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Abstract Optical switching is a key functionality for enabling transparent all-optical
networks. We present an overview of optical switching devices, based on either
optical or electrical control signals, which permit to avoid the necessity of optics-
electronics-optics conversion. We describe the basic principles of various guided
wave optical switching devices, which exploit either relatively long interaction
lengths in order to reduce the operating power requirements, or strong transverse
confinement to reduce device dimensions. These devices include nonlinear mode
couplers and interferometers based on optical fibers, as well as integrated waveg-
uides based on photonic crystal structures or surface wave interactions in novel ma-
terials such as graphene.

1 Introduction: All–Optical Switching using Guided–Waves

In recent years, telecommunication networks have witnessed a dramatic increase of
capacity, mostly driven by the exponential growth of IP traffic. Researchers had to
tackle and solve several problems, and certainly the challenge of realizing trans-
parent all optical switching was among the most important issues which have been
addressed. In this framework, the goal is to use optics not only at the transmission
level, but also at the switching level; this in turn requiresto conceive devices which
can perform switching directly in the optical domain, thus overtaking the unavoid-
able limitations of switching at the electronic level. Remarkably the goal can be
achieved using either an optical or an electrical control; the common denominator is
not the physical nature of the control signal, but the possibility of avoiding optics-
electronics-optics (OEO) conversions which lead to inefficient and nontransparent
switching.
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In particular, in this paper we review some basic ideas and devices for all-optical
switching in guided wave geometries, as this scenario offers important possibilities
for tuning the light confinement, and thus exploring more efficient light–matter in-
teractions. In section 2 we will discuss some relevant examples of all–optical switch-
ing devices exploiting optical fibers; in section 3 we will move into the field of inte-
grated optics and we will discuss optical switching in photonic crystal waveguides,
as well as using surface waves as a tool to enhance light matter–interactions in novel
nonlinear materials such as graphene.

2 All Optical Pulse Switching in Optical Fibers

We review the different implementations of switching in optical fibers, including
polarization effects in both high and low-birefringence fibers, and nonlinear optical
loop mirrors. Both self-switching and two-beam, phase or cross-phase modulation
(XPM) controlled switching will be analyzed.

2.1 Nonlinear Mode Coupling

We start by considering the continuous wave (CW) case and focus our attention on
the linear and nonlinear coupling between the two modes of a structure composed of
two waveguides placed in close proximity. The basic model todescribe the evolution
of the modal amplitudesA1,2 along the coupler [1] is given by the following coupled
equations:

i
dA1

dz
+CA2+ γ

[

|A1|2+ρ |A2|2
]

A1 = 0

i
dA2

dz
+CA1+ γ

[

|A2|2+ρ |A1|2
]

A2 = 0 (1)

whereC is the linear coupling coefficient,γ is the nonlinear coefficient andρ is
the XPM factor. The previous equations were introduced for the nonlinear coherent
directional coupler (NLDC) [2, 3], and they work well for dual-core fibers and for
integrated couplers [4].

In the case of a birefringent optical fiber the XPM factor is 2/3 and nonlinear
four-wave mixing terms must be included, as well [5, 6, 7]:
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whereAx,y are the complex envelopes of the fundamental modes polarized along the
x,y principal axes of the fiber with propagation constantsβx,y, respectively. More-
over,ax,y ≡

√

γ/∆β exp{−i(βx+βy)z/2}Ax,y, ζ =∆β z is a dimensionless distance,
∆β = βx −βy = 2π/Lb is the linear fiber birefringence andLb the beat length. Let
us express Eqs. 2 in a more compact form in terms of the circularly polarized com-
ponentsa± = (ax ± iay)/

√
2 as

i
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[

|a+|2+2|a−|2
]

a+ = 0
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+
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a++
2
3

[

|a−|2+2|a+|2
]

a− = 0 (3)

At relatively low powers, fiber birefringence leads to the periodic exchange of power
among the two circular polarizations: the spatial period ofsuch linear coupling is
equal to the linear beat lengthLb = 2Lc (Lc is the linear coupling length).

In order to better visualize the action of nonlinear coupling, it proves convenient
to rewrite Eqs. 2 in terms of the real Stokes parameterssi ≡ Si/S0, whereS0 ≡ P =
|ax|2+ |ay|2, S1 ≡ |ax|2−|ay|2, S2 ≡ axa∗y + c.c., andS3 ≡−iaxa∗y + c.c.:

ds1

dζ
= 2ps2s3

ds2

dζ
=−s3−2ps1s3

ds3

dζ
= s2 (4)

where we defined the dimensionless input powerp ≡ P/Pc, with the critical power
level Pc ≡ 3∆β/2γ. In vector notation, Eqs. 4 can be written as

Fig. 1 (a): Poincaŕe sphere description of switching in a nonlinear coupler; (b) Evolution with
distance of power in the input mode for different input power levels.
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ds
dζ

= (ΩL +ΩNL(s))s (5)

which describes polarization evolution on the Poincaré sphere as the motion of a
rigid body subject to the sum of the fixed and the position-dependent angular veloc-
ities ΩL ≡ (1,0,0) andΩNL = (0,0,−ps3), respectively [6, 8]. Fig. 1(a) illustrates
the radically different behavior of the polarization evolution trajectories of the tip of
the Stokes vectorsas the input power is below or above the critical powerPc. Below
the critical power, all points on the Poincaré sphere rotate around the axis defined
by ΩL: as a result, the two circular polarizations periodically exchange their power
along the fiber length. On the other hand, forP > Pc the mode polarized along the
fast axis of the fiber (i.e., whose Stokes vector issF = (−1,0,0)) loses its spatial
stability and becomes an unstable saddle (see right part of Fig. 1(a) ) [6, 8, 9, 10]:
as it is shown in Fig. 1(b), an input right-handed circular polarization (whose power
is P+ ≡ |A+|2) no longer periodically couples into the orthogonal left-handed polar-
ization wheneverP+ > 2Pc.

2.2 Nonlinear Fiber Couplers

The NLDC is a basic device which permits all-optical routingand switching op-
erations [2, 3]. Experiments have demonstrated nonlinear transmission and self-
switching in fiber-optic NLDCs, such as: dual-core fibers [11]-[15], low birefrin-
gence fibers [16], and periodically twisted birefringent filters [17, 18]. Even though
fiber optic NLDCs exhibit ultrafast nonlinear response, whenever their lengthL ≃
Lb, the associated switching powerP ≃ Pc is relatively high, owing to the weak non-
linearity of silica. Indeed, because of imperfections in fiber fabrication (in the case
of dual core couplers) or of random fiber birefringence (for polarization couplers),
beat lengths exceeding one or a few meters are not possible inpractice. Earlier ex-
periments with fiber NLDCs involved just one or two linear coupling distancesLc.
In this case, the associated nonlinear transmission exhibits a single switching power,
that is inversely proportional toLc.

