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Abstract
A multipath in a directed graph is a disjoint union of
paths. The multipath complex of a directed graph 𝙶 is
the simplicial complex whose faces are the multipaths
of 𝙶. We compute Euler characteristics, and associated
generating functions, of the multipath complexes of
directed graphs from certain families, including tran-
sitive tournaments and complete bipartite graphs. We
show that if 𝙶 is a linear graph, polygon, small grid or
transitive tournament, then the homotopy type of the
multipath complex of 𝙶 is always contractible or a wedge
of spheres. We introduce a new technique for decom-
posing directed graphs into dynamical regions, which
allows us to simplify the homotopy computations.

MSC 2020
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1 INTRODUCTION

Simplicial complexes associated to monotone properties of (directed) graphs are central objects in
both combinatorics and topology (cf. [11]), with interesting and deep connections with other areas
of mathematics — see, for example, [19, 24, 26]. Particularly relevant examples of simplicial com-
plexes arising from monotone properties are the well-known matching complex and its relatives,
the independence complex and the flag complex (also known as clique complex). In this work, we
focus on multipath complexes, which are also related (albeit differently from independence and
flag complexes) to matching complexes [7, Section 4]. The simplices of the multipath complex are
called multipaths [23], and are disjoint unions of directed paths. Multipath complexes appeared
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in [25]— denoted therein byΩ(𝙶)—andwere studied for 𝙶 = 𝙺𝑛, the complete directed graph, in
virtue of their relation to symmetric homology of algebras [1, 2]. A first step in a systematic inves-
tigation of topological and combinatorial properties of multipath complexes was taken in [9], and
was motivated by homological questions [8]. In this paper, we continue the study of the combi-
natorial and topological properties of multipath complexes of directed graphs. More precisely, we
provide both qualitative and quantitative information about their homotopy type.
One of the main results in [9] asserts that the homology of multipath complexes can be fairly

rich; namely it can be supported in arbitrarily high degree, and can be of arbitrarily high rank. A
rough measure of this complexity is the (reduced) Euler characteristic. We compute Euler char-
acteristics, and generating functions, of the multipath complexes of directed graphs from certain
infinite families, such as transitive tournaments and complete bipartite graphs — this is devel-
oped in Section 3. It is worth noting that the Euler characteristic of the multipath complex of a
transitive tournament can be expressed in terms of the Stirling numbers of the second kind, and
that the associated generating function is doubly exponential. This is qualitatively different from
the generating function of the Euler characteristics of matching complexes of complete graphs
— cf. [11, Table 10.2] — which is exponential. Instead, the Euler characteristic of the multipath
complex of a complete bipartite graph with alternating orientation is the Euler characteristic of
the chessboard complex — previously investigated in [4].
In the secondpart of thiswork,we focus on the explicit description of the homotopy type ofmul-

tipath complexes. The general question about what kind of simplicial complexes can be realised
as multipath complexes remains open. Here, we employ topological tools and use combinatorial
techniques to identify the homotopy type of the multipath complex of a directed graph 𝙶, when 𝙶
is a linear graph, polygon, small grid or transitive tournament. We prove that if a directed graph
is from one these families, then the multipath complex of said graph is either contractible or a
wedge of spheres. To simplify the computation of the homotopy type of a multipath complex, we
introduce a decomposition of a directed graph into dynamical regions (cf. Definition 4.2). Intu-
itively, dynamical regions are determined by the behaviour of flows in the directed graph; when
moving from a vertex of this region, while following the orientation, one either stays in the region
or goes out without coming back. Minimal dynamical regions are called dynamical modules. We
prove the following.

Theorem 1.1. Let 𝙶 be a directed graph. Then, there is a unique (up to re-ordering) decomposition
of 𝙶 into dynamical modules 𝙼1, … , 𝙼𝑘 , and we have a homotopy equivalence

𝑋(𝙶) ≃ 𝑋(𝙼1) ∗⋯ ∗ 𝑋(𝙼𝑘),

where 𝑋(−) denotes the multipath complex. Furthermore, the above decomposition can be
found algorithmically.

The decomposition into dynamical modules, for certain families of directed graphs, might be
trivial, such as for transitive tournaments. In such cases, the computation of the homotopy type of
the associatedmultipath complex needs different methods. Borrowing techniques from combina-
torial topology, we show that the multipath complex of a transitive tournament on 𝑛 ⩾ 3 vertices
is homotopy equivalent to a wedge of spheres (Theorem 5.1). This result is in sharp contrast to
what happens with the homotopy type of the matching complex for complete graphs; the latter
is not known in general, but it is known that its homology has torsion in specific degrees — see,
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for example, [12, 13, 22]. For stable dynamical regions (cf. Definition 4.2), multipath complexes
and matching complexes are isomorphic (see Lemma 4.8), and hence also the multipath complex
can have torsion — see [7, Proposition 4.5]. We conjecture that, for a dynamical module 𝙼, if the
multipath complex 𝑋(𝙼) has torsion, then 𝙼 is stable.
The computations of the Euler characteristics presented in this work use the custom package

path_poset, publicly available at [21]. To compute homology, this package was combined with
SageMath [20].

2 BASIC NOTIONS

In this section, we recall some basic notions needed throughout. A (finite) undirected graph 𝙶 is
a pair of (finite) sets (𝑉, 𝐸) consisting of a set𝑉 of vertices, and a set 𝐸 of edges given by unordered
pairs of distinct vertices of 𝙶. All graphs are assumed to be simple, that is, do not contain loops or
multiedges. We also consider directed graphs, or digraphs, a (finite) digraph 𝙶 is a pair of (finite)
sets (𝑉(𝙶), 𝐸(𝙶)), such that 𝐸(𝙶) is a set of ordered pairs of distinct vertices. Given an edge 𝑒 =
(𝑣, 𝑤) of 𝐸(𝙶), we call the vertex 𝑣 the source of 𝑒, denoted as 𝑠(𝑒), while the vertex 𝑤 is the target
of 𝑒, denoted as 𝑡(𝑒). An orientation on an undirected graph is the choice of a source and of a target
for each edge. An undirected graph 𝙶 can be turned into a directed graph by orienting each edge
of 𝙶 in both directions; vice versa, given a directed graph, we can consider the underlying simple
undirected graph obtained by forgetting the directions of the edges, and merging any multiedges.
A subgraph 𝙷 of a (directed) graph 𝙶 is a (directed) graph such that 𝑉(𝙷) ⊆ 𝑉(𝙶) and 𝐸(𝙷) ⊆

𝐸(𝙶); if 𝙷 is a subgraph of 𝙶, we write 𝙷 ⩽ 𝙶. If 𝙷 ⩽ 𝙶 and 𝙷 ≠ 𝙶, we say that 𝙷 is a proper subgraph
of 𝙶, and wewrite 𝙷 < 𝙶. We say that 𝙷 is an induced subgraph of a (directed) graph 𝙶 if for any pair
of vertices 𝑣, 𝑤 in 𝙷, if 𝑒 is an edge in 𝙶 between 𝑣 and𝑤, then 𝑒 is also an edge of 𝙷. Furthermore,
if 𝙷 ⩽ 𝙶 and 𝑉(𝙷) = 𝑉(𝙶), we say that 𝙷 is a spanning subgraph of 𝙶. Two edges in an undirected
graph 𝙶 are called adjacent if they share a common vertex.
A simple path in a digraph 𝙶 is a sequence of edges 𝑒1, … , 𝑒𝑛 of 𝙶 such that 𝑠(𝑒𝑖+1) = 𝑡(𝑒𝑖) for

𝑖 = 1, … , 𝑛 − 1, and no vertex is encountered twice, that is, if 𝑠(𝑒𝑖) = 𝑠(𝑒𝑗) or 𝑡(𝑒𝑖) = 𝑡(𝑒𝑗), then
𝑖 = 𝑗, and is not a cycle, that is, 𝑠(𝑒1) ≠ 𝑡(𝑒𝑛)— cf. Figure 1.
We are interested in disjoint sets of simple paths; following [23], we call them multipaths.

Definition 2.1. A multipath of a digraph 𝙶 is a spanning subgraph such that each connected
component is either a vertex or a simple path. The length of amultipath is the number of its edges.

The set ofmultipaths of𝙶has a natural partially ordered structure: the path poset of𝙶 is the poset
(𝑃(𝙶), <), that is, the set of multipaths of 𝙶 (including themultipath with no edges) ordered by the
relation of ‘being a subgraph’. Note that the underlying set of 𝑃(𝙶) is given by all disjoint unions
of simple paths — as opposed to all connected paths, as in [10, Section 3.1]. To the path poset, we
can associate a simplicial complex, which we call the multipath complex— cf. [9, Definition 6.4].

Definition 2.2. For a digraph 𝙶, themultipath complex𝑋(𝙶) is the simplicial complex whose face
poset (augmented to include the empty simplex ∅) is the path poset 𝑃(𝙶).

Since being a multipath is a monotone property of digraphs (for a description of monotone
properties, see [6], and the references therein), it follows that 𝑋(𝙶) is a well-defined simplicial
complex. The following is straightforward.
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4 of 26 CAPUTI et al.

F IGURE 1 The coherently oriented linear graph 𝙸3 (top left), the multipath complex 𝑋(𝙸3) (top right) and
the path poset 𝑃(𝙸3) (bottom).

Example 2.3 [9, Example 6.12]. Consider the coherently oriented linear graph 𝙸𝑛 — see Figure 1
for an example of 𝐼3. The path poset (𝑃(𝙸𝑛), <) is isomorphic to the Boolean lattice 𝔹(𝑛). Thence,
the associatedmultipath complex is an (𝑛 − 1)-dimensional simplex. Consider the coherently ori-
ented polygonal graph 𝙿𝑛 with 𝑛 edges, obtained from 𝙸𝑛 by identifying the vertices 𝑣0 and 𝑣𝑛.
Then, the path poset (𝑃(𝙿𝑛), <) is isomorphic to the Boolean lattice 𝔹(𝑛) minus its maximum,
and the corresponding multipath complex is a (𝑛 − 2)-dimensional sphere.

