All-Optical Guided Wave Switching
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Abstract Optical switching is a key functionality for enabling trg@sent all-optical
networks. We present an overview of optical switching desjcdbased on either
optical or electrical control signals, which permit to avéhe necessity of optics-
electronics-optics conversion. We describe the basiciplies of various guided
wave optical switching devices, which exploit either riglelly long interaction
lengths in order to reduce the operating power requirementstrong transverse
confinement to reduce device dimensions. These devicasdmcionlinear mode
couplers and interferometers based on optical fibers, dsaweéhtegrated waveg-
uides based on photonic crystal structures or surface vd@raictions in novel ma-
terials such as graphene.

1 Introduction: All-Optical Switching using Guided—Waves

In recent years, telecommunication networks have witrteasramatic increase of
capacity, mostly driven by the exponential growth of IPficafResearchers had to
tackle and solve several problems, and certainly the aigdleof realizing trans-
parent all optical switching was among the most importasués which have been
addressed. In this framework, the goal is to use optics nigtatrthe transmission
level, but also at the switching level; this in turn requitegonceive devices which
can perform switching directly in the optical domain, thugreaking the unavoid-
able limitations of switching at the electronic level. Rekably the goal can be
achieved using either an optical or an electrical conth@;dcommon denominator is
not the physical nature of the control signal, but the pdlisitof avoiding optics-
electronics-optics (OEQ) conversions which lead to ineffitand nontransparent
switching.
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In particular, in this paper we review some basic ideas anites for all-optical
switching in guided wave geometries, as this scenario ®ffaportant possibilities
for tuning the light confinement, and thus exploring morecédfit light—matter in-
teractions. In section 2 we will discuss some relevant exesf all-optical switch-
ing devices exploiting optical fibers; in section 3 we will ednto the field of inte-
grated optics and we will discuss optical switching in pimitccrystal waveguides,
as well as using surface waves as a tool to enhance lightrateractions in novel
nonlinear materials such as graphene.

2 All Optical Pulse Switching in Optical Fibers

We review the different implementations of switching iniopt fibers, including
polarization effects in both high and low-birefringenceefify and nonlinear optical
loop mirrors. Both self-switching and two-beam, phase ossfphase modulation
(XPM) controlled switching will be analyzed.

2.1 Nonlinear Mode Coupling

We start by considering the continuous wave (CW) case andfoguattention on
the linear and nonlinear coupling between the two modes wiiatsire composed of
two waveguides placed in close proximity. The basic moddesrribe the evolution
of the modal amplitudes, » along the coupler [1] is given by the following coupled
equations:

dA
i FCAtY[IAL +plAz] Ay =0

12 Gty [ plA) A =0 (1)
whereC is the linear coupling coefficient; is the nonlinear coefficient ang is
the XPM factor. The previous equations were introducedtertonlinear coherent
directional coupler (NLDC) [2, 3], and they work well for deore fibers and for
integrated couplers [4].

In the case of a birefringent optical fiber the XPM factor j82nd nonlinear
four-wave mixing terms must be included, as well [5, 6, 7]:
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whereA, y are the complex envelopes of the fundamental modes patsaipeg the
X,y principal axes of the fiber with propagation constgBys, respectively. More-
over,ayy = +/Y/ABexp{—i(Bx+ By)z/2}Axy, { = APBzis a dimensionless distance,
AB = Bx— By = 2m/Ly is the linear fiber birefringence arig) the beat length. Let
us express Eqgs. 2 in a more compact form in terms of the cintgyalarized com-
ponentsa, = (ax+iay)/v/2 as

da, 1 2

e, - “ 2 2 _
47 +2a_+3[|a+| +2la_|?]a; =0
da_ 1 2 2 .

At relatively low powers, fiber birefringence leads to theipéic exchange of power
among the two circular polarizations: the spatial periodwéh linear coupling is
equal to the linear beat lengtly = 2L (L. is the linear coupling length).

In order to better visualize the action of nonlinear cougplilh proves convenient
to rewrite Egs. 2 in terms of the real Stokes paramegersS /S, whereS =P =
la?+ |ay|?, S = o] — |ay|?, S = a@) + c.c., andSg = —iaa) +C.C.:

ds;
E = 2pSS3
ds,
a —S3—2ps1S3
dsg
W =% (4)

where we defined the dimensionless input power P/P;, with the critical power
level P; = 3A3/2y. In vector notation, Egs. 4 can be written as

Fig. 1 (a): Poincag sphere description of switching in a nonlinear coupler; (b)l&ion with
distance of power in the input mode for different input poweels.
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which describes polarization evolution on the Poigcsphere as the motion of a
rigid body subject to the sum of the fixed and the positionethelent angular veloc-
ities Q| = (1,0,0) andQn = (0,0, —pss), respectively [6, 8]. Fig. 1(a) illustrates
the radically different behavior of the polarization ewan trajectories of the tip of
the Stokes vecta@as the input power is below or above the critical poReBelow
the critical power, all points on the Poinéasphere rotate around the axis defined
by Q| : as a result, the two circular polarizations periodicalgleange their power
along the fiber length. On the other hand, Ror- P; the mode polarized along the
fast axis of the fiber (i.e., whose Stokes vectosris= (—1,0,0)) loses its spatial
stability and becomes an unstable saddle (see right paigolLi@) ) [6, 8, 9, 10]:
as itis shown in Fig. 1(b), an input right-handed circulalapiaation (whose power
is P, = |A, |2) no longer periodically couples into the orthogonal ledintled polar-
ization whenevePy;. > 2P..

2.2 Nonlinear Fiber Couplers

The NLDC is a basic device which permits all-optical routisagd switching op-
erations [2, 3]. Experiments have demonstrated nonlin@asinission and self-
switching in fiber-optic NLDCs, such as: dual-core fibers]{flB], low birefrin-
gence fibers [16], and periodically twisted birefringertefis [17, 18]. Even though
fiber optic NLDCs exhibit ultrafast nonlinear response, méer their length. ~
Ly, the associated switching power- F; is relatively high, owing to the weak non-
linearity of silica. Indeed, because of imperfections irefifabrication (in the case
of dual core couplers) or of random fiber birefringence (folapization couplers),
beat lengths exceeding one or a few meters are not possiptadtice. Earlier ex-
periments with fiber NLDCs involved just one or two linear pbing distanced.c.
In this case, the associated nonlinear transmission églailsingle switching power,
that is inversely proportional tio;.