Nevertheless, full switching in a fiber NLDC of any lengthL is still possible
when operating in the multi-beatlength regime, i.e., whenever L >> Lb [19, 20].
The main advantage of the multi-beatlength NLDC is that the relevant switching
power is inversely proportional to the total length of the fiber L. Therefore, the
switching performance is comparable to that of other nonlinear fiber switches such
as the nonlinear Mach- Zehnder interferometer (NMZI) and the nonlinear optical
loop mirror (NOLM). Using a circularly polarized beam of powerP at the input of a
birefringent fiber, the exact solution of Eqs. 3 leads to the following expression for
the output powerP+ in the same circular polarization

P+ =
P
2
[1+ cn(πL/Lc| p̃)] (6)



All–Optical Guided Wave Switching 5

where ˜p = p/2 andcn is a Jacobi elliptic function. From Eq. 6, one obtains that the
nonlinear period of polarization coupling between the two circular polarizations is

Lnc( p̃) =
2LcK( p̃)

π
(7)

whereK is the complete elliptic integral of the first kind. Whenever ˜p < 1, one
obtains that

K( p̃) =
π
2

[

1+
p̃2

4
+O( p̃)2

]

(8)

Therefore for ˜p << 1 Eq. 6 reduces to

P+ = Pcos2(πL/2Lnc( p̃)) (9)

The associated on-off switching powerps corresponds to the power-induced in-
crease of the coupling distance which leads to aπ/2 shift in the argument of the
cosine in Eq. 9. One obtainsps = 2

√

2Lb/L, i.e., in real units

Ps =
12π

γ
√

2LbL
(10)

The switching power of a fiber-based NLDC operating in the multi-beatlength
regime may be further reduced by injecting an input elliptically (as opposed to cir-
cularly) polarized beam [21, 22]. Let us sets1(ζ = 0) = ε cos(2φ), s1(ζ = 0) =
ε sin(2φ), ands3(ζ = 0) =

√
1− ε2. From the exact solution of Eqs. 3, one obtains

P+ = P(1+ s3(L, p))/2 for the right handed circular polarisation component at the
output of a fibre of length L, where

s3 =
√

1− ε2cos(2φ)2 f (p)cos(2πr(p)L/Lb) (11)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Input Power (W)

T
ra

ns
m

is
si

on

 

 

φ=0
2φ=π/4

(a)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Input Polarization Angle (degrees)

T
ra

ns
m

is
si

on

 

 

L/L
b
=10

L/L
b
=20

(b)

p=0.15

Fig. 2 Theoretical CW transmissions at the output ofL= 20Lb long birefringent fiber: (a) transmis-
sion dependence on input power for different input polarization angles; (b) transmission variation
with input angle for two values of the total number of linear beat lengthsLb.
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and f (p) = (1+ pε cos(2φ)/2). In this case, the nonlinear beat lengthL̃b(p) =
Lb/ f (p)≃ Lb(1− pε cos(2φ)/2). By supposing|cos(2φ)|= 1, the switching power
ps is defined by 2π(r(p)−1)L/Lb = π, so thatps = Lb/εL. In real units, the switch-
ing power reads as

Ps =
3π
γεL

(12)

In Fig. 2(a) we show an example of nonlinear CW transmissionscomputed from
Eqs. 9 at the output of aL = 20Lb long birefringent fiber. Here we plot the trans-
mission dependence on input power for different input polarization anglesφ , and
we have setε = 0.37, γL = 1. As can be seen from Fig. 2(a), the switching power
agrees well with the estimatePs ≃ 25 W from Eq. 12. In Fig. 2 we also display the
change of the nonlinear transmission as the input polarization angleφ is varied, for
L = 10÷20Lb andp = 0.15.

An experimental confirmation of all-optical power and polarization controlled
switching in a multi-beatlength fiber NLDC was performed using 205 m of York
ultralow-birefringence spun fiber [19]-[23]. The fiber was wound on a drum with
radius of 15 cm, in order to introduce a bending-induced linear birefringence with
Lb ≃ 20 m, so thatL ≃ 10Lb. By increasing the input power of a right-handed cir-
cularly polarized beam from low values up to the switching power, an accumulated
nonlinear variation of the beat length equal toLc or 10 m (or 5% nonlinear variation
per beat lengthLb) was obtained.

Quasi-CW operating conditions were achieved using a mode-locked 100 ps input
pulse train from an Nd-YAG laser operating at 1.06µm. At the fiber output, the two
circular polarization components of the emerging pulses were the two output chan-

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Average Power (mW)

T
ra

ns
m

is
si

on

 

 

Cross State
Bar State

(c)

Fig. 3 Experimental pulse energy transmissions from orthogonal polarizations at the output of a
10 beat length long birefringent fiber: (a-b) streak-camera traces of pulses emerging from the input
(bar state) and the orthogonal (cross state) polarizations; (c)average energy transmissions from
cross and bar states versus input average power.
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nels of the birefringent fiber NLDC. These components were separated by means of
a calibrated Babinet-Soleil compensator, followed by a Wollaston prism.

Fig. 3(a-b) shows the streak camera pictures of the pulse profiles emerging from
the bar (input) and the crossed circular polarizations components at the fiber output,
for an input average power of 320 mW [19]. As it can be seen, thecenter and the
wings of the pulse have opposite handedness, leading to a symmetric pulse breakup.

Fig. 3(c) shows the measured circular polarization transmissions at the fiber out-
put, as a function of the input average power into the fiber [22]. Because of the slow
response time of the photodetectors, the transmission displays the average power
in each output polarization. At low powers, the input circular polarization emerges
from the fiber almost unchanged. About 50% switching of the transmission is ob-
served at about 250 mW: the corresponding peak pulse power isof about 20 W, in
relatively good agreement with the estimate of Eq. 12, sincein the experiment the
conditionγL ≃ 1 is verified.

2.3 Nonlinear Mach-Zehnder Interferometers

A relatively simple nonlinear switch may be implemented using an all-fiber-based
Mach-Zehnder interferometer (MZI): here two 3-dB linear directional couplers are
used to split the input signal and then recombine the two armsof the interferometer
of lengthsL1 andL2, respectively (see Fig. 4). The components of the signal in the
two arms of the MZI thus experience different overall linearand SPM induced phase
shifts [24, 25, 27, 31]. The transmission through the bar port of the MZI reads as

T (P) = sin2 (∆φL +∆φNL) (13)

where∆φNL = γP(L1 − L2). Alternatively, a different nonlinear phase shift in the
two arms of the MZI may be induced wheneverL1 = L2 by using an unbalanced
linear directional coupler, so that the two signal components have different powers.
A different implementation of a MZI type of switch consists of a highly birefringent

Fig. 4 Structure of a fiber
based nonlinear MZ inter-
ferometer switch exploiting
SPM or XPM (in the presence
of a control pump).
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fiber, where the two signal paths are represented by the two fiber modes which are
orthogonally polarized along the principal axes of the fiber. For an input beam of
powerP that is initially linearly polarized with an orientation atthe angleθ with
respect to thex−axis of a birefringent fiber of lengthL, one hasPx = P0cos2(θ),
Py = P0sin2(θ), and∆φNL = γPLcos(2θ)/3.

Besides SPM-activated switching, a fiber MZI can be used to switch a signal
among its two output ports through XPM by injecting a controlpump at a different
wavelength, that shifts the signal phase in the upper arm of the interferometer (see
Fig. 4). In the presence of a control pump composed by a pulse train, the input CW
signal may also be converted into a pulse train. The drawbackof a fiber MZI is the
presence of two separate paths for the signal, which make it sensitive to environ-
mental perturbations, so that active stabilization of the fiber lengths may be required
[25].

