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Abstract

We provide a deep connection between elastic drifted Brownian motions and inverses to tempered
ubordinators. Based on this connection, we establish a link between multiplicative functionals and
ynamical boundary conditions given in terms of non-local equations in time. Indeed, we show that the
ultiplicative functional associated to the elastic Brownian motion with drift is equivalent to a functional

ssociated with non-local boundary conditions of tempered type. By exploiting such connections we write
ome functionals of the drifted Brownian motion in terms of a simple (positive and non-decreasing)
rocess, the inverse of a tempered subordinator. In our view, such a representation is useful in many
pplications and brings new light on dynamic boundary value problems.
2023 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we focus on elastic drifted Brownian motions and their governing equations
quipped with fractional boundary conditions of the form

DΦ
t ϕ(t, 0) + c1 ϕ(t, 0) = c2 (1.1)

where the constants c1, c2 will be better specified later and DΦ
t is a non-local operator

haracterized by the Bernstein symbol Φ ([35]). The constants c1, c2 and the symbol Φ depend
n the drift. In particular, for λ ≥ 0, Φ(λ) =

√
λ+ η−

√
η where η ≥ 0 will be written in terms

f the drift of the elastic Brownian motion. This symbol Φ introduces the so-called tempered
ractional derivative with tempering parameter η (see Section 3).
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A first relevant fact is that the tempered fractional derivative turns out to be strictly related
ith the infinitesimal generator of the drifted Brownian motion. However, the condition (1.1) is
ore than a surprising relation involving this generator. Indeed, we provide a deep connection

etween the time-dependent boundary condition and the multiplicative functional associated
ith the elastic drifted Brownian motion. In particular, (1.1) is associated with an equivalent

unctional which is written in terms of tempered subordinators and their inverses.
A family M = {Mt }t≥0 of real-valued random variable is called multiplicative functional (of

given Markov process) provided: i Mt is progressively measurable; i i Mt+s = Mt (Ms ◦θt ) =

Ms(Mt ◦ θs) a.s. for each t, s ≥ 0 (θα is the translation operator); i i i 0 ≤ Mt ≤ 1 for all t ≥ 0
[6, Chapter III]). It is well known that two multiplicative functionals are equivalent if and
nly if they generate the same semigroup ([6, Proposition 1.9]). In particular, the multiplicative
unctional uniquely characterizes the semigroup ([6, Theorem 3.3]). Further on we will consider
quivalence between multiplicative functionals in the sense of (1.6).

Let us consider the drift ±µ with µ ≥ 0. For the elastic drifted Brownian motion X̃±µ
=

X̃±µ
t }t≥0 on [0,∞) we can write

Ex [ f (X̃±µ
t )] = Ex [ f (X̂±µ

t ) M±µ
t ] (1.2)

where X̂±µ
= {X̂±µ

t }t≥0 is a reflecting Brownian motion on [0,∞) with drift ±µ and M±µ
t

is the multiplicative functional associated with the elastic condition. Formula (1.2) gives the
probabilistic representation of the solution to⎧⎨⎩

∂u
∂t

= ±µ
∂u
∂x

+
∂2u
∂x2 , x ≥ 0, t > 0

u(0, x) = f (x), x ≥ 0,
µ ≥ 0 (1.3)

ith (elastic) boundary condition
∂u
∂x

(t, 0) = c u(t, 0), t > 0 (1.4)

here c > 0. The problem to find a probabilistic representation for the solution to (1.1)
nd (1.3) can be addressed as in [16] via time change. Non-local boundary value problems
an be considered as useful models for motions on trap domains (with irregular boundaries).
he solutions to the problems (1.3)–(1.4) ans (1.3)–(1.1) obviously differ except in case of a
onstant initial datum f . Here, we are interested in the equivalence between (1.1) and (1.4) for
he Cauchy problem (1.3), as discussed in Remarks 6.2 and 6.7. Thus, we focus on the lifetime
f X̃±µ and we provide some connections between the fractional boundary condition and the
orresponding process, that is a non negative and non decreasing process which is an inverse
o a tempered subordinator with symbol Φ with tempering parameter η = (±µ/2)2.

.1. Main results and plan of the work

First we provide some deep relations between elastic drifted Brownian motion and an inverse
o a tempered subordinator. Then, we define a new functional M

±µ

t written in terms of an
nverse to a tempered subordinator and we prove the equivalence between the multiplicative
unctionals M±µ

t and M
±µ

t . This permits a very fruitful change between the elastic drifted
Brownian motion and a non-decreasing process (the inverse to a subordinator) in studying the
problem (1.3)–(1.4).

In Sections 2 and 3 we introduce the tempered subordinator H and its inverse L together
ith non-local operators in time.
2
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In Section 4 we introduce the elastic drifted Brownian motion and the following equivalences
n law for the drifted Brownian motion X±µ

= {X±µ
t }t≥0 on R (Theorems 4.1 and 4.2), ∀ t > 0,

max
0≤s≤t

Xµ
s

d
= L t and max

0≤s≤t
X−µ

s
d
= L t ∧ Tµ (1.5)

here Tµ is an independent exponential random variable.
In Section 5 we discuss an intuitive example in case of zero drift. This corresponds to the

ase of stable subordinator (indeed η = 0) and therefore, the Caputo derivative is involved.
In Section 6 we confirm the relations discussed above in (1.5) in terms of boundary value

roblems. Indeed, the process L t (associated to the problem (2.19)) is related with X±µ (in
terms of formulas (1.5)) as well as the condition (1.4) is related with (1.1) in the domain
D(G±µ). In particular, we are concerned with the solution to the problem⎧⎨⎩

∂u
∂t

= ±µ
∂u
∂x

+
∂2u
∂x2 , x ≥ 0, t > 0

u(0, x) = 1(x ≥ 0), x ≥ 0,
µ ≥ 0

under the boundary conditions (1.1) or (1.4). We show that such solutions coincide, that is

u(t, x) = Ex [M±µ
t ] = Ex [M

±µ

t ] (1.6)

here M±µ
t has been given in (1.2) and M

±µ

t is a new functional, defined in Corollaries 3 and
4, which can be associated with an inverse to a tempered subordinator. The constants c1, c2

n (1.1) characterize the interplay between the inverse to a subordinator and the exponential
andom variable. The non-local boundary condition (1.1) takes the following forms:

- In case of positive drift µ (Theorems 6.1, 6.2 and 6.3),

D
1
2 ,µ
t u(t, 0) + (µ+ c) u(t, 0) = µ, t > 0; (1.7)

- In case of negative drift −µ (Theorems 6.4 and 6.5),

D
1
2 ,µ
t u(t, 0) + c u(t, 0) = 0, t > 0; (1.8)

- In case of zero drift µ = 0 (as a by-product of the previous theorems),

D
1
2
t u(t, 0) + c u(t, 0) = 0, t > 0, (1.9)

here DΦ
t = D

1
2 ,µ
t denotes the tempered Caputo derivative defined in Section 3 for Φ(λ) =

λ+ η−
√
η. First we show that (1.4) is equivalent to (1.7) and (1.8). That is, M

±µ

t , associated
with (1.1), can be considered in place of the multiplicative functional M±µ

t associated with the
elastic condition (1.4) for a drifted Brownian motion. Moreover, we show that M

±µ

t can be
ritten in terms of the inverse L t of a tempered stable subordinator and the exponential r.v.

Tµ for which P(Tµ > x) = e−µx and T0 = ∞ with probability 1, c2 = µ in (1.7) introduces
Tµ with µ > 0 whereas, c2 = 0 in (1.8) introduces T0. If µ = 0, then we obtain the elastic

rownian motion with elastic coefficient c0. The corresponding boundary condition is therefore
iven by (1.9).

Such results highlight the following facts.

(i) Equivalence between boundary conditions: the generator of a drifted Brownian motion
appears to be intimately connected with the (time) tempered fractional derivative;
3
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(ii) Equivalence between functionals: the elastic drifted Brownian motion and the tempered
subordinator are intimately related. In particular, some functionals of X̃±µ can be written
in terms of L t with tempering parameter η = (±µ/2)2 and Tµ with µ ≥ 0.

For the reader’s convenience we recall the processes we deal with:
X̂±µ is a reflected drifted Brownian motion on [0,∞) with drift ±µ

X̃±µ is an elastic drifted Brownian motion on [0,∞) with drift ±µ

X±µ is a drifted Brownian motion on R with drift ±µ

.2. Motivations and discussion of the results

Our aim is to underline the connection between the non-local dynamic boundary value
roblem with the well-known Cauchy problem involving the drifted Brownian motion. The
lternative formulation of the problem is therefore given in terms of the conditions (1.7)–
1.9). Such a formulation relies on the fact that the multiplicative functional characterizing
he semigroup can be also described by an operator in time. Actually, we obtain that time-
ependent (or dynamical) boundary conditions characterize uniquely such a class of functionals.
he equivalence between the boundary conditions (1.1) and (1.4) for the Cauchy problem

1.3) gives a deep connection between drifted Brownian motions and tempered subordinators.
hus, the interesting connections between the processes X±µ

t , L t and L t ∧ Tµ turn out to be
vidently useful in applications, simulation and numerical methods. Moreover, our non-local
ynamic problem can be regarded as the starting model for a very general motion in higher
imensions. Roughly speaking, a possible reading of the dynamic boundary value problem on
domain Ω ∪ ∂Ω can be given by considering two evolution equations respectively for the

ulk Ω and the surface ∂Ω . Such evolution equations can be associated with a motion on Ω

nd a motion on ∂Ω . Thus, non-local dynamic boundary value problems should be related
ith non-homogeneous surfaces and the motion on such surfaces turns out to be affected by

ome anomalies. The results in the present work give some key ideas on this direction by
ealing with the simplified case ∂Ω = {0}. Recent results concerning dynamical boundary value
roblem with the Caputo–Dzherbashian derivative have been given in [15,16] where a further
pplication has been considered. In particular, non-local operators in the boundary conditions
ntroduce new models for motions on irregular domains. The irregularity of the domain is due
o the boundary in which the process may spend an infinite (mean) amount of time. The present
ork has been inspired by [37,38] where the authors have obtained a beautiful characterization
f the sticky Brownian motion in terms of a time-dependent boundary condition (interesting
iscussion on Sticky Brownian motion can be found also in [19,23,26,33]). We have been
lso moved by the fundamental awareness that fractional powers of operators (and therefore
on-local operators) are strictly related with their local higher-order counterparts, when they
xist (as discussed in [14] and many other interesting papers). For example, in Section 5 we
rovide some heuristic justification for the fact that a representation of −∂x u on the boundary
an be given by (∂t )1/2u if ∂t u = ∂2

xx u, see e.g. (5.6). For the non-local case we are dealing
nstead with an object like Φ(∂t ). The case Φ(λ) = λ corresponds to the ordinary derivative,
n this case the dynamical boundary condition has a clear physical interpretation (see [21]).
otice that we do not consider non-local Cauchy problems or non-local initial value problems

as in [1,18,29,30,32]). Our problems can be reffered to as non-local boundary value problems.
4
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2. Non-local operators and random times