Another class of directed graphs which is important to us is the dandelion graphs.

Definition 2.4. Let 𝙳𝑛,𝑚 be the digraph on (𝑛 + 𝑚 + 1) vertices and (𝑚 + 𝑛) edges defined as
follows:

(1) 𝑉(𝙳𝑛,𝑚) = {𝑣0, 𝑤1, … ,𝑤𝑛, 𝑥1, … , 𝑥𝑚};
(2) 𝐸(𝙳𝑛,𝑚) = {(𝑤𝑖, 𝑣0), (𝑣0, 𝑥𝑗) ∣ 𝑖 = 1, … , 𝑛; 𝑗 = 1,… ,𝑚}.

The digraph 𝙳𝑛,𝑚 is called a dandelion graph— cf. Figure 2. A dandelion graph of the form 𝙳𝑛,0
(resp. 𝙳0,𝑚) is called a sink graph (resp. source graph).

Example 2.5. The multipath complex 𝑋(𝙳𝑛,𝑚) of the dandelion graph 𝙳𝑛,𝑚 is homotopy equiv-
alent to the wedge of (𝑛 − 1)(𝑚 − 1) copies of the one-dimensional sphere if 𝑛,𝑚 > 1 — see
Figure 2 and [9, Example 6.13]. If either 𝑛 or 𝑚 is 1, then 𝑋(𝙳𝑛,𝑚) is contractible — cf. [9, Propo-
sition 4.18]. Finally, if either 𝑛 or 𝑚 is zero, and 𝑚 + 𝑛 > 1 (i.e. if we have a source graph or a
sink graph), then it is not difficult to check that 𝑋(𝙳𝑛,𝑚) is homotopy equivalent to the wedge of
𝑛 + 𝑚 − 1 copies of the zero-dimensional sphere.

The order complex Δ(𝑃) of a poset 𝑃 is the simplicial complex whose faces are the chains of
the poset. It is known that the order complex of the face poset of a complex 𝑆 is the barycentric
subdivision of 𝑆. So, the order complex of the path poset �̄�(𝙶) = 𝑃(𝙶) ⧵ {�̄�𝑛} (where �̄�𝑛 is the graph
with 𝑛 vertices and no edges) is the barycentric subdivision of the multipath complex 𝑋(𝙶), as
such, the order complex of �̄�(𝙶) and the multipath complex 𝑋(𝙶) are homotopy equivalent. The
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ON THE HOMOTOPY TYPE OF MULTIPATH COMPLEXES 5 of 26

F IGURE 2 The dandelion graph 𝙳3,2 (top left), its multipath complex 𝑋(𝙳3,2) (top right) and its path poset
𝑃(𝙳3,2) (bottom).

reduced Euler characteristic 𝜒 of the order complex of a poset is equal to theMöbius function of
the poset, which is recursively defined as 𝜇𝑃(𝑢, 𝑢) = 1 and

𝜇𝑃(𝑢, 𝑣) = −
∑
𝑢⩽𝑤<𝑣

𝜇(𝑢, 𝑤).

More precisely, 𝜒(Δ(𝑃)) = 𝜇(𝑃) ∶= 𝜇𝐿(𝑃)(0̂, 1̂), where 𝐿(𝑃) is obtained from 𝑃 by attaching a
minimal element 0̂ and a maximal element 1̂. Therefore, if we consider 0̂ = �̄�𝑛, then

𝜒(𝑋(𝙶)) = 𝜒(Δ(�̄�(𝙶))) = �̄�(𝑃(𝙶)) ∶= −
∑
𝑝∈𝑃(𝐺)

𝜇(�̄�𝑛, 𝑝). (1)

So, we can compute the reduced Euler characteristic of the multipath complex directly from the
path poset. Note that throughout we refer to the reduced Euler characteristic simply as the Euler
characteristic, and see [27] for further background on order complexes and the Möbius function.

Remark 2.6. Denote by ∗ the join operation of simplicial complexes. Then, for directed graphs 𝙶
and 𝙷, we have a homotopy equivalence

𝑋(𝙶 ⊔ 𝙷) ≃ 𝑋(𝙶) ∗ 𝑋(𝙷),

where ⊔ denotes the disjoint union of digraphs.

We conclude this section with a relation between multipath complexes and matching com-
plexes for certain families of digraphs. The latter is the simplicial complex whose simplices are
collections of disjoint edges in an unoriented graph. We first need the notion of alternating ori-

 20417942, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/m
tk.12235 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [10/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 26 CAPUTI et al.

entations. Given an orientation 𝑜 on an undirected graph 𝙶, we denote by 𝙶𝑜 the corresponding
digraph.

Definition 2.7. An orientation 𝑜 on 𝙶 is called alternating if there exists a partition 𝑉 ⊔𝑊 of
𝑉(𝙶𝑜) such that all elements of 𝑉 have indegree 0 and all elements of𝑊 have outdegree 0.

Note that the existence of an alternating orientation implies that 𝙶 is a bipartite graph (i.e. there
exists a function 𝑓∶ 𝑉(𝙶) → {0, 1} that assumes distinct values on vertices which share an edge
in 𝙶).
As mentioned above, alternating orientations can be used to create a bridge betweenmultipath

complexes of digraphs and thematching complexes of the underlying undirected graphs.We recall
that a matching on a graph 𝙶 is a collection of edges without common vertices. The matching
complex𝑀(𝙶) is the simplical complex whose simplices are matchings on 𝙶— see also [22].

Proposition 2.8 [7, Theorem 4.1]. Let 𝙶 be a graph and 𝑜 an orientation on 𝙶. Then, we have an
isomorphism of simplicial complexes

𝑀(𝙶) ≅ 𝑋(𝙶𝑜)

if and only if 𝑜 is alternating.

A consequence of the proposition is that multipath complexes may have torsion — cf.
[7, Proposition 4.5].

3 EULER CHARACTERISTICS OFMULTIPATH COMPLEXES AND
GENERATING FUNCTIONS

The purpose of this section is to provide some examples and explicit computations of the Euler
characteristics of the multipath complexes of digraphs from certain families. We provide both
explicit closed formulae and expressions for exponential-generating functions.

3.1 Euler characteristics of complete graphs and transitive
tournaments

We begin by considering different orientations of the complete graph, and show that the Euler
characteristics of the multipath complexes of these graphs are closely linked to the number of set
partitions, and their variations. Firstly we introduce a lemma that is useful throughout.
Recall that the Möbius function �̄�(𝑃(𝙶)) is equal to the Euler characteristic 𝜒(𝑋(𝙶)) —

cf. Equation (1). For notational ease, let 𝜇(𝑝) ∶= 𝜇𝑃(𝙶)(�̄�𝑛, 𝑝) when 𝙶 is clear.

Lemma 3.1. Let 𝙶 be a digraph on 𝑛 vertices. For every g ∈ 𝑃(𝙶), we have 𝜇(g) = (−1)𝑛−𝑘(g), where
𝑘(g) is the number of components of the multipath g .

Proof. Let𝑚 be the number of edges in g , then𝑚 = 𝑛 − 𝑘(g). This can be seen by induction since
if 𝑘(g) = 𝑛, then the graph has no edges, and adding an edge is equivalent to connecting two
components in a multipath.
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ON THE HOMOTOPY TYPE OF MULTIPATH COMPLEXES 7 of 26

The interval [�̄�𝑛, g] in 𝑃(𝙶) is isomorphic to the Boolean lattice 𝔹(𝑚) because every multipath
contained in g is equivalent to a subset of the edges of g . It is known that𝜇𝔹(𝑚)(min,max) = (−1)𝑚
(e.g. [27, Example 1.1.1]), so we have:

𝜇(g) = 𝜇𝔹(𝑚)(min,max) = (−1)
𝑚 = (−1)𝑛−𝑘(g). □

We start by computing the Euler characteristic of 𝑋(𝙺𝑛). These complexes were studied before,
and are known to be highly connected, with a bound on connectivity which depends on 𝑛 —
cf. [25, Theorem 10].

Theorem 3.2. Let 𝙺𝑛 be the complete digraph on 𝑛 vertices, that is, with a bidirectional edge between
every pair of vertices. Then

𝜒(𝑋(𝙺𝑛)) =

𝑛∑
𝑘=1

(−1)𝑛−𝑘−1
(
𝑛 − 1

𝑘 − 1

)
𝑛!

𝑘!
(2)

which has the exponential generating function 𝑒
𝑥
𝑥−1 .

Proof. Let Π𝑜
𝑛,𝑘

be the set of all partitions of [𝑛] = {1, … , 𝑛} into 𝑘 non-empty ordered sets, and
let Π𝑜𝑛 be all partitions of [𝑛] into any number of non-empty ordered sets. Define a function
𝑓∶ 𝑃(𝙺𝑛) → Π

𝑜
𝑛, where 𝑓(g) is the partition in which each part is the set of vertices of a con-

nected component of g , and the order on each part is the transitive closure of the relation 𝑥 < 𝑦
if (𝑥, 𝑦) ∈ 𝐸(g). It is clear that 𝑓 is a bijection; its inverse is given by converting every part of a
partition into a simple path, which makes a valid multipath as all simple paths are possible in 𝙺𝑛.
By Lemma 3.1, we know that 𝜇(g) = (−1)𝑛−𝑘 for all 𝑓(g) ∈ Π𝑜

𝑛,𝑘
, and it is known that |Π𝑜

𝑛,𝑘
| =(𝑛−1

𝑘−1

)𝑛!
𝑘!
— these are the Lah numbers, see [18] or OEIS sequence A105278 [17]. So, we get

𝜒(𝑋(𝙺𝑛)) = �̄�(𝑃(𝙺𝑛)) = −

𝑛∑
𝑘=1

(−1)𝑛−𝑘|Π𝑜
𝑛,𝑘

| = 𝑛∑
𝑘=1

(−1)𝑛−𝑘−1
(
𝑛 − 1

𝑘 − 1

)
𝑛!

