from our approach (see Sections 6.1.2
and 6.1.3) could improve the final segmentation of the state-of-the-art method itself.

Therefore, we applied [46] and pre-processed [46] to the same datasets used to
validate our approach: the aruba dataset from the CASAS project and the synthetic
dataset produced by a smart home simulator (see Section 6.2.1). Then, considering
the labeling provided by the benchmark datasets as our ground truth, we calculated
the percentage of accuracy as the number of labels correctly assigned by each
segmentation method out of the total number of assigned labels. Additionally, we
kept track of the total time spent on each segmentation method. The experiments
have been carried out on a Dell XPS 15 9500 notebook with an Intel Core i7-10750H
and 16 GB of physical memory.

Comparison results are shown in Table 6.3 and will be discussed in the next
section.

6.2.4 Discussion

The previous section reported the results obtained by applying the unsupervised
approach described in this chapter to five different datasets. Such datasets are
identified with IDs 2A, 2B, 6, and 10 in Table 6.1, plus a synthetic dataset produced
using the simulation tool described in Chapter 3. As already mentioned in Section
6.2.1, three of the five datasets (namely 2A, 2B, and 6) are found to be unsuitable
for our approach. For datasets 2A and 2B, the critical point is that PIR sensors
are not homogeneously placed within the domestic environment and are mostly

http://casas.wsu.edu/tools/

6.2 Experimental evaluation 77

concentrated in the kitchen: 47 out of 77 total sensors for dataset 2A and 42 out
of 84 for dataset 2B. This distribution does not allow for correctly abstracting the
actions that take place in other areas of the house in the Log Conversion phase.

The dataset 6 has few sensor measurements: only 2180 labeled entries compared
to the more than 792k of the aruba dataset. Consequently, the Creation of Sessions’
phase of our approach generated few sessions, i.e., the number of sessions was less
than the number of clusters suggested by the elbow method, making it impossible
to apply a clustering algorithm in an optimal way.

Results in Table 6.2 show that the algorithm that performed best is Spectral
Clustering. K-means does not always result in the best clustering results when
pairs of clusters are not linearly separable. In human action clustering, this aspect
has been highlighted in [100, 146, 205] where authors use spectral clustering and
natural language techniques rather than employing compactness approaches such as
K-means.

Analyzing the identified clusters, we can draw very interesting conclusions on
the results obtained (see Table 6.2) through spectral clustering:

• The activities Sleeping and Bed_to_toilet are clustered together in Cluster
5. This result can be explained by looking at the layout of the house: the
bathroom used during Bed_to_toilet is inside the bedroom used for Sleeping.
In addition, there is only a single sensor in the bathroom (M004), which just
registers the entrance and exit of the inhabitant from the bathroom itself.
Then, no other specific action within the bathroom can be inferred, making
both activities comparable in terms of actions.

• The activities Enter_home, Leave_home, and Work are clustered together
in Cluster 16. This is justified by the fact that the inhabitant’s workplace is
located outside his house, so the movements registered by motion sensors to go
to work are comparable to the ones related to entering and leaving the house
for any other reason not specified in the labeling provided.

• The activities Housekeeping and Relax are clustered together in Cluster 9. It
is plausible to think that the actions performed within the general activity
Housekeeping cover most of the areas that the inhabitant uses to relax, e.g.,
the living room and the bedroom.

• All the other activities are clustered in well-separated clusters. The clusters
not included in the mapping activity/cluster are mostly empty.

The results from spectral clustering for the synthetic dataset (shown in Table 6.2)
also show very interesting characteristics. We still take into account the layout of
the aruba dataset, conveniently recreated using the simulator’s tools:

• The activities Cook_and_eat and Drink are clustered together in Cluster 5.
Both activities take place in the same environment (i.e., the kitchen), making
the movements required to perform them comparable.

• The activities Do_the_dishes, Eat_cold, and Eat_warm are clustered together
in Cluster 0. Such activities take place in the same environment (i.e., the

6.2 Experimental evaluation 78

kitchen), and in particular, the kitchen sink is located in the middle between
the oven, fridge, and microwave, all essential elements for the activities related
to eating.

• The activity Use_computer is also clustered into Cluster 0. This is the only
ambiguous result obtained from clustering since it cannot be associated with
the other activities in the same cluster from the previous point.

• The activities Exercise and Watch_TV are clustered together in Cluster 4. As
can be seen from the map, the exercise spot has been designed inside the living
room near the chair used to watch the TV, making the activities very similar
from the point of view of the motion sensors triggered during the simulation.

• All the other activities are clustered in well-separated clusters. The clusters
not included in the mapping activity/cluster are mostly empty.

Regarding the comparison made with the state-of-the-art method (see Section
6.2.3), some interesting results emerge from Table 6.3.

The accuracy of our approach is superior, or highly comparable, to the results
obtained by employing [46]. In particular, for the aruba dataset from the CASAS
project, we reach a percentage of 98% against the 81% achieved by [46], while for
the synthetic dataset, we reach a percentage of 90% against the 91% achieved by
[46]. Concerning the time required by each method to complete the segmentation,
our approach turns out to be four times faster, while for the synthetic dataset, our
approach is three times faster.

Finally, it is also interesting to note how the application of our pre-processing
step (see Sections 6.1.2 and 6.1.3) to the state-of-the-art methodology improved its
final segmentation in terms of accuracy: for the aruba dataset, from 81% to 96%
accuracy, while for the synthetic dataset, from 91% to 97% accuracy.

79

Chapter 7

User study

Performing a qualitative analysis alongside quantitative results in scientific research
work is crucial for providing a comprehensive and nuanced understanding of the
phenomena under investigation. While quantitative data offers measurable and
numerical insights, qualitative analysis adds depth, context, and a more holistic
perspective to the research findings. Here are several key reasons highlighting the
importance of incorporating qualitative analysis in scientific research:

• qualitative analysis helps contextualize quantitative results by providing a
deeper understanding of the factors influencing the observed patterns or trends;

• qualitative methods, such as interviews, open-ended surveys, or content analy-
sis, enable researchers to capture rich and detailed information that may not
be easily quantifiable;

• qualitative findings can be used to validate or challenge quantitative results,
providing a more robust and trustworthy interpretation of the study.

In summary, the integration of qualitative analysis with quantitative results enhances
the rigor and completeness of scientific research.

In [197], starting from the results obtained by the unsupervised segmentation
methodologies introduced in Chapters 5 and 6, we mine the related process models
and analyze them throughout a user study.

Process mining provides several mining approaches, each offering unique insights
into the representation of underlying processes. In this user study we are interested
in three discovery algorithms: (i) the inductive miner, (ii) the heuristic miner, and
(iii) the fuzzy miner. Inductive process mining excels in capturing implicit knowledge,
heuristic approaches leverage predefined rules and domain knowledge, while fuzzy
mining accommodates uncertainty and imprecision in the data [84].

7.1 Mining process models through process discovery
In order to mine the habit and activity models from the segmentation results
respectively obtained by applying the approaches described in Chapters 5 and 6, we
have used the ProM software tool.

7.2 Designing the user study 80

ProM is an extensible framework that supports a wide variety of process mining
techniques in the form of plugins. It is platform-independent as it is implemented in
Java and can be downloaded free of charge (link in the footnote1). It provides the
latest implementations of the known process mining algorithms, not only for the
discovery of process models but also for checking the conformance of a model and/or
for enhancing it [191].

For each habit interval identified by the segmentation methodology described in
Chapter 5, the ProM framework was used to discover the related process models.
In particular, four algorithms were used: (i) the inductive miner, (ii) the heuristic
miner, (iii) the fuzzy miner, and (iv) the alpha miner. The models discovered with
the alpha miner were excluded from the analysis because they were not relevant.

Similarly, for each activity identified by the segmentation methodology described
in Chapter 6, the ProM framework was used to discover the related process models.
The same four discovery algorithms were used. The models discovered with the
alpha miner were excluded from the analysis because they were not relevant.

In Appendix, we propose some of the most relevant models mined from the ProM
tool. All the other models are available in the repository in the footnote2.

7.2 Designing the user study

Procedure. The user study was conducted following a questionnaire-based approach.
The questionnaire was designed, created, and distributed to participants using the
Google Forms platform.
Participants. Overall, a total of 20 different participants were involved in the user
study. The age range was (on average) between 18 and 34 years and involved people
with bachelor’s degrees up to post-doc.

No previous knowledge was required to complete the questionnaire. However,
before starting, it was recommended to read a brief handbook, which introduces
the basic concepts and terminology for tackling the questionnaire. The handbook is
available at the link in the footnote3.
Questionnaire design. The questionnaire included 38 sections organized as follows:

• Section 1 contains a recommendation for reading the handbook before starting.
The link to the handbook was provided.

• Section 2 were about user profiling, i.e., age and current position.

• Sections 3 to 20 are designed to provide feedback on the process models mined
over the activity-based segmentation results from the approach described in
Chapter 6. In particular, for each relevant activity, the related process model
was mined by using three different discovery algorithms, i.e., (i) the inductive
miner, (ii) the heuristic miner, and (iii) the fuzzy miner. Each output has been

1see: https://promtools.org/
2see: https://drive.google.com/drive/folders/1-nj4jSWd3I1LC1vnT1cYqKh5Yhnxj-vE?

usp=sharing
3see: https://drive.google.com/file/d/1szyCCN_bM_OGo2iTI4IPQP0InbeL52-B/view

https://promtools.org/
https://drive.google.com/drive/folders/1-nj4jSWd3I1LC1vnT1cYqKh5Yhnxj-vE?usp=sharing
https://drive.google.com/drive/folders/1-nj4jSWd3I1LC1vnT1cYqKh5Yhnxj-vE?usp=sharing
https://drive.google.com/file/d/1szyCCN_bM_OGo2iTI4IPQP0InbeL52-B/view

7.2 Designing the user study 81

evaluated by visually inspecting the specific process model and by answering
three questions:

– Question 1: “How well do you think this model reflects the activity x?”,
where x was the activity under analysis in that specific section. It was
rated on a Likert scale ranging from 1 (“too generic”) to 10 (“too specific”).
Here, we wanted to have a high-level feedback on the model in its entirety.

– Question 2: “Do the single actions in the model make sense with respect
to a possible activity x?”, where x was the activity under analysis in that
specific section. It was rated on a Likert scale ranging from 1 (“not at
all”) to 10 (“completely suitable”). Here, with respect to the previous
question, we wanted to have a low-level feedback on the individual nodes
(i.e., actions) of the model.

– Question 3: “Do you have any comments about this model?”. It was an
optional, open-ended question to collect further feedback on the model
under observation.