Let Ht be a subordinator with symbol Φ for which we have

E[e−λHt ] = e−tΦ(λ), λ > 0, t > 0 (2.1)

where the symbol Φ is a Bernstein function uniquely characterized by the measure Π as follows

Φ(λ) =

∫
∞

0
(1 − e−sλ)Π (ds). (2.2)

In this context, the measure Π is termed Lévy measure of Ht . Both processes are random
imes in the sense that they are non-negative and non-decreasing. The subordinator Ht may
ave jumps, thus the inverse L t defined as

L t := inf{s > 0 : Hs > t}, t > 0 (2.3)

s a continuous process with non-decreasing paths. We also assume that H0 = 0 and L0 = 0.
The relation P0(L t < s) = P0(Hs > t) holds true. We denote by ℓ and h the density of L t and
Ht respectively, that is

P0(L t ∈ ds) = ℓ(t, s) ds and P0(Ht ∈ ds) = h(t, s) ds.

s usual, Px denotes the probability measure of the process started at x . We notice that, by
he definition of inverse process, L t is the first exit time of Ht from the interval (0, t). Since
Ht has strictly increasing paths with jumps (we are not including the case Π ((0,∞)) < ∞,
the Poisson case for instance) the process L t has continuous paths with plateaus. This is an
interesting aspect introducing the concept of delayed and rushed motions for time-changed
processes [9].

Moreover L t has λ-potentials

E0

[∫
∞

0
e−λt f (L t ) dt

]
=

Φ(λ)
λ

∫
∞

0
e−s Φ(λ) f (s) ds. (2.4)

We provide the following result which will be useful further on.

roposition 2.1. Let θ > 0 be fixed. Let Φ be the symbol defined in (2.2). Then, for x ≥ 0,∫
∞

0
e−λt E0

[
1 − e−θ (L t −x)

θ
1(L t ≥x)

]
dt =

1
λ

1
θ + Φ(λ)

e−x Φ(λ), λ > 0 (2.5)

nd ∫
∞

0
e−λt E0[e−θ (L t −x)1(L t ≥x)] dt =

Φ(λ)
λ

1
θ + Φ(λ)

e−x Φ(λ), λ > 0 (2.6)

old true. Moreover

E
[∫

∞

0
e−λt f (L t ∧ Tµ) dt

]
=

Φ(λ) + µ

λ
f̃ (Φ(λ) + µ) (2.7)

where f̃ (λ) =
∫

∞

0 e−λs f (s) ds.

Proof. First we notice that∫ t

h(s, x)dx = P0(Hs ≤ t) = P0(L t ≥ s) =

∫
∞

ℓ(t, x)dx, t > 0, s > 0.

0 s

5
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Formula (2.5) can be obtained by considering the Tonelli’s theorem and the fact that

1
λ

1
θ + Φ(λ)

e−x Φ(λ)
=

1
λ

∫
∞

0
e−w(θ+Φ(λ))−xΦ(λ) dw

=
[
by (2.1)

]
=

1
λ

∫
∞

0
e−wθE0[e−λHw+x ] dw

=

∫
∞

0
e−λt

∫
∞

0
e−wθ

[∫ t

0
h(w + x, s)ds

]
dw dt

=

∫
∞

0
e−λt

∫
∞

0
e−wθ P0(Hw+x ≤ t) dw dt

=

∫
∞

0
e−λt

∫
∞

0
e−wθ P0(L t ≥ w + x) dw dt

=

∫
∞

0
e−λt E0

[∫
∞

0
e−wθ 1(L t −x≥w) dw

]
dt

=

∫
∞

0
e−λt E0

[(∫ L t −x

0
e−wθdw

)
1(L t ≥x)

]
dt

=

∫
∞

0
e−λt E0

[
1 − e−θ(LΦ

t −x)

θ
1(L t ≥x)

]
dt, λ > 0.

Formula (2.6) immediately follows from (2.4).
We write Φ = Φ(λ) for short. By applying (2.4) we get

E
[∫

∞

0
e−λt f (L t ∧ Tµ) dt

]
(2.8)

=

∫
∞

0
e−λt [E ( f (Tµ)1(L t > Tµ)

)
+ E

(
f (L t )1(L t ≤ Tµ)

)]
= E

[
f (Tµ)E

[∫
∞

0
e−λt 1[Tµ,∞)(L t )dt

⏐⏐⏐Tµ]]+ E
[

E
[∫

∞

0
e−λt f (L t )1[0,Tµ](L t )dt

⏐⏐⏐Tµ]]
=

Φ

λ
E
[

f (Tµ)
∫

∞

0
e−Φs1[Tµ,∞)(s)ds +

∫
∞

0
e−Φs1[0,Tµ](s) f (s)ds

]
=

Φ

λ
E
[

f (Tµ)
e−ΦTµ

Φ
+

∫ Tµ

0
e−Φs f (s)ds

]
=

1
λ

∫
∞

0
µe−(µ+Φ)z f (z) dz +

Φ

λ

∫
∞

0
µe−µz

∫ z

0
e−Φs f (s)ds

=
µ

λ
f̃ (µ+ Φ) +

Φ

λ

∫
∞

0
e−(µ+Φ)s f (s) ds

=
µ+ Φ

λ
f̃ (µ+ Φ). □

The non-local operator associated with Ht is given by (Bochner–Phillips)

− Φ(−∂x )ψ(x) :=

∫
∞

(ψ(x) − ψ(x − s))Π (ds), x ≥ 0. (2.9)

0

6
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Indeed, from (2.2), the Laplace transform of the right-hand side of (2.9) gives(∫
∞

0
(1 − e−λs)Π (ds)

)
ψ̃(λ) = Φ(λ) ψ̃(λ)

or a function ψ compactly supported on the positive real line. Thus, in the Laplace analysis,
he symbol Φ turns out to be the multiplier of the operator (2.9). Formula (2.9) recalls the
efinition of fractional derivative given by Marchaud, thus we may refer to (2.9) as a Marchaud
type) operator (the definition coincides in case of stable subordinator, that is for Φ(λ) = λα).
n interesting discussion about the comparison between fractional derivatives has been given

n [20]. The Riemann–Liouville (type) operator is therefore written for a general symbol Φ as

DΦ
x ψ(x) :=

d
dx

∫ x

0
ψ(x − s)Π (s) ds

here Π (s) = Π ((s,∞)) is the tail of Π . We can check that the symbol Φ still plays the role
f multiplier for this operator, that is∫

∞

0
e−λxDΦ

x ψ(x) dx = Φ(λ) ψ̃(λ). (2.10)

We now introduce the time fractional operator we will deal with further on. Let N > 0 and
n ≥ 0. Let Nω be the set of (piecewise) continuous function on [0,∞) of exponential order
ω such that |ψ(t)| ≤ Neωt . Denote by ψ̃ the Laplace transform of ψ . Then, we define the
operator DΦ

t : Nω ↦→ Nω as the Caputo (type) operator for which∫
∞

0
e−λtDΦ

t ψ(t) dt = Φ(λ) ψ̃(λ) −
Φ(λ)
λ
ψ(0), λ > ω. (2.11)

his immediately introduces the definition

DΦ
t ψ(t) := DΦ

t ψ(t) − Π ((t,∞))ψ(0) = DΦ
t (ψ(t) − ψ(0)) (2.12)

here we have used formula (2.10) and the well-known fact ([5, Section 1.2])∫
∞

0
e−λt Π ((t,∞)) dt =

Φ(λ)
λ
. (2.13)

he identity DΦ
t ψ(0) = Π ((t,∞))ψ(0) follows from the definition of DΦ

t . Since ψ is
exponentially bounded, the integral ψ̃ is absolutely convergent for λ > ω. Since Φ(λ)ψ̃(λ) −

Φ(λ)/λψ(0) =
(
λψ̃(λ) − ψ(0)

)
Φ(λ)/λ, then DΦ

t can be written as a convolution involving
the ordinary derivative ψ ′ and the tail Π ((t,∞)) iff ψ ∈ Nω ∩ C((0,∞),R+) and ψ ′

∈ Nω.
In particular,

DΦ
t ψ(t) =

∫ t

0
ψ ′(t − s)Π (s) ds. (2.14)

y Young’s inequality for convolution and formula (2.13) we have that∫
∞

0
|DΦ

t ψ |
p
dt ≤

(∫
∞

0
|ψ ′

|
pdt
)(

lim
λ↓0

Φ(λ)
λ

)p

, p ∈ [1,∞) (2.15)

where

lim
Φ(λ)

=
dΦ

(λ)
⏐⏐⏐⏐ (2.16)
λ↓0 λ dλ λ=0

7
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is finite only in some cases. The limit (2.16) will be considered again further on and it is related
with the mean value of the subordinator Ht . Indeed, from (2.1),

E0[Ht ] = t
dΦ
dλ

(λ)
⏐⏐⏐⏐
λ=0
.

We notice that when Φ(λ) = λ (that is we deal with the ordinary derivative Dt ) the equality
holds true (2.15) and Ht = t , L t = t almost surely. Some further representations of DΦ

t in
terms of the tails of a Lévy measure Π ((t,∞)) have been given in the recent works [12,39]
and previously in [27].

Assuming that

lim
λ↓0

Φ(λ)
λ

< ∞, (2.17)

ormula (2.15) says that we are looking for ψ ∈ C((0,∞)) with ψ ′
∈ L1((0,∞)). Thus, the

inimal requirement is that ψ ∈ AC((0,∞)). As usual, we denote by AC((0,∞)) the set of
bsolutely continuous functions on (0,∞). In particular, ψ ∈ AC((0,∞)) if ψ ∈ C((0,∞))
nd ψ ′

= ϱ ∈ L1((0,∞)), that is we can write

ψ(t) = ψ(0) +

∫ t

0
ϱ(s)ds. (2.18)

Let us denote by Cb((0,∞)) the set of smooth and bounded functions on (0,∞). In
rder to give a clear picture about the operator (2.12), under the assumption (2.17), we now
ddress the problem to find ρ(t, x) such that ρ ∈ C1,1((0,∞), (0,∞); (0,∞)) and ∀ x > 0,
ρ(·, x) ∈ AC((0,∞)) solving⎧⎪⎨⎪⎩

DΦ
t ρ(t, x) = −

∂ρ

∂x
(t, x), t > 0, x > 0,

ρ(0, x) = f (x) ∈ Cb([0,∞)),
ρ(t, 0) = 0, t > 0.