𝑘!
.

If we replace (−1)𝑛−𝑘−1 with (−1)𝑘−1 in Equation (2), we get OEIS Sequence A066668, which
has exponential generating function 𝑒

𝑥
𝑥+1 . Since this corresponds to the sequence (−1)𝑛�̃�(𝙺𝑛), we

obtain the desired exponential generating function. □

We believe that the multipath complex of the complete graph 𝙺𝑛 has the largest Euler charac-
teristic of any graph with 𝑛 vertices. As such we make the following conjecture, which has been
verified computationally for 𝑛 < 8 using [21].

Conjecture 3.3. Let 𝙶 be any digraph on 𝑛 vertices, then |𝜒(𝑋(𝙺𝑛))| ⩾ |𝜒(𝑋(𝙶))|.
The transitive tournament on 𝑛 vertices is the unique (up to isomorphism) orientation of the

complete undirected graphwith no directed cycles. This is equivalent to taking the complete undi-
rected graph and orientating all edges from smaller vertex index to larger. We now show that the
Euler characteristic of the multipath complex of a transitive tournament is given by a variation of
the complementary Bell numbers, that is, the alternating sum of the Stirling numbers.
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8 of 26 CAPUTI et al.

Theorem 3.4. Let 𝚃𝑛 be the transitive tournament on 𝑛 vertices. Then

𝜒(𝑋(𝚃𝑛)) =

𝑛∑
𝑘=1

(−1)𝑛−𝑘−1𝑆(𝑛, 𝑘), (3)

where 𝑆(𝑛, 𝑘) are the Stirling numbers of the second kind and sequence given by Equation (3) has the
exponential generating function −𝑒1−𝑒−𝑥 .

Proof. LetΠ𝑛,𝑘 be all partitions of [𝑛] into 𝑘 parts and letΠ𝑛 be all partitions of [𝑛]. Proceeding as
in the previous proof, define a function 𝑓∶ 𝑃(𝚃𝑛) → Π𝑛, where 𝑓(g) is the partition where each
part of 𝑓(g) is the vertices in a simple path of g . It is clear that 𝑓 is a bijection as the inverse is
given by converting every part of a partition into a simple path, and in a transitive tournament,
there is a unique way to make a simple path from a set of vertices.
By Lemma 3.1, we know that 𝜇(g) = (−1)𝑛−𝑘 for all 𝑓(g) ∈ Π𝑛,𝑘. Therefore,

𝜒(𝑋(𝚃𝑛)) = �̄�(𝑃(𝙺𝑛)) = −

𝑛∑
𝑘=1

(−1)𝑛−𝑘|Π𝑛,𝑘| = 𝑛∑
𝑘=1

(−1)𝑛−𝑘−1𝑆(𝑛, 𝑘)

since the number of partitions is exactly the Stirling numbers of the second kind.
The complementary Bell numbers, sequence A000587 in the OEIS [17], are defined as the alter-

nating sum (in 𝑘) of the Stirling numbers 𝑆(𝑛, 𝑘). The exponential generating function of the
complementary Bell numbers is known to be 𝑒1−𝑒𝑥 . However, we have (−1)𝑛−𝑘−1 instead of (−1)𝑘,
so we must negate the even terms in the sequence obtaining the exponential generating function
−𝑒1−𝑒

−𝑥 . □

Next, we consider what happens if we reverse a single edge of the transitive tournament, in
particular, the edge (1, 𝑛).

Theorem 3.5. Let 𝚁𝑛 be the graph obtained from the transitive tournament 𝚃𝑛 by reversing the
orientation of the edge (1, 𝑛). For 𝑛 ⩾ 3, we get:

𝜒(𝑋(𝚁𝑛)) =

𝑛−2∑
𝑘=1

(−1)𝑛−𝑘−1𝑘𝑆(𝑛 − 2, 𝑘), (4)

where 𝑆(𝑛, 𝑘) are the Stirling numbers of the second kind, and (1 − 𝑒−𝑥)𝑒1−𝑒−𝑥 is the exponential
generating function for the sequence 𝑎𝑛 = 𝜒(𝑋(𝚁𝑛+2)).

Proof. Partition the elements of 𝑃(𝚁𝑛) into three parts 𝐴, 𝐵 and 𝐶, where

(1) 𝐴 is the set of all multipaths which contain the edge (𝑛, 1);
(2) 𝐵 is the set of multipaths which do not contain the edge (𝑛, 1), but (𝑛, 1) can be added tomake

a multipath;
(3) 𝐶 is the set of multipaths which do not contain the edge (𝑛, 1), and (𝑛, 1) cannot be added to

make a multipath.

Define a function 𝜙∶ 𝐴 → 𝐵 where 𝜙(𝑥) is the multipath obtained by removing the edge (𝑛, 1)
from 𝑥, for all 𝑥 ∈ 𝐴. Then 𝜙 has a clear inverse, which is to add in the edge (𝑛, 1), so this is a bijec-
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ON THE HOMOTOPY TYPE OF MULTIPATH COMPLEXES 9 of 26

tion.Moreover, by Lemma3.1,we get that𝜇(𝜙(𝑥)) = −𝜇(𝑥). Therefore,
∑
𝑥∈𝐴 𝜇(𝑥) +

∑
𝑥∈𝐵 𝜇(𝑥) =

0, so

�̄�(𝑃(𝚁𝑛)) = −
∑

𝑥∈𝑃(𝚁𝑛)

𝜇(𝑥) = −

(∑
𝑥∈𝐴

𝜇(𝑥) +
∑
𝑥∈𝐵

𝜇(𝑥) +
∑
𝑥∈𝐶

𝜇(𝑥)

)
= −

∑
𝑥∈𝐶

𝜇(𝑥).

Now consider the elements of 𝐶. If adding the edge (𝑛, 1) is forbidden, it must either make a
cycle or cause a vertex to have in or out degree greater than 1. It is not possible for 𝑛 to have out-
degree greater than 1, since in 𝚁𝑛, there is only one outgoing edge from𝑛, which is (𝑛, 1), similarly 1
cannot have in-degree greater than 1. So, every element of 𝑐 ∈ 𝐶must forbid (𝑛, 1) because adding
it would make a cycle, which means that 𝑐 must contain a path from 1 to 𝑛.
Therefore, every multipath of 𝐶 can be constructed by taking a multipath g on [2, 𝑛 − 1] ∶=

{2, … , 𝑛 − 1}, selecting one of the simple paths of g , connecting 1 to the start of the simple path,
and connecting the end of the simple path to𝑛. Note that graph induced on 𝚁𝑛 by vertices [2, 𝑛 − 1]
is a transitive tournament, and by the proof of Theorem 3.4, there are 𝑆(𝑛 − 2, 𝑘) multipaths on
[2, 𝑛 − 1] with 𝑘 components. From each of these, we can construct 𝑘 elements of 𝐶, so we get
𝑘𝑆(𝑛 − 2, 𝑘) multipaths in 𝐶 with 𝑘 components, and by Lemma 3.1, each such element 𝑥 has
𝜇(𝑐) = (−1)𝑛−𝑘, so we get

𝜒(𝑋(𝚁𝑛)) = �̄�(𝑃(𝚁𝑛)) = −
∑
𝑥∈𝐶

𝜇(𝑥) = −

𝑛−2∑
𝑘=1

(−1)𝑛−𝑘𝑘𝑆(𝑛 − 2, 𝑘).

The OEIS sequence A101851 [17] is given by 𝑎𝑛 =
∑𝑛
𝑘=1(−1)

𝑛−𝑘𝑘𝑆(𝑛, 𝑘) and has exponen-
tial generating function (𝑒−𝑥 − 1)𝑒1−𝑒−𝑥 . Considering the sequence −𝑎𝑛, instead of 𝑎𝑛, gives the
required function. □

3.2 Generating function of bipartite digraphs

Consider the complete bipartite digraph 𝙺𝑛,𝑚, that is, the digraph with vertices 𝑣1, … , 𝑣𝑛,
𝑤1,… ,𝑤𝑚, and edges {(𝑣𝑖, 𝑤𝑗)}𝑖,𝑗 . We concisely write𝜒𝑛,𝑚 for𝜒(𝑋(𝙺𝑛,𝑚)). Let(𝑥, 𝑦) be themixed
generating function for 𝜒𝑛,𝑚 defined by the formula

(𝑥, 𝑦) =
∑
𝑛,𝑚⩾0

𝜒𝑛,𝑚
𝑦𝑛 𝑥𝑚

𝑚!
;

we show that(𝑥, 𝑦) admits a simple expression in terms of elementary functions. The techniques
employed here, as well asmore general approaches, are extensively described in [28].Wewill need
the following.

Remark 3.6. Let 𝑎𝑖 and 𝑏𝑖 be two sequences of integers, and consider their generating func-
tions 𝐴(𝑡) =

∑
𝑖⩾0 𝑎𝑖𝑡

𝑖 and 𝐵(𝑧) =
∑
𝑖⩾0 𝑏𝑖

𝑧𝑖

𝑖!
. Then, the term of degree 𝑚 in the series 𝐴(𝑡)𝐵(𝑧)

is
∑𝑚
𝑖=0

𝑎𝑖 𝑏𝑚−𝑖
(𝑚−𝑖)!

𝑡𝑖𝑧𝑚−𝑖 .
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10 of 26 CAPUTI et al.