Nevertheless, full switching in a fiber NLDC of any lendthis still possible
when operating in the multi-beatlength regime, i.e., whené >> L, [19, 20].
The main advantage of the multi-beatlength NLDC is that #levant switching
power is inversely proportional to the total length of theefih. Therefore, the
switching performance is comparable to that of other nealirfiber switches such
as the nonlinear Mach- Zehnder interferometer (NMZI) arel ibnlinear optical
loop mirror (NOLM). Using a circularly polarized beam of peP at the input of a
birefringent fiber, the exact solution of Egs. 3 leads to tiiWwing expression for
the output poweP, in the same circular polarization

P, — g 1+ en(mL/Le|B)] )
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wherep’= p/2 andcn is a Jacobi elliptic function. From Eq. 6, one obtains that th
nonlinear period of polarization coupling between the tivowtar polarizations is

2LK(P)

an(ﬁ) = T (7)

whereK is the complete elliptic integral of the first kind. Wheneyek "1, one
obtains that

LT p? «
()= |1+ + 0o ®
Therefore forp™<< 1 Eq. 6 reduces to
P, = Pcos (L /2Lnc(f)) ©)

The associated on-off switching powpg corresponds to the power-induced in-
crease of the coupling distance which leads tw/a shift in the argument of the
cosine in Eqg. 9. One obtaims = 2,/2Ly/L, i.e., in real units

p_ 12
® 7 yW2LhL

The switching power of a fiber-based NLDC operating in the tishdatlength
regime may be further reduced by injecting an input ellgitic(as opposed to cir-
cularly) polarized beam [21, 22]. Let us s8{{ = 0) = ecog2¢), s1({ =0) =
£sin(2¢), andsz({ = 0) = v/1— €2. From the exact solution of Egs. 3, one obtains
P, = P(1+s3(L, p))/2 for the right handed circular polarisation component at th
output of a fibre of length L, where

s = /1 - £2cog2)?f(p) cos(2mm (p)L/Lp) (11)
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Fig. 2 Theoretical CW transmissions at the output.ef 20L,, long birefringent fiber: (a) transmis-
sion dependence on input power for different input polaidraaingles; (b) transmission variation
with input angle for two values of the total number of lineaatlengthd. .
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and f(p) = (1+ pecog2¢)/2). In this case, the nonlinear beat lendik(p) =
Lp/f(p) ~ Lp(1— pecog2¢)/2). By supposingcos(2¢)| = 1, the switching power
ps is defined by 21(r (p) — 1)L/Lp = 11, SO thatps = L, /€L. In real units, the switch-
ing power reads as 3
m

Ps—ﬁ

(12)

In Fig. 2(a) we show an example of nonlinear CW transmissammaputed from
Egs. 9 at the output of B = 20L;, long birefringent fiber. Here we plot the trans-
mission dependence on input power for different input poédion anglesp, and
we have set = 0.37, yL = 1. As can be seen from Fig. 2(a), the switching power
agrees well with the estimaf® ~ 25 W from Eq. 12. In Fig. 2 we also display the
change of the nonlinear transmission as the input poléizaingleg is varied, for
L=10+20L, andp=0.15.

An experimental confirmation of all-optical power and p@ation controlled
switching in a multi-beatlength fiber NLDC was performedngsR05 m of York
ultralow-birefringence spun fiber [19]-[23]. The fiber wasumd on a drum with
radius of 15 cm, in order to introduce a bending-induceddlirt@refringence with
Lp ~ 20 m, so that. ~ 10Ly,. By increasing the input power of a right-handed cir-
cularly polarized beam from low values up to the switchingpg an accumulated
nonlinear variation of the beat length equalLtoor 10 m (or 5% nonlinear variation
per beat length) was obtained.

Quasi-CW operating conditions were achieved using a modestl 100 ps input
pulse train from an Nd-YAG laser operating aD&um. At the fiber output, the two
circular polarization components of the emerging pulse®\lee two output chan-

1 T T
; —_
@ - S sops 09 ?"\ : () 1
S 08 o
": [ 5 0.7 “ o & 80 4
; o
5 hod ry c
e L .y S 0.6 .
PR P g ] f o Cross State
£ 0.5} >o e Bar State
=
©
= 04 o %
(b) —_— Q L) ..
50 ps 0.3 & ° :'.* 4
. 3
oy 02 ® Ve, 1
v % Soa,
T o1 fp [N
- L ]
¥ it :
o F B el
M_,\,#“‘* \"’5.,,,# % 100 200 300 400 500 600 700
¢ el Input Average Power (mW)

Fig. 3 Experimental pulse energy transmissions from orthogonal palésizs at the output of a

10 beat length long birefringent fiber: (a-b) streak-camereets of pulses emerging from the input
(bar state) and the orthogonal (cross state) polarizationgv@rage energy transmissions from
cross and bar states versus input average power.
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nels of the birefringent fiber NLDC. These components wepaised by means of
a calibrated Babinet-Soleil compensator, followed by alggdbn prism.

Fig. 3(a-b) shows the streak camera pictures of the puldégaemerging from
the bar (input) and the crossed circular polarizations ammepts at the fiber output,
for an input average power of 320 mW [19]. As it can be seencémter and the
wings of the pulse have opposite handedness, leading tomsirin pulse breakup.

Fig. 3(c) shows the measured circular polarization trassions at the fiber out-
put, as a function of the input average power into the fibe}. B8cause of the slow
response time of the photodetectors, the transmissiohaglisphe average power
in each output polarization. At low powers, the input ciesypolarization emerges
from the fiber almost unchanged. About 50% switching of th@gmission is ob-
served at about 250 mW: the corresponding peak pulse powértsout 20 W, in
relatively good agreement with the estimate of Eqg. 12, sindbe experiment the
conditionylL ~ 1 is verified.

2.3 Nonlinear Mach-Zehnder I nterferometers

A relatively simple nonlinear switch may be implementechgsan all-fiber-based

Mach-Zehnder interferometer (MZI): here two 3-dB linearedtional couplers are

used to split the input signal and then recombine the two affitite interferometer

of lengthsL; andL,, respectively (see Fig. 4). The components of the signdien t
two arms of the MZI thus experience different overall linead SPM induced phase
shifts [24, 25, 27, 31]. The transmission through the bat piothe MZI reads as

T(P)=si (A@ +AqL) (13)

whereAgn. = yP(L1 — Lo). Alternatively, a different nonlinear phase shift in the
two arms of the MZI may be induced whene\gr= L, by using an unbalanced
linear directional coupler, so that the two signal compdsi@ave different powers.
A different implementation of a MZI type of switch consistsachighly birefringent

Input Signal Output Signal 1

SPM, XPM

Fig. 4 Structure of a fiber
based nonlinear MZ inter-
ferometer switch exploiting
SPM or XPM (in the presence
of a control pump).

SPM

Output Signal 2
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fiber, where the two signal paths are represented by the tworfilodes which are
orthogonally polarized along the principal axes of the filb@r an input beam of
power P that is initially linearly polarized with an orientation tite angle@ with
respect to thex—axis of a birefringent fiber of length, one has? = Pycos(8),
R = Rysir?(8), andA@y = yPLcog(26)/3.

Besides SPM-activated switching, a fiber MZI can be used titcchva signal
among its two output ports through XPM by injecting a conproimp at a different
wavelength, that shifts the signal phase in the upper arrhedirterferometer (see
Fig. 4). In the presence of a control pump composed by a prdsg the input CW
signal may also be converted into a pulse train. The drawbekfiber MZI is the
presence of two separate paths for the signal, which malengitsve to environ-
mental perturbations, so that active stabilization of therflengths may be required
[25].