(2.19)

hen, there is a (classical) solution

ρ ∈ C1,1(AC((0,∞)), (0,∞); (0,∞)) (2.20)

ith probabilistic representation

ρ(t, x) = E0[ f (x − L t )1(t<Hx )]

here L t is an inverse to a subordinator Ht with symbol Φ. We can easily verify such
results. Let us denote by ρ̂(t, ξ ) =

∫
∞

0 e−ξ xρ(t, x) dx and ρ̃(λ, x) =
∫

∞

0 e−λtρ(t, x) dt the
aplace transforms w.r. to the variables x and t respectively. Let ˆ̃ρ(λ, ξ ) be the double Laplace

ransform. With (2.11) at hand, from the problem (2.19) we write

Φ(λ)ˆ̃ρ(λ, ξ ) −
Φ(λ)
λ

f̂ (ξ ) = −ξˆ̃ρ(λ, ξ )

from whichˆ̃ρ(λ, ξ ) =
Φ(λ)
λ

1
ξ + Φ(λ)

f̂ (ξ ), λ > 0, ξ > 0.

rom Proposition 2.1 we get that

ρ(t, x) =

∫ x

f (y) ℓ(t, x − y) dy = E0[ f (x − L t )1(L t<x)].

0

8
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The Laplace machinery gives uniqueness. The probabilistic representation follows by consid-
ering (2.3). As we can see ∀ x > 0, ρ(·, x) ∈ L1((0,∞)) only under (2.17). This agrees with
2.15). If the strong assumption (2.17) does not hold, then we have to ask for

ϱ′(t − s)Π (s) ∈ L1((0, t)), ∀ t > 0.

Despite the minimal requirement (2.20) we notice that ℓ(·, x) ∈ C∞((0,∞)) for any x > 0.
t suffices to consider, for a given x > 0, the function

Rn(λ) = λn
∫

∞

0
e−λtℓ(t, x) dt = λn Φ(λ)

λ
e−xΦ(λ), λ > 0, n ∈ N0.

ince Φ is a Bernstein function with Φ(0) = 0, we get that

lim
λ→0

Rn(λ) = 0, lim
λ→∞

Rn(λ) = 0, ∀ n ∈ N.

his also proves that ℓ(·, x) /∈ L1((0,∞)) for any x > 0 except in case (2.15) is in force.
Furthermore, we only notice that the kernel ℓ can be uniquely determined as the solution to

he problem⎧⎪⎨⎪⎩
DΦ

t ℓ(t, x) = −
∂ℓ

∂x
(t, x), t > 0, x > 0,

ℓ(0, x) = δ(x)
ℓ(t, 0) = Π ((t,∞)),

(2.21)

here δ is the Dirac function and the derivative (2.9) is considered in place of (2.12). The
aplace technique can be applied as before by considering the formula (2.13). The problem

2.21) has been investigated in [39]. In the literature very often these equations are confused
n the sense that, only the first one can be written in terms of the Caputo type derivative.
ometimes the boundary condition is omitted. Below we are interested in a kind of fractional
elaxation equation based on (2.19).

. Tempered fractional calculus

From now on we focus on the symbol

Φ(λ) =
√
λ+ η −

√
η, λ ≥ 0 (3.1)

corresponding to the Lévy measure

Π (ds) =
1
2

1
√
π

e−ηs

s
1
2 +1

ds, η > 0. (3.2)

e recall that the corresponding subordinator Ht is the tempered (also termed relativistic)
table subordinator of order 1

2 . The measure of a tempered stable processes can be obtained
y multiplying the Lévy measure of an α-stable process by a decreasing exponential. The

parameter η > 0 controls the level of tempering. The effect is to reduce the intensity of
large jumps keeping the structure of small jumps. The resulting process has finite moments
of all order and at the same time, it has an infinite amount of (small) jumps in any finite time
interval. For these reasons these models are widely studied, see e.g. [10] for applications in
mathematical finance or [31] and references therein for applications to hydrology problems.
Anomalous diffusion with tempered operators were considered in [11], while a general theory
for tempering stable processes was presented in [34].
9
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Fig. 1. Sample paths of a stable subordinator (η = 0) and a tempered stable subordinator (η > 0).

Fig. 1 compares the sample paths of a stable subordinator and of a tempered stable
subordinator, showing that the presence of the tempering parameter reduces the number of
larger jumps.

The Caputo (type) tempered derivative is given by

D
1
2 ,η
t ψ(t) =

∫ t

0
ψ ′(s)Π (t − s)ds (3.3)

here Π (z) = Π ((z,∞)) is the tail of the Lévy measure Π given in (3.2). From (2.15), we
obtain thatD 1

2 ,η
t ψ


L1 ≤

1
√

2η
∥ψ ′

∥L1 (3.4)

hich may be of interest only if η ̸= 0. It is well known that, for η = 0,

ℓ(t, x) = 2e−
x2
4t /

√
4π t, t > 0, x > 0.

The symbol (3.1) for η = 0 introduces the following derivatives:

• the Riemann–Liouville derivative

D
1
2
t ψ(t) =

1
√
π

d
dt

∫ t

0

ψ(s)
√

t − s
ds

• the Caputo–Djrbashian derivative

D
1
2
t ψ(t) =

1
√
π

∫ t

0

ψ ′(s)
√

t − s
ds

where ψ ′
= dψ/ds.

We recall the λ-potential

E0

[∫
∞

e−λt f (L t ) dt
]

=

√
λ+ η −

√
η
∫

∞

e−s(
√
λ+η−

√
η) f (s) ds (3.5)
0 λ 0

10
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(which can be obtained as special case of the formula (2.4) by considering the Lévy measure
3.2)) and the following formula∫

∞

0
e−λtD

1
2 ,η
t ψ(t) dt = (

√
λ+ η −

√
η)ψ̃ −

1
λ

(
√
λ+ η −

√
η)ψ0 (3.6)

hich will be useful in the subsequent discussion. The interested reader can consult for
xample [3,17,31] for further discussions on this operator and tempered processes.

In the following we consider η =
µ2

4 as a tempering parameter. Thus in order to streamline
he notation as much as possible we write

D
1
2 ,µ
t ψ(t) = D

1
2 ,η
t ψ(t), with η =

µ2

4
, µ > 0 (3.7)

roposition 3.1. Let a, b be two positive constants. The unique continuous solution on the
nterval I ⊆ [0,∞) of the fractional tempered relaxation equation{

D
1
2 ,µ
t r (t) + a r (t) = b, t > 0

r (0) = r0 ∈ {0, 1}
(3.8)

s given by

r (t) =
b
a

P0(L t ≥ Ta) + r0 P0(L t < Ta)

where Ta is an exponential random variable (with parameter a) independent from L t which is
the inverse process with symbol (3.1).

If r0 = 1, then [0,∞) = I ∋ t ↦→ r (t) has the following properties:

(i) b > a ⇒ r (t) > 1;
(ii) b < a ⇒ r (t) < 1;

(iii) b = a ⇒ r (t) = 1.

If r0 = 0, then r (t) has the following properties:

(iv) b > a > 0 ⇒ ∃ tb : r (t) ≤ 1 if t ∈ I = [0, tb);
(v) b ≤ a ⇒ r (t) ≤ 1, t ∈ I = [0,∞).

Moreover, ∀ a, b, r0 the solution t ↦→ r (t) is monotone with r (0) = r0 and r (t) → b/a as
→ ∞.

roof. From (3.6), by Laplace techniques we obtain

r̃ (λ) =

∫
∞

0
e−λtr (t) dt, λ ≥ 0

=
1
λ

b + r0
√
λ+ η −

√
η

a +
√
λ+ η −

√
η

=
b
λ

1
a +

√
λ+ η −

√
η

+ r0

√
λ+ η −

√
η

λ

1
a +

√
λ+ η −

√
η
.

e recall that Φ(λ) =
√
λ+ η −

√
η is a completely monotone function for which Φ(0) = 0

and Φ(λ) → ∞ as λ → ∞. We immediately see that r (t) is a non-negative solution.
11
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From Proposition 2.1 with Φ(λ) =
√
λ+ η −

√
η we write

r (t) =
b
a

E0[1 − e−aL t ] + r0 E0[e−aL t ]

=
b
a

P0(L t ≥ Ta) + r0 P0(L t < Ta)

=r0 +

(
b
a

− r0

)
P0(L t ≥ Ta).

Let us consider r0 = 1. For a = b, it follows that r (t) = P0(Ta ∈ [0,∞)) = 1 ∀ t > 0.
oreover, there exist ε1 = ε1(t) ≥ 0 and ε2 = ε2(t) ∈ [0, 1) such that, ∀ t > 0

r (t) =

{
1 + ε1, if b > a
1 − ε2, if b < a . (3.9)

Since P0(0 = L0 ≤ Ta) = 0 we recover the initial condition r (0) = 1.
Now we focus on r0 = 0.

(b < a): Since r (t) = (b/a)P0(L t ≥ Ta), r (t) ≤ 1 follows immediately for b < a. Indeed,

r̃ (λ) ≤
1
λ

a
a +

√
λ+ η −

√
η

≤
1
λ

;

(b = a): If b = a and a → 0, then r (t) → 0 ∀ t ≥ 0. If b = a and a → ∞, then r (t) → 1
∀ t > 0. We simply have r̃ (λ) ≤ 1/λ from which r (t) ≤ 1 for any t with b = a ≥ 0;

(b > a): Let b < ∞. We have that, r (t) → 1 − E0[e−bL t ] ≤ 1 uniformly in [0,∞) as a → b.
The crucial point is given by the fact that r (t) → bE0[L t ] pointwise in [0,∞) as
a → 0 (recall that L0 = 0). In this case, r (t) ≤ 1 iff E0[L t ] ≤ 1/b with b > 0. Let us
denote by L0

t the process L t with η = 0. Since λβ is α-Hölder continuous on [0,∞)
only for β = α we obtain that

√
λ+ η−

√
λ ≤

√
η which implies

√
λ+ η−

√
η ≤

√
λ.

The comparison between symbols and the fact that∫
∞

0
e−λt E0[L t ] dt =

1
λ

1
(
√
λ+ η −

√
η)

≥
1
λ

1
√
λ

=

∫
∞

0
e−λt E0[L0

t ] dt

says that E0[L t ] ≥ E0[L0
t ], t ≥ 0. From the fact that

E0[e−L0
t ] =

∑
k

(−1)k

k!
E0[(L0

t )k] equals
∑

k

(−
√

t)k

Γ (k/2 + 1)
= E 1

2
(−

√
t)

we get the well-known result

E0[L0
t ] =

√
t

Γ (1/2 + 1)

which implies E0[L0
t ] ≥ 1 for t ≥ π/4. Recall that L0

0 = L0 = 0. Thus, r (t) ≤ 1
only in some bounded domain [0, tb) ⊂ [0,∞).