Now we are ready to prove the following theorem. Note that Equation (5) already appeared
in [4, Section 2].

Theorem 3.7. The Euler characteristic of 𝑋(𝐾𝑛,𝑚) is given by the closed formula

𝜒𝑛,𝑚 =
∑
𝑘=0

(−1)𝑘+1
(
𝑚

𝑘

)(
𝑛

𝑘

)
𝑘! ∀𝑛,𝑚 > 0, (5)

satisfies the recurrence relation

𝜒𝑛,𝑚 = 𝜒𝑛−1,𝑚 − 𝑚𝜒𝑛−1,𝑚−1, (6)

and the mixed generating function for 𝜒𝑛,𝑚 is

(𝑥, 𝑦) =
𝑒𝑥

1 − 𝑦 + 𝑥𝑦
.

Proof. We begin with the closed formula. Every multipath of length 𝑘 in 𝑃(𝙺𝑛,𝑚) is a matching of
some elements of 𝑣1, … , 𝑣𝑛 to some elements of 𝑤1,… ,𝑤𝑚. So, every multipath𝑚 of length 𝑘 can
be constructed by first choosing which elements of 𝑤1,… ,𝑤𝑚 are matched to something, giving(𝑚
𝑘

)
choices, and then choosing which elements of 𝑣1, … , 𝑣𝑛 they are matched to, giving

𝑛!

(𝑛−𝑘)!

choices. And by Lemma 3.1, we know that 𝜇(𝑚) = (−1)𝑘. Combining the above, summing over 𝑘
and negating gives the closed formula for the Möbius function �̄�(𝑃(𝙺𝑛,𝑚)), and thus, 𝜒𝑛,𝑚.
Next, we give a recurrence relation for 𝜒𝑛,𝑚. Partition 𝑃(𝙺𝑛,𝑚) into parts 𝑃0, … , 𝑃𝑚, where 𝑃0

contains all multipaths that do not have an edge with source 𝑣1, and 𝑃𝑗 contains all multipaths
which contain the edge (𝑣1, 𝑤𝑗), for all 𝑗 > 0. By the definition of the Möbius function, and since
we have a partition, we know that

�̄�(𝑃(𝙺𝑛,𝑚)) = −
∑

𝑖=0,…,𝑚

∑
𝑝∈𝑃𝑖

𝜇(𝑝). (7)

Since 𝑣0 is an isolated vertex in all multipaths of 𝑃0, we get that 𝑃0 is isomorphic to the poset
𝑃(𝙺𝑛−1,𝑚). Moreover, each of the 𝑃𝑗 ’s is isomorphic to 𝑃(𝙺𝑛−1,𝑚−1), where the isomorphism 𝑓𝑗 is
the map which removes the vertices 𝑣1 and 𝑤𝑗 , and the edge (𝑣1, 𝑤𝑗). So,

−
∑
𝑝∈𝑃0

𝜇(𝑝) = �̄�(𝑃(𝙺𝑛−1,𝑚)) and −
∑
𝑝∈𝑃𝑗

𝜇(𝑝) = −�̄�(𝑃(𝙺𝑛−1,𝑚−1)), (8)

where the negation of �̄�(𝑃(𝙺𝑛−1,𝑚−1)) is caused by 𝑓𝑗 removing an edge hence 𝜇(𝑝) = −𝜇(𝑓𝑗(𝑝)).
Combining (7) and (8), and replacing �̄� with the Euler characteristic gives the recurrence relation
(6).
Finally, we compute the generating function. Consider the generating function for the Euler

characteristic for a fixed𝑚, that is, the function

𝐹𝑚(𝑦) ∶=
∑
𝑗⩾0

𝜒𝑗,𝑚𝑦
𝑗.
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ON THE HOMOTOPY TYPE OF MULTIPATH COMPLEXES 11 of 26

It follows from the definitions that 𝜒0,𝑚 = 𝜒𝑛,0 = 1, and thus, 𝐹0(𝑦) =
1

1−𝑦
. By multiplying the

recurrence relation in Equation (6) by 𝑦𝑛−1, summing up over 𝑛 > 0, and rearranging the terms,
one obtains that (1 − 𝑦) 𝐹𝑚(𝑦) = −𝑚𝑦 𝐹𝑚−1(𝑦) + 1. Consequently, it follows:

𝐹𝑚(𝑦) =
−𝑚𝑦

(1 − 𝑦)
𝐹𝑚−1(𝑦) +

1

1 − 𝑦
=

= (−1)𝑚
𝑚! 𝑦𝑚

(1 − 𝑦)𝑚
𝐹0(𝑦) +

𝑚−1∑
𝑖=0

𝑚!

(𝑚 − 𝑖)!

(−1)𝑖 𝑦𝑖

(1 − 𝑦)𝑖+1
=

=

𝑚∑
𝑖=0

𝑚!

(𝑚 − 𝑖)!

(−1)𝑖 𝑦𝑖

(1 − 𝑦)𝑖+1
.

We can now find an explicit formula for the exponential generating function of the 𝐹𝑚(𝑦), which
means:

(𝑥, 𝑦) =
∑
𝑚⩾0

𝐹𝑚(𝑦)
𝑥𝑚

𝑚!
=

1

(1 − 𝑦)

∑
𝑚⩾0

[
𝑚∑
𝑖=0

1

(𝑚 − 𝑖)!

(−1)𝑖 𝑦𝑖

(1 − 𝑦)𝑖

]
𝑥𝑚.

By virtue of Remark 3.6, taking 𝑏𝑖 = 𝑎𝑖 = 1, and setting 𝑡 =
−𝑥𝑦

(1−𝑦)
, and 𝑧 = 𝑥, one obtains

𝑒𝑥

1 −
−𝑥𝑦

(1−𝑦)

= 𝐴(𝑡)𝑡= −𝑥𝑦

(1−𝑦)
𝐵(𝑧)𝑧=𝑥 =

∑
𝑚⩾0

[
𝑚∑
𝑖=0

1

(𝑚 − 𝑖)!

(−1)𝑖 𝑦𝑖

(1 − 𝑦)𝑖

]
𝑥𝑚;

consequently, we get

(𝑥, 𝑦) =
1

(1 − 𝑦)

∑
𝑚⩾0

[
𝑚∑
𝑖=0

1

(𝑚 − 𝑖)!

(−1)𝑖 𝑦𝑖

(1 − 𝑦)𝑖

]
𝑥𝑚 =

𝑒𝑥

1 − 𝑦 + 𝑥𝑦
,

which provides the desired formula. □

Note that the generating function(𝑥, 𝑦) is amixed generating function for the Euler character-
istic, ordinarywith respect to𝑛 and exponential with respect to𝑚. This implies that the symmetric
role of 𝑛 and 𝑚 is not reflected on (𝑥, 𝑦). We remark that reversing the orientation of all edges
does not change the path poset; hence, we have the equality 𝜒𝑛,𝑚 = 𝜒𝑚,𝑛. As a consequence, the
generating function 𝐹𝑚(𝑦) coincides with the generating function

𝐺𝑛(𝑥) =
∑
𝑖⩾0

𝜒𝑛,𝑖𝑥
𝑖,

obtained by considering bipartite complete graphs with a fixed number of sources. The gener-
ating function (𝑥, 𝑦) is, in fact, a (mixed) generating function of the Euler characteristic of
the chessboard complex, that is, the matching complex of (the underlying unoriented graph of)
𝙺𝑛,𝑚.
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12 of 26 CAPUTI et al.

F IGURE 3 The alternating graph 𝙰𝑛 on 𝑛 + 1 vertices. The edge between 𝑣𝑛−1 and 𝑣𝑛 can be oriented either
way depending on the parity of 𝑛.

F IGURE 4 A graph 𝙶, a subgraph 𝙷 (in blue) and its complement (in red). The boundary of 𝙷 in 𝙶 is
represented in green.

Remark 3.8. The number of multipaths of 𝙺𝑛,𝑚 is given by OEIS sequence A088699 [17], and has
generating function

 ′(𝑥, 𝑦) =
𝑒𝑥

1 − 𝑦 − 𝑥𝑦
.

Note the difference in sign for 𝑥𝑦 with respect to the statement of Theorem 3.7.

4 DYNAMICAL REGIONS AND COMPUTATIONS

In this section, we introduce a decomposition of directed graphs into subgraphs called dynamical
regions. We use minimal decompositions into dynamical regions to simplify the digraph com-
plexity, and thus, compute the homotopy type of the multipath complex. We provide the full
computations for the families of linear graphs, polygons and small grids.

4.1 Dynamical regions and modules

Let 𝙶 be a digraph, and let 𝙶′ ⩽ 𝙶 be a subgraph. We will use the following terminology. The com-
plement 𝐶𝙶(𝙶′) of 𝙶′ in 𝙶 is the subgraph of 𝙶 spanned by the edges in 𝐸(𝙶) ⧵ 𝐸(𝙶′). The boundary
𝜕𝙶𝙶

′ of 𝙶′ in 𝙶, or simply 𝜕𝙶′ when clear from the context, is defined as 𝜕𝙶𝙶′ = 𝑉(𝙶′) ∩ 𝑉(𝐶𝙶(𝙶′)),
see Figure 4 for an example.

Definition 4.1. Let 𝙶 be a connected digraph with at least one edge. A vertex 𝑣 ∈ 𝑉(𝙶) is called
stable if either the indegree or the outdegree of 𝑣 is zero, and unstable otherwise.

A digraph 𝙶 is connected if the CW-complex obtained by forgetting the directions of the edges
is connected. The following is the main definition of the section.