2.4 Nonlinear Loop Mirrors

The environmental stability of an interferometric fiber sli may be ensured by
using a Sagnac loop configuration [28]-[33]: here the tratisthsignal results from
the coherent superposition at the directional coupleruwuytprt of two signals that
have traveled in opposite directions around the same lodiberf (see Fig. 5(a)).
Clearly, whenever the directional coupler equally sphisinput signal (i.e., a 3-dB
coupler is used), there is no differential nonlinear phéws# among the two signal
components that travel in opposite directions around tbp,land the Sagnac loop
acts as a perfect mirror by reflecting all of the incoming algthe transmitted
signal vanishes. On the other hand, whenever an asymmetrer is used, there
is a differential nonlinear phase shift which leads to aaigmbe transmitted at high
powers. Thus the Sagnac loop of Fig. 5(a) is also known asnearlloop mirror
(NOLM).

—K=0.4
---K=0.45
- - K=0.48

(b)
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Fig. 5 (a) Structure of a fiber based NOLM and (b) associated power deper of transmission
for different power split coefficient& of the coupler.
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The nonlinear transmission of the NOLM can be simply obtaiagfollows. The
input amplitude of the waves traveling clockwise and counteckwise in the loop
reads a#\,, = VKA andAl,, = iv/1—KAin, respectively, wherk is the power
splitting ratio of the coupler and, is the input signal amplitude. After one round-
trip through the loop, the two fields traveling in oppositeedtions acquire equal
linear but different nonlinear (as determined by both SPi ¥RM) phase shifts,
so that at the input of the coupler one has the two fields

Alw = Aow xp{iBL+1y (Acw|” +2/Accw/®) L}
Agcw:Aé:cweXp{iBL“VUAi:ch+2|AY':W|2) L} (14)

where 8 is the linear propagation constant in the fiber loop of lerigthit the
coupler output, one obtairs = VKA, +iv/1—KA2,,, so that the transmissivity
of the NOLM reads as

T(P) = [Af?/|A? = 1— 4K (1-K)cos’ [(K - 0.5) yRnL] (15)

whereR,, = |Ain|%. The resulting input signal power dependence of the NOLMstra
missivity is illustrated in Fig. 5(b) for different values$ the coupling ratiok, and
for yL = 1. The associated switching power (corresponding to thieufnis peak of
the transmissivity aB is increased from zero) reads as

T
B a-x)

which leads td® ~= 16W andPs; ~= 31W for K = 0.4 andK = 0.45, respectively
(see Fig. 5(b)).

As in the nonlinear MZI, signal switching in the NOLM may alse induced via
XPM by injecting in the loop, by means of a directional coupéepump pulse at a
different wavelength (see Fig. 6(a)) [34]-[37]. The cohalse propagates in the
CCW direction, thus it only induces a nonlinear phase shitfi the corresponding

(16)
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Fig. 6 (a) Schematic of XPM-controlled switching in a NOLM and (b)nsanission function for
To = 10ps and different values of the walk-off timg,.
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component of the signal, so that propagation in the NOLM ibalanced even when
K = 0.5. In this case, the NOLM acts as a perfect reflecting mirroafsignal in the
absence of the control pump, whereas in the presence of thp fhe signal may be
fully transmitted. For evaluating the nonlinear phasetshduced via XPM on the
signal by a short pump pulse, one should take into accourtethgoral walk-off
between pump and signal due to fiber GVD. The total XPM phaseish

L
AQ(T) =2y /0 Ao(T — dx)dx, (17)

whereT is time in the reference frame that moves with the group vilat the
signal wavelengtVs, andd = Vp‘1 — Vs 1is the group velocity mismatch between
pump and signal. For a Gaussian pump pulse of the (i) = Pexp(—TZ/TOZ)
(so that the pump pulse full width at half maximunTig,,m ~ 1.66Tp), the resulting
nonlinear phase shift reads as

oo L ([) - (TE)am

whereer f(x) is the error function, and the total walk-offTg, = dL. The associated
nonlinear signal transmission is

T=1-4K(1-K)cog(Ap/2), (19)

Let us consider a balanced coupler with= 0.5, a peak XPM-induced phase shift
2yLP = 1, and setTp = 10ps. Fig. 6(b) shows examples of signal transmission
windows for different values of the walk-off tim®&,. As it can be seen, when-
everTy, << Tp the transmission window is a replica of the control pulseerglas as
soon adly, > Tp the peak value of the transmission drops from unity and timelo
broadens in time.

2.5 Nonlinear Passive Loop Resonators

A variant of the nonlinear Sagnac interferometer is prodidg the nonlinear fiber
ring resonator [38, 39, 40, 41, 42]. As an example, considerscheme of Fig.
7(a): instead of connecting the two output ports of the cew@ fiber loop now
connects the first output port (port 3 in Fig. 7(a)) with thea® input port (port 2)
of the coupler. The signdt; at input port 1 enters the coupler and it continuously
recirculates in the loop; the cavity field can be monitorethatsecond output port
(port 4) of the coupler. The complex amplitude transmis¥ea A4/A; of the ring
resonator is obtained from the relatiohs= /1 — 1(v/1— KA, +ivKAz) andA, =
Vvi— r(i\/KAlJr v/ 1—KAy), wheret is the fractional power loss of the coupler and
Ay = Agexp(—aL +iBL+iAgu) with Agye = y|As|°L. The result is provided by
the implicit equation
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(1-1)exp(id —al) +ivIi—TvK (20)

Y= :
1-ivKy1—-Ttexp(id—al)
where
1-1 K VKVI-T
_ 2 2 BRVE
6_[3L+yA1L<1_K+1_K|Y| i (Y Y)), (21)

Clearly Eq. 20 is equivalent to two real equations, whoseenrigal solution yields
the power transmissivit] = |A4]?/|A1|? of the nonlinear resonator (see Fig. 7(b),
where the resonant coupling coefficient\s= (1 — 1) exp(—al) = 0.95). As it
can be seen, by varying the linear phase d@ayight below the resonance con-
dition BL = 31/2+ 2rmm (wherem is an arbitrary integer), one obtains quite dif-
ferent nonlinear transmission behaviors. For small desirom resonance (i.e.,
BL = 1.49m), it is only necessary to add a weak nonlinear phase shifth@for-
der of 71/100) in order to bring the resonator back into resonance.igktér input
powers, the resonator gets out-of-resonance and trangityiggpidly increases.
On the other hand, for larger linear cavity detunings (da.,L = 1.45m), the
transmissivity becomes multi-valued, and optical mudtidlity results: again, the
on-off switching power is relatively low, i.e., it is obtad for nonlinear phase shifts
y|As|?L ~ 11/100, which is accessible at CW signal power levels.

2.6 Optical Soliton Switching

As we have seen in Sect. 2.1, the efficiency of all-opticaltaving in nonlin-
ear couplers using optical pulses is severely limited wnkguare pulses (e.g.,
the non-return-to-zero (NRZ) data modulation format) asedu[15]. In fact, the
CW transmission curve is effectively averaged over the gopifile, and pulse

1 T
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i 1.40m - —_
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0k o 1
0 0.05 01
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Fig. 7 (a) Schematic passive fiber loop resonator and (b) its transmiskividifferent values of
BL; hereK = 0.95.
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break-up occurs at the device output, since different pustiof the pulse profile
are independently switched according to their instantasigmwer level (see Fig.
3(a,b)); the same occurs with nonlinear inteferometere. fitise break-up effect
may be avoided by operating in the soliton regime, that isneker the signal

pulses represent optical fiber solitons for the fibers usetthénswitching device

[24, 32, 33, 43, 44, 45]. In the short pulse regime, the equoatiescribing propaga-
tion in a nonlinear coupler should be extended to includegneelocity dispersion

terms, which leads to the coupled nonlinear ®dmger equations

du B d%u 2 2\, _
'ﬁ+§W+KV+(|U| +ANMIu=0

dv B o%v 2 2\y
'E+§W+K”+(M +plulF)v=0 (22)

where the dimensionless distancé is | 3,| /t2, B, is the GVD coefficient = +1
for anomalous or normal dispersion, respectivaly- z/ts wherets is a refer-
ence pulse width. Moreover, the dimensionless couplinficat k = Ct2/|B;| =
Pe/2Ps, WhereP., = 2C/y is the NLDC critical powerPy, = |B2|/yt2 is the soliton
power, ando is the XPM coefficient.