The monotonicity of r (t) follows by considering that

r (t) = r0 + C(a, b, r0) P0(Ta ≤ L t ) = r0 + C(a, b, r0) P0(HTa ≤ t)

where we have used the relation (2.3). Since P0(HTa ≤ t) is a cumulative distribution function,
the result follows. □
12
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Recently fractional relaxation equations have been considered in [4]. The authors obtained
imilar results for b = 0 and µ < 1 involving the gamma random variable G with density
(G ∈ ds) = sµ−1/Γ (µ) e−sds, that is r (t) = P0(G > a1/µ t). Interesting discussions have
een made in the papers [2,27] and the pioneering work [28]. In [2,27] the properties of the
olutions to fractional relaxation equations in terms of complete monotone functions have been
nvestigated.

emark 3.1. For r0 = 1 the solution r (t) is monotone increasing or decreasing depending on
he ratio b/a, that is respectively b/a > 1 or b/a < 1. For r0 = 0 the solution r (t) is only
ncreasing.

emark 3.2. The initial datum r0 ∈ {0, 1} will be related with the fact that, for a given Markov
rocess and the corresponding multiplicative functional Mt we have M0 ∈ {0, 1}. Indeed, from
he relation Mt+s = Mt (Ms ◦ Mt ) we obtain M0 = M2

0 which implies that almost surely M0 is
ither 0 or 1.

. Elastic drifted Brownian motions

We introduce and study here the elastic drifted Brownian motion, for short we often write
DBM. We also write RBM meaning a reflecting Brownian motion. Let us consider the process

X̃µ
= {X̃µ

t }t≥0 on [0,∞) with generator (Gµ,c, D(Gµ,c)) where

Gµ,cϕ = µ
dϕ
dx

+
d2ϕ

dx2

and

D(Gµ,c) =
{
ϕ,Gµ,cϕ ∈ Cb((0,∞)) : ϕ′(0+) = c ϕ(0+)

}
.

or the sake of simplicity we only refer to Gµ, then from now on we write

Gµ = Gµ,c.

The constant c > 0 is termed elastic coefficient. The transition density of an elastic Brownian
motion with drift is given by

p(t, x, y) (4.1)

= e−
µ2
4 t e

µ
2 (y−x)

[
g(t, x − y) + g(t, x + y) − 2

(
c +

µ

2

) ∫ ∞

0
e(c+

µ
2 )wg(t, w + x + y)dw

]
or x ≥ 0, y > 0, t > 0, where g(t, z) = e−z2/4t/

√
4π t and c ≥ 0. See the Appendix for some

hints on the derivation of (4.1). In [25] the authors highlight an interesting connection between
the law of drifted elastic Brownian motions (4.1) and conditional sojourn times of a Brownian
motion on the positive half-axis. The solution to the Cauchy problem

∂t u = Gµu, u0 = f ∈ D(Gµ)

is written as

u(t, x) =

∫
∞

0
f (y)p(t, x, y)dy = Ex [ f (X̃µ

t )]

and the semigroup generated by (Gµ, D(Gµ)) has the probabilistic representation

Pµ f (x) = E [ f (X̂µ)Mµ] = E [ f (X̃µ)] (4.2)
t x t t x t

13
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where X̂µ
t is a drifted Brownian motion on [0,∞) reflected at 0 and Mµ

t is the multiplicative
functional associated with the Robin boundary condition. Let

Gλ(x, y) =

∫
∞

0
e−λt p(t, x, y) dt, x, y > 0

e the Green function and

Rλ f (x) =

∫
∞

0
e−λt Pµ

t f (x) dt =

∫
∞

0
Gλ(x, y) f (y) dy

e the resolvent associated to the EDBM. Detailed expressions are provided in the Appendix.

emark 4.1. We recall some basic facts which will be useful in the forthcoming discussion.
Let G0 = ∆ be the infinitesimal generator for some Brownian motion on an open subset E

f Rd . The probabilistic representation of the solution to

∂w

∂t
= G0w, w0 = 1

ith some boundary conditions can be written as w(t, x) = Ex [Mt ] = Ex [e−At ] that is, in
erms of the multiplicative functional Mt or equivalently in terms of the corresponding additive
unctional At . For the Robin boundary condition (∂nw+cw)|∂E = 0, we have that Mt = 1(t<ζ )
here ζ is the lifetime of the process with generator (G, D(G)). The additive functional to be

onsidered is the local time γt . In particular,

w(t, x) = Ex [e−cγt ] =

∫
∞

0
e−cwPx (γt ∈ dw) = 1 −

∫
∞

0
(1 − e−cw) Px (γt ∈ dw) (4.3)

r equivalently

w(t, x) = Ex [1(t<ζ )] =

∫
∞

t
Px (ζ ∈ ds) = 1 −

∫ t

0
Px (ζ ∈ ds). (4.4)

It is well-known that Px (ζ > t) = Px (Tc > γt ) where Tc is an exponential random variable
ith parameter c > 0 independent from the local time γt on ∂E . The connection between

4.3) and (4.4) immediately emerges. Moreover γt equals in law the running maximum of a
rownian motion started at x = 0. Moreover, such an equivalence in distribution is maintained
ith the inverse to an 1/2-stable subordinator. Notice that, such an inverse process corresponds

o L t with η = (µ/2)2
= 0.

Our first results are concerned with the relation between the inverse to a tempered stable
ubordinator and the drifted (reflecting) Brownian motion together with its maximum and its
ocal time. These relations will be useful in the following in connection with the multiplicative
unctional associated to the EDBM. Results will differ if the underlying Brownian motion has
positive or negative drift. We study the two cases separately.
Remark on the notation. For the reader’s convenience, in the following discussion, we only

llow µ > 0, so that a positive drift will be denoted by µ and a negative drift by −µ.

.1. BM with positive drift, RBM with negative drift

In this section we study the case where the Brownian motion Xµ has positive drift µ > 0.
14
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Theorem 4.1. For the positively drifted Brownian motion Xµ with Xµ

0 = 0, we have that

∀ t > 0, max
0≤s≤t

Xµ
s

d
= L t (4.5)

here L is an inverse to a relativistic stable subordinator with symbol (3.1), η = (µ/2)2.

roof. Formula (4.5) can be shown by a Laplace transform argument. The distribution of the
aximum of a Brownian motion with drift µ is well-known. To the best of our knowledge, the

aw of the maximum has been obtained in [13,36] together with the joint law with its location.
or our purposes we refer to [24] (with some adaptation) and write

Px

(
max
0≤s≤t

Xµ
s > β

)
=

∫
∞

β

e−
(z−x)2

4t
√

4π t
e−

µ2t
4 −

µ
2 x
[
e
µ
2 z

+ e
µ
2 (2β−z)

]
dz , β > x . (4.6)

direct computation immediately shows that the Laplace transform of (4.6) is∫
∞

0
e−λt P0

(
max
0≤s≤t

Xµ
s > β

)
dt =

∫
∞

β

[
e
µ
2 z

+ e
µ
2 (2β−z)

] ∫ ∞

0
e
−

(
µ2
4 +λ

)
t e−

z2
4t

√
4π t

dt dz

(4.7)

=

∫
∞

β

[
e
µ
2 z

+ e
µ
2 (2β−z)

] e
−z

√
λ+

µ2
4

2
√
λ+

µ2

4

dz

=
e
−β

(√
λ+

µ2
4 −

µ
2

)

2
√
λ+

µ2

4

⎡⎣ 1√
λ+

µ2

4 +
µ

2

+
1√

λ+
µ2

4 −
µ

2

⎤⎦
=

1
λ

e
−β

(√
λ+

µ2
4 −

µ
2

)

here we used the well-known formula (A.12) recalled in the Appendix.
On the other hand, by letting θ → 0 in (2.6), we immediately see that for the inverse

empered subordinator with symbol (3.1), η =
µ2

4 , it holds that

∫
∞

0
e−λt P0(L t > β) dt =

1
λ

e
−β

(√
λ+

µ2
4 −

µ
2

)
(4.8)

thus proving the equality in distribution (4.5). □

Moreover we point out a further interesting connection between the tempered subordinator
and the local time of the drifted Brownian motion. First we introduce the process {Y θ,σ

t }t≥0 as
the unique strong solution to

dY θ,σ
t = −θ sgnY θ,σ

t + σdBt , Y θ,σ
0 = 0 (4.9)

where Bt is a standard Brownian motion, θ ∈ R and σ > 0 (see [22]). In the following√
2 and for brevity we define
we will restrict ourselves to the cases θ = ±µ/2, σ =

15
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Yµ
t := Yµ/2,

√
2

t , t ≥ 0. Denote with {γt (Yµ)}t≥0 the local time process of Yµ
= {Yµ

t }t≥0.
nalogously we define Y −µ

t := Y −µ/2,
√

2
t , t ≥ 0 and {γt (Y −µ)}t≥0 as the corresponding local

time.

Corollary 1. For the local time (at zero) of Yµ we have that

∀ t > 0, γt (Yµ) d
= L t . (4.10)

roof. In [22, Theorem 1] the authors prove the equality in distribution(
max
0≤s≤t

Xµ
s − Xµ

t , max
0≤s≤t

Xµ
s

)
d
=
(
|Yµ

t |, γt (Yµ)
)

(4.11)

The result follows from (4.5) and (4.11). □

In [22] the authors show that |Yµ
| constitutes a reflecting Brownian motion with drift −µ.

For µ = 0, the relation (4.10) agrees with the well-known equality in distribution between
maximum, local time and inverse to a 1/2-stable subordinator as described in Remark 4.1.
However, when the presence of the drift is assumed, a fundamental difference emerges. For
µ > 0, that is for η > 0, the inverse tempered subordinator is related to the local time of the
process Yµ instead of the local time of a Brownian motion with drift.

4.2. BM with negative drift, RBM with positive drift

We now consider the case where the underlying Brownian motion X−µ has negative drift
−µ < 0.

The result of Corollary 1 relates the distribution of the inverse of a tempered subordinator
with the distribution of Yµ, which is in turn related to a reflecting Brownian motion (RBM for
short) with negative drift. If one starts with a RBM with positive drift, i.e. by considering the
process Y −µ

= {Y −µ
t }t≥0 and its absolute value, the symmetry appears to break. In fact, while

the equality in distribution (4.11) still holds, relating the RBM with positive drift |Y −µ
| and the

local time γt (Y −µ) with a Brownian motion with negative drift X−µ and its maximum, these
processes are not directly related anymore to the inverse of a tempered stable subordinator. It
is instead necessary to introduce a “truncated version” of the inverse subordinator as in the
following theorem.

