
28

Vitruvius+: An Area-Efficient RISC-V Decoupled Vector

Coprocessor for High Performance Computing Applications

FRANCESCO MINERVINI , OSCAR PALOMAR , OSMAN UNSAL , ENRICO REGGIANI ,
JOSUE QUIROGA , JOAN MARIMON , CARLOS ROJAS , ROGER FIGUERAS ,
ABRAHAM RUIZ , ALBERTO GONZALEZ , JONNATAN MENDOZA , IVAN VARGAS ,
CÉSAR HERNANDEZ , JOAN CABRE , LINA KHOIRUNISYA , MUSTAPHA BOUHALI ,
JULIAN PAVON , FRANCESC MOLL , and MAURO OLIVIERI , Barcelona Supercomputing

Center

MARIO KOVAC , MATE KOVAC , and LEON DRAGIC , University of Zagreb, FER

MATEO VALERO and ADRIAN CRISTAL , Barcelona Supercomputing Center

The maturity level of RISC-V and the availability of domain-specific instruction set extensions, like vector

processing, make RISC-V a good candidate for supporting the integration of specialized hardware in processor

cores for the High Performance Computing (HPC) application domain. In this article, 1 we present Vitruvius+,

the vector processing acceleration engine that represents the core of vector instruction execution in the HPC

challenge that comes within the EuroHPC initiative. It implements the RISC-V vector extension (RVV) 0.7.1

and can be easily connected to a scalar core using the Open Vector Interface standard. Vitruvius+ natively

supports long vectors: 256 double precision floating-point elements in a single vector register. It is composed

of a set of identical vector pipelines (lanes), each containing a slice of the Vector Register File and functional

units (one integer, one floating point). The vector instruction execution scheme is hybrid in-order/out-of-

order and is supported by register renaming and arithmetic/memory instruction decoupling. On a stand-alone

synthesis, Vitruvius+ reaches a maximum frequency of 1.4 GHz in typical conditions (TT/0.80V/25 ◦C) using

GlobalFoundries 22FDX FD-SOI. The silicon implementation has a total area of 1.3 mm

2 and maximum

estimated power of ∼920 mW for one instance of Vitruvius+ equipped with eight vector lanes.

1 This is a new article, not an extension of a conference paper.

This research received funding from the European High Performance Computing Joint Undertaking (JU) under Frame-

work Partnership Agreement No. 800928 (European Processor Initiative) and Specific Grant Agreement No. 101036168

(EPI SGA2). The JU receives support from the European Union’s Horizon 2020 research and innovation programme

and from Croatia, France, Germany, Greece, Italy, Netherlands, Portugal, Spain, Sweden, and Switzerland. The EPI-

SGA2 project PCI2022-132935 is also co-funded by MCIN/AEI/10.13039/501100011033 and by the UE NextGenera-

tionEU/PRTR. This work was also partially supported by the Spanish Ministry of Science and Innovation (PID2019-

107255GB-C21/AEI/10.13039/501100011033).

Authors’ addresses: F. Minervini, O. Palomar, O. Unsal, E. Reggiani, J. Quiroga, J. Marimon, C. Rojas, R. Figueras, A. Ruiz,

A. Gonzalez, J. Mendoza, I. Vargas, C. Hernandez, J. Cabre, L. Khoirunisya, M. Bouhali, J. Pavon, F. Moll, M. Olivieri, M.

Valero, and A. Cristal, Barcelona Supercomputing Center, Placa E. Guell 1-3, Barcelona, Spain; emails: {francesco.minervini,

oscar.palomar, osman.unsal, enrico.reggiani, josue.quiroga, joan.marimon, carlos.rojas, roger.figueras, abraham.ruiz,

alberto.gonzalez, jonnatan.mendoza, ivan.vargas, cesar.hernandez, joan.cabre, lina.khoirunisya, mustapha.bouhali,

julian.pavon, francesc.moll, mauro.olivieri, mateo.valero, adrian.cristal}@bsc.es; M. Kovac, M. Kovac, and L. Dragic, Uni-

versity of Zagreb, FER, Unska 3, 10000, Zagreb, Croatia; emails: {mario.kovac, mate.kovac, leon.dragic}@fer.hr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org .