2.4 Nonlinear Loop Mirrors

The environmental stability of an interferometric fiber switch may be ensured by
using a Sagnac loop configuration [28]-[33]: here the transmitted signal results from
the coherent superposition at the directional coupler output port of two signals that
have traveled in opposite directions around the same loop offiber (see Fig. 5(a)).
Clearly, whenever the directional coupler equally splits the input signal (i.e., a 3-dB
coupler is used), there is no differential nonlinear phase shift among the two signal
components that travel in opposite directions around the loop, and the Sagnac loop
acts as a perfect mirror by reflecting all of the incoming signal: the transmitted
signal vanishes. On the other hand, whenever an asymmetric coupler is used, there
is a differential nonlinear phase shift which leads to a signal to be transmitted at high
powers. Thus the Sagnac loop of Fig. 5(a) is also known as nonlinear loop mirror
(NOLM).
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Fig. 5 (a) Structure of a fiber based NOLM and (b) associated power dependence of transmission
for different power split coefficientsK of the coupler.
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The nonlinear transmission of the NOLM can be simply obtained as follows. The
input amplitude of the waves traveling clockwise and counter-clockwise in the loop
reads asAi

CW =
√

KAin andAi
CCW = i

√
1−KAin, respectively, whereK is the power

splitting ratio of the coupler andAin is the input signal amplitude. After one round-
trip through the loop, the two fields traveling in opposite directions acquire equal
linear but different nonlinear (as determined by both SPM and XPM) phase shifts,
so that at the input of the coupler one has the two fields

Ao
CW = Ai

CW exp
{

iβL+ iγ
(

|Ai
CW |2+2|Ai

CCW |2
)

L
}

Ao
CCW = Ai

CCW exp
{

iβL+ iγ
(

|Ai
CCW |2+2|Ai

CW |2
)

L
}

(14)

whereβ is the linear propagation constant in the fiber loop of lengthL. At the
coupler output, one obtainsAt =

√
KAo

CW + i
√

1−KAo
CCW , so that the transmissivity

of the NOLM reads as

T (P)≡ |At |2/|Ai|2 = 1−4K (1−K)cos2 [(K −0.5)γPinL] (15)

wherePin = |Ain|2. The resulting input signal power dependence of the NOLM trans-
missivity is illustrated in Fig. 5(b) for different values of the coupling ratioK, and
for γL = 1. The associated switching power (corresponding to the first unit peak of
the transmissivity asP is increased from zero) reads as

Ps =
π

γL(1−2K)
(16)

which leads toPs ≃= 16W andPs ≃= 31W for K = 0.4 andK = 0.45, respectively
(see Fig. 5(b)).

As in the nonlinear MZI, signal switching in the NOLM may alsobe induced via
XPM by injecting in the loop, by means of a directional coupler, a pump pulse at a
different wavelength (see Fig. 6(a)) [34]-[37]. The control pulse propagates in the
CCW direction, thus it only induces a nonlinear phase shift into the corresponding
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Fig. 6 (a) Schematic of XPM-controlled switching in a NOLM and (b) transmission function for
T0 = 10ps and different values of the walk-off timeTw.
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component of the signal, so that propagation in the NOLM is un-balanced even when
K = 0.5. In this case, the NOLM acts as a perfect reflecting mirror for a signal in the
absence of the control pump, whereas in the presence of the pump the signal may be
fully transmitted. For evaluating the nonlinear phase shift induced via XPM on the
signal by a short pump pulse, one should take into account thetemporal walk-off
between pump and signal due to fiber GVD. The total XPM phase shift is

∆φ(T ) = 2γ
∫ L

0
|Ap(T −δx)dx, (17)

whereT is time in the reference frame that moves with the group velocity at the
signal wavelengthVs, andδ = V−1

p −V−1
s is the group velocity mismatch between

pump and signal. For a Gaussian pump pulse of the formAp(T ) = Pexp
(

−T 2/T 2
0

)

(so that the pump pulse full width at half maximum isTf whm ≃ 1.66T0), the resulting
nonlinear phase shift reads as

∆φ(T ) =
γLP

√
πT0

Tw

[

er f

(

T
T0

)

− er f

(

T −Tw

T0

)]

, (18)

whereer f (x) is the error function, and the total walk-off isTw = δL. The associated
nonlinear signal transmission is

T = 1−4K (1−K)cos2(∆φ/2), (19)

Let us consider a balanced coupler withK = 0.5, a peak XPM-induced phase shift
2γLP = π, and setT0 = 10ps. Fig. 6(b) shows examples of signal transmission
windows for different values of the walk-off timeTw. As it can be seen, when-
everTw << T0 the transmission window is a replica of the control pulse; whereas as
soon asTw > T0 the peak value of the transmission drops from unity and the window
broadens in time.

2.5 Nonlinear Passive Loop Resonators

A variant of the nonlinear Sagnac interferometer is provided by the nonlinear fiber
ring resonator [38, 39, 40, 41, 42]. As an example, consider the scheme of Fig.
7(a): instead of connecting the two output ports of the coupler, a fiber loop now
connects the first output port (port 3 in Fig. 7(a)) with the second input port (port 2)
of the coupler. The signalE1 at input port 1 enters the coupler and it continuously
recirculates in the loop; the cavity field can be monitored atthe second output port
(port 4) of the coupler. The complex amplitude transmissionY = A4/A1 of the ring
resonator is obtained from the relationsA3 =

√
1− τ(

√
1−KA1+ i

√
KA2) andA4 =√

1− τ(i
√

KA1+
√

1−KA2), whereτ is the fractional power loss of the coupler and
A2 = A3exp(−αL+ iβL+ i∆φNL) with ∆φNL = γ |A3|2L. The result is provided by
the implicit equation
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Y =
(1− τ)exp(iδ −αL)+ i

√
1− τ

√
K

1− i
√

K
√

1− τ exp(iδ −αL)
, (20)

where

δ = βL+ γ |A1|2L

(

1− τ
1−K

+
K

1−K
|Y |2+ i

√
K
√

1− τ
1−K

(Y −Y ∗)

)

, (21)

Clearly Eq. 20 is equivalent to two real equations, whose numerical solution yields
the power transmissivityT = |A4|2/|A1|2 of the nonlinear resonator (see Fig. 7(b),
where the resonant coupling coefficient isM = (1− τ)exp(−αL) = 0.95). As it
can be seen, by varying the linear phase delayβL right below the resonance con-
dition βL = 3π/2+ 2πm (wherem is an arbitrary integer), one obtains quite dif-
ferent nonlinear transmission behaviors. For small detunings from resonance (i.e.,
βL = 1.49π), it is only necessary to add a weak nonlinear phase shift (ofthe or-
der ofπ/100) in order to bring the resonator back into resonance. At higher input
powers, the resonator gets out-of-resonance and transmissivity rapidly increases.
On the other hand, for larger linear cavity detunings (e.g.,for βL = 1.45π), the
transmissivity becomes multi-valued, and optical multistability results: again, the
on-off switching power is relatively low, i.e., it is obtained for nonlinear phase shifts
γ |A3|2L ≃ π/100, which is accessible at CW signal power levels.