• Sections 21 to 38 are designed to provide feedback on the process models
mined over the habit-based segmentation results from the approach described
in Chapter 5. In particular, for each habit, the related process model was
mined by using three different discovery algorithms, i.e., (i) the inductive
miner, (ii) the heuristic miner, and (iii) the fuzzy miner. Each output has been
evaluated by visually inspecting the specific process model and by answering
three questions:

– Question 1: “How well do you think this model reflects a possible daily hu-
man routine covering the time between START_TIME to END_TIME?”,
where the time range was related to the habit under analysis in that
specific section (e.g., from 05:15 AM to 7:00 AM). It was rated on a
Likert scale ranging from 1 (“too generic”) to 10 (“too specific”). Here,
we wanted to have a high-level feedback on the model in its entirety.

– Question 2: “Do the single actions in the model make sense with respect to
a possible daily human routine covering the time between START_TIME
to END_TIME?”, where the time range was related to the habit under
analysis in that specific section (e.g., from 05:15 AM to 7:00 AM). It was
rated on a Likert scale ranging from 1 (“not at all”) to 10 (“completely
suitable”). Here, with respect to the previous question, we wanted to
have a low-level feedback on the individual nodes (i.e., actions) of the
model.

– Question 3: “Do you have any comments about this model?”. It was an
optional, open-ended question to collect further feedback on the model
under observation.

Questionnaire results. The feedback was collected in an Excel file and then
analyzed with ad hoc statistical tools.

7.3 Statistical tools for qualitative analysis 82

7.3 Statistical tools for qualitative analysis
Statistical tools play a fundamental role in the analysis and interpretation of data
collected through a user study. Two widely used tools for comparing means and
exploring group differences are the t-test and analysis of variance (ANOVA). These
methods are fundamental in hypothesis testing and are essential in various fields,
from experimental sciences to social research. In particular:

7.3.1 t-test

t-test is a statistical method employed for assessing the significance of differences
between the means of two groups. It encompasses several variants, with the inde-
pendent two-sample t-test being a common choice. For comparing the means (µ1
and µ2) of two independent groups with sample sizes n1 and n2, the t-statistic is
computed as:

t = (X̄1 − X̄2)√
s2

1
n1

+ s2
2

n2

(7.1)

where X̄1 and X̄2 are the sample means, s1 and s2 are the sample standard
deviations, and n1 and n2 are the respective sample sizes.

The t-test assesses the null hypothesis that the means of the two groups are
equal, and the test statistic follows a t-distribution with n1 + n2 − 2 degrees of
freedom.

7.3.2 Analysys of variance (ANOVA)

ANOVA is a statistical method widely employed in scientific research to investigate
the impact of multiple independent variables on a dependent variable. It is designed
to partition the total variability observed in a dataset into distinct components
attributable to different sources.

For a 1-way ANOVA, considering k groups, the total sum of squares (SST) can
be expressed as:

SST =
k∑

i=1

ni∑
j=1

(Xij − X̄)2 (7.2)

where Xij represents the j-th observation in the i-th group, X̄ is the overall
mean, and ni is the sample size of the i-th group.

ANOVA then decomposes SST into two components: the sum of squares between
groups (SSB) and the sum of squares within groups (SSW). The calculations are as
follows:

SSB =
k∑

i=1
ni(X̄i − X̄)2 (7.3)

SSW =
k∑

i=1

ni∑
j=1

(Xij − X̄i)2 (7.4)

7.4 Results and discussion 83

The mean square between groups (MSB) and mean square within groups (MSW)
are obtained by dividing SSB and SSW by their respective degrees of freedom,
leading to the F-ratio:

F = MSB

MSW
(7.5)

ANOVA tests the null hypothesis that all group means are equal, using the
F -statistic. A significant F -value implies that at least one group mean differs from
the others.

7.3.3 Choice of statistical tool by design

Both the t-test and ANOVA share the common objective of assessing differences
in means, but they are applied in different contexts. The t-test is suitable for
comparing two groups directly, while ANOVA extends the analysis to multiple
groups simultaneously, making it advantageous in experimental designs with more
complex structures. Additionally, ANOVA assesses overall group differences, but it
does not pinpoint which specific groups are different. In contrast, the t-test directly
informs about the difference between two specified groups.

In summary, the choice between ANOVA and the t-test hinges on the experi-
mental design: ANOVA for multiple group comparisons and the t-test for focused
examination of differences between two groups. Understanding the nuances of these
statistical tools empowers researchers to make informed decisions in designing and
interpreting their experiments.

In our case study, we want to analyze the process models obtained from different
mining algorithms, i.e., inductive, heuristic, and fuzzy miners. For each algorithm,
we identify an observation group. Therefore, having more than two groups, our
choice falls under 1-way ANOVA.

7.4 Results and discussion
As described in Section 7.2, for each process model, two questions were asked: the
first relating to the global model (high-level analysis) and the second specific to the
nodes (i.e., human actions) included in the model (low-level analysis). Then, we
ran two separate ANOVA tests, one for each question. The results are respectively
shown in Table 7.1 and Table 7.2.

These results revealed that there is a 100% chance that at least one algorithm
has a significant difference in mean scores. In addition, post-hoc tests have been
conducted to explore pairwise differences between the three discovery algorithms
under observation, i.e., fuzzy, heuristic, and inductive.

These additional pairwise tests show that process models mined using the fuzzy
algorithm are considered more suitable for this type of modeling of human behavior,
both at a high-level (i.e., question 1) and at a low-level (i.e., question 2). The
mean scores obtained from the questionnaire, shown in the bar charts in Figure 7.1,
further highlight the participants’ preferences. Human behavior is flexible by nature,
and this characteristic is considered by fuzzy mining, which takes into account the
uncertainty and imprecision of the data [84].

7.4 Results and discussion 84

Source df SS MS F p-value

Factor (Between Groups) 2 1417.143 708.571 198.90 9.335E-69
Error (Within Groups) 681 2,426 4
Total 683 3843.169

F critical Value
3.008949291

(a)

Fuzzy Heuristic Inductive Total

Mean 7.557 4.109 5.192 5.619
Standard Deviation 1.791 2.144 1.696 2.372
Variance 3.208 4.600 2.878 5.626
t-critical 1.970 1.970 1.970
Margin 1.283 2.084 1.467

Grand Mean 5.619
SS Total 3,843.2

Sum of Squares Factor 855.567 520.023 41.551
SS Factor 1417.143
SS Error 2,426.03

(b)

Table 7.1. Table (a) shows the results obtained by performing the 1-way ANOVA test
on the feedback relating to the activity or habit model in its entirety (i.e., question 1).
Table (b) shows the relevant calculations made to calculate these results.

7.4 Results and discussion 85

Source df SS MS F p-value

Factor (Between Groups) 2 1329.774 664.887 212.82 1.58914E-
72

Error (Within Groups) 681 2,128 3
Total 683 3457.292

F critical Value
3.008949291

(a)

Fuzzy Heuristic Inductive Total

Mean 7.557 4.109 5.192 5.619
Standard Deviation 1.791 2.144 1.696 2.372
Variance 3.208 4.600 2.878 5.626
t-critical 1.970 1.970 1.970
Margin 1.283 2.084 1.467

Grand Mean 5.619
SS Total 3,843.2

Sum of Squares Factor 855.567 520.023 41.551
SS Factor 1417.143
SS Error 2,426.03

(b)

Table 7.2. Table (a) shows the results obtained by performing the 1-way ANOVA test
on the feedback related to the specific actions included in the activity or habit model
under observation (i.e., question 2). Table (b) shows the relevant calculations made to
calculate these results.

7.4 Results and discussion 86

0

1

2

3

4

5

6

7

8

9

(a)

0

1

2

3

4

5

6

7

8

9

10

(b)

Figure 7.1. Bar charts showing the mean scores of the responses to the various algorithms
under analysis. Figure (a) shows the scores for question 1, while Figure (b) shows the
scores for question 2.

87

Chapter 8

Conclusions and future work

In this thesis, we discussed the application of process discovery techniques to smart
space data, focusing on smart home environments, and how to handle the main
identified challenges in the field [124]: (i) generating data in an appropriate format
to be able to apply PM techniques; (ii) abstracting the gap between sensor and
event logs; (iii) choosing or designing the proper modeling formalism for representing
human behavior; (iv) segmenting logs into traces to be able to apply PM techniques;
(v) dealing with multi-user environments; and (vi) addressing the continuous evolution
of human behavior.

• In Chapter 2, we have conducted a literature review on the application of
process discovery techniques to smart space data. A total of 25 studies were
included and analyzed in the survey. The results showed that there are already
some potential solutions for these challenges, ranging from sensor measurements
to activities and sometimes going a step further by identifying habits.
However, some important issues still need to be addressed, such as the se-
lection of an appropriate modeling formalism for human behavior mining,
the exploitation of context information, the generalisability of the developed
techniques, the identification of user individual and collaborative activities
in multi-user environments, and discovery techniques that can deal with user
behavior evolution without being intrusive for the users. In this thesis, we
dealt with some of these main challenges.

• In Chapter 3, we presented a simulator for smart homes based on process
models of human activities expressed using the behavior pattern formalism.
In addition, we propose a common way to represent produced datasets by
leveraging a standard successfully employed in the field of business process
logs, i.e., the XES format. Such a format is then further extended with the
work described in Chapter 4.
The simulator allows to generate data for multiple independent virtual inhabi-
tants. The proposed tool can be configured to support any of the features of
freely available datasets and can be used to define challenges and benchmarks
addressing different sets of sensors and environmental layout and conditions.
In the evaluation section, we proved that the tool was able to produce datasets
with characteristics similar to those of freely available datasets and that the

88

produced datasets can be used to evaluate state-of-the-art techniques produc-
ing results similar to those obtained with a real dataset. Additionally, our
simulator can produce a dataset including both the sensor level and the action
level, which is something unmatched in available datasets.
At the current stage, the simulator is not able to simulate collaborative activities
between different inhabitants, but they are only addressed in a very limited
number of works in the scientific literature. In addition, the simulator is only
able to model sensors attached to the environment because the modeling cost
of body-worn sensors is too high. This can be considered a minor limitation,
as these latter are mainly employed to recognize particular human movements
(e.g., falling), and replicating experiments is relatively simple with respect to
those requiring a whole environment.
While modeling human activities using behavior patterns is simple and imme-
diate, modeling sensors and devices inside the simulator may not be straight-
forward. One of our aims is to promote the employment of the simulator
public repository in the community as a facility to collaborate by proposing
new models that can then be combined in order to ease the generation of freely
available datasets.

• In Chapter 4, we presented a new format for IoT-enhanced event logs. This
format combines the different event types presented in [26] with the notion
of object from OCEL to form a very flexible format capable of integrating
IoT data with process data with minimal information loss. The format was
evaluated, and we provided evidence of its theoretical robustness and practical
usefulness. Finally, we also compared our new format with existing alternatives
and showed that it is the only one fulfilling the requirements in [27]. Moreover,
a first practical application demonstrated how generating a log following our
format enables process analyses integrating IoT data. Such a log has been
produced with the smart home simulator introduced in Chapter 3.
Some limitations of our work include the still-experimental implementation
so far and the potential amplifying effect of multiple event abstraction steps
on sensor data quality issues. To cope with these limitations, in future works,
we first plan to further develop the format by creating more tool support
to generate and manipulate logs. Next to this, we would like to design new
analysis techniques taking advantage of the capabilities of the new format,
e.g., for IoT-enhanced trace clustering and IoT-enhanced predictive process
monitoring. As such, looking into the compatibility of NICE logs with the
OCEL 2.0 format could help leverage existing techniques and tools.