© 2023 Association for Computing Machinery.

1544-3566/2023/02-ART28

https://doi.org/10.1145/3575861

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

https://orcid.org/0000-0001-8558-5690
https://orcid.org/0000-0001-6729-4187
https://orcid.org/0000-0002-0544-9697
https://orcid.org/0000-0003-1385-7962
https://orcid.org/0000-0002-1840-2855
https://orcid.org/0000-0002-0607-5615
https://orcid.org/0000-0002-7714-0277
https://orcid.org/0000-0003-2407-1228
https://orcid.org/0000-0002-7458-979X
https://orcid.org/0000-0002-7984-5596
https://orcid.org/0000-0002-7453-1803
https://orcid.org/0000-0002-5092-3829
https://orcid.org/0000-0001-6560-1016
https://orcid.org/0000-0003-1704-9364
https://orcid.org/0000-0001-8934-7411
https://orcid.org/0000-0002-7183-0023
https://orcid.org/0000-0002-8291-509X
https://orcid.org/0000-0002-1290-3253
https://orcid.org/0000-0002-0214-9904
https://orcid.org/0000-0002-8365-7002
https://orcid.org/0000-0001-7486-4627
https://orcid.org/0000-0002-4558-7269
https://orcid.org/0000-0003-2917-2482
https://orcid.org/0000-0003-1277-9296
mailto:permissions@acm.org
https://doi.org/10.1145/3575861
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575861&domain=pdf&date_stamp=2023-03-01

28:2 F. Minervini et al.

CCS Concepts: • Computer systems organization → Single instruction, multiple data; • Hardware

→ Hardware accelerators ;

Additional Key Words and Phrases: RISC-V, vector accelerator, SIMD, HPC

ACM Reference format:

Francesco Minervini, Oscar Palomar, Osman Unsal, Enrico Reggiani, Josue Quiroga, Joan Marimon, Carlos

Rojas, Roger Figueras, Abraham Ruiz, Alberto Gonzalez, Jonnatan Mendoza, Ivan Vargas, César Hernandez,

Joan Cabre, Lina Khoirunisya, Mustapha Bouhali, Julian Pavon, Francesc Moll, Mauro Olivieri, Mario Kovac,

Mate Kovac, Leon Dragic, Mateo Valero, and Adrian Cristal. 2023. Vitruvius+: An Area-Efficient RISC-V De-

coupled Vector Coprocessor for High Performance Computing Applications. ACM Trans. Arch. Code Optim.

20, 2, Article 28 (February 2023), 25 pages.

https://doi.org/10.1145/3575861

1

T

c

t

c

r

t

a

E

a

p

a

i

t

v

(

e

u

1

m

s

o

m

d

c

o

s

a

t

(

r

l

A

 INTRODUCTION

he Covid-19 pandemic remarked the importance of scientific research. The heavy amount of
omputation needed to characterize the SARS-CoV-2 virus’ genome [33] proves that there is a
angible need for investing in High Performance Computing (HPC) technologies to fit the
omputation requirements of the “race to Exascale” [18]. Generally speaking, Exascale computing
efers to the capability of a machine to execute at least 10 18 operations per second [16]. Among
he commitments with these objectives [14 , 16 , 17 , 22], the European Processor Initiative (EPI)

ims to create a sustainable hardware/software ecosystem that could sign the independence of
urope on computing systems [15]. Nonetheless, the challenge to build Exascale machines within
 20-MW power envelope has led to a focus away from peak performance to energy-efficient
erformance. For instance, the 59th edition of the TOP500 list [44] revealed the Frontier system
t the Oak Ridge National Laboratory (ORNL) to be the first true Exascale machine, yet ranking
n the second position of the Green500 list [19]. This shows that energy efficiency is becoming a
op priority for High Performance Computing (HPC) facilities [1 , 20 , 26]. The renewed interest in
ector architectures due to their characteristic of efficiently exploiting Data-Level Parallelism