2.6 Optical Soliton Switching

As we have seen in Sect. 2.1, the efficiency of all-optical switching in nonlin-
ear couplers using optical pulses is severely limited unless square pulses (e.g.,
the non-return-to-zero (NRZ) data modulation format) are used [15]. In fact, the
CW transmission curve is effectively averaged over the pulse profile, and pulse

Fig. 7 (a) Schematic passive fiber loop resonator and (b) its transmissivityfor different values of
βL; hereK = 0.95.
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break-up occurs at the device output, since different portions of the pulse profile
are independently switched according to their instantaneous power level (see Fig.
3(a,b)); the same occurs with nonlinear inteferometers. The pulse break-up effect
may be avoided by operating in the soliton regime, that is whenever the signal
pulses represent optical fiber solitons for the fibers used inthe switching device
[24, 32, 33, 43, 44, 45]. In the short pulse regime, the equations describing propaga-
tion in a nonlinear coupler should be extended to include group velocity dispersion
terms, which leads to the coupled nonlinear Schrödinger equations

i
∂u
∂ξ

+
β
2

∂ 2u
∂τ2 +κv+

(

|u|2+ρ |v|2
)

u = 0

i
dv
dξ

+
β
2

∂ 2v
∂τ2 +κu+

(

|v|2+ρ |u|2
)

v = 0 (22)

where the dimensionless distance isξ = z|β2|/t2
s , β2 is the GVD coefficient,β =±1

for anomalous or normal dispersion, respectively,τ = z/ts where ts is a refer-
ence pulse width. Moreover, the dimensionless coupling coefficient κ =Ct2

s /|β2|=
Pc/2Psol , wherePc = 2C/γ is the NLDC critical power,Psol = |β2|/γt2

s is the soliton
power, andρ is the XPM coefficient.

Fig. 8(a,b) illustrates beam propagation solutions of Eqs.22 in the anomalous
GVD regime. Hereγ = 0 (as in a linear dual-core fiber coupler) andκ = 1/4. As
it can be seen, input soliton-like pulses of the formu(0,τ) = u0sech(τ/τ0) (here
v(0,τ) = 0 andτ0 = 1) are entirely switched as a single entity from the cross to
the bar output state as the input soliton peak powerp = |u0|2/Pc is increased from
p = 2 to p = 3. For p = 2, the input pulse periodically couples back and forth
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Fig. 8 Evolution of power with distance in the bar and cross state of soliton NLDC at (a) low and
(b) high powers; (c) comparison of power-dependent transmission inthe bar state for dispersive
pulses in the anomalous (solid curve) and normal (dashed curve) dispersion regime.
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between the two channels, with a relatively small distortion of the pulse profile.
Whereas forp = 3 the soliton transfer between the channels is inhibited. Therefore
optical solitons exhibit a particle-like switching behavior, and the pulse break-up
which is observed in the absence of GVD (or for quasi-CW inputsignals) may thus
be avoided.

Fig. 8(c) compares the fraction of energy transmitted in thebar state as a func-
tion of the input peak powerp, when using a NLDC in either the anomalous (β > 0)
or normal (β < 0) GVD regime, respectively. Here we have chosenκ = π/2, and
τ0 = 1/

√
2π, so that twice the CW critical power is equal to the fundamental soliton

peak power. As it can be seen, with normal GVD the dispersive pulse broadening
combined with SPM and linear coupling nearly inhibits the self-switching behavior.
Conversely, in the anomalous GVD regime, the transmission is similar to that ob-
tained for CWs or ideal square pulses (besides an increase of the effective switching
power).

3 Optical Switching in Integrated Optical Waveguide Structures

3.1 All-Optical Switching in Photonic Crystal Couplers

In recent years Photonic Crystals (PC) have received increasing attention from the
scientific community, especially for their ability to control the propagation of light
[46]. The basic building blocks for all-optical data processing such as waveguides
with sharp bends, high-Q resonant cavities, perfect mirrors and so on could indeed
be integrated on a single PC chip, in order to achieve complexfunctions with high
performance and small size [47]. PC structures seem to be theideal choice to get
efficient nonlinear devices for optical switching, becauseof the strong confinement
of the fields that permits to optimize the nonlinear interactions. In particular, the
development of nonlinear PCs exploiting the ultrafast Kerrnonlinearity has become
an important issue. The feasibility of bistable switching devices [48], optical diodes
and nonlinear bends [49], and optical isolators [50] has been reported. Directional
couplers are fundamental components for optical networks,and it has been demon-
strated that PC couplers exhibit smaller size and better performance than the con-
ventional ones [51]-[53]. Here we describe the properties of an all optical switch
based on an ultrashort PC coupler. Switching is performed byexploiting the strong
Kerr nonlinearity of AlGaAs, by controlling the intensity of the input signal. The re-
ported two-dimensional finite-difference time-domain (2DFDTD, [54, 55]) analysis
shows that the resulting ultra-compact device is characterized by a switching power
comparable with the one reported in the literature for centimeter-long conventional
nonlinear directional couplers.

The schematic view of the proposed structure is shown in Fig.9. The PC is
formed by a square lattice of AlGaAs rods in air. AlGaAs seemsto be a proper mate-
rial since it has a large nonlinear refractive index, with minimal linear and nonlinear
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absorption in the 1550 nm telecommunications window [56]. The PC lattice con-
stant isa= 400 nm, whereas the radius of the rods for the bulk crystal isr = 130 nm.
The resulting structure has a wide bandgap for TM polarization in a range of wave-
lengths between 1400 and 1750 nm. Two waveguides are formed by introducing lin-
ear defects reducing the radius of the rods tordi f = 70 nm [57]. The reason for this
choice is twofold. First, single-mode waveguides are essential to get a directional
coupler, with only one even and one odd supermode. It is well known that reduced-
index waveguides satisfy this requirement, whereas the increased-index ones tend
to be multimode [57]. Second, the need to optimize the nonlinear interactions sug-
gests to reduce only partially the radius of the defect rods,in order to maximize
the semiconductor fill factor. We have calculated that in thepreviously described
guiding structure over 50% of the modal field energy is confined into the nonlinear
dielectric defects [58]. The correct design of the coupler section is the key point for
our problem. We have found that the critical parameter to achieve switching with
reasonable input intensity of the light is the distance between the two waveguides.
Therefore fully vectorial eigenmodes of Maxwell’s equations for a set of couplers
were computed using a freely available mode solver [58], and2D FDTD simulations
[54, 55] were analyzed to study the device behavior when the waveguides separation
is varied.

Moreover, a very simple and powerful coupled-mode theory was developed to
model nonlinear propagation in PC couplers. As expected, there is a tradeoff be-
tween length of the structure and switching intensity. If the waveguides are close
to each other the linear coupling is strong, thus it is very difficult to decouple them
exploiting the effects of the ultrafast Kerr nonlinearity.If the waveguides are far
away, the beat length of the coupler is very large, and the resulting device is not
ultra-compact. We have then chosen a coupler composed of twowaveguides sepa-
rated by five lattice constants, as shown in Fig. 9. In Fig. 10 we report the projected
band structure of the coupler, evaluated through the mode solver [58]. It is straight-
forward to calculate the beat lengthLB = 2π/(keven − kodd) of the device, which

Fig. 9 Schematic view of the PC structure.LB = 140 µm is the beat length of the coupler. It is
worth to note that the real length is scaled to fit in the figure.
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Fig. 10 Projected band structure of the coupler, with the normalized dispersion relations for the
odd (solid line) and the even (dash-dotted line) supermode. Notethat in our case we are working
arounda/λ = 0.256.

is about 140µm at the wavelengthλ = 1560 nm;keven andkodd are the effective
wavenumbers of the even and the odd supermode. Light can be coupled from a di-
electric slab waveguide (width W = 3µm) to the coupler through a tapered input
section [59], as shown in a schematic way in Fig. 9. More complex and efficient PC
tapers have been proposed (e.g. in Ref. [60]), neverthelessa systematic analysis of
the input section of the PC chip in order to optimize the coupling efficiency is well
beyond the aim of this section. The switch layout is completed with the double sharp
bend that decouples the two waveguides just in proximity of the half beat length of
the coupler (see Fig. 9). The final structure, composed of thetapered input section,
the coupler and the double sharp bend is about 75µm long.