• In Chapter 5, we have introduced an approach to automatically segmenting a
sensor log into human habits by defining a discretization strategy based on
metrics from the Petri nets automatically discovered at each merging step.
Then, the final segmentation can be used to mine process models describing
human habits that can, in turn, be employed to make decisions about the
environment.
Furthermore, in Chapter 6, we have introduced another unsupervised approach,

89

but this time we focus on activities instead of habits, which allows for finer-
grained control over human routines. We proposed a clustering-based strategy
that groups together actions performed by humans in the context of a smart
space. The approach has been evaluated against five state-of-the-art datasets,
four out of five based on real scenarios, and an additional synthetic dataset
produced by the smart home simulator introduced in Chapter 3. The approach
was also compared with a state-of-the-art log segmentation method, obtaining
interesting results in terms of accuracy and execution time.
At their current stage, these two proposed solutions have some limitations.
They need a sensor log to be properly converted into an action log A. In order
to perform such a conversion task, we applied the technique described in [125],
which only supports Presence InfraRed sensors (PIRs), a frequent option as
discussed in Section 2.1.1. By only using this kind of sensor, we limit the
actions that can be recognized. For instance, in the smart house used within
the context of the dataset aruba, only a sensor is placed on the bathroom,
specifically on the door (namely M004, as shown in Figure 5.3). From that
sensor, we can only gather information about the inhabitant entering or exiting
the bathroom; it is not possible to get the details of the actions performed
inside it (e.g., wash hands, use the toilet, get a shower).
However, despite this limitation, it is still possible to obtain equivalent infor-
mation (i.e., the detection of a subject in a certain area) from other types
of sensors, making the approach scalable and applicable to a wider range of
cases. For example, a video camera or a laser detection sensor (LIDAR) can
derive the same information, i.e., the presence of a subject within their range
of vision.
Furthermore, our approaches have been evaluated solely against single-human
datasets. As discussed in Section 2.1.5, this is a quite common limitation in the
field that limits the relevancy of solutions. In multi-human environments, it is
far harder to associate every measure within the log with the correspondent
resident that has triggered it, especially if we only consider PIRs, and thus
it is even more difficult to segment the activities performed by every single
user within the smart environment. Future work will concentrate efforts in
this direction.

• Finally, in Chapter 7, the quantitative results already obtained in Chapters 5
and 6 have been enhanced with a qualitative analysis with an ad hoc statistical
tool, i.e., the analysis of variance (ANOVA) technique. The results show
that the fuzzy miner is considered the most suitable discovery algorithm for
modeling human behavior (i.e., activities and habits), and this difference
compared to other algorithms is statistically significant.

However, some important issues still need to be addressed in future work.

Research agenda and connection with process mining

Strictly related to the results achieved in the survey introduced in Section 2.1,
interesting points and future directions arise. First of all, the study of the best

90

modeling formalism for human behavior is to be continued [58], as many different
languages are used and some languages showing potentially useful characteristics
have seldom been used yet. For instance, in the survey, declarative modeling
formalisms, which often provide richer constructs, have only been used by S8 [175],
who specifically highlighted the added value of DECLARE models for unstructured
or flexible behavior. Other declare models, such as CMMN [2], could be as well
studied, as it forms a standardized specification providing the possibility to specify
control flow and corresponding rule-based constraints [202] useful for indicating
context-dependent behavior. The choice of formalism may need to be adapted to
the specific application, and transformations between formalisms may also be a
viable option to meet diverse needs (understandability, actionability, expressiveness,
flexibility, etc.). In addition, the use of contextual information to create more
meaningful models should be further explored, as it largely remains unexplored.

Models specifically proposed for representing IoT-enhanced process models (see
[187]) could also be explored, although the mining of these models is still a big
challenge. The NICE format introduced in Chapter 4 can be used as a basis for
further developments in this direction. This also raises the question of the algorithm
that should be used to discover models of human behavior. A benchmark could also
help to assess to what extent existing algorithms are able to address the challenges
of human behavior and whether new algorithms are required. With the user study
discussed in Chapter 7, we investigated in this direction.

As highlighted by the studies included in the survey in Chapter 2, another
relevant issue is the frequent employment of a restricted list of datasets. In the
first place, the scarce availability of datasets in other domains led researchers to
mainly focus on the home environment. In second place, a large portion of them is
evaluated against a single dataset from the smart space community (see Table 2.1),
and in several cases, important information on the datasets is not even provided
(see Table 2.2). While the use of a common dataset makes it easier to compare the
different methods, it might make some of the techniques less generalizable to other
data and other environments. In addition, to properly evaluate and compare the
different approaches, the datasets used should be properly described.

Generalization remains one of the main issues to be solved in future research. In
particular, general approaches are needed to enable their application independently
of the type of sensors used, or at least not sensitive to the specific dataset. As a
consequence, the introduction of validated benchmarks could be of benefit to the
entire community, as happened in other communities [66]. In this sense, simulators
such as the one presented in Chapter 3 can also be employed to generate datasets
that can be used to develop and validate process mining techniques for different kinds
of smart spaces and types of sensors. Validation through both real and synthetic
data can generate interesting results and insights.

Concerning the gap between sensor logs and event logs, some progress has been
made. However, in the vast majority of cases, proposed approaches are not generic,
being instead sensitive to the specific sensors employed. In addition, the right level
of granularity at which sensor measurements should be aggregated into events [207],
is still a hot source of debate [56] and a huge research challenge to tackle [20]. The
research community, in particular, is currently focusing on (i) the specific goals
of event abstraction, (ii) the consequent loss of information, (iii) the difficulty, or

91

even impossibility, of creating general purpose techniques, and (iv) on the kind of
technology needed.

Automated segmentation of logs is also an area where many research efforts are
needed. Techniques usually employed usually focus on classifying specific point in
time as segmentation points, whereas data mining techniques could be employed at
the sequence level as proposed in [46, 120]. The methodologies discussed in Chapters
5 and 6 push in this direction.

Support for multiple users without the employment of body-worn devices is
currently a neglected issue in research. This applies not only to the smart space but
also to the community research area at the intersection between process mining and
IoT [75]. If the employment of active methods for tracking (e.g., wearing a beacon
bracelet) can be considered acceptable in working scenarios, it is usually considered
annoying or unfeasible in other scenarios (e.g., smart houses, public spaces). In
order to track multiple users in a completely passive way, though, more complex
devices are needed (e.g., cameras, grids of presence infrared sensors), making setups
expensive or raising concerns with respect to privacy issues.

As human behavior is inherently mutable over time, future research should focus
more on detecting deviations from discovered human processes, for example, by
employing conformance checking techniques and acquiring new behaviors if deviations
are frequent [157].

Notably, the efforts needed to solve the proposed research agenda are not isolated
from research in process discovery and, more generally, process mining. In the
following, we will discuss this aspect with respect to the research questions identified
in Section 2.1:

• RQ-1: a review of the different available process modeling formalisms and,
more specifically, of the processes where the human component is fundamental
is reviewed in [57, 6]. Even though, as witnessed by recent publications, the
introduction of new process modeling formalisms is not a priority for the
community, the automatic discovery of such processes is a very active field [15].
Particularly of interest for the world of smart spaces is the ability to mine
decisions [138] in order to make models suitable for automated enactment.

• RQ-2: the problem of bridging the gap between sensor events and process events
is strongly connected with the problem of providing a view of the processes
at multiple levels, as introduced in [20]. As a consequence, the problem can
be seen as general for the process mining community. The review proposed in
[207] describes the various techniques for event abstraction proposed in the PM
literature so far. This being said, unsupervised event abstraction techniques
for PM were recently shown to have limitations [192]. This thesis corroborates
the importance given to user knowledge for event abstraction in IoT PM and
might indicate that future research should focus more on supervised event
abstraction techniques. A study to evaluate the performance of unsupervised
event abstraction specifically on sensor logs could help orient further research.

• RQ-3: the problem of splitting the logs into traces is quite specific for the
smart space world, where processes are derived from raw sensor data [109].
While classical process mining deals with logs with well-defined traces, the

92

problem of deriving traces from sensor data can be connected to the research
on trace clustering [70]. Another related line of research is case correlation,
which consists of trying to group together process events belonging to the same
instance when no case ID is logged at runtime. For instance, in [152], authors
propose an approach for case correlation based on how frequently activities
follow each other and how close they are temporally. Such techniques may
also be useful to find a logical case notion in sensor logs.

• RQ-4: as for RQ-3, process mining usually deals with logs where resources are
first-class citizens, and therefore the problem of associating events to specific
resources is usually neglected. Nevertheless, a field of PM research that could
be relevant for this challenge is organizational mining, which looks into how
work is passed between different actors in a process (e.g., in [10]).

• RQ-5: process enhancement and adaptation in the long term is a classical
task of process mining. This is very much related to research in conformance
checking [69] and concept drift [162].

Applying deep learning to smart space data: overview and opportunities

Most of the studies that rely on machine learning techniques for tasks like human
activity recognition (HAR) heavily depend on statistical methods [31], symbolic
representation [131], and time-frequency transformation [93] for feature extraction.
The features extracted are carefully pre-processed and engineered. To efficiently
collect and capture the flexible features of human behavior, there were no uniform
or systematic extraction techniques.

In recent years, deep learning (DL) techniques have had remarkable success in
modeling high-level abstractions from complex data across a wide range of domains,
including computer vision, speech processing, and natural language processing (NLP)
[153]. Studies such as [87, 113, 204] investigated the efficacy of deep learning applied
to smart space contexts.

One of the appealing promises of DL is replacing the manually selected features
with efficient unsupervised or semi-supervised feature learning and hierarchical
feature extraction algorithms. Deep models architectures enable scalable learning
from basic to abstract features. Furthermore, deep models have the capacity to
learn descriptive characteristics from complex data thanks to modern computing
resources like GPUs. The activity recognition system’s exceptional learning capacity
also makes it possible for it to thoroughly examine multi-modal sensory data in
order to provide precise recognition.

Deep neural networks have a variety of architectures that encode characteristics
in different ways. Convolutional neural networks (CNNs), for instance, are capable
of capturing the local connections of multi-modal sensory data, and accurate recog-
nition is achieved through the translational invariance that locality introduces [89].
Recurrent neural networks (RNNs) are suitable for processing streaming sensory data
in the identification of human activity because they extract temporal dependencies
and gradually learn information across time intervals.

Given their detachability and flexibility in composition, deep neural networks
can be unified into networks with a single optimization function. This allows for the

93

integration of various deep learning techniques, such as deep transfer learning [5],
deep active learning [83], deep attention mechanisms [143], and other non-systematic
but nonetheless efficient solutions [94, 139]. These methods have been used in works
that address a variety of deep learning difficulties [39].