Theorem 4.2. For the negatively drifted Brownian motion X−µ with X−µ

0 = 0, we have that

∀ t > 0, max
0≤s≤t

X−µ
s

d
= L t ∧ Tµ (4.12)

here Tµ is an exponential r.v. (with parameter µ > 0) independent from L which is an inverse
o a relativistic stable subordinator with symbol (3.1), η = (−µ/2)2.

roof. We check that the Laplace transforms of the distribution of both sides of (4.12) coincide.
he Laplace transform of the distribution of the maximum (4.7) in this case becomes∫

∞

e−λt P0

(
max X−µ

s > β

)
dt =

1
e
−β

(√
λ+

µ2
4 +

µ
2

)
. (4.13)
0 0≤s≤t λ
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Note that (4.13) is now different from (4.8), where the tempering parameter cannot be
egative. This is why Theorem 4.1 does not apply in this case.

Now, by considering (4.8) and (4.13) we have that

∫
∞

0
e−λt P0

(
max
0≤s≤t

X−µ
s > β

)
dt =

1
λ

e
−β

(√
λ+

µ2
4 +

µ
2

)
= e−µβ 1

λ
e
−β

(√
λ+

µ2
4 −

µ
2

)
(4.14)

=

∫
∞

0
e−λt e−µβP0(L t > β) dt

=

∫
∞

0
e−λt gµ(β, t) dt , β > 0.

here gµ(β, t) = e−µβ P(L t > β). The quantity 1 − gµ(β, t) coincides with the distribution
unction of L t ∧ Tµ, where Tµ is an independent exponential random variable with parameter

and L t is assumed to start from zero. In fact, by independence,

P0(L t ∧ Tµ > β) = P(L t > β) E
(
1(Tµ>β)

)
(4.15)

hus by (4.13) the result is proved. □

orollary 2. For the local time (at zero) of Y −µ we have that

∀ t > 0, γt (Y −µ) d
= L t ∧ Tµ (4.16)

here Tµ is an independent exponential r.v. with parameter µ.

roof. By applying the same arguments as in the proof of Corollary 1 we can show that (4.16)
olds true. We stress the fact that Y −µ is the process such that |Y −µ

| is a RBM with positive
rift µ. □

Let us discuss the figures we enclose to our presentation. Fig. 2 shows some sample paths
f the processes Yµ and Y −µ as well as the corresponding reflecting processes |Yµ

| and
Y −µ

|. We see that in the case of the RBM positive drift, i.e. |Y −µ
|, the sample paths tend

to travel further off the barrier, whereas in the case of RBM with negative drift, i.e. |Yµ
|, the

sample path is constantly pushed towards the barrier. This gives an intuitive explanation of the
difference between the relations (4.10) and (4.16). In the second case since the process Y −µ

travels away from the barrier its local time at zero tends to stop increasing. This corresponds
to the fact that the local time in this case has the same distribution of a randomly truncated
inverse subordinator. Fig. 3 shows a comparison between the sample paths of an inverse
stable subordinator and the paths of the maximum of a drifted Brownian motion. In particular
Fig. 3(a) shows two sample paths of L t while Fig. 3(b) shows the same sample paths randomly
truncated with exponential random variables (blue horizontal lines), i.e. realizations of L t ∧Tµ.
Fig. 3(c) shows a sample path of a Brownian motion with positive drift and its running
maximum max0≤s≤t Xµ

s . The similarity with the sample paths in Fig. 3(a) illustrates the equality
in distribution proved in Theorem 4.1. Fig. 3(d) shows a Brownian motion with negative

drift and its maximum. Note that as the sample paths travel away from zero the maximum

17
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Fig. 2. Comparison of a sample paths of the solution to Eq. (4.9) and the corresponding RBM with drift.

tops increasing, exhibiting a behaviour similar to the paths in Fig. 3(b): this is the thesis of
heorem 4.2.

. Helpful intuitive introduction to fractional boundary conditions

Here we consider a particular and instructive case which gives an helpful and intuitive
nterpretation of the main result of Section 6. The proofs of the following statements have
een postponed in the Appendix.

Let us consider the generator (G0, D(G0)) of the reflected Brownian motion on [0,∞) with
lastic condition at x = 0 for which we have that

P0
t 1(x) =

∫
∞(

g(t, x − y) − g(t, x + y)
)

dy + 2
∫

∞

e−cwg(t, w + x) dw. (5.1)

0 0

18
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Fig. 3. Comparison of a sample path of an inverse tempered stable subordinator and the maximum of a Brownian
motion with drift.

First we observe that formula (5.1) has the following representation

P0
t 1(x) = 1 −

∫ t

0

x
s

g(s, x) ds + 2
∫

∞

0
e−cwg(t, w + x) dw =: F(t, x) (5.2)

n which the density of the lifetime ζ emerges as mentioned in Remark 4.1. Formula (5.2), in
urn, can be written by considering the non-negative and non-decreasing process At as

F(t, x) = 1 − P0(A−1
x ≤ t) + ex cE0[e−c At 1(At>x)], t ≥ 0, x ≥ 0 (5.3)

or which, at the boundary point x = 0, we get

−c At
F(t, 0) = E0[e ], t ≥ 0.

19
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The process A−1
t = inf{s ≥ 0 : As ≥ t} is the inverse to At . We have the following interesting

cases at the boundary point x = 0:

(i) At = γt is the Brownian local time and the usual condition writes

∂F
∂x

(t, 0) = c F(t, 0). (5.4)

The elastic condition (5.4) introduces exponential solutions.
(ii) At = L0

t is the inverse to a stable subordinator (of order α = 1/2, we use the superscript
and write L0 instead of L to underline that η = 0) and

D
1
2
t F(t, 0) = −c F(t, 0) (5.5)

whose solution is the Mittag-Leffler function

F(t, 0) = E 1
2
(−c

√
t).

The elastic condition (5.5) introduces solutions to relaxation equations.
(iii) The boundary condition

D
1
2
t F(t, 0) = −

∂F
∂x

(t, 0) (5.6)

holds true. Despite the fact that we lose the dependence from the elastic coefficient c, we
get information about the additive functional. Indeed, (5.6) is the governing equation of
L0, as explained for the solution of (2.21).

bviously γt
law
= L0

t and their sample paths are both positive and non decreasing with
0 = L0

0 = 0. Both conditions (5.4) and (5.5) give unique characterization of the boundary
ehaviour of the reflected Brownian motion at x = 0.

. Fractional boundary conditions

We discuss here the connection between the infinitesimal generators Gµ and G−µ and the
empered derivative of order 1/2. The order 1/2 seems to be naturally related to the fact that

G±µ is a second order operator (see for example [14]). The drift ±µ is related to the tempering
arameter η of the tempered derivative by means of the relation η = (±µ/2)2.

The tempered derivative can be associated with an inverse L t to a tempered subordinator
Ht with symbol Φ(λ) =

√
λ+ η −

√
η and η = (µ/2)2 as explained in Section 2, see the

problem (2.19). See also Section 3. Since this operator plays a relevant role in our analysis,
we underline the following fact which is a direct consequence of Proposition 3.1.

Lemma 1. For c, d ≥ 0, let us consider the equation

D
1
2 ,µ
t v(t) + (c + d)v(t) = d, t > 0

ith v(0) = 1. Then, there exists M
(µ,c,d)
t := g0(L t ) with t > 0 written in terms of a continuous

(monotone decreasing) transformation g0 of L t and such that v(t) = E[M
(µ,c,d)
t ]. In particular,

g0(L t ) =
d

+

(
1 −

d
)

e−(c+d)L t .

c + d c + d
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Proof. The non-local operator D
1
2 ,µ
t is associated with L t in terms of (2.19). From Propo-

ition 3.1, after an obvious change of notation, we obtain the representation g0(L t ) where g0

turns out to be a continuous function. Since v(0) = M
(µ,c,d)
0 = 1, we conclude that g(L t ) is

monotone decreasing according with Proposition 3.1 and Remark 3.2. □

The next theorems will show that we can set
x M

(µ,c,d)
t := gx (L t ) = 1 −

c
c + d

e−xd [1 − e−(c+d)(L t −x)1(L t ≥x)
]

with 0 M
(µ,c,d)
t = M

(µ,c,d)
t where L t is an inverse to a tempered stable subordinator. This

representation well agrees with (4.3) and (4.4).
Further on we consider v(t) = u(t, 0) and the boundary condition

D
1
2 ,µ
t u(t, 0) + (c + d)u(t, 0) = d, t > 0

or the solution u(t, x) of the problem we are interested in, where d = µ in the case of positive
rift and d = 0 otherwise. In particular we can write

u(t, x) = E[gx (L t )], t > 0, x ∈ [0,∞).

With some abuse of notation we write

E[x M
(µ,c,d)
t ] = Ex [M

(µ,c,d)
t ].

.1. The positively drifted Brownian motion

We focus on the function

u ∈ C1,2(AC(0,∞) × [0,∞), [0,∞))

olving⎧⎨⎩
∂u
∂t

= µ
∂u
∂x

+
∂2u
∂x2

u(0, x) = 1(x ≥ 0)
(6.1)

ith the boundary condition

D
1
2 ,µ
t u(t, 0) + (c + µ)u(t, 0) = µ, t > 0. (6.2)

Notice that we consider here the boundary condition (6.2) in place of
∂u
∂x

(t, 0) = c u(t, 0), t > 0. (6.3)

e observe that the condition (6.2) can be rewritten as∫ t

0
(Gµu)(t − s, 0)Π ((s,∞)) ds + µ u(t, 0) + c u(t, 0) = µ, t > 0

y following the definition (3.3). For u ∈ D(Gµ), we formally have

D
1
2 ,µ
t u(t, 0) +

µ+ c
c

∂u
∂x

(t, 0) = µ, t > 0

r equivalently∫ t

(Gµu)(t − s, 0)Π ((s,∞)) ds +
µ+ c ∂u

(t, 0) = µ, t > 0.