Fig. 11 Normalized intensity of the field inWG1 (at the top) andWG2 (on the bottom) in linear
regime (γn = 0) calculated through the coupled defects model. The sharp bend is placed near the
defectn = 170 (see the dash-dotted line).
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Fig. 12 Normalized intensity of the field inWG1 (at the top) andWG2 (on the bottom) in nonlinear
regime (γn |ain|2 = 0.75 s−1) calculated through the coupled defects model. The sharp bendis
placed near the defectn = 170 (see the dash-dotted line).

In order to show the basic operation principle of the proposed structure we exploit
a coupled-mode theory [61]-[63], developed to study coupled defects in nonlinear
PCs. In case of weak interactions between similar single-mode defects, the modal
field of each defect can be considered unperturbed, so that only the field amplitudes
vary in time. The evolution of the state of each PC waveguide,considered as a
straight chain of resonators, is governed by a set of differential equations

i
dan

dt
+Cn (an+1+an−1)+ γn |an|2 an = 0 (23)

wherean is the field amplitude in the n-th defect,Cn is the nearest-neighbor lin-
ear coupling coefficient andγn is the self-phase modulation strength [61]-[63]. This
theory was proposed for the analysis of propagation in coupled-resonator optical
waveguides (CROW). In our case, the individual defect rods composing the linear
defect are strongly coupled, therefore the accuracy of the model could be question-
able. Nevertheless, we show that this rough and simple theory can help to understand
the behavior of the nonlinear PC coupler. We can introduce the coupling between
the two waveguides just defining two sets of equations

i
dan

dt
+Cn (an+1+an−1)+Dn ·bn + γn |an|2 an = 0 (24)

i
dbn

dt
+Cn (bn+1+bn−1)+Dn ·an + γn |bn|2 bn = 0 (25)

wherean andbn are the field amplitudes in the n-th defect of the first and the sec-
ond waveguide (calledWG1 andWG2 respectively), andDn is the linear coupling
coefficient between the n-th defect in the first and in the second waveguide. We
have solved numerically the system composed of Eqs. (24) and(25) in the linear
regime (γn = 0). The coupling coefficientCn was fixed to 2s−1 for everyn, whereas
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Dn = 0.035s−1 for n < 170 andDn = 0 elsewhere, in order to simulate the introduc-
tion of the double sharp bend. Fig. 11 shows that the coupled-defect theory is able
to reproduce the behavior of the PC coupler. We report the calculated values ofan

andbn for a CW excitation when a steady-state is reached. The inputfield is injected
into WG1, and the field flows towardWG2 because of the linear coupling between
the two waveguides. The sharp bend is in proximity of the halfbeat length of the
coupler, thus at the output all the optical energy is inWG2. In Fig. 12 we report the
numerical solution of the system composed of Eqs. 24 and 25 innonlinear regime
(γn |ain|2 = 0.75s−1). It is straightforward to note the effect of the nonlinearity: now
at the output all the optical energy is inWG2, which shows that it is possible to
switch the output channel by varying the input field intensity.

Fig. 13 Intensity of the field in the PC coupler with maximum input intensity 1 GW/cm2: the
coupler is in cross state, the power ratio is about 20 dB.

Fig. 14 Intensity of the field in the PC coupler with maximum input intensity 3.8 GW/cm2: the
coupler behaves as a 50% power splitter, the power ratio is about 0 dB.

Fig. 15 Intensity of the field in the PC coupler with maximum input intensity 5 GW/cm2: the
coupler is in bar state, the power ratio is about−20 dB.

Now we show a rigorous 2D FDTD analysis of the feasibility of all-optical
switching in the previously described device. The problem of the implementation
of the structure on a real PC slab is a big issue that would require huge 3D FDTD
simulations, in order to estimate scattering losses in the third dimension. We high-
light that the 2D numerical modeling of the real 3D device is commonly used in the
literature for the study of phenomena due to Kerr effect in PC(see Refs. [48]-[50]),
since this permits to focus the attention mainly on the nonlinear interactions. The
nonlinear PC coupler is simulated by injecting into the taper section a CW Gaussian
field that approximates the fundamental mode of the dielectric slab waveguide. It
is worth to note that in this way we take into account of the effects due to the cou-
pling efficiency into the PC chip. By varying the maximum value of the Gaussian,
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and then the related maximum intensity of the input light, wecan characterize the
behavior of the power-controlled switch.

In Figs. 13-15 we show the intensity of the electromagnetic field in the device
for three different intensities of the input signal. Fig. 13shows the simulation result
for a maximum input intensityIIN max = 1 GW/cm2. It is possible to see that all the
optical energy flows through the output port 2, thus the coupler is in cross state.
This behavior is in good agreement with the previously described design procedure,
in fact the double sharp bend decouples the two waveguides just near the half beat
length. In Fig. 14 we have increased the maximum input intensity to IIN max = 3.8
GW/cm2. Here it is clear the effect of the nonlinear phase shift: theinput intensity
is equally divided between the two output waveguides, and the structure behaves as
a 50% power splitter. Fig. 15 shows the behavior of the deviceincreasingIIN max to 5
GW/cm2. In this case all the optical energy flows through the output port 1, thus the
coupler is in a bar state induced by the nonlinearity. It is worth pointing out that the
result of the FDTD simulation shown in Fig. 15 is in agreementwith the solution of
the coupled defects model (see Fig. 12). The field injected inWG1 initially couples
to WG2 as in an asymmetric coupler, but at the double sharp bend position all the
optical energy is inWG1, as desired. Fig. 16 summarizes the operation principle:
a high-intensity signal propagates along the input waveguide and flows through the
output port 1, whereas a low-intensity signal is switched toward output port 2.

Fig. 16 The power-controlled switching function: a low-intensity signal is switched toward out-
put port 2 (linear coupler), whereas a high-intensity signal propagates along the input waveguide
because of the nonlinear phase shift.

In Fig. 17 we show the power ratio in decibel, i.e. the ratio between the optical
energy in the output ports 2 and 1 of the structure, versus themaximum value of the
input intensity atλ = 1555 nm,λ = 1560 nm andλ = 1565 nm, respectively. The
simulations demonstrate that the device can be considered an optically-controlled
switch, with a power ratio larger than 20 dB in a wide range of wavelengths. In pres-
ence of pulsed excitations the performance of the power-controlled switch decrease
with respect to the CW case. In particular, as has already been described in Sect. 2,
with nonsquare input pulses the power ratio is reduced and output pulse break-up
is observed [64, 65]. Nevertheless these phenomena are strongly dependent on the
shape and the duration of the pulses, and they do not affect the validity of the proof-
of-principle nonlinear PC coupler. It is interesting to compare the device behavior
with what has already been reported in the literature for NLDCs made by AlGaAs



All–Optical Guided Wave Switching 19

Fig. 17 Power ratio versus maximum input intensity of the light atλ = 1560 nm (solid line),λ =
1555 nm (dash-dotted line) andλ = 1565 nm (dashed line).

semiconductor waveguides, and operating in the third-telecommunications window.
In this second case, both simulations and experiments show switching powers from
50 to 90 W, for a few centimeters long devices [64, 65]. Assuming that the field at
the input of the PC chip is a Gaussian beam, with the same spot-sizew0 = 1 µm
we used in the 2D FDTD simulations, we can integrate the inputintensity finding
an approximated power for the total switching of about 70 W, which is comparable
with the previously given values. Nevertheless, it is fundamental to note that the
length of the nonlinear PC coupler is less than 80µm, which is significantly shorter
than standard waveguide NLDCs. The one-pulse scheme analyzed throughout the
paper could be extended to a pump signal configuration, with astrong pump acting
through cross-phase modulation (XPM) on a weak signal at different wavelength.