There are several research directions that merit further consideration in order to
develop the full potential of deep learning applied to smart space environments:

• Unsupervised learning: deep learning models used for human activity recog-
nition (HAR) are mainly used to extract features but are unable to classify
activities when there is no ground truth provided. HAR requires an amount
of labeled data as ground truth to train the models. Unsupervised learning
methodologies can mitigate this fundamental requirement.
One potential method for inferring labels in an unsupervised manner is to
search for other knowledge. Once a lot of effort has been put into developing
a model on a supervised and controlled dataset, unsupervised transfer learning
(UTL) [21] approaches can be employed to make the known model appliable
to as many other applications as possible. Another solution could be to use
methods based on structured data such as ontology [159].

• Standardization of the state-of-the-art: as pointed out in [39], although several
works are available in the field of deep learning applied to sensor-based envi-
ronments, a true standardization of the state-of-the-art for a fair comparison
is lacking. Evaluation metrics vary from study to study. Dividing data into
training and test sets is a fundamental aspect of deep learning and influences
the final result. Thus, defining a standard represents an urgent challenge in the
field. A literature review that extends the work already done and summarizes
the current situation can act as a guideline for future developments in the field.

• Multi-user environments: unlike single-user environments, many real-life envi-
ronments consist of multiple users performing activities, in some cases even
concurrently or collaboratively. In this context, it becomes even harder to
carry out tasks such as HAR and activity prediction. Activity prediction is
an extension of HAR in which the system aims to predict the next activity
in advance. In [104], authors use a long short-term memory (LSTM) network
to perform activity prediction. Such an approach relies on a word-embedding
technique that is typically used for natural language processing (NLP) to
map words into a vector space. By using a similar embedding approach in a
multi-user smart space, they map activities to vector coordinates in a vector
space. Furthermore, algorithms of intention recognition based on brain signals
[209] can assist the prediction task.
The authors of [104] conclude that by considering other contextual information,
such as location information, the accuracy of the results could improve. In the
approaches described in Chapters 5 and 6, we heavily rely on user location
information. Combining these methodologies could lead to interesting results.
It will be considered in our future work.

94

Bibliography

[1] Mysphera enterprise, rtls sphera indoor positioning system, http://mysphera.
com (Cited on page 25)

[2] Omg: Case management model and notation 1.1 (2016) (Cited on page 90)

[3] van der Aalst, W.e.a.: Process mining manifesto. In: BPM’11. pp. 169–194
(2011) (Cited on page 8)

[4] van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, 2
edn. (2016) (Cited on pages vi and 8)

[5] Akbari, A., Jafari, R.: Transferring activity recognition models for new wear-
able sensors with deep generative domain adaptation. In: Proceedings of the
18th International Conference on Information Processing in Sensor Networks.
pp. 85–96 (2019) (Cited on page 93)

[6] Aldin, L., de Cesare, S.: A literature review on business process modelling:
new frontiers of reusability. Enterprise Information Systems 5(3), 359–383
(2011) (Cited on page 91)

[7] Alemdar, H., Ertan, H., Incel, O.D., Ersoy, C.: Aras human activity datasets
in multiple homes with multiple residents. In: 2013 7th Intl. Conf. on Pervasive
Computing Technologies for Healthcare and Workshops. pp. 232–235. IEEE
(2013) (Cited on page 73)

[8] Alshammari, N., Alshammari, T., Sedky, M., Champion, J., Bauer, C.: Open-
shs: Open smart home simulator. Sensors 17(5), 1003 (2017) (Cited on
page 42)

[9] Alsheikh, M.A., Selim, A., Niyato, D., Doyle, L., Lin, S., Tan, H.P.: Deep
activity recognition models with triaxial accelerometers. In: Workshops at the
Thirtieth AAAI Conference on Artificial Intelligence (2016) (Cited on page 6)

[10] Alvarez, C., Rojas, E., Arias, M., Munoz-Gama, J., Sepúlveda, M., Herskovic,
V., Capurro, D.: Discovering role interaction models in the emergency room
using process mining. Journal of biomedical informatics 78, 60–77 (2018) (Cited
on page 92)

[11] America, S.: Is there a reproducibility crisis in science? Na-
ture Video, 28 May 2016, https://www.scientificamerican.com/video/

http://mysphera.com
http://mysphera.com
https://www.scientificamerican.com/video/is-there-a-reproducibility-crisis-in-science/
https://www.scientificamerican.com/video/is-there-a-reproducibility-crisis-in-science/

95

is-there-a-reproducibility-crisis-in-science/ (Cited on pages vi
and 30)

[12] Ampatzoglou, A., Bibi, S., Avgeriou, P., Chatzigeorgiou, A.: Guidelines for
managing threats to validity of secondary studies in software engineering. In:
Contemporary Empirical Methods in Software Engineering, pp. 415–441 (2020)
(Cited on page 29)

[13] Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public
domain dataset for human activity recognition using smartphones. In: Esann.
vol. 3, p. 3 (2013) (Cited on page 73)

[14] Annett, J.: Hierarchical task analysis. Handbook of cognitive task design 2,
17–35 (2003) (Cited on page 31)

[15] Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F.M., Marrella, A.,
Mecella, M., Soo, A.: Automated discovery of process models from event logs:
review and benchmark. IEEE transactions on knowledge and data engineering
31(4), 686–705 (2018) (Cited on page 91)

[16] Augusto, J.C., Nugent, C.D.: The use of temporal reasoning and management
of complex events in smart homes. In: ECAI. vol. 16, p. 778 (2004) (Cited on
page 3)

[17] Aztiria, A., Augusto, J.C., Basagoiti, R., Izaguirre, A., Cook, D.J.: Discovering
frequent user–environment interactions in intelligent environments. Personal
and Ubiquitous Computing 16(1), 91–103 (2012) (Cited on pages 3 and 7)

[18] Aztiria, A., Izaguirre, A., Basagoiti, R., Augusto, J.C., Cook, D.J.: Automatic
modeling of frequent user behaviours in intelligent environments. In: 2010 IE.
pp. 7–12 (2010) (Cited on page 27)

[19] Banham, A., Leemans, S.J., Wynn, M.T., Andrews, R., Laupland, K.B.,
Shinners, L.: xpm: Enhancing exogenous data visibility. AI in medicine 133,
102409 (2022) (Cited on page 48)

[20] Beerepoot, I., Di Ciccio, C., Reijers, H.A., Rinderle-Ma, S., Bandara, W.,
Burattin, A., Calvanese, D., Chen, T., Cohen, I., Depaire, B., et al.: The biggest
business process management problems to solve before we die. Computers in
Industry 146, 103837 (2023) (Cited on pages vii, 12, 90, and 91)

[21] Bengio, Y.: Deep learning of representations for unsupervised and transfer
learning. In: Proceedings of ICML workshop on unsupervised and transfer
learning. pp. 17–36. JMLR Workshop and Conference Proceedings (2012)
(Cited on page 93)

[22] Bernasconi, E., Boccuzzi, M., Briasco, L., Catarci, T., Ghignoli, A., Leotta, F.,
Mecella, M., Anna, M., Nina, S., Veneruso, S.V., et al.: Notae: Not a written
word but graphic symbols. In: CEUR WORKSHOP PROCEEDINGS. vol.
3144, pp. 1–7 (2022) (Cited on page xiv)

https://www.scientificamerican.com/video/is-there-a-reproducibility-crisis-in-science/
https://www.scientificamerican.com/video/is-there-a-reproducibility-crisis-in-science/
https://www.scientificamerican.com/video/is-there-a-reproducibility-crisis-in-science/

96

[23] Bernasconi, E., Boccuzzi, M., Catarci, T., Ceriani, M., Ghignoli, A., Leotta, F.,
Mecella, M., Monte, A., Sietis, N., Veneruso, S., et al.: Exploring the historical
context of graphic symbols: the notae knowledge graph and its visual interface.
In: CEUR WORKSHOP PROCEEDINGS. vol. 2816, pp. 147–154. Dennis
Dosso, Stefano Ferilli, Paolo Manghi, Antonella Poggi, Giuseppe Serra . . .
(2021) (Cited on page xiv)

[24] Bertrand, Y., Van den Abbeele, B., Veneruso, S., Leotta, F., Mecella, M.,
Serral, E.: A survey on the application of process discovery techniques to smart
spaces data. EAAI 126, 106748 (2023) (Cited on pages vii, viii, xi, and 48)

[25] Bertrand, Y., Van den Abbeele, B., Veneruso, S., Leotta, F., Mecella, M.,
Serral Asensio, E.: A survey on the application of process mining to smart
spaces data. Lecture Notes in Business Information Processing (2022) (Cited
on page xi)

[26] Bertrand, Y., De Weerdt, J., Serral, E.: A bridging model for process mining
and iot. In: International Conference on Process Mining. pp. 98–110 (2021)
(Cited on pages vii, 47, 48, 49, 51, 56, and 88)

[27] Bertrand, Y., De Weerdt, J., Serral, E.: Assessing the suitability of traditional
event log standards for iot-enhanced event logs. In: International Conference
on Business Process Management. pp. 63–75 (2022) (Cited on pages vii, 47,
48, 52, 56, 57, and 88)

[28] Bertrand, Y., Veneruso, S., Leotta, F., Mecella, M., Serral Asensio, E.: Nice:
The native iot-centric event log model for process mining. Lecture Notes in
Business Information Processing (Cited on pages viii and xi)

[29] Bono-Nuez, A., Blasco, R., Casas, R., Martín-del Brío, B.: Ambient intelligence
for quality of life assessment. Journal of Ambient Intelligence and Smart
Environments 6(1), 57–70 (2014) (Cited on page 1)

[30] Bose, R.J.C., Verbeek, E.H., van der Aalst, W.M.: Discovering hierarchical
process models using prom. In: IS Olympics: Information Systems in a Diverse
World: CAiSE Forum 2011, London, UK, June 20-24, 2011, Selected Extended
Papers 23. pp. 33–48. Springer (2012) (Cited on pages 18 and 19)

[31] Brophy, E., Veiga, J.J.D., Wang, Z., Ward, T.E.: A machine vision approach
to human activity recognition using photoplethysmograph sensor data. In:
2018 29th Irish Signals and Systems Conference (ISSC). pp. 1–6. IEEE (2018)
(Cited on page 92)

[32] Bruno, B., Mastrogiovanni, F., Sgorbissa, A., Vernazza, T., Zaccaria, R.:
Analysis of human behavior recognition algorithms based on acceleration data.
In: 2013 IEEE International Conference on Robotics and Automation. pp.
1602–1607. IEEE (2013) (Cited on pages 18 and 19)

[33] Brzychczy, E., Trzcionkowska, A.: Process-oriented approach for analysis of
sensor data from longwall monitoring system. In: International Conference on

97

Intelligent Systems in Production Engineering and Maintenance. pp. 611–621.
Springer (2018) (Cited on page 9)