Definition 4.2. Let 𝙶 be a digraph. A dynamical region in 𝙶 is a connected subgraph 𝚁 ⩽ 𝙶, with
at least one edge, such that:

(a) all vertices in the boundary of 𝚁 are unstable in 𝙶, but stable in both 𝚁 and 𝐶𝙶(𝚁);
(b) no edge of 𝑅 belongs to any oriented cycle in 𝙶 which is not contained in 𝚁.
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ON THE HOMOTOPY TYPE OF MULTIPATH COMPLEXES 13 of 26

Adynamical region is called stable if all its non-boundary vertices are stable. Similarly, a dynam-
ical region is called unstable if all its non-boundary vertices are unstable, and at least one vertex
is unstable.

Remark 4.3. The non-empty intersection of two dynamical regions, say 𝚁 and 𝚂, still satisfies (a)
and (b). In particular, each connected component of 𝚁 ∩ 𝚂 is still a dynamical region.

Observe that item (a) is equivalent to asking that, for each vertex 𝑣 ∈ 𝜕𝚁, all edges incident to
𝑣 belonging 𝐸(𝙶) ⧵ 𝐸(𝚁) have opposite orientation with respect to the edges in 𝚁 incident to 𝑣. We
will also say that the vertices in the boundary are coherent dandelions.

Definition 4.4. A dynamical module, shortly a module, 𝙼 of a digraph 𝙶 is a minimal
dynamical region.

For a digraph 𝙶, its associated cone is the digraph Cone(𝙶) with vertices 𝑉(𝙶) ∪ {𝑣0} and
edges 𝐸(𝙶) ∪ {(𝑣, 𝑣0) ∣ 𝑣 ∈ 𝑉(𝙶)}. Coning is a good way to produce modules which are not stable
dynamical regions — cf. Example 4.6 — for example, transitive tournaments.

Example 4.5. A dynamical region which is a dandelion subgraph is never a module, unless it is
of type 𝙳𝑛,0 (or 𝙳0,𝑛). In general, 𝙳𝑚,𝑛 splits as the union of two dynamical modules: one copy of
𝐷𝑚,0 and a copy of 𝐷0,𝑛.

Example 4.6. An alternating graph 𝙰𝑛 — cf. Figure 3 — is a module. More generally, a stable
dynamical region is a module (since each vertex has either outdegree or indegree 0).

Example 4.7. Consider the digraph 𝙶 in Figure 4. The subgraph in blue is not a dynamical
region of 𝙶, as it is not connected; its leftmost connected component is a module, as it is con-
nected, no edges are contained in any oriented cycles of 𝙶 and the 1-neighbourhoods of vertices
in its boundaries are coherent dandelions. The rightmost connected component instead is not a
module, because its only edge is contained in a directed cycle of 𝙶.

The following is straightforward from the definitions.

Lemma 4.8. The multipath complex of a stable dynamical region 𝚁 in 𝙶 is the matching complex of
the underlying unoriented graph of 𝚁.

For a digraph 𝙶, a decomposition into dynamical regions allows us to decompose themultipath
complex into smaller complexes. In fact, we have the following result.

Proposition 4.9. If 𝚁 ⩽ 𝙶 is a dynamical region, and we set 𝚂 ∶= 𝐶𝙶(𝚁), then we have the homotopy
equivalence

𝑋(𝙶) ≃ 𝑋(𝚁) ∗ 𝑋(𝚂)

between the associated multipath complexes.
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14 of 26 CAPUTI et al.

Proof. Observe that, if 𝚁 ⩽ 𝙶 is a dynamical region, then the vertices in the boundary of 𝚁 are
coherent dandelions. Let 𝙷 be a multipath of 𝙶; then 𝙷 ∩ 𝚁 and 𝙷 ∩ 𝚂 are multipaths in 𝚁 and
𝚂, respectively. Vice versa, if 𝙷 and 𝙷′ are multipaths of 𝚁 and 𝚂, respectively, then 𝙷 ∪ 𝙷′ is a
multipath of 𝙶 as no edges of 𝚁 are contained in any oriented cycle of 𝙶 and the edges in the
boundary compose. As a consequence, the path poset of 𝙶 is isomorphic to the path poset of the
disjoint union of 𝚁 and 𝚂.
The multipath complex of 𝙶 can now be identified with the multipath complex of the disjoint

union 𝚁 ⊔ 𝚂. To conclude, observe that themultipath complex of the disjoint union of two directed
graphs is homotopic to the join of the multipath complexes — compare [15, Definition 2.16] and
[9, Remark 3.2]. □

Lemma 4.10. For each edge 𝑒 ∈ 𝐸(𝙶), there exists a unique dynamical module of 𝙶 containing 𝑒.

Proof. The statement follows fromRemark 4.3; taking the intersection of all the dynamical regions
in 𝙶 containing the edge 𝑒. This satisfies (a) and (b) in Definition 4.2, and it is connected. It is also
unique by construction, which concludes the proof. □

Observe that the construction of the (unique) dynamical module containing a subset 𝑆 of edges
of 𝙶 can be performed iteratively. In fact, this is achieved by repeatedly applying the following
steps:

(1) for each edge 𝑒 in 𝑆, add to 𝑆 all the edges 𝑒′ of 𝙶with target 𝑡(𝑒′) = 𝑡(𝑒) or source 𝑠(𝑒′) = 𝑠(𝑒);
(2) for each edge 𝑒 in 𝑆 contained in a coherent cycle Γ of 𝙶, add to 𝑆 all the edges 𝑒′′ with 𝑒′′ ∈ Γ.

As a corollary, we get the following.

Theorem 4.11. We have a unique (up to re-ordering) decomposition of 𝙶 into dynamical modules
𝙼1, … , 𝙼𝑘 , and

𝑋(𝙶) ≃ 𝑋(𝙼1) ∗⋯ ∗ 𝑋(𝙼𝑘).

Furthermore, this decomposition can be found algorithmically.

Proof. Fix an edge 𝑒 of 𝙶. This is contained in a unique module 𝙼𝑒, and 𝑋(𝙶) ≃ 𝑋(𝙼𝑒) ∗ 𝑋(𝐶𝙶(𝙼𝑒))
by Proposition 4.9. Now, we can proceed iteratively, by considering 𝐶𝙶(𝙼𝑒) en lieu of 𝙶. This pro-
vides the desired decomposition, and since this decomposition is given by the unique modules
containing each edge in 𝙶, uniqueness follows. □

In particular, we have that if one of the modules in the decomposition of 𝙶 has a contractible
multipath complex, then 𝑋(𝙶) is contractible (and hence has trivial reduced cohomology).

4.2 Multipath complexes of polygonal graphs

In this section, we apply Theorem 4.11 to compute the homotopy type of multipath complexes of
linear and polygonal graphs; here, by polygonal graph,wemean any oriented (i.e. no bi-directional
edges) graph whose underlying undirected graph is a cycle. We first need a definition.
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ON THE HOMOTOPY TYPE OF MULTIPATH COMPLEXES 15 of 26

F IGURE 5 A polygonal graph on 𝑛 edges with (at least) two vertices that are neither sources nor sinks (in
blue). The dashed line shows the separation between the two modules.

Definition 4.12. The size of a dynamical region is the number of its non-boundary vertices.

Lemma 4.13. Let 𝙿 be a polygonal graph with at least one stable vertex. If 𝙿 has an unstable region
of size at least two, then 𝑋(𝙿) is contractible.

Proof. The presence of an unstable region 𝑆 with at least two non-boundary vertices implies,
since 𝙿 is not coherently oriented, that we can take as a module any edge between two
non-boundary vertices in 𝑆. This implies that 𝑋(𝙿) is homotopy equivalent to a cone, hence
contractible. □

Proposition 4.14. Let 𝙿 be a polygonal graph with 𝑛 vertices. If 𝙿 has no unstable vertices, then 𝑛 is
even and

𝑋(𝙿) ≃

⎧⎪⎪⎨⎪⎪⎩
𝑆𝑘−1 ∨ 𝑆𝑘−1 if 𝑛 = 3𝑘,

𝑆𝑘−1 if 𝑛 = 3𝑘 + 1,

𝑆𝑘 if 𝑛 = 3𝑘 + 2.

In particular, the associatedmultipath complex is always homotopy equivalent to a wedge of spheres.

Proof. If there are no unstable vertices, then the orientation on 𝙿 is alternating, which implies that
the number of vertices is even. Therefore, the multipath complex coincides with the matching
complex, see Lemma 4.8. The result then follows from [14, Proposition 5.2] which shows that the
matching complex of the cycle with 𝑛 vertices is either a sphere or the wedge of two spheres,
whose dimension depends only on the number of vertices modulo 3. □

By the previous results, we might assume that the considered polygonal graph 𝙿 has unstable
regions of size at most one, and at least one unstable region. The unstable vertices can be used to
split 𝙿 into modules which are alternating linear graphs — cf. Figure 5. More precisely, we have
the following result.
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16 of 26 CAPUTI et al.

F IGURE 6 Decomposition into dynamical modules of 𝙸𝑛 × 𝙸1.

Proposition 4.15. Let 𝙿 be a polygonal graphwith at least one stable vertex, and no unstable regions
of size greater than one. Denote by 𝓁1, … ,𝓁𝑘 the size of the stable regions, then

𝑋(𝙿) ≃ 𝑋(𝙰𝓁1+2) ∗ ⋯ ∗ 𝑋(𝙰𝓁𝑘+2),

where 𝙰𝑛 is the alternating linear graph illustrated in Figure 3. In particular, 𝑋(𝙿) is contractible if
𝓁𝑖 = 3𝑠 − 1, for some 𝑖 and some integer 𝑠, and otherwise

𝑋(𝙿) ≃ 𝑆

⌈
𝓁1−1
3

⌉
∗ ⋯ ∗ 𝑆

⌈
𝓁𝑘−1
3

⌉
.