3.2 Graphene-Assisted Control of Coupling Between Surface
Plasmon Polaritons

We discuss in this Section the tuning of the coupling of surface plasmon polari-
tons between two graphene layers with nanometer spacing. Wedemonstrate that, by
slightly changing the electrical doping and then shifting the chemical potential, a
graphene coupler can switch from the bar to the cross state. As a consequence, the
coupling coefficient in such structures can be easily controlled in an ultrafast fash-
ion either by means of an applied electrical signal [66] or bychanging the intensity
of the signal at the device input. These findings open the way to fully exploit the
huge nonlinearity of graphene for all optical signal processing: from one side giving
more degrees of freedom to already proposed devices [67, 68,69, 70, 71], from the
other side paving the way to new devices.

Graphene can sustain surface plasmon polaritons (SPP) having unique proper-
ties as compared to what we are used to with noble metals. In fact a single layer
of graphene can support either TE or TM polarized plasmons without suffering
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from huge loss [72, 73, 74]; moreover, as far as TM polarization is concerned, the
extremely high confinement factor is particularly favourable to explore the huge
χ(3) nonlinearity of graphene [67, 75, 76]. Experimental endeavors have demon-
strated the evidence of graphene plasmons by measuring the plasmon resonance of
graphene nanoribbon arrays [77], and by acquiring their near field images [78, 79].
The coupling of SPP between separated graphene layers has been recently analyzed
in [80]; however the very interesting properties arising from the easily tunable op-
tical properties of graphene have not been exploited yet in this framework. Here
in particular we show that by slightly changing the chemicalpotential, a graphene
coupler can switch from the bar to the cross state.

In Fig. 18 we report the basic geometry that we are going to consider in this sec-
tion; two graphene layers are embedded in a dielectric structure: region 1 (of width
2s) is the dielectric in between the two graphene layers. At thegraphene boundary
we set the following conditions on the tangential components of the electromagnetic
field:

(E2,3−E1)× x̂ = 0 (26)

(H2,3−H1)× x̂ = ±iωε0εrS1−2,3E‖(x =±s)

whereE‖ is the electric field tangent to the graphene layer andεrS1−2 (εrS1−3) is the
relative surface permittivity of the graphene layer between regions 1 and 2 (3). As
far as the electromagnetic constants of graphene are concerned, we write the linear
contribution to the relative complex permittivity as [81, 82]:

εrC =
εrS

dg
= 1+

σ (1)
Σ ,I

dgωε0
− i

σ (1)
Σ ,R

dgωε0
= εrC,R + iεrC,I (27)

wheredg is the graphene thickness and the surface complex conductivity σ (1)
Σ =

σ (1)
Σ ,R + iσ (1)

Σ ,I (in Siemens) is obtained from theoretical models now well established
and experimentally validated [82], which give the following dependence of the real
and imaginary parts of the conductivity on frequency (ω), temperature (T ) and
chemical potential (µ):

σ (1)
Σ ,R(ω) ≃ σ0

2

(

tanh
h̄ω +2µ

4kBT
+ tanh

h̄ω −2µ
4kBT

)

σ (1)
Σ ,I (ω) ≃ σ0

π

[

4
h̄ω

(

µ − 2µ3

9t2

)

− log
h̄ω +2µ
h̄ω −2µ

]

(28)

wheret = 2.7eV is the hopping parameter,h̄ andkB are the reduced Planck’s and
Boltzmann’s constants, respectively, andσ0 = e2/(4h̄)≃ 6.0853·10−5 S, withe the
electron charge.

Note also that this model can be easily extended into the nonlinear regime

by adding a nonlinear correction to the surface conductivity as: σΣ = σ (1)
Σ +

σ (3)
Σ |E|2Ey,z [73]. Moreover, thanks to the extremely small thickness of the graphene
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layer, nonlinearity can be analyzed by introducing a parameter embedded into the
coefficients describing the continuity of the tangential components of the electro-
magnetic field [67, 76].

To describe SPP propagation alongz, we first note that, at first order, they depen-
dence of the electromagnetic field can be neglected; we then look for guided modes
with harmonic temporal dependence exp(iωt) and spatial variationE1,2,3(x,z),
H1,2,3(x,z)∼ exp(−iβ z±Γ1,2,3x) with =Γ 2

1,2,3 = β 2−εr1,2,3k2
0. Obviously the com-

plex wavenumberβ , through its real and imaginary parts, describes the evolution of
both the phase and the amplitude of the guided modes. We can apply the above mod-
eling to derive the dispersion relation of both TE and TM modes. In the following
we describe in details the TM polarization. We first considera very general situa-
tion where the two graphene layers can be biased in a different way to give rise to an
asymmetric coupler. After straightforward algebra we find that coupled SPP in the
system are determined by setting to zero the determinant of the following matrix:

Fig. 18 Schematic of the graphene directional coupler: the separation between the layers is equal
to 2s.

M =











eΓ1s e−Γ1s −e−Γ2s 0
e−Γ1s eΓ1s 0 −e−Γ3s

iωε1
Γ1

eΓ1s − iωε1
Γ1

e−Γ1s g1−2e−Γ2s 0

− iωε1
Γ1

e−Γ1s iωε1
Γ1

eΓ1s 0 g1−3e−Γ3s











(29)

whereg1−2 andg1−3 take into account the contribution of the two graphene layers
in the continuity conditions:

g1−2 = iωε0εrS,1−2+
iωε2

Γ2
, g1−3 = iωε0εrS,1−3+

iωε3

Γ3

whereεrS,1−2 andεrS,1−3 refer to the relative dielectric constant of the two graphene
layers, which in general may have different values due to different carriers concen-
trations. This asymmetric coupler offers a wide variety of possible settings which
certainly deserve to be investigated both in the linear and in the nonlinear regime.
Here we describe a prototype example into the possibilitiesoffered by the tunabil-
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ity of graphene parameters in this framework; we thus focus our attention on a
very particular situation corresponding to a linear and symmetric case (ε2 = ε3 and
εrS,1−2=εrS,1−3); moreover we useT = 300K andλ = 10 µm. For the sake of sim-
plicity, we also setεr1 = εr2 = εr3 = 2.25. In this regime the graphene directional
coupler has two different eigenstates: the even (odd) supermode corresponding to
the out of phase (in phase) hybridization of the SPP guided bythe single graphene
layers. Note also that the even mode here has always the highest value of the prop-
agation constant.