DLP) perfectly fits with the requirements of the Exascale challenges.
Historically, vector processing has always been associated with supercomputing. The golden

ra of vector processors started with the introduction of the CRAY-1 [35] in 1976, which broke
p with the memor y-to-memor y philosophy of precedent machines like TI-ASC [45] and STAR-
00 [7], instead introducing a Vector Register File (VRF) and interconnect to allow data move-
ent between the functional units and the vector registers [13]. Vector machines dominated the

upercomputing market for about 15 years, when they were extirpated by parallel machines based
n multiple out-of-order microprocessors, as the advances in CMOS VLSI technology allowed
ore transistors to fit on a die. Although multicore architectures represent a valid approach to

ata-parallel problems, they still have efficiency issues due to their high instruction fetch and de-
ode overheads. The renaissance of vector processing is a direct consequence of the slowdown
f Moore’s law and the limitations on energy efficiency imposed by the physics of CMOS circuit
caling [9 , 11].

Vector processors operate on arrays of data, where a single datum of the array is referred to as
 vector element [10]. A dedicated Instruction Set Architecture (ISA) defines the vector archi-
ectural parameters, such as the number of vector registers and the Maximum Vector Length

MVL) . Particular features like reductions use common arithmetic operations to reduce a vector
egister to a scalar value. They are also characterized by unique memory operations like strided

oads and stores, where the stride defines the increment, expressed in bytes, of memory locations
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

https://doi.org/10.1145/3575861

An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 28:3

m

t

v

c

l

a

p

c

e

i

o

O

i

t

e

s

n

t

f

m

b

a

E

i

s

t

m

e

o

(

w

g

e

D

l

o

c

V

b

P

1

b

t

o

f

arking the beginnings of new vector elements, and gather-scatter operations, which locate vec-
or elements by accessing memory through a set of indices, represented by elements of another
ector. When compared to Single Instruction Multiple Data (SIMD) architectures, vector pro-
essors offer a higher level of abstraction. Single Instruction Multiple Data (SIMD) architectures,
ike the ARM Neon [32] or the Intel AVX-512 [8], are characterized by the fact that more elements
re packed in the same register, which can be computed by the available functional units. To ex-
loit Data Level Parallelism (DLP), the software needs to know how many functional units, also
alled SIMD lanes , are available to produce effective code. Additionally, the maximum number of
lements that can be processed in parallel is limited by the size of the registers. Any attempt to
ncrease the size of the registers and/or the number of functional units implies the introduction
f new dedicated instructions, reducing the portability of the Instruction Set Architecture (ISA).
ttavi et al. [29] solve this limitation by encapsulating the number of elements to process in the

nstruction encoding and controlling it through a Control and Status Register (CSR) . Although
his solution is feasible for specific Machine Learning (ML) workloads, the number of maximum
lements within one operation is still limited by the size of the scalar registers. If the size of the
calar registers increases, new combinations of mixed-width operations are possible, and the ISA
eeds to be modified at least to specify the new setting of the Control and Status Register (CSR)
hat holds the SIMD width. On the contrary, vector ISAs are agnostic of the number of available
unctional units, and the amount of elements to be processed is only limited by the defined Maxi-
um Vector Length (MVL). Advances in ISA offer vector architectures the opportunity to expand

eyond HPC to other market segments such as Digital Signal Processing (DSP) and multimedia
pplications. Examples of it are the vector extensions for NEC [27], the ARM’s Scalable Vector

xtension (SVE) [42], and the RISC-V vector extension (RVV) [34]. The latter is currently gaining
mportance both in the academic and the industrial world [24]. RVV declares two implementation-
pecific parameters [34]. The maximum size in bits of a vector element (ELEN), with ELEN ≥ 8;
he number of bits in a single vector register (VLEN). Additionally, it includes CSRs that can be
odified through specific instructions to change the operational vector length, vl , the Selected El-

ment Width (SEW), and the vector register group multiplier (LMUL), which defines the number
f vector registers to form a wider vector register group.
In this context, this article presents Vitruvius+, a RISC-V decoupled Vector Processing Unit