Fig. 8(a,b) illustrates beam propagation solutions of Egsin the anomalous
GVD regime. Herey = 0 (as in a linear dual-core fiber coupler) and= 1/4. As
it can be seen, input soliton-like pulses of the fou®, 1) = upsech(7/1) (here
v(0,7) = 0 and1p = 1) are entirely switched as a single entity from the cross to
the bar output state as the input soliton peak powver|up|?/P; is increased from
p=2to p=3. Forp= 2, the input pulse periodically couples back and forth

(c)
0.8
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5| [0
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_BZ<0
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e T alilie L
CO 2 4 6
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Fig. 8 Evolution of power with distance in the bar and cross state ofssoNLDC at (a) low and
(b) high powers; (c) comparison of power-dependent transmissitimeiar state for dispersive
pulses in the anomalous (solid curve) and normal (dashed cusmgrdion regime.
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between the two channels, with a relatively small distortad the pulse profile.
Whereas foip = 3 the soliton transfer between the channels is inhibite@rédiore
optical solitons exhibit a particle-like switching behawiand the pulse break-up
which is observed in the absence of GVD (or for quasi-CW irgigihals) may thus
be avoided.

Fig. 8(c) compares the fraction of energy transmitted inlthestate as a func-
tion of the input peak powes, when using a NLDC in either the anomaloys 0)
or normal 8 < 0) GVD regime, respectively. Here we have chogen 11/2, and
To = 1/+/2m, so that twice the CW critical power is equal to the fundaraksliton
peak power. As it can be seen, with normal GVD the dispersitsepbroadening
combined with SPM and linear coupling nearly inhibits thi-seitching behavior.
Conversely, in the anomalous GVD regime, the transmissiinailar to that ob-
tained for CWs or ideal square pulses (besides an increake effective switching
power).

3 Optical Switching in Integrated Optical Waveguide Structures

3.1 All-Optical Switching in Photonic Crystal Couplers

In recent years Photonic Crystals (PC) have received istrgattention from the
scientific community, especially for their ability to coaltthe propagation of light
[46]. The basic building blocks for all-optical data prosieg) such as waveguides
with sharp bends, high-Q resonant cavities, perfect nsramd so on could indeed
be integrated on a single PC chip, in order to achieve confplestions with high
performance and small size [47]. PC structures seem to biel¢la¢ choice to get
efficient nonlinear devices for optical switching, becaokthe strong confinement
of the fields that permits to optimize the nonlinear inteéat. In particular, the
development of nonlinear PCs exploiting the ultrafast Kemlinearity has become
an important issue. The feasibility of bistable switchimyides [48], optical diodes
and nonlinear bends [49], and optical isolators [50] haslveported. Directional
couplers are fundamental components for optical netwahdg it has been demon-
strated that PC couplers exhibit smaller size and bettdoieance than the con-
ventional ones [51]-[53]. Here we describe the propertiearnoall optical switch
based on an ultrashort PC coupler. Switching is performeeXipjoiting the strong
Kerr nonlinearity of AlGaAs, by controlling the intensity the input signal. The re-
ported two-dimensional finite-difference time-domain 2DTD, [54, 55]) analysis
shows that the resulting ultra-compact device is charaetgby a switching power
comparable with the one reported in the literature for ceeter-long conventional
nonlinear directional couplers.

The schematic view of the proposed structure is shown in &igithe PC is
formed by a square lattice of AlGaAs rods in air. AIGaAs seamiz a proper mate-
rial since it has a large nonlinear refractive index, witimimial linear and nonlinear
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absorption in the 1550 nm telecommunications window [56je PC lattice con-
stantisa= 400 nm, whereas the radius of the rods for the bulk crystaH4 30 nm.
The resulting structure has a wide bandgap for TM polarai a range of wave-
lengths between 1400 and 1750 nm. Two waveguides are forgniattbducing lin-
ear defects reducing the radius of the rodsgte = 70 nm [57]. The reason for this
choice is twofold. First, single-mode waveguides are d&sleio get a directional
coupler, with only one even and one odd supermode. It is vnelhk that reduced-
index waveguides satisfy this requirement, whereas theased-index ones tend
to be multimode [57]. Second, the need to optimize the nealinnteractions sug-
gests to reduce only partially the radius of the defect rodsrder to maximize
the semiconductor fill factor. We have calculated that inpheviously described
guiding structure over 50% of the modal field energy is couwfiimeo the nonlinear
dielectric defects [58]. The correct design of the coupation is the key point for
our problem. We have found that the critical parameter toeaxehswitching with
reasonable input intensity of the light is the distance leetwthe two waveguides.
Therefore fully vectorial eigenmodes of Maxwell's equasdor a set of couplers
were computed using a freely available mode solver [58]2am&DTD simulations
[54, 55] were analyzed to study the device behavior when theeguides separation
is varied.

Moreover, a very simple and powerful coupled-mode theorg developed to
model nonlinear propagation in PC couplers. As expecteztetis a tradeoff be-
tween length of the structure and switching intensity. § thaveguides are close
to each other the linear coupling is strong, thus it is veffjadilt to decouple them
exploiting the effects of the ultrafast Kerr nonlinearitiythe waveguides are far
away, the beat length of the coupler is very large, and theltreg device is not
ultra-compact. We have then chosen a coupler composed ofvéweguides sepa-
rated by five lattice constants, as shown in Fig. 9. In Fig. &0eport the projected
band structure of the coupler, evaluated through the moderg®8]. It is straight-
forward to calculate the beat lengtly = 271/ (keven — Kodd) Of the device, which

PC circuit

0000000000000 00000
0000000000000 00000

Input wavequidc® 900 000000000000 0
+00000000000000000

Port 1

Port 2

|
Half beat length

Fig. 9 Schematic view of the PC structurles = 140 um is the beat length of the coupler. It is
worth to note that the real length is scaled to fit in the figure.
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Fig. 10 Projected band structure of the coupler, with the normalizepedsion relations for the
odd (solid line) and the even (dash-dotted line) supermode. taten our case we are working
arounda/A = 0.256.

is about 140um at the wavelength = 1560 nm;Keen andkyqq are the effective
wavenumbers of the even and the odd supermode. Light canupdecbfrom a di-
electric slab waveguide (width W = @m) to the coupler through a tapered input
section [59], as shown in a schematic way in Fig. 9. More cemphd efficient PC
tapers have been proposed (e.g. in Ref. [60]), neverthalegstematic analysis of
the input section of the PC chip in order to optimize the cmgpéfficiency is well
beyond the aim of this section. The switch layout is completih the double sharp
bend that decouples the two waveguides just in proximityhefhalf beat length of
the coupler (see Fig. 9). The final structure, composed ofapered input section,
the coupler and the double sharp bend is aboytm3ong.
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Fig. 11 Normalized intensity of the field iWVG; (at the top) andWG, (on the bottom) in linear
regime n = 0) calculated through the coupled defects model. The shamp isgrlaced near the
defectn = 170 (see the dash-dotted line).
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Fig. 12 Normalized intensity of the field WG; (at the top) an&lVG; (on the bottom) in nonlinear
regime &n|am\2 = 0.75 s 1) calculated through the coupled defects model. The sharp tsend
placed near the defent= 170 (see the dash-dotted line).