In Fig. 19 we report the solution of the dispersion relation as a function ofs for
two different situations: continuous lines here refer to the even and odd supermodes
corresponding to a chemical potentialµ1 = 0.1 eV in Eqs. 28, while the dashed lines
refer to a choice of the chemical potentialµ2 = 0.15 eV in Eqs. 28. It is straight-

Fig. 19 Effective indexne f f = ℜe(β )/k0 of
even and odd supermodes of the coupled
graphene layers as a function of the separa-
tion among the layers. Continuous (dashed)
lines refer to a chemical potential ofµ1 =
0.1 eV (µ2 = 0.15 eV).

Fig. 20 Beat length versus chemical poten-
tial for a graphene plasmon coupler. Here
2s = 10nm.

forward to note that, for large enoughs, the two supermodes of the coupler tend to
degeneracy, and their propagation constants approximate the propagation constant
of the SPP of a single graphene layer. The main message we can read from Fig. 19
is that a very small change in the chemical potential can induce a very big change
in the behaviour of the coupler. In the following, we focus our attention to the case
with s = 5nm. For this value of the separation between the layers, we computed the
beat length of the directional coupler as a function of the chemical potential: the
corresponding results are reported in Fig. 20. We can clearly see there that a very
small change of the chemical potential can be used to induce huge changes of the
beat length of the coupler. The two particular points (open square and open circle)
enlightened in Fig. 20 are the initial conditions in Fig. 21,where we describe the
propagation of the electromagnetic signal in the graphene coupler. In both panels in
Fig. 21 total propagation length is set toL ≃ 90nm. On the left panel in Fig. 21 the
input condition corresponds to the square in Fig. 20 and the coupler is in the cross
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Fig. 21 Field evolution in a graphene plasmon directional coupler: left (right) refers to a chemical
potential ofµ1 = 0.0908 eV (µ2 = 0.1367 eV). Here 2s = 10nm.

state; on the right panel the input condition corresponds tothe circle in Fig. 20 and
the coupler is in the bar state.

3.3 Graphene-Assisted Control of Coupling Between Optical
Waveguides

In this subsection we demonstrate that, thanks to the ultrafast tunability of losses
which are introduced by graphene layers deposited onto the structures, a careful de-
sign of silicon on insulator ridge waveguides can be used to explore the so-called
passive parity-time (PT) symmetry breaking in directionalcouplers. A quantum sys-
tem characterized by a Hamiltonian H is PT-symmetric if H commutes with the op-
erator PT, where P is the parity operator and T is the temporaloperator [83]. At an
exceptional point, two or more eigenvalues are degenerate.We prove that the ex-
ceptional point of the coupler can be probed by varying the applied voltage, which
may lead to very compact photonic structures for the controlof coupling among
waveguides, and for tailoring discrete diffraction in arrays [84].

In particular, in this section we present numerical resultswhich demonstrate the
huge potential of graphene as a means to control coupling between optical dielec-
tric waveguides. The possibility of tuning losses in each waveguide by acting on a
thin loss element permits to break the symmetry of the coupled waveguides, with-
out introducing a strong perturbation in each single waveguide. Remarkably, we
demonstrate that tunable losses induced by graphene and a careful design of ridge
waveguides allows to probe passive PT-symmetry breaking indirectional couplers
[85, 86, 87]. Moreover, the exceptional point of the couplercan be dynamically
controlled by varying the applied voltage. We will thus explore these properties to
mould energy exchange between waveguides and to finely tune discrete diffraction
in waveguide arrays. These results, together with the strong saturable absorption of
graphene [75, 88], suggest also the possible use of this configuration in nonlinear
devices with a strong pump beam used as a probe for all opticalswitching of weak
input signals from the bar to cross state.
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In order to prove our statement we first need to consider the behavior of silicon
waveguides on a silica substrate in a wavelength range between 1350 and 1600 nm.
The structure has been inspired by the modulator proposed in[89]. In particular,
a layer of silicon with thickness equal to 50 nm is deposited onto the substrate.
The 400 nm wide ridge waveguide is composed of lower and higher layers made
of silicon (both with thickness 200 nm) which sandwich a central region includ-
ing three alternating layers of alumina (thickness 7 nm) andtwo absorption layers
composed of three graphene monolayers with thickness 0.34 nm. Graphene can be
electrically controlled in order to tune doping (and then conductivity), as suggested
in [89, 90, 91, 92, 93, 94, 95, 96]. The dielectric constants of silicon, silica and alu-
mina were taken equal to 12.1, 2.1 and 3. Fig. 22(a) displays a schematic view of
the structure.

The behavior of graphene in the optical regime has been numerically modeled
by following the approach suggested in [81, 82], as already described in the previ-
ous subsection. Indeed, we assigned to each graphene monolayer with thickness∆
a volume conductivity equal toσg,v = σ (1)

Σ /∆ , whereσ (1)
Σ is the conductivity of the

2D sheet (see Eq. 27 and Eqs. 28). It was demonstrated that, asa first approxima-
tion, few-layer graphene is characterized by the same band structure (and then by
the same excellent electronic properties) of the monolayer. Moreover, ifN is small
enough the conductivity ofN-layer graphene (N = 3 in our design) can be evaluated
asN times conductivity of the single layer [91].

Fig. 22 (a) Schematic view of the waveguide structure, with a detail ofthe central region with
graphene layers. (b) Losses of the single waveguide (in dB/µm) when graphene is in OFF state
(null voltage), and x-component of the electric field of the TE-like mode (inset).

We then performed a modal analysis of the waveguide in Fig. 22(a) by resorting
to finite-element simulations. We focused the attention on the TE-like mode which
is depicted in the inset of Fig. 22(b), since the electric field is tangential with re-
spect to graphene layers. In the same figure we report absorption of the TE-like
mode when the graphene layers are in OFF state (null voltage). Of course, when
graphene is in the ON state (a control voltage is applied), losses are close to zero.
First, it is important to note that the real part of the effective index of the mode (not
shown here) is barely affected by state of the graphene layers. Then, we emphasize
that when graphene is in OFF state losses are quite large (0.48 dB/µm, which cor-
responds to 1100 cm−1) and almost constant over the entire bandwidth: indeed, a
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6 dB modulation contrast between ON and OFF states can be achieved with a 12.5
µm long waveguide. In the next paragraphs we will study the properties of coupled
waveguides wherein the described structure is the basic building block.

Full-wave simulations of photonic devices including graphene layers are char-
acterized by huge computational burden [98]. This effect isobviously emphasized
when structures composed of multiple waveguides must be analyzed. Therefore con-
ventional coupled-mode theory (CMT) [99, 100] has been reformulated to study the
present structures. Using full wave simulations, we first numerically proved that nei-
ther the profile of TE-like modes, nor the propagation constant β of each isolated
waveguide are affected by the status of graphene layers. Whereas switching between
ON and OFF states has the effect of turning off and on losses inthe single waveg-
uide, which are modeled by the attenuation constantα. Notice that modal evolution
reads as exp(iβ z)exp(−αz).

Under these conditions, it is possible to verify that the system of governing equa-
tions forA1,2, which are the modal field amplitudes in the first and second waveguide
of a directional coupler composed of two identical graphene-based waveguides, can
be approximated as

d
dz

[

A1

A2

]

= i

[

β + iα1 C
C∗ β + iα2

][

A1

A2

]

, (30)

whereα1,2 can be tuned between zero (ON state) andαmax (OFF state) by con-
trolling the voltage applied to the graphene layers, andC is a complex coupling
coefficient [86].