0 c ∂x
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Further on we will write 1̄(x) := 1(x ≥ 0) in order to streamline the notation.

heorem 6.1. Let us consider u = u(t, x) given in (4.2). Then, the following statements hold:

(i) u is the unique (classical) solution to (6.1)–(6.3);
(ii) u is the unique (classical) solution to (6.1)–(6.2);

(iii) u has the probabilistic representation

u(t, x) = 1 −
c

µ+ c
e−xµE0

[(
1 − e−(µ+c)(L t −x)) 1(L t ≥x)

]
(6.4)

where L is an inverse to a relativistic stable subordinator with symbol (3.1), η = (µ/2)2.

emark 6.1. The semigroup Pµ
t 1̄(x) has the probabilistic representation (6.4). This means

hat we can focus on L t . Since Pµ
t 1̄(x) = Ex [Mµ

t ], the functional written in terms of L t can
e considered in place of Mµ

t . We underline that, here, L t is independent from (Xµ
t ,Mµ

t ), the
nly advantage we may have is given by the equivalence in law expressed by (4.2) and (6.4).

further interesting reading will be given ahead in Theorems 6.2 and 6.3.

roof of Theorem 6.1. We proceed step by step by exploiting the resolvent formula (A.9) in
he Appendix for Rλ1̄. Let us recall that

ũ(λ, x) =

∫
∞

0
e−λt u(t, x) dt, λ > 0.

(i) Standard arguments say that the unique solution to (6.1)–(6.3) is given by u(t, x) =

Pµ
t 1̄(x) where the semigroup Pµ

t has been given in (4.2). See for example Appendix A.1.
hus, Rλ1̄ ∈ D(Gµ) and we have

ũ(λ, x) = Rλ1̄(x) (6.5)

(ii) Now we show that (4.2) is the solution to (6.1) with (6.2). Recall that (6.5) holds true.
ince Rλ1̄ ∈ C([0,∞)) and

Rλ1̄(0) =
1√

λ+
µ2

4 +
µ

2 + c

∫
∞

0
e
−(

√
λ+

µ2
4 −

µ
2 )y dy (6.6)

e get

ũ(λ, 0) =
1

Φ(Φ + c + µ)
(6.7)

From (3.6), we see that the Laplace transform of the left-hand side of (6.2) gives

Φũ(λ, 0) −
Φ

λ
u(0, 0) + (c + µ)ũ(λ, 0) =

1
Φ + c + µ

−
Φ

λ
+

c + µ

Φ(Φ + c + µ)
(6.8)

=
1
Φ

−
Φ

λ

= [by exploiting the relation (A.10)]

=
1

−
1

Φ Φ + µ
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=
µ

Φ(Φ + µ)

=
µ

λ

hich is the Laplace transform of the right-hand side of (6.2). Thus, u(t, 0) satisfies the
oundary condition (6.2). As a solution to (6.1) the function u must be written as

u(t, x) =

∫
∞

0
p̄(t, x, y)dy +

∫ t

0
f µ(x, 0, s)u(t − s, 0)ds (6.9)

ccording with (A.3) and (A.4) in Appendix A.1. Thus, u(t, 0) uniquely defines the solution u.
ince t ↦→ u(t, 0) is continuous, u(t, 0) is the unique inverse of ũ(λ, 0). We therefore conclude

hat u is the unique solution to (6.1)–(6.2).
(iii) Under (6.5) and (A.9) we have that

ũ(λ, x) =
1
λ

−
1
λ

(
1 −

Φ + µ

c + µ+ Φ

)
e−x(Φ+µ) (6.10)

here the symbol Φ = Φ(λ) denotes

Φ(λ) =

√
λ+

µ2

4
−
µ

2
.

onsider the fact that (see (2.4))∫
∞

0
e−λt P(L t > x)dt =

∫
∞

x

Φ(λ)
λ

e−sΦ(λ) ds

together with Proposition 2.1 for

Φ(λ)
λ

1
c + µ+ Φ(λ)

e−x(Φ(λ)+µ).

y observing that (recall that Ta is an exponential r.v. with parameter a)

µ

λ

1
c + µ+ Φ(λ)

e−x(Φ(λ)+µ)
=
µ

λ
e−xµ

∫
∞

0
e−w (c+µ)e−(w+x)Φ(λ)dw

=µe−xµ
∫

∞

0
e−λt

(∫
∞

0
e−w(c+µ)P0(L t > x + w) dw

)
dt

=

∫
∞

0
e−λt

(
µ

µ+ c
e−xµP0(L t − x > Tµ+c)

)
dt,

e obtain the inverse Laplace transform of ũ(λ, x) given by

u(t, x) =1 − e−xµP0(L t > x) + e−xµE0
[
e−(µ+c)(L t −x)1(L t ≥x)

]
+

µ

µ+ c
e−xµE0

[(
1 − e−(µ+c)(L t −x)) 1(L t ≥x)

]
.

Simple manipulation leads to (6.4) which is the claim.
This concludes the proof. □

Remark 6.2. We stress the fact that the boundary conditions (6.2) and (6.3) are equivalent in
the following sense. Consider the unique solution u of (6.1)–(6.3). Then it also satisfies (6.2) by
step Theorem 6.1-(ii). Conversely, note that any solution to (6.1) admits the representation (6.9),
then it is uniquely determined by the knowledge of u(t, 0). In turn, according with (2.11), by
23
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Laplace machinery, the continuous function u(t, 0) can be uniquely determined by (6.2). Then
(t, x) will also satisfy (6.3) since, by Theorem 6.1, the solutions coincide. Notice that this
olds only for constant initial datum.

orollary 3. For the process X̃µ
t , t ≥ 0 with generator (Gµ, D(Gµ)) the multiplicative

unctional Mµ
t is uniquely characterized by the boundary condition

D
1
2 ,µ
t u(t, 0) + (c + µ)u(t, 0) = µ, t ≥ 0.

Moreover, M
µ

t is equivalent to Mµ
t in the sense of Lemma 1, that is Ex [Mµ

t ] = Ex [M
µ

t ] where

∀ t ≥ 0, M
µ

t = M
(µ,c,µ)
t .

Proof. Indeed, the potential

E0

[∫
∞

0
e−λt Mµ

t dt
]

coincides with ũ(λ, 0) uniquely determined in (6.7) which in turn, uniquely defines the solution
to (6.1)–(6.2) . □

Remark 6.3. Since u(0, 0) = 1, from Proposition 3.1 we know that t ↦→ u(t, 0) is monotone
decreasing and such that, for c > 0,

u(t, 0) ↓
µ

µ+ c
∈ (0, 1) as t → ∞.

f c = 0, then u(t, 0) = 1 for any t .

emark 6.4. The proof of Theorem 6.1 exploits explicit probability distributions associated
o the elastic Brownian motion in order to compute the solution of the boundary value problem
6.1)–(6.3) and then check that it also satisfies the fractional condition (6.2). We note that it
s possible to give an alternative proof by directly solving the fractional boundary problem
6.1)–(6.2). In fact, take Laplace transforms of (6.1) to get

λũ(λ, x) − u(0, x) = µ∂x ũ(λ, x) + ∂2
xx ũ(λ, x). (6.11)

ith u(0, x) = 1. By taking Laplace transforms of (6.2) we obtain

Φ(λ)ũ(λ, 0) −
Φ(λ)
λ

u(0, 0) + (µ+ c)ũ =
µ

λ
(6.12)

ith Φ(λ) =

√
λ+

µ2

4 −
µ

2 and u(0, 0) = 1. Thus we obtain

ũ(λ, 0) =
1
λ

√
λ+

µ2

4 +
µ

2√
λ+

µ2

4 +
µ

2 + c
=: cλ (6.13)

ow let vλ(x) = ũ(λ, x). By considering (6.11) and (6.12) we see that (6.1)–(6.2) may be
ewritten as⎧⎪⎨⎪⎩

v′′

λ + µv′

λ − λvλ + 1 = 0 x ∈ (0,∞)
vλ(0) = cλ (6.14)

vλ(x) bounded
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which is a second order ODE that can be solved by standard techniques. In particular we note
that the roots of the associated characteristic polynomial are

r1 = −
µ

2
+

√
λ+

µ2

4
= Φ(λ) , r2 = −

µ

2
−

√
λ+

µ2

4
= −Φ(λ) − µ

.e. they can be expressed in terms of the symbol Φ of a tempered subordinator and of the drift
. It is then immediate to check that the solution to (6.14) is precisely (6.10).

We now recall the condition

D
1
2 ,µ
t u(t, 0) + (µ+ c) u(t, 0) = µ, t > 0

nd the standard condition
∂u
∂x

(t, 0) = c u(t, 0), t > 0

hich is associated to (6.1). Then, we conclude with the following two results.

heorem 6.2. The solution to (6.1)–(6.2) has the probabilistic representation

u(t, x) = 1 − E0
[(

1 − e−c (L t ∧Tµ−x)) 1(L t ∧Tµ>x)
]

(6.15)

here Tµ is an exponential r.v. (with parameter µ > 0) independent from L which is an inverse
to a relativistic stable subordinator with symbol (3.1), η = (µ/2)2

Proof. Let us write (6.10) as follows

ũ(t, x) =
1
λ

−
1
λ

(
1 − (

√
λ+ µ2/4 + µ/2)

1

c + µ/2 +
√
λ+ µ2/4

)
e−x(

√
λ+µ2/4+µ/2).

(6.16)

From Theorem 4.2, we have that
1
λ

e−x(
√
λ+µ2/4+µ/2)

=

∫
∞

0
e−λt P0(L t ∧ Tµ > x) dt

nd √
λ+ µ2/4 + µ/2

λ
e−x(

√
λ+µ2/4+µ/2)dx =

∫
∞

0
e−λt P0(L t ∧ Tµ ∈ dx) dt.

hus, the integral√
λ+ µ2/4 + µ/2

λ

∫
∞

0
e−w(c+(

√
λ+(µ/2)2+µ/2))e−x(

√
λ+µ2/4+µ/2)dw

takes the form∫
∞

0
e−λt E0

[∫
∞

0
e−c(L t ∧Tµ−x)1(L t ∧Tµ>x)

]
dt.

By collecting all the previous parts, we get that

u(t, x) = 1 − E0[1(L t ∧Tµ>x)] + E0

[∫
∞

0
e−c (L t ∧Tµ−x)1(L t ∧Tµ>x)

]
hich is the claimed result. □
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Remark 6.5. Formula (6.15) can be succinctly represented as

u(t, x) = P0(L t ∧ Tµ − x < Tc) (6.17)

where Tc is an exponential random variable of parameter c independent from L t and Tµ,
provided that c > 0. This can be justified as follows

P0(L t ∧ Tµ − x < Tc ∩ ((L t ∧ Tµ − x > 0) ∪ (L t ∧ Tµ − x < 0)))

= P0(L t ∧ Tµ − x < 0) + E0
[

E[1(Tc>L t ∧Tµ−x)|L t ∧ Tµ] 1(L t ∧Tµ−x>0)
]

= P0(L t ∧ Tµ < x) + E0
[
e−cµ(L t ∧Tµ−x)1(L t ∧Tµ>x)

]
.

We now present the last result for the positively drifted Brownian motion.