In order to show the basic operation principle of the prodatricture we exploit
a coupled-mode theory [61]-[63], developed to study cadiglefects in nonlinear
PCs. In case of weak interactions between similar singldemdefects, the modal
field of each defect can be considered unperturbed, so thattenfield amplitudes
vary in time. The evolution of the state of each PC waveguidasidered as a
straight chain of resonators, is governed by a set of diffikbequations

i%+cn(an+1+an71) +Ynlan/*an =0 (23)
wherea, is the field amplitude in the n-th defe@@, is the nearest-neighbor lin-
ear coupling coefficient ang is the self-phase modulation strength [61]-[63]. This
theory was proposed for the analysis of propagation in @mltptsonator optical
waveguides (CROW). In our case, the individual defect rodspmmsing the linear
defect are strongly coupled, therefore the accuracy of theeincould be question-
able. Nevertheless, we show that this rough and simpleytoaorhelp to understand
the behavior of the nonlinear PC coupler. We can introdueectiupling between
the two waveguides just defining two sets of equations

.d

Id—i” +Cn(@nt1+an-1) +Dn-bn+yhlanaq = 0 (24)
.db, 2
|E+Cn(bn+1+bn—1)+Dn'an+Vn|bn| bh =0 (25)

wherea, andb, are the field amplitudes in the n-th defect of the first and #ee s
ond waveguide (calleWG; andWG; respectively), an®, is the linear coupling
coefficient between the n-th defect in the first and in the sdomaveguide. We
have solved numerically the system composed of Eqs. (24)2B)din the linear
regime {4 = 0). The coupling coefficier®, was fixed to 21 for everyn, whereas
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Dp =0.035s for n < 170 andD,, = 0 elsewhere, in order to simulate the introduc-
tion of the double sharp bend. Fig. 11 shows that the cougddeet theory is able
to reproduce the behavior of the PC coupler. We report theutzied values o,
andb, for a CW excitation when a steady-state is reached. The figddts injected
into WG, and the field flows towartVG, because of the linear coupling between
the two waveguides. The sharp bend is in proximity of the belt length of the
coupler, thus at the output all the optical energy i8i@,. In Fig. 12 we report the
numerical solution of the system composed of Egs. 24 and 2brfinear regime
(Vn |am\2 =0.75s"1). Itis straightforward to note the effect of the nonlinéarnow

at the output all the optical energy is WG, which shows that it is possible to
switch the output channel by varying the input field intensit

j -

Fig. 13 Intensity of the field in the PC coupler with maximum input intéynsi GW/cn?: the
coupler is in cross state, the power ratio is about 20 dB.

Fig. 14 Intensity of the field in the PC coupler with maximum input intey§.8 GW /cn?: the
coupler behaves as a 50% power splitter, the power ratio ist&bdB.

Bar state

Fig. 15 Intensity of the field in the PC coupler with maximum input intén& GW /cn?: the
coupler is in bar state, the power ratio is abe@0 dB.

Now we show a rigorous 2D FDTD analysis of the feasibility dfcogtical
switching in the previously described device. The probldrthe implementation
of the structure on a real PC slab is a big issue that wouldiretuge 3D FDTD
simulations, in order to estimate scattering losses inhrd timension. We high-
light that the 2D numerical modeling of the real 3D devicedexmonly used in the
literature for the study of phenomena due to Kerr effect in(&&& Refs. [48]-[50]),
since this permits to focus the attention mainly on the mear interactions. The
nonlinear PC coupler is simulated by injecting into the tegeetion a CW Gaussian
field that approximates the fundamental mode of the digtestab waveguide. It
is worth to note that in this way we take into account of the&# due to the cou-
pling efficiency into the PC chip. By varying the maximum \alof the Gaussian,
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and then the related maximum intensity of the input light,o&e characterize the
behavior of the power-controlled switch.

In Figs. 13-15 we show the intensity of the electromagnetild fin the device
for three different intensities of the input signal. Fig.st®ws the simulation result
for a maximum input intensityinma = 1 GW/cn?. It is possible to see that all the
optical energy flows through the output port 2, thus the caud in cross state.
This behavior is in good agreement with the previously dbsdrdesign procedure,
in fact the double sharp bend decouples the two waveguidésigar the half beat
length. In Fig. 14 we have increased the maximum input intens |jnmey = 3.8
GW/cn?. Here it is clear the effect of the nonlinear phase shift:itipait intensity
is equally divided between the two output waveguides, aacgtiucture behaves as
a 50% power splitter. Fig. 15 shows the behavior of the deviceeasing | nmax t0 5
GW /cn?. In this case all the optical energy flows through the outjut b, thus the
coupler is in a bar state induced by the nonlinearity. It isttvpointing out that the
result of the FDTD simulation shown in Fig. 15 is in agreemeitlh the solution of
the coupled defects model (see Fig. 12). The field inject&i@ initially couples
to WG, as in an asymmetric coupler, but at the double sharp bentigrosil the
optical energy is iINWGy, as desired. Fig. 16 summarizes the operation principle:
a high-intensity signal propagates along the input wawdeyand flows through the
output port 1, whereas a low-intensity signal is switchewsatal output port 2.

Low-power input light High-power input light

Fig. 16 The power-controlled switching function: a low-intensity rsad) is switched toward out-
put port 2 (linear coupler), whereas a high-intensity sigmeppgates along the input waveguide
because of the nonlinear phase shift.

In Fig. 17 we show the power ratio in decibel, i.e. the ratibAeen the optical
energy in the output ports 2 and 1 of the structure, versusthémum value of the
input intensity atA = 1555 nm,A = 1560 nm and\ = 1565 nm, respectively. The
simulations demonstrate that the device can be consideregtically-controlled
switch, with a power ratio larger than 20 dB in a wide range af&lengths. In pres-
ence of pulsed excitations the performance of the powetralbed switch decrease
with respect to the CW case. In particular, as has already tescribed in Sect. 2,
with nonsquare input pulses the power ratio is reduced atplibpulse break-up
is observed [64, 65]. Nevertheless these phenomena argtidependent on the
shape and the duration of the pulses, and they do not afevtdidity of the proof-
of-principle nonlinear PC coupler. It is interesting to quame the device behavior
with what has already been reported in the literature for €sDnade by AlGaAs
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Fig. 17 Power ratio versus maximum input intensity of the lighAat 1560 nm (solid line)A =
1555 nm (dash-dotted line) and= 1565 nm (dashed line).

semiconductor waveguides, and operating in the thircct@lemunications window.
In this second case, both simulations and experiments siwidshing powers from
50 to 90 W, for a few centimeters long devices [64, 65]. Assigrihat the field at
the input of the PC chip is a Gaussian beam, with the samesi&p®ivg = 1 um
we used in the 2D FDTD simulations, we can integrate the ingensity finding
an approximated power for the total switching of about 70 \Mclv is comparable
with the previously given values. Nevertheless, it is fundatal to note that the
length of the nonlinear PC coupler is less tharn .80, which is significantly shorter
than standard waveguide NLDCs. The one-pulse scheme adalgroughout the
paper could be extended to a pump signal configuration, wsthommg pump acting
through cross-phase modulation (XPM) on a weak signal &réifit wavelength.