[34] Cameranesi, M., Diamantini, C., Mircoli, A., Potena, D., Storti, E.: Extraction
of user daily behavior from home sensors through process discovery. IEEE IoT
Journal 7(9), 8440–8450 (2020) (Cited on page 18)

[35] Cameranesi, M., Diamantini, C., Potena, D.: Discovering process models of
activities of daily living from sensors. In: BPM’17. pp. 285–297 (2017) (Cited
on page 18)

[36] Carolis, B.D., Ferilli, S., Mallardi, G.: Learning and recognizing routines
and activities in sofia. In: European Conference on Ambient Intelligence. pp.
191–204 (2014) (Cited on pages 18 and 19)

[37] Carolis, B.D., Ferilli, S., Redavid, D.: Incremental learning of daily routines as
workflows in a smart home environment. ACM TiiS 4(4), 1–23 (2015) (Cited
on page 18)

[38] Chan, H., Perrig, A.: Security and privacy in sensor networks. computer 36(10),
103–105 (2003) (Cited on page 28)

[39] Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., Liu, Y.: Deep learning for sensor-
based human activity recognition: Overview, challenges, and opportunities.
ACM CSUR 54(4), 1–40 (2021) (Cited on pages 6 and 93)

[40] Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity
recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 42(6), 790–808 (2012) (Cited on page 5)

[41] Cook, D., Das, S.: Smart Environments: Technology, Protocols and Applica-
tions. Wiley-Interscience (2005) (Cited on page 1)

[42] Cook, D.J.: Learning setting-generalized activity models for smart spaces.
IEEE intelligent systems 2010(99), 1 (2010) (Cited on pages 44 and 73)

[43] Cook, D.J.: Learning setting-generalized activity models for smart spaces.
IEEE intelligent systems 27(1), 32 (2012) (Cited on pages 18, 19, and 21)

[44] Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: Casas: A smart
home in a box. Computer 46(7), 62–69 (2012) (Cited on pages 18, 19, 22, 26,
and 73)

[45] Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: Casas: A smart
home in a box. Computer 46(7), 62–69 (2013) (Cited on page 44)

[46] Cook, D.J., Krishnan, N.C., Rashidi, P.: Activity Discovery and Activity
Recognition: A New Partnership. IEEE Transactions on Cybernetics 43(3),
820–828 (2013) (Cited on pages ix, 3, 4, 5, 26, 67, 76, 78, and 91)

[47] Cook, D.J., Schmitter-Edgecombe, M.: Assessing the quality of activities in
a smart environment. Methods of information in medicine 48(05), 480–485
(2009) (Cited on pages 18 and 19)

98

[48] Cook, D., Augusto, J., Jakkula, V.: Ambient intelligence: Technologies,
applications, and opportunities. Pervasive and Mobile Computing 5(4), 277–
298 (2009) (Cited on page v)

[49] Crandall, A., Cook, D.J.: Learning activity models for multiple agents in a
smart space. In: Handbook of Ambient Intelligence and Smart Environments,
pp. 751–769. Springer (2010) (Cited on pages 44 and 73)

[50] Crandall, A.S., Cook, D.J.: Coping with multiple residents in a smart environ-
ment. Journal of Ambient Intelligence and Smart Environments 1(4), 323–334
(2009) (Cited on page 44)

[51] Cumin, J., Lefebvre, G., Ramparany, F., Crowley, J.L.: A dataset of rou-
tine daily activities in an instrumented home. In: Intl. Conf. on Ubiquitous
Computing and Ambient Intelligence. pp. 413–425. Springer (2017) (Cited on
page 73)

[52] Dahmen, J., Cook, D.: Synsys: A synthetic data generation system for
healthcare applications. Sensors 19(5), 1181 (2019) (Cited on page 42)

[53] Davies, M., Callaghan, V.: iworlds: Generating artificial control systems for
simulated humans using virtual worlds and intelligent environments. Journal
of Ambient Intelligence and Smart Environments 4(1), 5–27 (2012) (Cited on
page 42)

[54] De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-
based datasets for human activity recognition–a systematic review of literature.
IEEE Access 6, 59192–59210 (2018) (Cited on pages 44, 64, and 73)

[55] Degeler, V., Lazovik, A., Leotta, F., Mecella, M.: Itemset-based mining of con-
straints for enacting smart environments. In: 2014 PERCOM WORKSHOPS.
pp. 41–46. IEEE (2014) (Cited on page 4)

[56] Depaire, B., Fahland, D., Leotta, F., Lu, X.: Third international workshop on
event data and behavioral analytics (edba’22) (Cited on page 90)

[57] Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: charac-
teristics, requirements and analysis of contemporary approaches. Journal on
Data Semantics 4, 29–57 (2015) (Cited on page 91)

[58] Di Federico, G., Burattin, A., Montali, M.: Human behavior as a process
model: Which language to use? In: ITBPM@ BPM. pp. 18–25 (2021) (Cited
on pages 13, 15, and 90)

[59] Dimaggio, M., Leotta, F., Mecella, M., Sora, D.: Process-based habit mining:
Experiments and techniques. In: UIC 2016. pp. 145–152. IEEE (2016) (Cited
on pages 15, 18, 19, and 48)

[60] Dogan, O.: Discovering customer paths from location data with process mining.
EJEST 3(1), 139–145 (2020) (Cited on pages 18, 19, and 28)

99

[61] Dogan, O., Akkol, E., Olucoglu, M.: Understanding patient activity patterns
in smart homes with process mining. In: Knowledge Graphs and Semantic
Web: 4th Iberoamerican Conference and third Indo-American Conference,
KGSWC 2022, Madrid, Spain, November 21–23, 2022, Proceedings. pp. 298–
311. Springer (2022) (Cited on pages 18 and 19)

[62] Dogan, O., Bayo-Monton, J.L., Fernandez-Llatas, C., Oztaysi, B.: Analyzing of
gender behaviors from paths using process mining: A shopping mall application.
Sensors 19(3), 557 (2019) (Cited on pages 18 and 19)

[63] Dogan, O., Martinez-Millana, A., Rojas, E., Sepúlveda, M., Munoz-Gama, J.,
Traver, V., Fernandez-Llatas, C.: Individual behavior modeling with sensors
using process mining. Electronics 8(7), 766 (2019) (Cited on pages 18 and 19)

[64] Dohr, A., Modre-Opsrian, R., Drobics, M., Hayn, D., Schreier, G.: The internet
of things for ambient assisted living. In: ITNG’10. pp. 804–809 (2010) (Cited
on page 2)

[65] Douskos, C.: Habit and intention. Philosophia 45(3), 1129–1148 (2017) (Cited
on page 13)

[66] Duchateau, F., Bellahsene, Z.: Designing a benchmark for the assessment of
schema matching tools. Open Journal of Databases 1(1), 3–25 (2014) (Cited
on page 90)

[67] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.: Fundamentals
of business process management, vol. 1. Springer (2013) (Cited on pages vi
and 8)

[68] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.: Fundamentals of
business process management, vol. 1. Springer (2013) (Cited on page 13)

[69] Dunzer, S., Stierle, M., Matzner, M., Baier, S.: Conformance checking: a
state-of-the-art literature review. In: Proceedings of the 11th international
conference on subject-oriented business process management. pp. 1–10 (2019)
(Cited on page 92)

[70] Ekanayake, C.C., Dumas, M., García-Bañuelos, L., La Rosa, M.: Slice, mine
and dice: Complexity-aware automated discovery of business process models.
In: Business Process Management: 11th International Conference, BPM 2013,
Beijing, China, August 26-30, 2013. Proceedings. pp. 49–64. Springer (2013)
(Cited on page 92)

[71] Esposito, L., Leotta, F., Mecella, M., Veneruso, S.: Unsupervised segmentation
of smart home logs for human habit discovery. In: IE’22. pp. 1–8. IEEE (2022)
(Cited on pages x, xi, 5, 18, 48, 58, and 73)

[72] Esposito, L., Leotta, F., Mecella, M., Veneruso, S.: Unsupervised segmentation
of smart home logs for human habit discovery. In: 2022 18th International
Conference on Intelligent Environments (IE). pp. 1–8 (2022) (Cited on page 44)

100

[73] Esposito, L., Veneruso, S.V., Leotta, F., Monti, F., Mathew, J.G., Mecella,
M.: Unsupervised segmentation of human habits in smart home logs through
process discovery. In: ITBPM@ BPM. pp. 56–61 (2021) (Cited on pages x
and xi)

[74] Fanelli, D.: How many scientists fabricate and falsify research? a systematic
review and meta-analysis of survey data. PLOS ONE 4(5) (2009) (Cited on
pages vi and 30)

[75] Farahsari, P.S., Farahzadi, A., Rezazadeh, J., Bagheri, A.: A survey on indoor
positioning systems for iot-based applications. IEEE Internet of Things Journal
9(10), 7680–7699 (2022) (Cited on page 91)

[76] Fernández-Llatas, C., Benedi, J.M., García-Gómez, J.M., Traver, V.: Process
mining for individualized behavior modeling using wireless tracking in nursing
homes. Sensors 13(11), 15434–15451 (2013) (Cited on pages 18, 19, and 29)

[77] Fernández-Llatas, C., Meneu, T., Benedi, J.M., Traver, V.: Activity-based
process mining for clinical pathways computer aided design. In: 2010 annual
international conference of the IEEE engineering in medicine and biology. pp.
6178–6181. IEEE (2010) (Cited on page 25)

[78] Fernandez-Llatas, C., Pileggi, S.F., Traver, V., Benedi, J.M.: Timed paral-
lel automaton: A mathematical tool for defining highly expressive formal
workflows. In: Fifth Asia Modell. Symposium. pp. 56–61 (2011) (Cited on
page 21)

[79] Ferro, L.S., Marrella, A., Veneruso, S.V., Mecella, M., Catarci, T., et al.: An
interactive learning experience for cybersecurity related issues. In: Proceed-
ings of the International Workshop on Human-Centered Cybersecurity (In
conjunction with CHITALY 2019) (2019) (Cited on page xiii)

[80] Fleury, A., Vacher, M., Noury, N.: Svm-based multimodal classification of
activities of daily living in health smart homes: sensors, algorithms, and
first experimental results. IEEE transactions on information technology in
biomedicine 14(2), 274–283 (2009) (Cited on page 73)

[81] Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P.: OCEL: A
Standard for Object-Centric Event Logs, CCIS, vol. 1450, p. 169–175 (2021)
(Cited on pages vii, 48, 56, and 57)

[82] Goossens, A., De Smedt, J., Vanthienen, J., van der Aalst, W.M.: Enhancing
data-awareness of object-centric event logs. In: ICPM 2022. pp. 18–30. Springer
(2022) (Cited on pages 56 and 57)

[83] Gudur, G.K., Sundaramoorthy, P., Umaashankar, V.: Activeharnet: Towards
on-device deep bayesian active learning for human activity recognition. In:
The 3rd international workshop on deep learning for mobile systems and
applications. pp. 7–12 (2019) (Cited on page 93)