Theorem 6.3. The solution to (6.1)–(6.2) has the probabilistic representation

u(t, x) = 1 − E0

[(
1 − e−c (S−µ

t −x)
)

1(S−µ
t >x)

]
(6.18)

here

S−µ
t = max

0≤s≤t
X−µ

s , t > 0, µ > 0.

roof. The proof follows immediately from Theorem 4.2. □

emark 6.6 (About the reading of (6.2)). Assume that the boundary conditions

D
1
2 ,µ
t u(t, 0) + (c + µ) u(t, 0) = µ

nd
∂u
∂x

(t, 0) = cu(t, 0)

are equivalent. Are we able to obtain information about Mµ
t from the previous conditions? It

eems that the first equation gives immediately the answer we are looking for. If we consider
he boundary condition

D
1
2 ,µ
t u(t, 0) + c1 u(t, 0) = c2

e are able to characterize Mµ
t in terms of the coefficients c1, c2 as in the discussion below.

We analyse some different cases concerned with (6.4) and in particular with the lifetime ζµ

of the process X̃µ. Recall that

Pµ
t 1̄(x) = Px (ζµ > t).

- Null drift coefficient. Let us consider µ = 0. Then, ∀ c ≥ 0,

P0
t 1̄(x) = P0(L t < x) + E0

[
e−c(L t −x) 1(L t ≥x)

]
, t ≥ 0 (6.19)

solves Eq. (6.1) with

D
1
2 ,0
t u(t, 0) + c u(t, 0) = 0, t ≥ 0 (6.20)

where the tempered derivative becomes the Caputo derivative D
1
2
t (see formula (3.7)

with η = 0). Notice that the corresponding multiplicative functional is associated with
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the elastic Brownian motion with no drift. In particular, P0
t 1̄(x) = Ex [M0

t ] where
M0

t = exp(−cγt ) emerges in case of Robin boundary condition. Let us consider x = 0
for the sake of simplicity. We immediately see that

M0
t

law
= e−c L t

where the right-hand side comes out from (6.19). Eq. (6.20) can be associated with r (t)
in Proposition 3.1 with c = a > b = 0. In particular, u(t, 0) coincides with

r (t) = E 1
2
(−c

√
t) = E0[e−c L t ]

which is the Mittag-Leffler function introduced in (5.5).
We also notice that P0(L0 < 0) = 1 − P0(L0 = 0) = 0 and 1(L0≥x) → 1 as x → 0+. On
the other hand, for t > 0, as x → 0+, P0(L t < x) → 0 and 1(L t ≥x) → 1.

- Null elastic coefficient. For

µ ≥ 0, c = 0

we obtain that

Pµ
t 1̄(x) = 1, ∀ x .

The boundary behaviour is characterized by

D
1
2 ,µ
t u(t, 0) + µ u(t, 0) = µ, t > 0 (6.21)

for which the function u(t, 0) can be associated with r (t) in Proposition 3.1 with a =

b = µ. It follows that

r (t) = 1 ∀ t ≥ 0

coincides with u(t, 0), t ≥ 0.
The lifetime ζµ of the process is infinite almost surely. Indeed, ∀ x ∈ [0,∞), Px (ζµ >
t) = 1 for any t ≥ 0. The multiplicative functional Mµ

t = 1(t<∞) is associated with
reflection at x = 0 of the drifted Brownian motion.

- Let us consider

c ∈ (0,∞).

We have µ + c = a > b = µ. Then, from Proposition 3.1, a − b = c > 0 implies that
0 < r (t) < 1 ∀ t > 0. In particular, u(t, 0) coincides with

r (t) =
µ

µ+ c
P0(L t ≥ Tµ+c) + P0(L t < Tµ+c). (6.22)

Equivalently, by using representation (6.17) we have that

r (t) = P0(L t ∧ Tµ < Tc)

- Let us consider

c → ∞ with µ ≥ 0.

Obviously, this special case does not completely agree with the initial datum. Formulas
(6.4) and (6.15) take the form

u(t, x) = 1 − e−xµ P (L ≥ x) = 1 − P(L ∧ T ≥ x)
0 t t µ
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for which u(t, 0) = 1 − P0(L t ≥ 0) = 0. The formal limit in (6.2) gives the Dirichlet
boundary condition. This corresponds to the fact that, by exploiting the representation
(6.18), we obtain

u(t, x) = 1 − P0

(
max
0≤s≤t

X−µ
s ≥ x

)
= Px

(
min

0≤s≤t
Xµ

s > 0
)

= Px (ζµ > t)

where ζµ now represents the lifetime of a drifted Brownian motion with an absorbing
barrier at zero.

.2. The negatively drifted Brownian motion

We focus on the function

u ∈ C1,2(AC(0,∞) × [0,∞), [0,∞))

olving⎧⎨⎩
∂u
∂t

= −µ
∂u
∂x

+
∂2u
∂x2

u(0, x) = 1(x ≥ 0)
(6.23)

ith the boundary condition

D
1
2 ,µ
t u(t, 0) + c u(t, 0) = 0, t > 0 (6.24)

where c plays now the role of the elastic coefficient in the condition
∂u
∂x

(t, 0) = c u(t, 0), t > 0. (6.25)

ormally, the relation between the conditions (6.24) and (6.25) is justified by the equation

D
1
2 ,µ
t ℓ(t, x) = −

∂

∂x
ℓ(t, x) t > 0, x > 0.

orresponding to (2.19) in the tempered stable case.
For the negatively drifted Brownian motion {X̃−µ

t }t≥0 with generator (G−µ, D(G−µ)) we
rite

P−µ
t f (x) = Ex [ f (X̃−µ)] (6.26)

hich is the analogue of (4.2).

heorem 6.4. Let us consider u = u(t, x) given in (6.26). Then, the following statements
old:

(i) u is the unique (classical) solution to (6.23)–(6.25);
(ii) u is the unique (classical) solution to (6.23)–(6.24);

(iii) u has the probabilistic representation

u(t, x) = 1 − E0
[(

1 − e−c (L t −x)) 1(L t>x)
]

where L is an inverse to a relativistic stable subordinator with symbol (3.1), η = (−µ/2)2.

roof. The proof is organized by following the proof of Theorem 6.1. Then, we skip some

details.
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(i) Here we follow the same arguments as in point (i) of Theorem 6.1. Thus, we still have

ũ(λ, x) = Rλ1̄(x).

(ii) We check that u(t, 0) satisfies (6.24). In fact from (A.7) with drift −µ we get

ũ(λ, 0) =
1

(
√
λ+ µ2/4 +

µ

2 )(
√
λ+ µ2/4 −

µ

2 + c)
=

1
(Φ + µ)(Φ + c)

(6.27)

nd then from (3.6), the Laplace transform of the left-hand side of (6.24) is

Φũ(λ, 0) −
Φ

λ
u(0, 0) + cũ(λ, 0) =

Φ

(Φ + µ)(Φ + c)
−

Φ

λ
+

c
(Φ + µ)(Φ + c)

(6.28)

=
1

Φ + µ
−

1
Φ + µ

= 0.

niqueness follows as in point (ii) of Theorem 6.1.
(iii) By exploiting (A.9) in the Appendix with −µ in place of µ we get

ũ(λ, x) =
1
λ

−
1
λ

(
1 −

Φ(λ)
c + Φ(λ)

)
e−xΦ(λ) (6.29)

here, as usual, Φ = Φ(λ) =
√
λ+ µ2/4 − µ/2. Since

e−xΦ(λ)

λ
=

∫
∞

0
e−λt P0(L t > x) dt

and

Φ(λ)
λ

e−xΦ(λ)

Φ(λ) + c
=
Φ(λ)
λ

∫
∞

0
e−cwe−(x+w)Φ(λ)dw

=

∫
∞

0
e−λt

(∫
∞

0
e−cwℓ(t, x + w) dw

)
dt

=

∫
∞

0
e−λt E0

[
e−c(L t −x) 1(L t>x)

]
dt,

then the solution u can be written as

u(t, x) = 1 − E0[1(L t>x)] + E0
[
e−c(L t −x) 1(L t>x)

]
,

that is

u(t, x) = 1 − E0
[(

1 − e−c(L t −x)) 1(L t>x)
]
.

This concludes the proof. □

Remark 6.7. In the same spirit as Remark 6.2, we see that (6.24) and (6.25) are equivalent.
Indeed the fractional boundary condition uniquely determines u(t, 0) as the inverse of (6.27).

As in Corollary 3, for the boundary condition (6.24), we are able to show the following.

Corollary 4. For the process X̃−µ
t , t ≥ 0 with generator (G−µ, D(G−µ)) the multiplicative

functional M−µ
t is uniquely characterized by the boundary condition

1
2 ,µu(t, 0) + cu(t, 0) = 0, t ≥ 0.
Dt
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Moreover, M
−µ

t is equivalent to M−µ
t in the sense of Lemma 1, that is Ex [M−µ

t ] = Ex [M
−µ

t ]
where

∀t ≥ 0, M
−µ

t = M
(−µ,c,0)
t (6.30)

The representation in terms of gx (L t ) directly comes from Theorem 6.4.
Below we present the last result for the negatively drifted Brownian motion.

heorem 6.5. The solution to (6.23)–(6.24) has the probabilistic representation

u(t, x) = 1 − E0

[(
1 − e−c (Sµt −x)

)
1(Sµt >x)

]
here

Sµt = max
0≤s≤t

Xµ
s , t > 0, µ > 0.

roof. The proof follows immediately from Theorem 4.1. □

. Conclusion

We observe that Theorem 6.5 is the analogue to Theorem 6.3. Such results give clear
epresentations of the solutions, in both cases, in which we have positive or negative drift,

u(t, x) = 1 − E0

[(
1 − e−c(S±µ

t −x)
)
, S±µ

t > x
]
, t > 0, x > 0.

oreover, in our view, Theorems 6.2 and 6.4 seem to be quite interesting with regard to
he applications. Indeed, they are written in terms of very simple processes, that is, non-
ecreasing processes on (0,∞). Formula (4.11) suggests also a representation in terms of the
ocal time which is usually sneaky. Some fruitful applications of such representations may arise
n numerical solutions, optimization, inverse problems and so forth. Indeed, in these contexts, it
s important to obtain fast and accurate simulations. On the other hand, the proposed algorithms

ay result in high demanding computational tasks, as for the Monte Carlo approximations for
nstance. For a description of simulation algorithms for a Brownian motion on the half-line
ith boundary conditions the interested reader can consult [8] and references therein. Such

lgorithms are based on spatial discretizations for the generator of the process. Clearly, our
esults provide a simpler and immediate alternative which only requires the simulation of the
ncrements of a tempered subordinator which is a straightforward task (see e.g. [31]).
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ppendix