3.2 Graphene-Assisted Control of Coupling Between Surface
Plasmon Polaritons

We discuss in this Section the tuning of the coupling of ste¢falasmon polari-
tons between two graphene layers with nanometer spacingewienstrate that, by
slightly changing the electrical doping and then shifting themical potential, a
graphene coupler can switch from the bar to the cross stata. @donsequence, the
coupling coefficient in such structures can be easily cdietton an ultrafast fash-
ion either by means of an applied electrical signal [66] ocbgnging the intensity
of the signal at the device input. These findings open the wdully exploit the
huge nonlinearity of graphene for all optical signal preieg: from one side giving
more degrees of freedom to already proposed devices [6B89%80, 71], from the
other side paving the way to new devices.

Graphene can sustain surface plasmon polaritons (SPR)ghamique proper-
ties as compared to what we are used to with noble metalsctrafaingle layer
of graphene can support either TE or TM polarized plasmorbkout suffering
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from huge loss [72, 73, 74]; moreover, as far as TM polarizats concerned, the
extremely high confinement factor is particularly favoueato explore the huge
x©® nonlinearity of graphene [67, 75, 76]. Experimental endesahave demon-
strated the evidence of graphene plasmons by measurindaisragn resonance of
graphene nanoribbon arrays [77], and by acquiring their fielal images [78, 79].

The coupling of SPP between separated graphene layersémsduently analyzed
in [80]; however the very interesting properties arisingnfrthe easily tunable op-
tical properties of graphene have not been exploited yehimftamework. Here

in particular we show that by slightly changing the chemjmatential, a graphene
coupler can switch from the bar to the cross state.

In Fig. 18 we report the basic geometry that we are going tsiden in this sec-
tion; two graphene layers are embedded in a dielectrictstrercregion 1 (of width
29) is the dielectric in between the two graphene layers. Agttaghene boundary
we set the following conditions on the tangential composefthe electromagnetic
field:

(E2,3 - El) xX=0 (26)
(Hz3—H1) x & = Hiweogrs23E | (X = +9)

whereE| is the electric field tangent to the graphene layeragd > (&s1-3) is the
relative surface permittivity of the graphene layer betwesgions 1 and 2 (3). As
far as the electromagnetic constants of graphene are cwttere write the linear
contribution to the relative complex permittivity as [82]8

r : R .
rC | I rC, I'C,l ( )

wheredy is the graphene thickness and the surface complex con'd;aoajf) =

aﬁﬁ iagl) (in Siemens) is obtained from theoretical models now wedlgshed
and experimentally validated [82], which give the follogidependence of the real
and imaginary parts of the conductivity on frequenay),(temperature ) and
chemical potentialyf):

(1) _ 0o hw+ 2 hw — 2
05 p(W) =~ > (tanh s +tanh AT

Doy o R[4 (AN o Mot 2s
oz (@) = 7 {ﬁw <“ az ) ° how —2u

(28)

wheret = 2.7eV is the hopping parametdr,andkg are the reduced Planck’s and
Boltzmann’s constants, respectively, amg= €?/(4h) ~ 6.0853-10~° S, withe the
electron charge.

Note also that this model can be easily extended into theimear regime

by adding a nonlinear correction to the surface condugtiais: os = G§1> +

a?) |E|2Ey,Z [73]. Moreover, thanks to the extremely small thicknes$efdraphene
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layer, nonlinearity can be analyzed by introducing a patamembedded into the
coefficients describing the continuity of the tangentialmpmnents of the electro-
magnetic field [67, 76].

To describe SPP propagation alangve first note that, at first order, tyalepen-
dence of the electromagnetic field can be neglected; we tuokfor guided modes
with harmonic temporal dependence éxyt) and spatial variatiorE 2 3(X,2),
H123(X,2) ~ exp(—iBz+I7123X) With = 2, 5 = B? — &1 5 3k3. Obviously the com-
plex wavenumbef, through its real and imaginary parts, describes the el atf
both the phase and the amplitude of the guided modes. We phnthp above mod-
eling to derive the dispersion relation of both TE and TM n®da the following
we describe in details the TM polarization. We first consialerery general situa-
tion where the two graphene layers can be biased in a ditfar@nto give rise to an
asymmetric coupler. After straightforward algebra we findttcoupled SPP in the
system are determined by setting to zero the determinahedbtlowing matrix:

Graphene
Medium 2

Medium 1 y
2s

Medium 3
Graphene

Fig. 18 Schematic of the graphene directional coupler: the separbgtween the layers is equal
to 2s.

e[_j_S efl'ls _efl—zs 0
efl'ls er]_S O 797[_35
M= iwer 1S iwel oS s (29)
— 2
K et I e 0128 0
1WE] o— 1WE _
_Tle s ﬁlerls O g173e I3s

whereg;_» andg;_3 take into account the contribution of the two graphene kyer
in the continuity conditions:
i wes

, 013 = iwegErg1-3+ -
3

e

012 =iweEs1-2+
I

wheree:s1-» andg s 13 refer to the relative dielectric constant of the two graghen
layers, which in general may have different values due tedint carriers concen-
trations. This asymmetric coupler offers a wide variety o$gible settings which
certainly deserve to be investigated both in the linear arttié nonlinear regime.
Here we describe a prototype example into the possibilidfessed by the tunabil-
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ity of graphene parameters in this framework; we thus foawsattention on a
very particular situation corresponding to a linear and syatmic case, = €3 and
&s1-2=&51-3); moreover we us& = 300K andA = 10 um. For the sake of sim-
plicity, we also sek;; = &, = &3 = 2.25. In this regime the graphene directional
coupler has two different eigenstates: the even (odd) supd# corresponding to
the out of phase (in phase) hybridization of the SPP guidetthégingle graphene
layers. Note also that the even mode here has always theshigdiee of the prop-
agation constant.