101

[84] Günther, C.W.: Process mining in flexible environments (2009) (Cited on
pages 79 and 83)

[85] Günther, C.W., Van Der Aalst, W.M.: Fuzzy mining–adaptive process sim-
plification based on multi-perspective metrics. In: BPM. pp. 328–343 (2007)
(Cited on pages 21 and 27)

[86] Günther, C.W., Verbeek, E.: Xes standard definition (Mar 2014) (Cited on
pages vii, 47, and 57)

[87] Ha, S., Yun, J.M., Choi, S.: Multi-modal convolutional neural networks for
activity recognition. In: 2015 IEEE International conference on systems, man,
and cybernetics. pp. 3017–3022. IEEE (2015) (Cited on page 92)

[88] Hagras, H.: Toward human-understandable, explainable ai. Computer 51(9),
28–36 (2018) (Cited on page 2)

[89] Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recur-
rent models for human activity recognition using wearables. arXiv preprint
arXiv:1604.08880 (2016) (Cited on page 92)

[90] Haresamudram, H., Essa, I., Plötz, T.: Assessing the state of self-supervised
human activity recognition using wearables. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 6(3), 1–47 (2022)
(Cited on pages ix, 3, and 29)

[91] Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information
systems research. MIS quarterly pp. 75–105 (2004) (Cited on page 49)

[92] Hiremath, S.K., Nishimura, Y., Chernova, S., Plötz, T.: Bootstrapping human
activity recognition systems for smart homes from scratch. Proc. of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies 6(3), 1–27 (2022)
(Cited on page 4)

[93] Huynh, T., Schiele, B.: Analyzing features for activity recognition. In: Pro-
ceedings of the 2005 joint conference on Smart objects and ambient intelligence:
innovative context-aware services: usages and technologies. pp. 159–163 (2005)
(Cited on page 92)

[94] Ito, C., Cao, X., Shuzo, M., Maeda, E.: Application of cnn for human activity
recognition with fft spectrogram of acceleration and gyro sensors. In: Proceed-
ings of the 2018 ACM international joint conference and 2018 international
symposium on pervasive and ubiquitous computing and wearable computers.
pp. 1503–1510 (2018) (Cited on page 93)

[95] Janiesch, C., Koschmider, A., Mecella, M., Weber, B., Burattin, A., Di Ciccio,
C., Fortino, G., Gal, A., Kannengiesser, U., Leotta, F., et al.: The internet of
things meets business process management: a manifesto. IEEE Systems, Man,
and Cybernetics Magazine 6(4), 34–44 (2020) (Cited on pages vii and 30)

102

[96] Janowicz, K., Haller, A., Cox, S.J.D., Le Phuoc, D., Lefrançois, M.: Sosa: A
lightweight ontology for sensors, observations, samples, and actuators. Journal
of Web Semantics 56, 1–10 (May 2019) (Cited on page 49)

[97] Janssen, D., Mannhardt, F., Koschmider, A., van Zelst, S.J.: Process model
discovery from sensor event data. In: ICPM 2020. pp. 69–81 (2020) (Cited on
pages vii, 47, and 48)

[98] Janssen, D., Mannhardt, F., Koschmider, A., Zelst, S.J.v.: Process model
discovery from sensor event data. In: International Conference on Process
Mining. pp. 69–81. Springer (2020) (Cited on pages 15, 18, 44, 64, and 73)

[99] Jobanputra, C., Bavishi, J., Doshi, N.: Human activity recognition: A survey.
Procedia Computer Science 155, 698–703 (2019) (Cited on page 1)

[100] Jones, S., Shao, L.: Unsupervised spectral dual assignment clustering of
human actions in context. In: Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition. pp. 604–611 (2014) (Cited on page 77)

[101] Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic
management research: an analysis and critique. Strategic management journal
17(6), 441–458 (1996) (Cited on page 74)

[102] Khattak, A.M., Truc, P.T.H., Hung, L.X., Vinh, L.T., Dang, V.H., Guan, D.,
Pervez, Z., Han, M., Lee, S., Lee, Y.K.: Towards smart homes using low level
sensory data. Sensors 11(12), 11581–11604 (2011) (Cited on page 15)

[103] Kim, E., Helal, S., Lee, J., Hossain, S.: The making of a dataset for smart
spaces. In: Intl. Conf. on ubiquitous intelligence and computing. pp. 110–124.
Springer (2010) (Cited on page 42)

[104] Kim, Y., An, J., Lee, M., Lee, Y.: An activity-embedding approach for next-
activity prediction in a multi-user smart space. In: 2017 IEEE International
Conference on Smart Computing (SMARTCOMP). pp. 1–6. IEEE (2017)
(Cited on page 93)

[105] Kitchenham, B.: Procedures for performing systematic reviews. Keele, UK,
Keele University 33(2004), 1–26 (2004) (Cited on page 14)

[106] Klinkmüller, C., Ponomarev, A., Tran, A.B., Weber, I., Aalst, W.v.d.: Mining
blockchain processes: extracting process mining data from blockchain appli-
cations. In: International Conference on Business Process Management. pp.
71–86. Springer (2019) (Cited on page 9)

[107] Kormányos, B., Pataki, B.: Multilevel simulation of daily activities: Why and
how? In: 2013 IEEE Intl. Conf. on computational intelligence and virtual
environments for measurement systems and applications (CIVEMSA). pp. 1–6.
IEEE (2013) (Cited on pages 34, 37, and 40)

[108] Koschmider, A., Janssen, D., Mannhardt, F.: Framework for process discovery
from sensor data. In: EMISA. p. 8 (2020) (Cited on page 48)

103

[109] Koschmider, A., Janssen, D., Mannhardt, F.: Framework for process discovery
from sensor data. In: 10th Intl. Workshop on Enterprise Modeling and Infor-
mation Systems Architectures (EMISA). vol. 2627, pp. 32–38 (2020) (Cited
on page 91)

[110] Koschmider, A., Mannhardt, F., Heuser, T.: On the Contextualization of
Event-Activity Mappings, LNBIP, vol. 342, p. 445–457. Springer (2019) (Cited
on page 48)

[111] Krishnan, N., Cook, D.: Activity recognition on streaming sensor data. Perva-
sive and mobile computing 10, 138–154 (02 2014) (Cited on page 45)

[112] Krishnan, N.C., Cook, D.J.: Activity recognition on streaming sensor data
(2014) (Cited on pages ix, 3, 4, 6, and 67)

[113] Lane, N.D., Georgiev, P.: Can deep learning revolutionize mobile sensing? In:
Proceedings of the 16th international workshop on mobile computing systems
and applications. pp. 117–122 (2015) (Cited on page 92)

[114] Lassen, K.B., van der Aalst, W.M.: Complexity metrics for workflow nets
(2009) (Cited on pages 58 and 59)

[115] Lee, E.A.: Cyber physical systems: Design challenges. In: 2008 11th IEEE
international symposium on object and component-oriented real-time dis-
tributed computing (ISORC). pp. 363–369. IEEE (2008) (Cited on pages viii,
11, and 30)

[116] Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group
framework. In: Proceedings of SIGMOD’07. pp. 593–604 (2007) (Cited on
pages 22 and 60)

[117] Lee, J.W., Cho, S., Liu, S., Cho, K., Helal, S.: Persim 3d: Context-driven sim-
ulation and modeling of human activities in smart spaces. IEEE Transactions
on Automation Science and Eng. 12(4), 1243–1256 (2015) (Cited on page 42)

[118] Leemans, S.J., Fahland, D., Van Der Aalst, W.M.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: BPM’13.
pp. 66–78. Springer (2013) (Cited on page 21)

[119] de Leoni, M., Dündar, S.: Event-log abstraction using batch session identifica-
tion and clustering. In: Proceedings of the 35th Annual ACM Symposium on
Applied Computing. pp. 36–44 (2020) (Cited on page 5)

[120] de Leoni, M., Pellattiero, L.: The benefits of sensor-measurement aggregation
in discovering iot process models: A smart-house case study. In: BPM’21. pp.
403–415 (2021) (Cited on pages 18 and 91)

[121] de Leoni, M., Pellattiero, L.: The benefits of sensor-measurement aggregation
in discovering iot process models: a smart-house case study. In: BPM 2021.
pp. 403–415 (2021) (Cited on page 48)

104

[122] de Leoni, M., Pellattiero, L.: The benefits of sensor-measurement aggregation
in discovering iot process models: A smart-house case study. In: Marrella,
A., Weber, B. (eds.) Business Process Management Workshops. pp. 403–415.
Springer International Publishing, Cham (2022) (Cited on page 5)

[123] Leotta, F., Mecella, M.: Plathea: a marker-less people localization and tracking
system for home automation. Software: Practice and Experience 45(6), 801–835
(2015) (Cited on page 13)

[124] Leotta, F., Mecella, M., Mendling, J.: Applying process mining to smart
spaces: Perspectives and research challenges. In: CAiSE 2015 Workshops. pp.
298–304. Springer (2015) (Cited on pages vi, viii, 8, 11, 13, 14, 15, 27, 28, 43,
44, 48, 58, 64, and 87)

[125] Leotta, F., Mecella, M., Sora, D.: Visual process maps: A visualization tool
for discovering habits in smart homes. JAIHC 11(5), 1997–2025 (2020) (Cited
on pages 5, 18, 48, 60, 69, 73, and 89)

[126] Leotta, F., Mecella, M., Sora, D., Catarci, T.: Surveying human habit modeling
and mining techniques in smart spaces. Future Internet 11(1), 23 (2019) (Cited
on pages viii, 1, and 15)

[127] Leotta, F., Mecella, M., Veneruso, S.: Unsupervised segmentation of smart
home position logs for human activity analysis. In: 2023 19th International
Conference on Intelligent Environments (IE). pp. 1–4 (2023) (Cited on pages x,
xi, 5, and 64)

[128] Leotta, F., Mecella, M., Veneruso, S.: Discovering Human Habits through
Process Mining: State of the Art and Research Challenges. Springer Cham
(2024) (Cited on pages x and xii)

[129] Leotta, F., Veneruso, S.: Vpm: Analyzing human daily habits through process
discovery. In: BPM (PhD/Demos). pp. 156–160 (2021) (Cited on pages viii,
xi, 60, and 73)

[130] Li, C.Y., van Zelst, S.J., van der Aalst, W.M.: An activity instance based hier-
archical framework for event abstraction. In: 2021 3rd International Conference
on Process Mining (ICPM). pp. 160–167 (2021) (Cited on page 5)

[131] Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time
series, with implications for streaming algorithms. In: Proceedings of the 8th
ACM SIGMOD workshop on Research issues in data mining and knowledge
discovery. pp. 2–11 (2003) (Cited on page 92)

[132] Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An enabling
technique (2002) (Cited on page 61)