Proof. The unstable vertices are the boundary of certain modules. These modules, which cor-
respond to stable regions, are alternating linear graphs with as many vertices as the size of the
corresponding stable region, plus two (given by the unstable vertices bounding the region). By
Lemma 4.8 and [14, Proposition 4.6], the multipath complex of an alternating graph 𝙰𝑟 with
𝑟 + 1 vertices is contractible if and only if 𝑟 = 3𝑠 + 1, while it is homotopy equivalent to 𝑆⌈(𝑟−1)∕3⌉
otherwise. The statement follows. □

We conclude by observing that the same reasoning used to determine 𝑋(𝙿) works almost ver-
batim for linear graphs. In particular, one can obtain a precise description of the homotopy type
of 𝑋(𝙻) for each linear graph 𝙻, which can be used to recover [9, Theorem 1.1].

4.3 Multipath complexes of small grids

The aim of this subsection is to compute the homotopy type of multipath complexes of small
grids of type 𝙻 × 𝙸𝑚, where 𝙻 is a linear graph and 𝙸𝑚 a coherent linear graph. By [8, Exam-
ple 4.20], the multipath cohomology groups of coherent linear graphs are trivial. We compute
here the homotopy type of 𝑋(𝙸𝑛 × 𝙸𝑚).

Proposition 4.16. Let 𝑛,𝑚 be non-negative integers, then

𝑋(𝙸𝑛 × 𝙸𝑚) ≃

⎧⎪⎨⎪⎩
∗ if 𝑛,𝑚 ≠ 1

𝑆𝑛 if 𝑚 = 1
𝑆𝑚 if 𝑛 = 1

.

Proof. The case 𝑛 or𝑚 equal to 0 is covered in [8, Example 4.20]. Assume that𝑚 = 1, the case 𝑛 =
1 being analogous. The decomposition into dynamical modules of 𝙸𝑛 × 𝙸1 is shown in Figure 6.
The simplicial complex 𝑋(𝙸𝑛 × 𝙸1) is then homotopy equivalent, by virtue of Theorem 4.11, to

an iterated join:

𝑋(𝙸𝑛 × 𝙸1) ≅ 𝑋(𝙰2 ⊔ 𝙰3 ⊔⋯ ⊔ 𝙰3 ⊔ 𝙰2) ≃ 𝑋(𝙰2)
∗2 ∗ 𝑋(𝙰3)

∗(𝑛−1).
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ON THE HOMOTOPY TYPE OF MULTIPATH COMPLEXES 17 of 26

F IGURE 7 Part of the decomposition of 𝙸𝑛 × 𝙸𝑚 into modules; in blue an 𝙰2 component, in red an 𝙰4
component.

F IGURE 8 A caterpillar graph 𝙶𝑛(0, 1,𝑚3, … ,𝑚𝑛−2, 1, 0) = 𝙶𝑛−2(2,𝑚3, … ,𝑚𝑛−2, 2).

As 𝑋(𝙰2) ≃ 𝑋(𝙰3), and their geometric realisation is the zero-dimensional sphere, we get 𝑋(𝙸𝑛 ×
𝙸1) ≃ 𝑆

𝑛.
Assume now both 𝑛,𝑚 ⩾ 2. Then, up to reversing all the orientations, we get the graph illus-

trated in Figure 7. In particular, in the decomposition into dynamical modules, there is a module
which is isomorphic to 𝙰4; hence, 𝑋(𝙸𝑛 × 𝙸𝑚) is homotopy equivalent to 𝑋(𝙰4) ∗ 𝑌, where 𝑌 =
𝑋(𝐶(𝙰4))— see Proposition 4.9. As the multipath complex 𝑋(𝙰4) is contractible, we get that also
𝑋(𝙸𝑛 × 𝙸𝑚) is contractible, concluding the proof. □

Remark 4.17. By Proposition 4.16, although the homotopy type of 𝙸𝑛 is trivial, products of type
𝙸𝑛 × 𝙸1 yield topological spheres. This implies that we cannot expect a Künneth-type formula for
multipath cohomology.

Now, we consider another simple, yet interesting case: 𝙰𝑛 × 𝙸𝑚. Firstly, we recall that a tree is
an undirected graph in which every two vertices are connected by exactly one path. A caterpillar
graph 𝙶𝑛(𝑚1, … ,𝑚𝑛) is a tree consisting of a path on 𝑛 vertices 𝑣1, … , 𝑣𝑛, such that every vertex
𝑣𝑖 is connected to exactly 𝑚𝑖 vertices not on the path. Furthermore, all vertices not on the paths
are leaves. An example of caterpillar graphs is given in Figure 8. Note that the homotopy type of
matching complexes of caterpillar graphs has been determined in [16, Theorem 5.13].
Weneed the homotopy types ofmatching complexes of some specific types of caterpillar graphs;

namely, caterpillar graphs of type 𝙶2𝑛+1(0, 1, 0… )with a single leg at each vertex in even position,
and 𝙶𝑛(1, 0, 1, … ). For 𝑘 ⩾ 1, let 𝐿𝑘(𝑎1, … , 𝑎𝑘) denote the sum

𝐿𝑘(𝑎1, … , 𝑎𝑘) =

𝑘∑
𝑖=1

𝑎𝑖 +
∑

𝑙=2,…,𝑘,
1⩽𝑖1<𝑖2<⋯<𝑖𝑙⩽𝑘

(𝑖2 − 𝑖1)(𝑖3 − 𝑖2)⋯ (𝑖𝑙 − 𝑖𝑙−1)𝑎𝑖1𝑎𝑖2 ⋯𝑎𝑖𝑙 .

The homotopy types of matching complexes of caterpillar graphs are then given as follows.
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18 of 26 CAPUTI et al.

F IGURE 9 Part of the decomposition of 𝙰𝑛 × 𝙸2 into dynamical modules.

Theorem 4.18 [16, Theorem 5.16]. Consider the caterpillar graph
𝙶2𝑘−1(𝑚1, 0,𝑚2, 0, … ,𝑚𝑘−1, 0,𝑚𝑘) for 𝑘 ∈ ℕ, 𝑚𝑖 > 0. Then, the homotopy type of the associated
matching complex is given by

𝑀(𝙶2𝑘−1(𝑚1, 0,𝑚2, 0, … ,𝑚𝑘−1, 0,𝑚𝑘)) ≃
⋁

𝐿𝑘(𝑎1,…,𝑎𝑘)

𝑆𝑘−1,

where 𝑎𝑖 = 𝑚𝑖 − 1 for 𝑖 = 1, … , 𝑘.

A straightforward application of Theorem 4.18 is the following computation.

Lemma 4.19. Consider the caterpillar graph 𝙶𝑠(1, 0, 1, … ) on 𝑠 ⩾ 2 central vertices, endowed with
the alternating orientation as illustrated in Figure 9 (blue part). Then, the homotopy type of the
multipath complex is given by

𝑋(𝙶𝑠(1, 0, 1, … )) ≃

{
𝑆
𝑠
2
−1 𝑠 even,

∗ otherwise,

and it is either contractible or a sphere.

Proof. When 𝑠 is even, the caterpillar graph 𝙶𝑠(1, 0, 1, … ) can be seen as the caterpillar graph
𝙶𝑠−1(1, 0, 1, … , 1, 0, 2) on 𝑠 − 1 central vertices. The𝑚1,… ,𝑚𝑘 appearing in the statement of The-
orem 4.18 are, in this case, all equal to 1. When 𝑠 is odd, the sequence (𝑎1, … , 𝑎𝑠) is just the
sequence (0, … , 0). When 𝑠 is even, we have that (𝑎1, … , 𝑎𝑠−1) is the sequence (0, … , 0, 1). There-
fore, for 𝑠 odd 𝐿(0, … , 0) = 0, whereas for 𝑠 even 𝐿(0, … , 0, 1) = 1. The statement now follows from
Theorem 4.18. □

The computation of the homotopy types of matching complexes of caterpillar graphs is usually
complicated; when the strings have a predictable pattern of zeros, computations might be carried
out by looking at the 𝐿𝑘 polynomials. For example, we have the following computation, needed
later, whose proof cannot be directly derived from Theorem 4.18.

Lemma 4.20. Assume 𝑡1 = 1, 𝑡𝑖 = 0 for each 𝑖 such that 𝑘 > 𝑖 > 1, and 𝑡𝑘 ∈ {0, 1}. Then,

𝐿𝑘(𝑡1, … , 𝑡𝑘) =

{
𝑘 + 1 𝑡𝑘 = 1

1 𝑡𝑘 = 0
,

for all 𝑘 > 3.
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ON THE HOMOTOPY TYPE OF MULTIPATH COMPLEXES 19 of 26

Proof. The statement follows, using the relation [16, Equation (1)], by induction. □

Set 𝚂1 ∶= 𝙶2(2, 0) = 𝙶1(3) and let 𝚂𝑛 ∶= 𝙶2𝑛−1(2, 0, 1, 0, … , 0, 1, 0, 2) be the caterpillar graph
with a single leg at each internal vertex in odd position, endowed with an alternating orientation
(i.e. all vertices are either sources or sinks). Let 𝙲𝑛 be the caterpillar graph 𝙶𝑛+1(2, 0, 1, 0, 1, …)
where 0 and 1 alternate along the sequence, endowed with an alternating orientation; note that
we have 𝚂𝑛 = 𝙲2𝑛−1.

Lemma 4.21. We have the following homotopy equivalence:

𝑋(𝙲𝑛) ≃ 𝑀(𝙶𝑛+1(2, 0, 1, 0, 1, …)) ≃

{
𝑆𝑘−1 𝑛 = 2𝑘 − 2⋁𝑘+1 𝑆𝑘−1 𝑛 = 2𝑘 − 1

,

where𝑀(𝙶) denotes the matching complex. In particular, 𝑋(𝙲𝑛) is a wedge of spheres.