When α1 = 0 and α2 = α, the eigenvalues of the matrix in Eq. 30 read as
λ1,2 = β + i(α/2)±

√

|C|2− (α/2)2. Therefore the so-called exceptional point (EP)
for the onset of PT-symmetry breaking is located at the critical loss valueαc = 2C.
Indeed, whenα < αc the two supermodes have different propagation constants and
the same attenuation constantα/2. Beyond the critical loss the supermodes coa-
lesce: they are characterized by the same propagation constant β and by different
loss coefficients. In particular, one supermode experiences increasing losses with
increasingα, whereas the other supermode is characterized by the opposite trend
[85, 86]. Wheneverα is much larger thanC, one supermode is characterized by
losses which are close to the losses of a single waveguide, whereas the other super-
mode is nearly loss-free.

At this point we may examine the behavior of the directional coupler which is
obtained by placing two identical graphene-based waveguides close to each other,
separated by a 300 nm gap (see Fig. 23 on the left). We performed a modal analysis
at 1530 nm focusing the attention on the supermodes which originate from the in-
teraction between TE-like modes of the single waveguides, and we varied the state
of the graphene layers. Numerical results in Fig. 23 illustrate in a qualitative way
how the behavior of the structure can be controlled by exploiting the properties of
graphene. In particular, when graphene layers in both waveguides are in the same
state, the symmetry of the structure is preserved, and the two modes (not shown
here) are even and odd. Viceversa, Fig. 23 shows that when symmetry is broken by
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switching to the ON-OFF state, the effect of losses on the modal properties is huge,
and a trend toward decoupling between the waveguides is apparent.

Fig. 23 Schematic view of the 300-nm-gap coupler (left), with the electric field of the low- (center)
and high-loss mode (right) at 1530 nm. Graphene layers are in ON-OFF states.

Fig. 24 (a) Losses of low- (red line) and high-loss mode (blue line) from mode solver (solid line)
and CMT (dashed-dotted line). (b) Normalized attenuation constant of low- (red line with squares)
and high-loss mode (blue line with circles) vs. normalized attenuation constant of the single waveg-
uide atλ = 1530 nm. The vertical thin line indicatesα = αmax.

The dispersive properties of the two modes have been characterized through full-
wave and CMT simulations, and these quantitative results confirm the intuitive anal-
ysis we have reported above. Indeed, in Fig. 24(a) losses of the two supermodes are
depicted when the graphene layers are in the ON-OFF state. Inthis case symmetry
is broken: as a consequence, one mode is characterized by absorption which is close
to zero, whereas the other mode experiences large losses, which are very close to
those of a single lossy waveguide. It is worth noting that this effect tends to blur with
increasing wavelength due to the dependence of coupling coefficient on frequency
(C gets larger with increasing wavelength). A thorough treatment on phenomena
arising from the wavelength dependence of the PT-symmetry condition is reported
in [87]. The noticeable agreement in Fig. 24(a) between simulations performed by
using a full-wave mode solver and the results evaluated by using CMT (in the latter
case the imaginary part ofλ1,2 is reported) allows to confirm the accuracy of CMT.

These phenomena stem from the breaking of passive PT-symmetry in complex
potentials. Indeed, in Fig. 24(b) we plot the attenuation constants of the two super-
modes, evaluated by using CMT, as a function of the attenuation constant of the
single waveguideα. Data are normalized with respect to twice the coupling coef-
ficient, so that we have the exceptional point when the abscissa is equal to 1. The
vertical dotted line indicatesαmax, i.e. the value ofα when our structure is in the
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OFF state: it is straightforward to see that one may operate beyond the exceptional
point, in agreement with the results of Fig. 24(a). It is worth to emphasize that
graphene-based waveguides exhibit superior properties with respect to waveguides
wherein losses are introduced by depositing metal layers [86]. Losses induced by
sandwiching graphene layers inside silicon waveguides canbe orders of magnitude
larger (thousands of cm−1 with respect to tens of cm−1), therefore it is possible
to probe the exceptional point even in structures characterized by strong coupling.
Last, but not least, it is important to note that graphene is electrically tunable, there-
fore losses in each single waveguide can be varied between zero (ON state) and a
maximum valueαmax, which is only determined by geometry (OFF state).

Fig. 25 Field amplitude in (a) first and (b) second waveguide of the coupler. Graphene layers are
in ON-ON (black line), and ON-OFF (red line) states.

We envisage that switching of the state of one waveguide can be exploited to
finely tune coupling between waveguides. In order to verify the effectiveness of this
approach we applied CMT to our reference structure at the wavelength of 1530 nm,
and we show the results in Fig. 25. When the coupler is in the ON-ON state losses
are zero, and the predicted beat lengthLB = π/(βeven −βodd) is around 80µm.
Viceversa, when graphene layers are ON and OFF in the input and output channels,
the two waveguides tend to decouple and the field intensity inthe first waveguide
is larger than in the second one. It is possible to justify this behavior by recalling
that when we inject light into the waveguide in ON state the low-loss supermode is
mainly excited.

These results have been validated by comparison with simulations of the 80µm
long coupler performed by using the commercial software CSTMicrowave Studio,
which allows to solve Maxwell’s equations in the time domainthrough the finite-
integration technique. Indeed, the ratio between output and injected power evaluated
by using CMT is−3 dB and−12 dB if the coupler is in the ON-OFF state and
we consider as output port waveguides 1 and 2. CST simulations exhibit a good
agreement, in fact the corresponding calculated values areabout−5 dB and−13
dB, respectively.

The unique properties we have described in the previous paragraph open the way
to novel possibilities for controlling discrete diffraction in waveguide arrays [99]-
[104]. Let us take for example an array composed of eleven identical waveguides,
with the same geometrical and optical parameters that we have used throughout
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Fig. 26 Discrete diffraction along the array. (a) All the graphene layers are in ON state. (b) Only
graphene layers inside the central waveguide are in ON state.

the Chapter, and the same spacing (300 nm) that we consideredfor the coupler.
The structure was simulated by using CMT in order to reduce the computational
burden. The input excitation covers only the central waveguide, and the propagation
length was taken equal to the beat length of the coupler (80µm). Moreover, we
assumed that the state of the graphene layers in each waveguide can be controlled
independently from each other.

In Fig. 26(a) we show the field inside the structure when all the graphene layers
are in the ON state: the typical pattern of discrete diffraction is clearly visible, with
two pronounced outermost wings [99, 100]. In Fig. 26(b) all the waveguides except
for the central one are switched to the OFF state, and two phenomena can be clearly
noticed. First, beam broadening is reduced with respect to the previous case, so that
most of the optical energy remains concentrated into the central waveguide. Second,
losses are smaller with respect to the case of a single lossy waveguide.

4 Conclusions

Optical switching will be a key enabling functionality in future transparent all–
optical networks. In this chapter we have provided an overview of several guided
wave optical switching devices, where the input–output path of optical signals is
controlled by either optical or electrical signals, thus avoiding the need for OEO
conversion for optical signal processing. We have first presented the basic principles
of fiber optics switching devices, whose long interaction lengths permit to signifi-
cantly reduce the operating power requirements. Next we have discussed nonlin-
ear couplers based on integrated waveguides with strong field confinement, hence
reduced device dimensions, thanks to photonic crystal structures or surface wave
interactions in graphene layers.
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