VPU) that represents the core of vector instruction execution in the HPC challenge that comes
ithin the EuroHPC initiative. Our Vector Processing Unit (VPU) is based on RVV-0.7.1 and tar-
ets HPC applications using long vectors. Accordingly, the MVL is 256 Double Precision (DP) -
lements, or 16,384 bits. By setting LMUL = 8, Vitruvius+ can achieve an upper bound MVL of 2,048
ouble Precision (DP)-elements. To the best of our knowledge, this is the longest hardware vector

ength produced by a vector architecture. Vitruvius+ features an efficient hybrid in-order/out-of-
rder architecture boosted by vector register renaming, vector memory-to-arithmetic operation
haining, dedicated support for reductions, and reconfiguration of the inter-lane interconnect.
itruvius+ is also the first VPU supporting the Open Vector Interface (OVI) [37] standard. It has
een successfully taped out using GlobalFoundries 22FDX (GF22FDX) as part of the European
rocessor Initiative (EPI) project. On a stand-alone synthesis, it reaches a maximum frequency of
.4 GHz in typical conditions (TT/0.80V/25 ◦C).

The article is organized as follows. Section 2 presents the state of the art and illustrates the
aseline architecture. Section 3 describes the vector microarchitecture in detail. Section 4 presents
he outstanding features implemented in Vitruvius+. Section 5 presents the approach we follow for
ur evaluations. In Section 6 , we report the results of our experiments. Finally, Section 7 reports
uture plans and concludes the article.
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

28:4 F. Minervini et al.

2

2

T

a

p

w

a

a

S

m

i

0

N

f

2

V

p

2

V

T

c

T

f

p

F

i

a

e

a

i

b

2

o
3

A

 BACKGROUND AND BASELINE ARCHITECTURE

.1 State of the Art

he resurgence of vector processors is proved by several recent works delivered by both academic
nd industrial organizations. Hwacha [21] is a single-lane decoupled vector accelerator that im-
lements vector instructions as a custom extension. Several Hwacha versions have been disclosed,
ith the work of Colin et al. [6] drastically improving the energy efficiency. Ara [23] implements
 subset of RVV-0.5 and was taped out featuring an MVL of 256 DP-elements. Arrow [4] targets
 Field-Programmable Gate Array (FPGA) implementation and supports a subset of RVV-0.9.
imilarly, Vicuna [30] was also designed for Field Programmable Gate Array (FPGA) and imple-
ents RVV-0.10. RISC-V vector processors have also been released by industrial entities. The Al-

baba T-Head Xuantie910 [5] is a multi-core 12-stage out-of-order processor that supports RVV-
.7.1 with a variable number of vector pipelines each operating on 128-bit vector registers. Andes’
X27V [2] is the first vector processor to implement RVV-1.0, and the VLEN can be configured

rom 128 to 512 bits. SiFive’s X280 [39] and P270 [40] also implement RVV-1.0, with 512-bit and
56-bit supported VLEN, respectively. Finally, among the non-RISC-V VPUs, the NEC SX-Aurora
ector Engine (VE) [27] and the SVE Vector Engine (VE) of A64FX from Fujitsu [28] are the most
opular.