In Fig. 19 we report the solution of the dispersion relatisragunction ofs for
two different situations: continuous lines here refer ®élen and odd supermodes
corresponding to a chemical potentigl= 0.1 eV in Egs. 28, while the dashed lines
refer to a choice of the chemical potentjgl = 0.15 eV in Egs. 28. It is straight-

500 120
Even
o« 400 / = 100
S £
5 300 5
[6)) [=2}
Z |\ \ £ &
3 < "Odd ,Even 3
= - I
& 200" el v
__________________________ 60
100p ----="""" ™ 0dd
zbo
5 10 15 20 05 01 015 02 025 0.3 0.35
Half separation s [nm] Chemical potential [eV]

Fig. 19 Effective indexness = Oe(B)/ko of  Fig. 20 Beat length versus chemical poten-
even and odd supermodes of the coupletil for a graphene plasmon coupler. Here
graphene layers as a function of the separ&s= 10nm.

tion among the layers. Continuous (dashed)

lines refer to a chemical potential pfi =

0.1eV (uz =0.15¢eV).

forward to note that, for large enoughthe two supermodes of the coupler tend to
degeneracy, and their propagation constants approximatpropagation constant
of the SPP of a single graphene layer. The main message weadifrom Fig. 19
is that a very small change in the chemical potential candaduvery big change
in the behaviour of the coupler. In the following, we focus attention to the case
with s= 5nm. For this value of the separation between the layers, we atedghe
beat length of the directional coupler as a function of theneical potential: the
corresponding results are reported in Fig. 20. We can glsae there that a very
small change of the chemical potential can be used to induge bhhanges of the
beat length of the coupler. The two particular points (opemase and open circle)
enlightened in Fig. 20 are the initial conditions in Fig. 8dhere we describe the
propagation of the electromagnetic signal in the grapheneler. In both panels in
Fig. 21 total propagation length is setlta~ 90nm. On the left panel in Fig. 21 the
input condition corresponds to the square in Fig. 20 and dlupler is in the cross
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Fig. 21 Field evolution in a graphene plasmon directional couplér{teght) refers to a chemical
potential ofp; = 0.0908 eV (, = 0.1367 eV). Here 8= 10nm.

state; on the right panel the input condition correspondbkeaircle in Fig. 20 and
the coupler is in the bar state.

3.3 Graphene-Assisted Control of Coupling Between Optical
Waveguides

In this subsection we demonstrate that, thanks to the a#itatinability of losses
which are introduced by graphene layers deposited ontdithetsres, a careful de-
sign of silicon on insulator ridge waveguides can be usedpdoee the so-called
passive parity-time (PT) symmetry breaking in directicc@lplers. A quantum sys-
tem characterized by a Hamiltonian H is PT-symmetric if H cauntes with the op-
erator PT, where P is the parity operator and T is the temppeidator [83]. At an
exceptional point, two or more eigenvalues are degenevéteprove that the ex-
ceptional point of the coupler can be probed by varying thdieg voltage, which
may lead to very compact photonic structures for the comtfaoupling among
waveguides, and for tailoring discrete diffraction in gg$84].

In particular, in this section we present numerical resuligch demonstrate the
huge potential of graphene as a means to control couplingeeet optical dielec-
tric waveguides. The possibility of tuning losses in eachegaide by acting on a
thin loss element permits to break the symmetry of the caliplaveguides, with-
out introducing a strong perturbation in each single waiggyuRemarkably, we
demonstrate that tunable losses induced by graphene amdfalaesign of ridge
waveguides allows to probe passive PT-symmetry breakimtré@ctional couplers
[85, 86, 87]. Moreover, the exceptional point of the cougdan be dynamically
controlled by varying the applied voltage. We will thus exel these properties to
mould energy exchange between waveguides and to finely isoeete diffraction
in waveguide arrays. These results, together with the gtsaturable absorption of
graphene [75, 88], suggest also the possible use of thisgewafion in nonlinear
devices with a strong pump beam used as a probe for all ogtidgedhing of weak
input signals from the bar to cross state.
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In order to prove our statement we first need to consider thavier of silicon
waveguides on a silica substrate in a wavelength range bati@50 and 1600 nm.
The structure has been inspired by the modulator propos¢gRinIn particular,
a layer of silicon with thickness equal to 50 nm is depositatbahe substrate.
The 400 nm wide ridge waveguide is composed of lower and higlyers made
of silicon (both with thickness 200 nm) which sandwich a cantegion includ-
ing three alternating layers of alumina (thickness 7 nm) taralabsorption layers
composed of three graphene monolayers with thickneéssiim. Graphene can be
electrically controlled in order to tune doping (and thendahactivity), as suggested
in [89, 90, 91, 92, 93, 94, 95, 96]. The dielectric constaffisl@on, silica and alu-
mina were taken equal to 12 21 and 3. Fig. 22(a) displays a schematic view of
the structure.

The behavior of graphene in the optical regime has been ncatlgrmodeled
by following the approach suggested in [81, 82], as alreabcdbed in the previ-
ous subsection. Indeed, we assigned to each graphene iypenwith thicknesA
a volume conductivity equal togy = crél) /4, whereoél) is the conductivity of the
2D sheet (see Eq. 27 and Egs. 28). It was demonstrated thafjras approxima-
tion, few-layer graphene is characterized by the same biaadtgre (and then by
the same excellent electronic properties) of the monoldylereover, ifN is small
enough the conductivity df-layer graphenel = 3 in our design) can be evaluated
asN times conductivity of the single layer [91].
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Fig. 22 (a) Schematic view of the waveguide structure, with a detathefcentral region with
graphene layers. (b) Losses of the single waveguide (ipaBAvhen graphene is in OFF state
(null voltage), and x-component of the electric field of the-ll€ mode (inset).

We then performed a modal analysis of the waveguide in Fi@r)48/ resorting
to finite-element simulations. We focused the attentionhenTE-like mode which
is depicted in the inset of Fig. 22(b), since the electridfisl tangential with re-
spect to graphene layers. In the same figure we report abmomft the TE-like
mode when the graphene layers are in OFF state (null volt&fejourse, when
graphene is in the ON state (a control voltage is appliedsds are close to zero.
First, it is important to note that the real part of the effiezindex of the mode (not
shown here) is barely affected by state of the graphenedayéen, we emphasize
that when graphene is in OFF state losses are quite larg® @B/.um, which cor-
responds to 1100 cm) and almost constant over the entire bandwidth: indeed, a
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6 dB modulation contrast between ON and OFF states can bevachwith a 15
um long waveguide. In the next paragraphs we will study th@ertes of coupled
waveguides wherein the described structure is the badutifgiblock.

Full-wave simulations of photonic devices including grapé layers are char-
acterized by huge computational burden [98]. This effectigiously emphasized
when structures composed of multiple waveguides must Hgzath Therefore con-
ventional coupled-mode theory (CMT) [99, 100] has beenrmatdated to study the
present structures. Using full wave simulations, we firshatically proved that nei-
ther the profile of TE-like modes, nor the propagation camsBaof each isolated
waveguide are affected by the status of graphene layers.e&fewitching between
ON and OFF states has the effect of turning off and on losstdwisingle waveg-
uide, which are modeled by the attenuation constamMotice that modal evolution
reads as expfz) exp(—az).

Under these conditions, it is possible to verify that theeysof governing equa-
tions forA; 2, which are the modal field amplitudes in the first and seconeguaide
of a directional coupler composed of two identical graphleased waveguides, can
be approximated as

d {Al}_i{ﬁﬂal C

dz | A C* B+iay

ol (30)

wherea; > can be tuned between zero (ON state) amrgdy (OFF state) by con-
trolling the voltage applied to the graphene layers, @nid a complex coupling
coefficient [86].