Proof. The alternating orientation on 𝙲𝑛 implies that 𝙲𝑛 is a stable dynamical region; hence,
by Lemma 4.8, we have the homotopy equivalence 𝑋(𝙲𝑛) ≃ 𝑀(𝙶𝑛+1(2, 0, 1, 0, 1, …)) with the
matching complex. Then, the statement follows directly from Theorem 4.18 and Lemma 4.20. □

We can now compute the homotopy type of the multipath complex of grids 𝙰𝑛 × 𝙸𝑚.

Proposition 4.22. Let 𝑛,𝑚 be positive integers, then

𝑋(𝙰𝑛 × 𝙸𝑚) ≃ 𝑀(𝙶𝑛+1(1, … , 1))
∗(𝑚−1) ∗ 𝑋(𝙰𝑛 × 𝙸1).

In particular,𝑋(𝙰𝑛 × 𝙸𝑚) is contractible if𝑛 is even, and a sphere of dimension (𝑚 − 1)
𝑛+1

2
+ 𝑛when

𝑛 is odd.

Proof. The product 𝙰𝑛 × 𝙸𝑚 has a decomposition into dynamical modules featuring 𝑚 −
1 copies of caterpillar graphs of type 𝙶𝑛+1(1, … , 1), and two copies of caterpillar graphs of
type 𝙶𝑛+1(1, 0, 1, … ), all with alternating orientations — see also Figure 9. By Lemma 4.8
and Theorem 4.11, 𝑋(𝙰𝑛 × 𝙸𝑚) decomposes as 𝑀(𝙶𝑛+1(1, … , 1))𝑚−1 ∗ 𝑋(𝙰𝑛 × 𝙸1). By [16, Corol-
lary 5.12], 𝑀(𝙶𝑛+1(1, … , 1)) is contractible when 𝑛 is even, and a sphere otherwise, hence
𝑀(𝙶𝑛+1(1, … , 1))

∗(𝑚−1) is contractible when 𝑛 is even, and a sphere otherwise.
Observe that 𝑋(𝙰𝑛 × 𝙸1) is homotopic to 𝑀(𝙶𝑛(1, 0, 1, … , 2)) ∗ 𝑀(𝙶𝑛(1, 0, 1, … , 2)) when 𝑛

is odd, and homotopic to 𝑀(𝙶𝑛+1(1, 0, 1, … , 1)) ∗ 𝑀(𝚂𝑛
2
) when 𝑛 is even. By Lemma 4.19,

𝑀(𝙶𝑛+1(1, 0, 1, … , 1)) is contractible, and 𝑀(𝙶𝑛(1, 0, 1, … , 2)) ∗ 𝑀(𝙶𝑛(1, 0, 1, … , 2)) is a sphere of
dimension 2𝑛−1

2
+ 1 = 𝑛, hence 𝑋(𝙰𝑛 × 𝙸1) is contractible when 𝑛 is even, and a sphere when 𝑛

is odd. □

We proceed with the computation of the (homotopy type of the) multipath complexes of gen-
eral small grids of type 𝙻 × 𝙸1, for a linear digraph 𝙻. We may assume 𝙻 ≠ 𝙸𝑛, 𝙰𝑛, since we already
analysed these cases. Assume first that 𝙻 decomposes into an unstable dynamical region of posi-
tive size, followed by another linear graph 𝙻′. In other words, we have a coherent linear graph 𝙸𝑛
(𝑛 − 1 being the size of the unstable dynamical region) followed by an alternating linear graph
𝙰𝑚, and so on, — see also Figure 10.
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20 of 26 CAPUTI et al.

F IGURE 10 Linear graph consisting of a graph 𝙸3 followed by 𝙰2.

Proposition 4.23. Consider the graph 𝙻 on 𝑛 + 𝑚 − 1 vertices given by a coherent linear graph 𝙸𝑛
followed by an alternating graph 𝙰𝑚. Then, the homotopy type of 𝑋(𝙻 × 𝙸1) depends on the parity of
𝑚 as follows:

𝑋(𝙻 × 𝙸1) ≃

{⋁𝑞(𝑚) 𝑆𝑛+𝑚+3 𝑚 even,⋁𝑚+3
2
𝑞(𝑚+1) 𝑆𝑛+𝑚+3 𝑚 odd,

where 𝑞(𝑚) = 2
𝑚+2
2 .

Proof. By Theorem 4.11, we can decompose 𝙻 × 𝙸1 into modules: one copy of 𝙰2, (𝑛 − 2) copies of
𝙰3 and two caterpillar graphs 𝙲1 and 𝙲2, oriented as illustrated in Figure 10. Hence, the homotopy
type of 𝑋(𝙻 × 𝙸1) is given by:

𝑋(𝙻 × 𝙸1) ≃ 𝑋(𝙰2) ∗ 𝑋(𝙰3)
∗(𝑛−2) ∗ 𝑋(𝙲1) ∗ 𝑋(𝙲2),

where 𝙲1 = 𝙶𝑚+3(1, 0, 0, 1, 0, …), while 𝙲2 = 𝙶𝑚+1(2, 0, 1, 0, 1, …). (Note that for 𝑚 = 0, 𝑋(𝙲1) =
𝑋(𝙰3) and 𝑋(𝙲2) = 𝑋(𝙰2), which is coherent with our computations for 𝙸𝑛 × 𝙸1.) While the pre-
cise homotopy type of the matching complexes of the caterpillar graphs 𝙶𝑚+3(1, 0, 0, 1, 0, …) and
𝙶𝑚+1(2, 0, 1, 0, 1, …) depend on the parity of 𝑚, in any case, they are wedges of spheres. By [16,
Theorem 5.13], we have

𝑋(𝙲1) ≃ 𝑀(𝙶𝑚+3(1, 0, 0, 1, 0, …)) ≃

𝑠(𝑚)⋁
𝑆

⌈
𝑚+3

2

⌉
,

where 𝑠(𝑚) = 2⌊𝑚+32 ⌋. Directly from Lemma 4.21, we have

𝑋(𝙲2) ≃ 𝑀(𝙶𝑚+1(2, 0, 1, 0, 1, …)) ≃

{
𝑆𝑘−1 𝑚 = 2𝑘 − 2,⋁𝑘+1 𝑆𝑘−1 𝑚 = 2𝑘 − 1.

The statement now follows from the properties of joins and wedges of spheres. □

More generally, given any oriented linear graph 𝙻, one can decompose it into joins of multi-
path complexes of caterpillar graphs endowed with alternating orientations. The next proposition
follows.

Proposition 4.24. If 𝙻 is a linear graph, then 𝙻 × 𝙸1 decomposes into dynamical modules that are
caterpillar graphs (with alternating orientations).

Proof. We proceed by induction on the number of edges 𝑛. If 𝙻𝑛 is a linear graph on 𝑛 edges, the
statement holds true for 𝙻0, and it is easy to prove for 𝙻1 = 𝙸1.We nowanalysewhat happens to the
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ON THE HOMOTOPY TYPE OF MULTIPATH COMPLEXES 21 of 26

F IGURE 11 First case: an edge is glued to 𝙻𝑛 in a coherent way.

F IGURE 1 2 Second case: an edge is glued to 𝙻𝑛 in a non-coherent way.

grid 𝙻𝑛 × 𝙸1 when adding an (oriented) edge, obtaining 𝙻𝑛+1 × 𝙸1. Up to reversing the orientation
of all edges in our grid, we can restrict to two different cases, as illustrated in Figures 11 and 12.
The blue edges and the green edges in both figures belong to different dynamical modules of

𝙻𝑛 × 𝙸1; these are both, by the inductive hypothesis, caterpillar graphs with an alternating orien-
tation. In the case illustrated in Figure 11, the module decomposition of 𝙻𝑛+1 × 𝙸1 is obtained as
follows; one module is obtained by adding the red edge to the module of 𝙻𝑛 × 𝙸1 featuring the
blue edges (yielding a caterpillar graph with an alternating orientation), all the other modules of
𝙻𝑛 × 𝙸1 remain unaffected, and, in addition to those, there is a further caterpillar graph of type 𝙰2
(in brown) appearing in the decomposition.
Similarly, in the second case (see Figure 12), the dark green edges are added to the module of

𝙻𝑛 × 𝙸1 in light green, and the isolated red edge is added to the blue module of 𝙻𝑛 × 𝙸1; the other
modules of 𝙻𝑛 × 𝙸1 remain unaffected, concluding the proof. □

Corollary 4.25. If 𝙻 is a linear graph, then 𝑋(𝙻 × 𝙸1) is either contractible or a wedge of spheres.

Proof. Since the homotopy type of themultipath complex of a caterpillar graphwith an alternating
orientation is a wedge of spheres, the result follows from Proposition 4.24. □

We remark that reasoning as in the proof of Proposition 4.24, it is possible to compute iteratively
the number and dimension of spheres appearing in 𝑋(𝙻 × 𝙸1).

5 MULTIPATH COMPLEXES OF TRANSITIVE TOURNAMENTS

The techniques developed in the previous section are ineffective in the case of alternating digraphs
or transitive tournaments. Transitive tournaments, in fact, are dynamical modules themselves,
and do not admit a smaller decomposition. Nonetheless, using techniques borrowed from combi-
natorial topology, we can yet compute their homotopy types. In this section, we show that if 𝚃 is a
transitive tournament, then 𝑋(𝚃) has the homotopy type of a wedge of spheres or is contractible.
Recall that 𝚃𝑛 denotes the transitive tournament on 𝑛 + 1 vertices, that is, the directed graph

on vertices 0, … , 𝑛 with directed edges (𝑖, 𝑗) for all 𝑖<𝑗; denote by 𝑋(𝚃𝑛) its associated multipath
complex. The main result of the section is the following.

Theorem 5.1. The multipath complex 𝑋(𝚃𝑛) of the transitive tournament 𝚃𝑛 is either contractible,
or homotopy equivalent to a wedge of spheres.
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22 of 26 CAPUTI et al.