.1. EDBM

Consider an elastic drifted Brownian motion X̃µ, µ ∈ R (at this stage we do not make the
istinction between positive or negative drift yet). Let X̂µ be a reflecting Brownian motion
30
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with drift. The process X̃µ can be represented in the following way

X̃µ
t =

{
X̂µ

t t ≤ ζµ

† t > ζµ
(A.1)

here † is the cemetery point, ζµ = inf{t : γt > Tc} is the lifetime of the process, Tc is
n independent exponential random variable with parameter c and c > 0 denotes the elastic
oefficient. The distribution of X̃µ can be obtained as follows. First consider the case where
he starting point x = 0. Then

P0(X̃µ
t ∈ A) =

∫
A

p(t, 0, y)dy = P0(X̂µ
t ∈ A, ζµ > t)

= E0

[
1(X̂µt ∈A) P(ζµ > t |Ft )

]
= E0

[
1(X̂µt ∈A)e

−cγt
]

=

∫
A

∫
∞

0
e−cvP(X̂µ

t ∈ dy, γt ∈ dv)

=

∫
A

∫
∞

0
e−cvP(S−µ

t − B−µ
t ∈ dy, S−µ

t ∈ dv)

where in the last step we use relation

(X̂µ, γ µ) d
= (S−µ

− B−µ, S−µ)

from [22], where S−µ now denotes the maximum of the Brownian motion with drift B−µ. By
using the explicit expression of the joint distribution of (B−µ, S−µ) (see e.g. [36]) one has

p(t, 0, y) = 2e
µ
2 y−

µ2
4 t
[

g(t, y) −

(µ
2

+ c
) ∫ ∞

0
e−(µ2 +c)vg(t, v + y) dv

]
(A.2)

inally for x > 0, y > 0, by the Markov property of X̃µ we have that

Px (X̃µ
t ∈ dy) = Px (Xµ

t ∈ dy, τµ0 > t) + Px (X̃µ
∈ dy, τµ0 > t) (A.3)

hen

p(t, x, y) = p̄(t, x, y) +

∫ t

0
f −µ(−x, 0, s)p(t − s, 0, y) ds (A.4)

here p̄ denotes the density on (0,∞) of a killed Brownian motion with drift and f −µ is the
ensity of the first passage time through 0 of a Brownian motion with drift −µ and starting
oint −x (for details on this last step see [24] formula (28)).

The following results hold for the EDBM.

roposition A.1.

(i) The Green function of the elastic Brownian motion with drift reads

Gλ(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2Λ
e−(µ2 +Λ)x

[
e(µ2 +Λ)y

+
Λ −

µ

2 − c
Λ +

µ

2 + c
e(µ2 −Λ)y

]
x > y

1
2Λ

e(µ2 −Λ)y
[

e(Λ−
µ
2 )x

+
Λ −

µ

2 − c
Λ +

µ

2 + c
e−(µ2 +Λ)x

]
x ≤ y.

(A.5)

where Λ =

√
λ+

µ2
.
4
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(ii) The resolvent of the elastic Brownian motion with drift reads

Rλ f (x) =
1

2Λ

[
e−(µ2 +Λ)x

∫ x

0
e(µ2 +Λ)y f (y)dy + e(Λ−

µ
2 )x
∫

∞

x
e(µ2 −Λ)y f (y)dy

]
(A.6)

+
1

2Λ
e−(µ2 +Λ)x Λ −

µ

2 − c
Λ +

µ

2 + c

∫
∞

0
e(µ2 −Λ)y f (y)dy

(iii) The right limit of the resolvent at zero is

Rλ f (0+) =
1

Λ +
µ

2 + c

∫
∞

0
e(µ2 −Λ)y f (y) dy (A.7)

Analogous results are stated in [7], Appendix 1.18. For the sake of completeness we here
rovide a proof.

roof. By taking the λ−Laplace transform of (4.1), and by using the formula∫
∞

0
e−λt g(t, x) dt =

1

2
√
λ

e−
√
λ|x |

ne has

Gλ(x, y) =
e
µ
2 (y−x)

2Λ

[
e−Λ|x−y|

+ e−Λ(x+y)
− 2

(µ
2

+ c
) ∫ ∞

0
e−(µ2 +c)ve−Λ(x+y+v) dv

]
=

e
µ
2 (y−x)

2Λ

[
e−Λ|x−y|

+ e−Λ(x+y)

(
1 −

2
(
µ

2 + c
)

Λ +
µ

2 + c

)]

=
e
µ
2 (y−x)

2Λ

[
e−Λ|x−y|

+ e−Λ(x+y) Λ −
µ

2 − c
Λ +

µ

2 + c

]
hich can be readily rearranged into (A.5).
Formula (A.6) can be obtained by integrating (A.5) in the following way

Rλ f (x) =

∫
∞

0
Gλ(x, y) f (y) dy (A.8)

=
1

2Λ
e−(µ2 +Λ)x

∫ x

0

[
e(µ2 +Λ)y

+
Λ −

µ

2 − c
Λ +

µ

2 + c
e(µ2 −Λ)y

]
f (y)dy

+
1

2Λ

[
e(Λ−

µ
2 )x

+
Λ −

µ

2 − c
Λ +

µ

2 + c
e−(µ2 +Λ)x

] ∫
∞

x
e(µ2 −Λ)y f (y)dy

hich can be easily simplified into (A.6). Finally by taking the limit x → 0+ in (A.8) one has

Rλ f (0+) =
1

2Λ

[
1 +

Λ −
µ

2 − c
Λ +

µ

2 + c

] ∫
∞

0
e(µ2 −Λ)y f (y)dy

nd the result follows. □

Proposition A.2. For the resolvent (A.6) we have

Rλ1̄(x) =
1
λ

−
1
λ

(
1 −

Λ +
µ

2

Λ +
µ

2 + c

)
e−(µ2 +Λ)x (A.9)

here Λ =

√
λ+

µ2
.
4

32



M. D’Ovidio and F. Iafrate Stochastic Processes and their Applications 167 (2024) 104228

w

N

f

a

T

B

Proof. Note that(
Λ +

µ

2

) (
Λ −

µ

2

)
=

(√
λ+

µ2

4
−
µ

2

)(√
λ+

µ2

4
+
µ

2

)
= λ. (A.10)

By substituting f = 1̄ in (A.6) we have

Rλ1̄(x) =
e−(µ2 +Λ)x

2Λ(Λ +
µ

2 )

(
e(µ2 +Λ)x

− 1
)

+
1

2Λ(Λ −
µ

2 )
+

1
2Λ

e−(µ2 +Λ)x Λ −
µ

2 − c
Λ +

µ

2 + c
·

1
Λ −

µ

2

=
1

2Λ

(
1

Λ +
µ

2

+
1

Λ −
µ

2

)
+

1
2Λ

(
−

1
Λ +

µ

2

+
1

Λ −
µ

2

Λ −
µ

2 − c
Λ +

µ

2 + c

)
e−(µ2 +Λ)x

=
1
λ

+
1

2Λ

(
−

1
Λ +

µ

2

−
1

Λ −
µ

2

+
1

Λ −
µ

2

·
2Λ

Λ +
µ

2 + c

)
e−(µ2 +Λ)x

=
1
λ

−
1
λ

(
1 −

Λ +
µ

2

Λ +
µ

2 + c

)
e−(µ2 +Λ)x □

A.2. Proof of the statements in Section 5

Proof of the formula (5.2). Since∫
∞

0
e−λt g(t, x − y) dt =

1
2

e−|x−y|
√
λ

√
λ

and
∫

∞

0
e−λt g(t, x + y) dt =

1
2

e−(x+y)
√
λ

√
λ

e have that∫
∞

0
e−λt

∫
0

(
g(t, x − y) − g(t, x + y)

)
dy dt =

1
λ

−
1
λ

e−x
√
λ (A.11)

ow we note that

x
s

g(s, x) =
x
s

e−
x2
4s

√
4πs

= −2
∂

∂x
e−

x2
4s

√
4πs

, x ∈ [0,∞), s > 0

or which we have∫
∞

0
e−λs g(s, x) ds =

1
2

e−x
√
λ

√
λ

(A.12)

nd ∫
∞

0
e−λs x

s
g(s, x) dx = −

∂

∂x
e−x

√
λ

√
λ

= e−x
√
λ.

hen, ∫
∞

0
e−λt

(
1 −

∫ t

0

x
s

g(s, x) ds
)

dt =
1
λ

−
1
λ

e−x
√
λ (A.13)

y comparing (A.11) with (A.13) we prove that, ∀ x ,
0
Pt 1(x) = F(t, x).
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Moreover, for our convenience, we observe that

2
∫

∞

0
e−λt

∫
∞

0
e−c0 wg(t, w + x) dw dt =

∫
∞

0
e−cw e−(w+x)

√
λ

√
λ

dw

=
e−x

√
λ

λ

√
λ

c +
√
λ

nd therefore∫
∞

0
e−λt P0

t 1(x) dt =
1
λ

−
e−x

√
λ

λ

c

c +
√
λ
. □ (A.14)

roof of the formula (5.3). Let us consider the non-negative and non-decreasing process At ,
≥ 0 with probability

P0(At > x) = 2
∫

∞

x
g(t, s) ds.

onsider the inverse A−1
t , t ≥ 0 which is, by construction, a non-negative and non-decreasing

process. By definition we have that

P0(A−1
x < t) = P0(At > x)

with
∂

∂t
P0(A−1

x < t) = 2
∫

∞

x

∂2

∂s2 g(t, s) ds =
x
t

g(t, x).

ince P0(A−1
0 < t) = P0(At > 0) = 1 and At is continuous we obtain F(t, 0) = E0[e−c At ]. □

roof of the formula (5.4). It holds that
∂F
∂x

(t, x)
⏐⏐⏐⏐
x=0

= c0 F(t, x)
⏐⏐⏐⏐
x=0
.

ndeed, F is the density law of the elastic Brownian motion on [0,∞). □

roof of the formula (5.5). Since L0
t is the inverse to a stable subordinator, the density

(t, x) = 2 g(t, x) is such that

D
1
2
t ℓ = −

∂ℓ

∂x
nd the potential

ℓ̂(t, c) =

∫
∞

0
e−cwℓ(t, w) dw = E 1

2
(−c

√
t)

is the Mittag-Leffler function. It is well-known that the Mittag-Leffler is an eigenfunction for
the Caputo derivative. That is,

D
1
2
t ℓ̂ = −c ℓ̂.

y observing that ℓ̂(t, c) = F(t, 0) we get formula (5.5). The problem to check that

D
1
2
t F(t, x)

⏐⏐⏐⏐
x=0

= −c F(t, x)
⏐⏐⏐⏐
x=0

s part of the results presented in this work. □
34
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