Whena; = 0 anday = a, the eigenvalues of the matrix in Eq. 30 read as
M2 =B+i(a/2)++/|C]2— (a/2)2. Therefore the so-called exceptional point (EP)
for the onset of PT-symmetry breaking is located at theoaliioss valuex; = 2C.
Indeed, wherxr < a¢ the two supermodes have different propagation constadts an
the same attenuation constant2. Beyond the critical loss the supermodes coa-
lesce: they are characterized by the same propagationactifisand by different
loss coefficients. In particular, one supermode experguaeasing losses with
increasinga, whereas the other supermode is characterized by the oppasid
[85, 86]. Whenevein is much larger thai, one supermode is characterized by
losses which are close to the losses of a single waveguidereab the other super-
mode is nearly loss-free.

At this point we may examine the behavior of the directior@iler which is
obtained by placing two identical graphene-based waveguitbse to each other,
separated by a 300 nm gap (see Fig. 23 on the left). We perébamsodal analysis
at 1530 nm focusing the attention on the supermodes whigjinate from the in-
teraction between TE-like modes of the single waveguided vee varied the state
of the graphene layers. Numerical results in Fig. 23 illkistin a qualitative way
how the behavior of the structure can be controlled by ekplpithe properties of
graphene. In particular, when graphene layers in both wasleg are in the same
state, the symmetry of the structure is preserved, and thentades (not shown
here) are even and odd. Viceversa, Fig. 23 shows that whemsymis broken by
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switching to the ON-OFF state, the effect of losses on theahpaperties is huge,
and a trend toward decoupling between the waveguides isempa

ON OFF Low-loss supermode High-loss supermode

Fig. 23 Schematic view of the 300-nm-gap coupler (left), with the ledield of the low- (center)
and high-loss mode (right) at 1530 nm. Graphene layers are iDBNstates.
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Fig. 24 (a) Losses of low- (red line) and high-loss mode (blue line) frondensolver (solid line)
and CMT (dashed-dotted line). (b) Normalized attenuatiorstaott of low- (red line with squares)
and high-loss mode (blue line with circles) vs. normalized atiéion constant of the single waveg-
uide atA = 1530 nm. The vertical thin line indicates= amax.

The dispersive properties of the two modes have been cleairad through full-
wave and CMT simulations, and these quantitative resutifroo the intuitive anal-
ysis we have reported above. Indeed, in Fig. 24(a) lossdwedito supermodes are
depicted when the graphene layers are in the ON-OFF statieisloase symmetry
is broken: as a consequence, one mode is characterizeddmptids which is close
to zero, whereas the other mode experiences large lossed) afe very close to
those of a single lossy waveguide. It is worth noting that #ffect tends to blur with
increasing wavelength due to the dependence of couplinceat on frequency
(C gets larger with increasing wavelength). A thorough treathron phenomena
arising from the wavelength dependence of the PT-symmeingition is reported
in [87]. The noticeable agreement in Fig. 24(a) between kitimns performed by
using a full-wave mode solver and the results evaluated ImguSMT (in the latter
case the imaginary part @f » is reported) allows to confirm the accuracy of CMT.

These phenomena stem from the breaking of passive PT-sygnmetomplex
potentials. Indeed, in Fig. 24(b) we plot the attenuationstants of the two super-
modes, evaluated by using CMT, as a function of the atteowatbnstant of the
single waveguidexr. Data are normalized with respect to twice the coupling coef
ficient, so that we have the exceptional point when the atséssequal to 1. The
vertical dotted line indicategay, i.€. the value ofr when our structure is in the
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OFF state: it is straightforward to see that one may opemteril the exceptional
point, in agreement with the results of Fig. 24(a). It is word emphasize that
graphene-based waveguides exhibit superior propertithsrespect to waveguides
wherein losses are introduced by depositing metal layes [®sses induced by
sandwiching graphene layers inside silicon waveguide$eaorders of magnitude
larger (thousands of cmt with respect to tens of cnt), therefore it is possible
to probe the exceptional point even in structures charaetkiby strong coupling.
Last, but not least, it is important to note that graphenéeistecally tunable, there-
fore losses in each single waveguide can be varied betweer(@#l state) and a
maximum valuermax, Which is only determined by geometry (OFF state).

1 1
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Propagation direction z [um] Propagation direction z [um]

Fig. 25 Field amplitude in (a) first and (b) second waveguide of the @u@raphene layers are
in ON-ON (black line), and ON-OFF (red line) states.

We envisage that switching of the state of one waveguide eaexploited to
finely tune coupling between waveguides. In order to vehfyeffectiveness of this
approach we applied CMT to our reference structure at theleagth of 1530 nm,
and we show the results in Fig. 25. When the coupler is in the@DNstate losses
are zero, and the predicted beat length= 17/ (Beven — Bodd) is around 80um.
Viceversa, when graphene layers are ON and OFF in the inpubatput channels,
the two waveguides tend to decouple and the field intensitiiérfirst waveguide
is larger than in the second one. It is possible to justifg tiehavior by recalling
that when we inject light into the waveguide in ON state thve-loss supermode is
mainly excited.

These results have been validated by comparison with sfiongaof the 8Qum
long coupler performed by using the commercial software G&drowave Studio,
which allows to solve Maxwell's equations in the time dom#irough the finite-
integration technique. Indeed, the ratio between outpdiirgacted power evaluated
by using CMT is—3 dB and—12 dB if the coupler is in the ON-OFF state and
we consider as output port waveguides 1 and 2. CST simutagahibit a good
agreement, in fact the corresponding calculated valueslawat—5 dB and—13
dB, respectively.

The unique properties we have described in the previougpgh open the way
to novel possibilities for controlling discrete diffraoti in waveguide arrays [99]-
[104]. Let us take for example an array composed of elevemtick waveguides,
with the same geometrical and optical parameters that we hagd throughout
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Fig. 26 Discrete diffraction along the array. (a) All the graphengela are in ON state. (b) Only
graphene layers inside the central waveguide are in ON state.

the Chapter, and the same spacing (300 nm) that we consit@réide coupler.
The structure was simulated by using CMT in order to redueecttimputational
burden. The input excitation covers only the central waigkgland the propagation
length was taken equal to the beat length of the couplen(®). Moreover, we
assumed that the state of the graphene layers in each wdeegan be controlled
independently from each other.

In Fig. 26(a) we show the field inside the structure when &lghaphene layers
are in the ON state: the typical pattern of discrete dificacts clearly visible, with
two pronounced outermost wings [99, 100]. In Fig. 26(b) ladl waveguides except
for the central one are switched to the OFF state, and twogrshena can be clearly
noticed. First, beam broadening is reduced with respetietptevious case, so that
most of the optical energy remains concentrated into theaemaveguide. Second,
losses are smaller with respect to the case of a single loaggguide.

4 Conclusions

Optical switching will be a key enabling functionality intfure transparent all—
optical networks. In this chapter we have provided an oeswwf several guided
wave optical switching devices, where the input—outpuhptoptical signals is

controlled by either optical or electrical signals, thugiding the need for OEO
conversion for optical signal processing. We have firstgme=d the basic principles
of fiber optics switching devices, whose long interactiamglas permit to signifi-

cantly reduce the operating power requirements. Next we k&cussed nonlin-
ear couplers based on integrated waveguides with strorfydaifinement, hence
reduced device dimensions, thanks to photonic crystattstres or surface wave
interactions in graphene layers.
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