Remark 5.2. Thematching complex of the complete graph on 7 vertices has 3-torsion [5] (compare
with [22, Theorem 1.3 and Remark 1.4]). By Theorem 5.1, the multipath complex of a transitive
tournament is contractible or a wedge of spheres. On the other hand, the matching complex can
be seen as a subcomplex of themultipath complex— see also [7, Section 4]. Thismeans that, in the
case of transitive tournaments, the cells added to the matching complex to obtain the multipath
complex kill the torsion.

The proof of Theorem 5.1 will heavily rely on the following lemma.

Lemma 5.3 [3, Lemma 10.4(ii)]. Suppose that𝑋 is a simplicial complex which can be written as the
union of subcomplexes 𝑋0,… , 𝑋𝑛 such that:

(a) 𝑋𝑖 is contractible for each 𝑖 = 0, … , 𝑛, and
(b) 𝑋𝑖 ∩ 𝑋𝑗 ⊆ 𝑋0 for all 𝑖, 𝑗 ∈ {1, .., 𝑛}.

Then, we have a homotopy equivalence

𝑋 ≃

𝑛⋁
𝑖=1

Σ(𝑋0 ∩ 𝑋𝑖)

where Σ(𝑋0 ∩ 𝑋𝑖) denotes the topological suspension of (𝑋0 ∩ 𝑋𝑖).

We remark that, by convention, Σ∅ = 𝑆0, hence the suspension on the empty set is the zero-
dimensional sphere.
For a digraph 𝙶, the digraph suspensionΣ(𝙶) is defined as the digraphwith vertices𝑉(𝙶) ∪ {𝑝, 𝑞},

with 𝑝, 𝑞 ∉ 𝑉(𝙶), and edge set the edges of 𝙶 along with edges (𝑣, 𝑝) and (𝑣, 𝑞), for all 𝑣 in𝑉(𝙶). A
straightforward application of Lemma 5.3 allows us to compute the homotopy type of the digraph
suspension in some cases.

Proposition 5.4. Let 𝙶 be a connected digraphwith at least one vertex 𝑣 of outdegree 0 and non-zero
indegree. Then, there is a homotopy equivalence

𝑋(Σ𝙶) ≃ Σ𝑋(𝙶)

between the multipath complex of the digraph suspension and the topological suspension of the
multipath complex of 𝙶.

Proof. Let 𝑝, 𝑞 be the added vertices of 𝑉(Σ𝙶) ⧵ 𝑉(𝙶). Consider the decomposition of the sim-
plicial complex 𝑋(Σ𝙶) given as follows; 𝑋0 is the subcomplex of 𝑋(𝙶) spanned by all multipaths
containing the edge (𝑣, 𝑝), and 𝑋1 the subcomplex of 𝑋(𝙶) spanned by all multipaths containing
the edge (𝑣, 𝑞). Since the outdegree of 𝑣 in 𝙶 is zero, it is clear that 𝑋0 ∪ 𝑋1 = 𝑋(Σ𝙶). Moreover,
both 𝑋0 and 𝑋1 are contractible. The intersection 𝑋0 ∩ 𝑋1 is the multipath complex of 𝙶, hence
𝑋(Σ𝙶) ≃ Σ𝑋(𝙶). □

Before proceeding with the proof of Theorem 5.1, we need to introduce some more notation.
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ON THE HOMOTOPY TYPE OF MULTIPATH COMPLEXES 23 of 26

F IGURE 13 The incomplete tournament 𝚃(3)5 .

F IGURE 14 Decomposition of 𝙶 = 𝚃(3)5 .

Definition 5.5. Consider the transitive tournament 𝚃𝑛 on vertices 0, … , 𝑛. For indices 0 ⩽ 𝑖1 <
⋯ < 𝑖𝑘 ⩽ 𝑛, denote by 𝚃

(𝑖1,…,𝑖𝑘)
𝑛 the subgraph of 𝚃𝑛 obtained by removing all edges of type (𝑖𝑗, ℎ)

for 𝑗 = 1,… , 𝑘 and ℎ ⩾ 𝑖𝑗 . We call such subgraphs incomplete tournaments.

Note that𝚃(𝑛)𝑛 = 𝚃𝑛. Further examples of incomplete tournaments can be found inFigures 13–15.
Figure 14 illustrates a decomposition of 𝑋(𝚃(3)5 ) into subcomplexes.

Lemma 5.6. The multipath complex of each incomplete tournament of a transitive tournament on
2, 3 or 4 vertices is empty, contractible or a wedge of spheres.

Proof. The assertion follows by direct computation; see Figure 15. The only non-trivial case is
𝚃
(2)
3
, which is the digraph Σ𝚃1. Now, by Proposition 5.4, it follows that 𝑋(𝚃(2)

3
) is contractible,

concluding the computation. □

The proof of Theorem 5.1 is now a straightforward application of the following lemma:

Lemma 5.7. If 𝐺 is an incomplete tournament, then the multipath complex 𝑋(𝐺) is empty,
contractible or a wedge of spheres.

Proof. We proceed by induction, the cases 𝑛 = 1, 2, 3 provided in Lemma 5.6.
Assume by induction that all incomplete tournaments in 𝚃ℎ, for ℎ ⩽ 𝑛, are contractible or

wedges of spheres. Let 𝙶 be an incomplete tournament in 𝚃𝑛+1, say 𝙶 = 𝚃
𝑖1,…,𝑖𝑠
𝑛+1

. Without loss of
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24 of 26 CAPUTI et al.

F IGURE 15 Small transitive tournaments and the corresponding incomplete tournaments.

generality, we can assume that 𝑖1 <⋯ < 𝑖𝑠−1 < 𝑛 + 1; otherwise, 𝙶 is an incomplete tournament
in 𝚃𝑛 ⊆ 𝚃𝑛+1, inwhich case covered by the inductive assumption.Observe thatwe can also assume
that 𝑖1, … , 𝑖𝑠−1 are not the full set 1, … , 𝑛; otherwise, 𝙶would be a sink graph, hence its associated
multipath complex would be a wedge of zero-dimensional spheres.
The strategy is to decompose 𝙶 into smaller pieces as by Lemma 5.3. Let {𝑗0, … , 𝑗𝑛−𝑠} be the set

{0, 1, … , 𝑛} ⧵ {𝑖1, … , 𝑖𝑠}, with 𝑗0 <⋯ < 𝑗𝑛−𝑠. Set 𝑋𝑡 to be the multipath complex associated to the
subgraph 𝙶𝑡 spanned by all edges which appear in amultipath featuring (𝑗𝑛−𝑠−𝑡, 𝑛 + 1) in 𝙶—see
also Figure 14. Observe that the simplicial complexes𝑋0,… , 𝑋𝑛−𝑠 cover𝑋(𝙶). Furthermore, all the
simplicial complexes 𝑋𝑖 are contractible; in fact, the edge (𝑗𝑛−𝑠−𝑡, 𝑛 + 1) is a module in 𝙶𝑖 (hence,
𝑋𝑖 is a cone). The intersection𝑋𝑖 ∩ 𝑋𝑗 is contained in𝑋0: allmultipathswhich are both in 𝙶𝑖 and 𝙶𝑗
are multipaths in 𝙶 which do not feature the vertex 𝑛 + 1, and the vertex 𝑗𝑛−𝑠 has outdegree 0 in
𝙶 (and there are no oriented cycles in 𝚃𝑛+1). Therefore, by Lemma 5.3, the homotopy type of 𝑋(𝙶)
is given by wedges of suspensions of 𝑋0 ∩ 𝑋𝑖 . To conclude, we want to show that 𝑋0 ∩ 𝑋𝑖 is the
multipath complex of an incomplete transitive tournament in 𝚃𝑛. This would conclude the proof
by an inductive argument.
The complex 𝑋0 ∩ 𝑋𝑖 is given by all multipaths in 𝙶 not featuring edges of type (𝑗𝑛−𝑠, 𝑝) and

(𝑗𝑛−𝑠−𝑖, 𝑞), for all 𝑝 and 𝑞, nor edges with target 𝑛 + 1. Hence, all such multipaths can be seen as
multipaths in 𝚃𝐼𝑛 where 𝐼 is a re-ordering of the set {𝑖1, … , 𝑖𝑠, 𝑗𝑛−𝑠−𝑖, 𝑗𝑛−𝑠}. Vice versa all multipaths
in 𝚃𝐼𝑛 appear as multipaths in 𝑋0 ∩ 𝑋𝑖 . Therefore, the complex 𝑋0 ∩ 𝑋𝑖 can be identified with the
multipath complex of 𝚃𝐼𝑛, concluding the proof. □

Remark 5.8. Multipath complexes of transitive tournaments are generally not of the same dimen-
sion. In fact, computations show that 𝚃6 has non-trivial cohomology in degrees 2 and 3, where
H2(𝑋(𝚃6)) ≃ ℤ

6 and H3(𝑋(𝚃6)) ≃ ℤ15.

Remark 5.9. It can be shown that𝑋(𝚃𝑛) is shellable, and thus awedge of spheres. Using a recursive
coatom ordering, see [27, Section 4.2], where the coatoms of the top element (i.e. the maximal
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ON THE HOMOTOPY TYPE OF MULTIPATH COMPLEXES 25 of 26

elements) are ordered lexicographically by their edges, and all other orderings follow canonically,
since for every other element, the downset is a Boolean lattice. It may be possible to use this
approach to derive a formula for the homology classes of 𝑋(𝚃𝑛). However, we were unable to do
so, and leave this as an open problem.

If we consider the complete digraph 𝙺𝑛, where all edges are bidirectional, we no longer get
wedges of spheres. In fact, for 𝑛 = 3, the multipath complex 𝑋(𝙺𝑛) is 2 disconnected 1-spheres.
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