[133] Lull, J.J., Bayo, J.L., Shirali, M., Ghassemian, M., Fernandez-Llatas, C.: In-
teractive process mining in iot and human behaviour modelling. In: Interactive
Process Mining in Healthcare, pp. 217–231 (2021) (Cited on pages 18 and 19)

105

[134] Ma, H., Zhang, Z., Li, W., Lu, S.: Unsupervised human activity represen-
tation learning with multi-task deep clustering. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 5(1), 1–25 (2021)
(Cited on page 4)

[135] Ma’arif, M.R.: Revealing daily human activity pattern using process mining
approach. In: EECSI 2017. pp. 1–5 (2017) (Cited on page 18)

[136] Mangler, J., Grüger, J., Malburg, L., Ehrendorfer, M., Bertrand, Y., Benzin,
J.V., Rinderle-Ma, S., Serral Asensio, E., Bergmann, R.: Datastream xes
extension: embedding iot sensor data into extensible event stream logs. Future
Internet 15(3), 109 (2023) (Cited on pages 56 and 57)

[137] Mannhardt, F., Bovo, R., Oliveira, M.F., Julier, S.: A taxonomy for combining
activity recognition and process discovery in industrial environments. In:
IDEAL 2018. pp. 84–93 (2018) (Cited on page 1)

[138] Mannhardt, F., De Leoni, M., Reijers, H.A., Van Der Aalst, W.M.: Decision
mining revisited-discovering overlapping rules. In: Advanced Information
Systems Engineering: 28th International Conference, CAiSE 2016, Ljubljana,
Slovenia, June 13-17, 2016. Proceedings 28. pp. 377–392. Springer (2016)
(Cited on page 91)

[139] Mathur, A., Zhang, T., Bhattacharya, S., Velickovic, P., Joffe, L., Lane, N.D.,
Kawsar, F., Lió, P.: Using deep data augmentation training to address software
and hardware heterogeneities in wearable and smartphone sensing devices. In:
2018 17th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN). pp. 200–211. IEEE (2018) (Cited on page 93)

[140] McCURDY, T., Glen, G., Smith, L., Lakkadi, Y.: The national exposure
research laboratory’s consolidated human activity database. Journal of Expo-
sure Science & Environmental Epidemiology 10(6), 566–578 (2000) (Cited on
page 18)

[141] Mohamed, A.r., Dahl, G.E., Hinton, G.: Acoustic modeling using deep belief
networks. IEEE transactions on audio, speech, and language processing 20(1),
14–22 (2011) (Cited on page 6)

[142] Munoz-Gama, J., Martin, N., Fernandez-Llatas, C., Johnson, O.A., Sepúlveda,
M., Helm, E., Galvez-Yanjari, V., Rojas, E., Martinez-Millana, A., Aloini, D.,
et al.: Process mining for healthcare: Characteristics and challenges. Journal
of Biomedical Informatics 127, 103994 (2022) (Cited on page 9)

[143] Murahari, V.S., Plötz, T.: On attention models for human activity recognition.
In: Proceedings of the 2018 ACM international symposium on wearable
computers. pp. 100–103 (2018) (Cited on page 93)

[144] Narayana, S., Prasad, R.V., Rao, V.S., Prabhakar, T.V., Kowshik, S.S., Iyer,
M.S.: Pir sensors: Characterization and novel localization technique. In: ISPN
2015. pp. 142–153 (2015) (Cited on pages 26 and 59)

106

[145] Neal, D.T., Wood, W.: Automaticity in situ and in the lab: The nature of
habit in daily life. Oxford handbook of human action pp. 442–457 (2009)
(Cited on page 13)

[146] Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action
categories using spatial-temporal words. International journal of computer
vision 79(3), 299–318 (2008) (Cited on page 77)

[147] Oosterlinck, D., Benoit, D.F., Baecke, P., Van de Weghe, N.: Bluetooth
tracking of humans in an indoor environment: An application to shopping
mall visits. Applied geography 78, 55–65 (2017) (Cited on page 28)

[148] Ordóñez, F., De Toledo, P., Sanchis, A., et al.: Activity recognition using
hybrid generative/discriminative models on home environments using binary
sensors. Sensors 13(5), 5460–5477 (2013) (Cited on pages 18, 19, 22, and 73)

[149] Peeva, V., Mannel, L., Aalst, W.: From place nets to local process models (04
2022) (Cited on page 5)

[150] Plötz, T., Hammerla, N.Y., Olivier, P.L.: Feature learning for activity recogni-
tion in ubiquitous computing. In: Twenty-second international joint conference
on artificial intelligence (2011) (Cited on page 6)

[151] Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery.
arXiv:1303.2554 [cs] (Mar 2013) (Cited on page 48)

[152] Pourmirza, S., Dijkman, R., Grefen, P.: Correlation miner: mining business
process models and event correlations without case identifiers. International
Journal of Cooperative Information Systems 26(02), 1742002 (2017) (Cited on
page 92)

[153] Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M.P., Shyu, M.L.,
Chen, S.C., Iyengar, S.S.: A survey on deep learning: Algorithms, techniques,
and applications. ACM Computing Surveys (CSUR) 51(5), 1–36 (2018) (Cited
on page 92)

[154] Prathama, F., Yahya, B.N., Lee, S.L.: A multi-case perspective analytical
framework for discovering human daily behavior from sensors using process
mining. In: COMPSAC 2021. pp. 638–644 (2021) (Cited on page 18)

[155] Quinde, M., Giménez-Manuel, J., Oguego, C.L., Augusto, J.C.: Achieving
multi-user capabilities through an indoor positioning system based on ble
beacons. In: 2020 16th International Conference on Intelligent Environments
(IE). pp. 13–20. IEEE (2020) (Cited on page 13)

[156] Ramasamy Ramamurthy, S., Roy, N.: Recent trends in machine learning for
human activity recognition—a survey. WIREs Data Mining and Knowledge
Discovery 8(4), e1254 (2018) (Cited on page 7)

[157] Reichert, M., Weber, B.: Enabling flexibility in process-aware information
systems: challenges, methods, technologies, vol. 54. Springer (2012) (Cited on
page 91)

107

[158] Reinkemeyer, L.: Process mining in a nutshell. In: Process Mining in Action,
pp. 3–10 (2020) (Cited on pages viii, 12, and 23)

[159] Riboni, D., Pareschi, L., Radaelli, L., Bettini, C.: Is ontology-based activity
recognition really effective? In: 2011 IEEE international conference on perva-
sive computing and communications workshops (PERCOM workshops). pp.
427–431. IEEE (2011) (Cited on page 93)

[160] Rodriguez-Fernandez, V., Trzcionkowska, A., Gonzalez-Pardo, A., Brzychczy,
E., Nalepa, G.J., Camacho, D.: Conformance checking for time-series-aware
processes. IEEE TII 17(2), 871–881 (2021) (Cited on pages 48, 56, and 57)

[161] Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster, K., Tröster,
G., Lukowicz, P., Bannach, D., Pirkl, G., Ferscha, A., et al.: Collecting
complex activity datasets in highly rich networked sensor environments. In:
2010 Seventh Intl. Conf. on networked sensing systems (INSS). pp. 233–240.
IEEE (2010) (Cited on page 73)

[162] Sato, D.M.V., De Freitas, S.C., Barddal, J.P., Scalabrin, E.E.: A survey on
concept drift in process mining. ACM CSUR 54(9), 1–38 (2021) (Cited on
page 92)

[163] Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE
Personal communications 8(4), 10–17 (2001) (Cited on page 28)

[164] Seiger, R., Zerbato, F., Burattin, A., Garcia-Banuelos, L., Weber, B.: Towards
iot-driven process event log generation for conformance checking in smart
factories. In: EDOCW. p. 20–26 (Oct 2020) (Cited on pages vii, 47, and 48)

[165] Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A.:
The road from sensor data to process instances via interaction mining. In:
Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) Advanced Information Systems
Engineering. pp. 257–273. Springer International Publishing, Cham (2016)
(Cited on page 5)

[166] Serral, E., De Smedt, J., Vanthienen, J.: Making business environments
smarter: a context-adaptive petri net approach. In: UIC 2014. pp. 343–348
(2014) (Cited on pages vii, 47, and 48)

[167] Serral, E., Schuster, D., Bertrand, Y.: Supporting users in the continuous
evolution of automated routines in their smart spaces. In: BPM 2021. pp.
391–402 (2021) (Cited on page 18)

[168] Serral, E., Valderas, P., Pelechano, V.: Context-adaptive coordination of
pervasive services by interpreting models during runtime. The Computer
Journal 56(1), 87–114 (2013) (Cited on pages 15, 31, 32, 37, and 38)

[169] Serral, E., Valderas, P., Pelechano, V.: Addressing the evolution of automated
user behaviour patterns by runtime model interpretation. Software & Systems
Modeling 14(4), 1387–1420 (2015) (Cited on pages 31, 33, and 37)

108

[170] Singla, G., Cook, D.J., Schmitter Edgecombe, M.: Recognizing independent
and joint activities among multiple residents in smart environments. Journal
of Ambient Intelligence and Humanized Computing 1(1), 57–63 (2010) (Cited
on page 73)

[171] Soffer, P., et al.: From event streams to process models and back: Challenges
and opportunities. Information Systems 81, 181–200 (Mar 2019) (Cited on
pages vii and 47)

[172] Sora, D., Leotta, F., Mecella, M.: An habit is a process: a bpm-based
approach for smart spaces. In: International Conference on Business Process
Management. pp. 298–309. Springer (2017) (Cited on pages 9 and 13)

[173] Sora, D., Leotta, F., Mecella, M.: Addressing multi-users open challenge in
habit mining for a process mining-based approach. In: Integrating Research
Agendas and Devising Joint Challenges. pp. 266–273 (2018) (Cited on page 18)

[174] Sztyler, T., Carmona, J.J.: Activities of daily living of several individuals (11
2015) (Cited on pages 18, 19, and 22)

[175] Sztyler, T., Carmona, J., Völker, J., Stuckenschmidt, H.: Self-tracking reloaded:
applying process mining to personalized health care from labeled sensor data.
Transactions on Petri nets and other models of concurrency XI pp. 160–180
(2016) (Cited on pages 18, 19, and 90)

[176] Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using
simple and ubiquitous sensors. In: Intl. Conf. on pervasive computing. pp.
158–175. Springer (2004) (Cited on pages 18, 19, 22, and 73)

[177] Tax, N.: Human activity prediction in smart home environments with lstm
neural networks. In: 2018 14th IE. pp. 40–47 (2018) (Cited on page 15)

[178] Tax, N., Alasgarov, E., Sidorova, N., Haakma, R.: On generation of time-based
label refinements. arXiv preprint arXiv:1609.03333 (2016) (Cited on page 15)

[179] Tax, N., Alasgarov, E., Sidorova, N., Haakma, R., van der Aalst, W.M.:
Generating time-based label refinements to discover more precise process
models. JAISE 11(2), 165–182 (2019) (Cited on page 18)

[180] Tax, N., Dalmas, B., Sidorova, N., van der Aalst, W.M., Norre, S.:
Interest-driven discovery of local process models. Information Systems 77,
105–117 (2018), https://www.sciencedirect.com/science/article/pii/
S0306437917304477 (Cited on page 5)

[181] Tax, N., Sidorova, N., van der Aalst, W.M., Haakma, R.: Heuristic approaches
for generating local process models through log projections. In: 2016 IEEE
SSCI. pp. 1–8 (2016) (Cited on page 18)

[182] Tax, N., Sidorova, N., Haakma, R., Aalst, W.: Mining process model descrip-
tions of daily life through event abstraction. In: IntelliSys 2016. pp. 83–104
(2016) (Cited on page 15)

https://www.sciencedirect.com/science/article/pii/S0306437917304477
https://www.sciencedirect.com/science/article/pii/S0306437917304477

109

[183] Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Event abstraction
for process mining using supervised learning techniques. In: Proceedings of
SAI ISC. pp. 251–269 (2016) (Cited on page 18)

[184] Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Mining lo-
cal process models. Journal of Innovation in Digital Ecosystems 3(2),
183–196 (2016), https://www.sciencedirect.com/science/article/pii/
S2352664516300232 (Cited on page 5)

[185] Tazari, M.R., Furfari, F., Fides Valero, Á., Hanke, S., Höftberger, O., Kehagias,
D., Mosmondor, M., Wichert, R., Wolf, P.: The universaal reference model for
aal. IOS press (2012) (Cited on page v)

[186] Theodoropoulou, G., Bousdekis, A., Miaoulis, G., Voulodimos, A.: Process
mining for activities of daily living in smart homecare. In: PCI 2020. pp.
197–201 (2020) (Cited on page 18)

[187] Torres, V., Serral, E., Valderas, P., Pelechano, V., Grefen, P.: Modeling of iot
devices in business processes: A systematic mapping study. In: 2020 IEEE
22nd Conference on Business Informatics (CBI). vol. 1, pp. 221–230. IEEE
(2020) (Cited on pages 15 and 90)

[188] Trzcionkowska, A., Brzychczy, E.: Practical aspects of event logs creation for
industrial process modelling. MAPE 1(1), 77–83 (Sep 2018) (Cited on page 48)

[189] Valencia-Parra, A., Ramos-Gutierrez, B., Varela-Vaca, A.J., Gomez-Lopez,
M.T., Bernal, A.G.: Enabling process mining in aircraft manufactures: Ex-
tracting event logs and discovering processes from complex data pp. 166–177
(2019) (Cited on page 48)

[190] Van Der Aalst, W.: Process mining: discovery, conformance and enhancement
of business processes, vol. 2. Springer (2011) (Cited on pages 10 and 28)

[191] Van Der Aalst, W.: Process mining: Overview and opportunities. ACM
Transactions on Management Information Systems (TMIS) 3(2), 1–17 (2012)
(Cited on page 80)

[192] Van Houdt, G., Depaire, B., Martin, N.: Unsupervised event abstraction in a
process mining context: A benchmark study. In: Process Mining Workshops:
ICPM 2020 International Workshops, Padua, Italy, October 5–8, 2020, Revised
Selected Papers 2. pp. 82–93. Springer (2021) (Cited on pages viii, 12, 27,
and 91)

[193] Van Houdt, G., de Leoni, M., Martin, N., Depaire, B.: An empirical evaluation
of unsupervised event log abstraction techniques in process mining. Information
Systems 121, 102320 (2024) (Cited on pages 5 and 12)

[194] Van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity
recognition in a home setting. In: Proceedings of the 10th Intl. Conf. on
Ubiquitous computing. pp. 1–9 (2008) (Cited on pages 18, 19, 22, and 73)

https://www.sciencedirect.com/science/article/pii/S2352664516300232
https://www.sciencedirect.com/science/article/pii/S2352664516300232

110

[195] Veneruso, S., Bertrand, Y., Leotta, F., Serral, E., Mecella, M.: A model-based
simulator for smart homes: Enabling reproducibility and standardization.
JAISE 15(2), 143–166 (2023) (Cited on pages vii, viii, xi, 17, 18, 19, 52, 56,
57, 64, and 73)

[196] Veneruso, S., Ferro, L.S., Marrella, A., Mecella, M., Catarci, T., et al.: A
game-based learning experience for improving cybersecurity awareness. In:
CEUR WORKSHOP PROCEEDINGS. vol. 2597, pp. 235–242. CEUR-WS
(2020) (Cited on page xiii)

[197] Veneruso, S., Leotta, F., Mecella, M.: On the usefulness of human behaviour
process models: a user study. In: 2024 20th International Conference on
Intelligent Environments (IE) (2024) (Cited on pages xii and 79)

[198] Veneruso, S.V., Catarci, T., Ferro, L.S., Marrella, A., Mecella, M.: V-door: A
real-time virtual dressing room application using oculus rift. In: Proceedings
of the International Conference on Advanced Visual Interfaces. pp. 1–3 (2020)
(Cited on pages xiii and xiv)

[199] Veneruso, S.V., Ferro, L.S., Marrella, A., Mecella, M., Catarci, T.: Cybervr:
an interactive learning experience in virtual reality for cybersecurity related
issues. In: Proceedings of the International Conference on Advanced Visual
Interfaces. pp. 1–8 (2020) (Cited on pages x, xiii, and xiv)

[200] Verbeek, H., Buijs, J.C., Van Dongen, B.F., Van Der Aalst, W.M.: Xes,
xesame, and prom 6. In: Intl. Conf. on Advanced Information Systems Eng.
pp. 60–75. Springer (2010) (Cited on page 33)

[201] Weijters, A., Ribeiro, J.T.S.: Flexible heuristics miner (fhm). In: 2011 IEEE
symposium on computational intelligence and data mining (CIDM). pp. 310–
317. IEEE (2011) (Cited on page 27)

[202] Wiemuth, M., Junger, D., Leitritz, M., Neumann, J., Neumuth, T., Burgert, O.:
Application fields for the new object management group (omg) standards case
management model and notation (cmmn) and decision management notation
(dmn) in the perioperative field. International journal of computer assisted
radiology and surgery 12, 1439–1449 (2017) (Cited on page 90)

[203] Yadav, S.K., Tiwari, K., Pandey, H.M., Akbar, S.A.: A review of multi-
modal human activity recognition with special emphasis on classification,
applications, challenges and future directions. Knowledge-Based Systems
223, 106970 (2021), https://www.sciencedirect.com/science/article/
pii/S0950705121002331 (Cited on page 5)

[204] Yang, J., Nguyen, M.N., San, P.P., Li, X., Krishnaswamy, S.: Deep con-
volutional neural networks on multichannel time series for human activity
recognition. In: Ijcai. vol. 15, pp. 3995–4001. Buenos Aires, Argentina (2015)
(Cited on page 92)

https://www.sciencedirect.com/science/article/pii/S0950705121002331
https://www.sciencedirect.com/science/article/pii/S0950705121002331

111

[205] Yang, Y., Saleemi, I., Shah, M.: Discovering motion primitives for unsupervised
grouping and one-shot learning of human actions, gestures, and expressions.
IEEE transactions on pattern analysis and machine intelligence (2012) (Cited
on page 77)

[206] Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in perva-
sive computing: A review. Pervasive and mobile computing 8(1), 36–66 (2012)
(Cited on page 1)

[207] van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstrac-
tion in process mining: literature review and taxonomy. Granular Computing
6, 719–736 (2021) (Cited on pages 27, 48, 90, and 91)

[208] Zerbato, F., Seiger, R., Di Federico, G., Burattin, A., Weber, B.: Granularity
in process mining: Can we fix it? In: CEUR Workshop Proceedings. vol. 2938,
pp. 40–44 (2021) (Cited on page 27)

[209] Zhang, D., Yao, L., Zhang, X., Wang, S., Chen, W., Boots, R., Benatallah,
B.: Cascade and parallel convolutional recurrent neural networks on eeg-based
intention recognition for brain computer interface. In: Proceedings of the aaai
conference on artificial intelligence. vol. 32 (2018) (Cited on page 93)

112

Appendix

(a) (b)

(c)

(d)

Figure A.1. Habit “05:15-07:00”: (a) Petri net of the habit filtered on meal preparation,
(b) Petri net of the habit filtered on bed to toilet, (c) Petri net of the habit filtered on
relax, (d) Petri net of the habit filtered on sleeping.

113

Figure A.2. Process model representing the “05:15-07:00” habit range extracted from the
heuristic miner.

114

Figure A.3. Process model representing the “05:15-07:00” habit range extracted from the
inductive miner.

115

Figure A.4. Process model representing the “05:15-07:00” habit range extracted from the
fuzzy miner.

116

(a)

(b)

Figure A.5. Activity “eating”: (a) Process model extracted from the fuzzy miner, (b) a
filtered component that emphasizes significant nodes in the model provided in (a).

117

Figure A.6. Process model representing the “bed to toilet” activity extracted from the
heuristic miner.

118

Figure A.7. Process model representing the “leave home” activity extracted from the
inductive miner.

	Extended Abstract
	Introduction
	Classical ambient intelligence
	Sensor data aggregation methodologies
	Sensors in smart spaces

	Process mining
	Process discovery: model quality metrics
	Petri nets

	Ambient intelligence and process mining
	Modeling the human behavior in smart spaces

	Process discovery in smart spaces: a literature review
	Applying process discovery to smart spaces data
	Results
	Modelling formalisms
	Abstraction gap between sensor events and process events
	Log segmentation into traces
	Multi-user environments
	Routine evolution

	Discussion
	Used datasets
	Modelling formalisms
	Abstraction gap between sensor events and process events
	Log segmentation into traces
	Multi-user environments
	Routine evolution
	Threats to validity

	Generating smart home data
	Behavior pattern models
	XES - eXtensible Event Stream
	Design and realization of the simulator
	Original simulation framework
	Model-based simulation
	Multi-inhabitant simulation
	Data export in XES format

	Validation
	Replicability of datasets available in literature
	Truthfulness evaluation
	Results

	Representing smart home data
	Existing standards for event logs
	Process mining using IoT data
	Existing models bridging IoT and process mining

	Format specification
	Meta-model
	Implementation

	Format validation
	Theoretical requirements fulfilment
	Log description
	Log Analysis
	Comparison with the state-of-the-art

	Unsupervised discovery of human habits
	Proposed approach
	Data acquisition
	Log conversion
	Log filtering
	Time-based processing of the log
	Discretization and segmentation

	Validation and Results

	Unsupervised discovery of human activities
	Proposed approach
	Data acquisition
	Log conversion
	Log filtering
	Session identification
	Session clustering
	Log segmentation

	Experimental evaluation
	Dataset selection
	Results
	Comparison with the state-of-the-art
	Discussion

	User study
	Mining process models through process discovery
	Designing the user study
	Statistical tools for qualitative analysis
	t-test
	Analysys of variance (ANOVA)
	Choice of statistical tool by design

	Results and discussion

	Conclusions and future work
	Bibliography
	Appendix