.2 Baseline Architecture

itruvius+ is the next generation of Vitruvius, 2 the VPU of the first phase tapeout of EPI [43].
herefore, Vitruvius is the baseline architecture that Vitruvius+ extends upon. The main design
hallenges are the following:

• Interface with the scalar core
• Definition of the MVL, in particular, to justify the long-vector-oriented design

• Implementation of the Vector Register File (VRF), to support long vectors and vector reg-
ister renaming

• Out-of-order execution of vector operations
• Definition of the lane interconnect.

he following sections present the state space exploration of the aforementioned design
eatures.

2.2.1 Interface with the Scalar Core. In EPI, Vitruvius is coupled to the Semidynamics 3 Avis-
ado scalar core [38]. They communicate through the Open Vector Interface (OVI) standard [37].
igure 1 shows the transaction groups composing OVI. One of the characteristics of OVI is that the
nformation is transmitted through a credit-based system. In this context, a credit represents an
vailable resource, like a FIFO queue entry, to allow the transmission of certain information. For
xample, when an instruction is granted execution, Vitruvius frees a slot in its instruction queue,
nd a credit is returned to Avispado to notify it that Vitruvius is ready to receive a new vector
nstruction. In the following, we briefly describe the main components, whereas more details can
e found elsewhere [37]:

• ISSUE : Vitruvius receives instructions from the scalar core on the signal inst , together with
the 64-bit scalar operand scalar_opnd , the instruction identifier sb_id , and a valid . Whenever
 To the best of our knowledge, details of the Vitruvius microarchitecture have never been published. We presented an

verview in one of the RISC-V events with no proceedings.
 https://semidynamics.com/ .

CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

https://semidynamics.com/

An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 28:5

Fig. 1. OVI overview. Retrieved from Semidynamics [37].

t

4

b

Vitruvius consumes the instructions, it returns a credit to get ready for receiving a new
instruction from Avispado.

• DISPATCH : This is used for marking an instruction as non-speculative (it is next_senior), or
to kill .

• COMPLETED : Upon completing an instruction, it is marked as valid , together with the
eventually generated floating-point exception flags fflags , the eventual saturation bit for
fixed-point operations vxsat , the eventual scalar result dest_reg , the vstart corresponding
to the last valid vector element processed by a vector load, and eventually the illegal bit if
the instruction was decoded as illegal.

• MEMOP : In OVI, it is the scalar core that generates the memory requests to execute vector
memory operations. Unlike the work of Espasa and Valero [12], Vitruvius does not have
any access to the memory hierarchy. The sync_start is set by Vitruvius to allow the start
of memory requests. Upon completing the requests, the sync_end is set together with the
memory instruction identifier sb_id , and the eventual vector element whose related mem-
ory request caused an exception, like a page fault, provided on vstart_vlfof .

• LOAD : On executing a vector load, Avispado sends the data in the shape of a whole cache
line (512 bits), 4 provided on data and flagged by valid , together with metadata provided on
seq_id , to locate vector elements in the cache line. On a vector masked load, the mask is
applied if mask_valid is set.

• STORE : On executing a vector store, Vitruvius sends the 512-bit data flagged by a valid only
if there are credits available. By setting credit , Avispado allows Vitruvius to send new data.

• MASK_IDX : This is used in case of masked and/or indexed memory operations. The item

can represent 64 mask bits, a 64-bit index, or a mask bit placed in the most significant bit
with the others carrying a 64-bit index, for masked, indexed, and masked-indexed memory
operations, respectively. Indexed memory operations set the last_idx for the last index to
send.

2.2.2 Long-Vector Design. Hardware-supported vector sizes depend on the characteristics of
he target applications. For example, short vectors are common in stencil and graph processing
 Avispado is not open source, so we do not know the exact size of the cache, although Semidynamics [38] reports values

etween 8 and 32 kB.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

28:6 F. Minervini et al.

k

T

a

M

V

t

r

o

d

t

t

o

e

o

t

M

b

T

c

c

f

w

M

t

b

c

t

e

f

s

e

p

S

a

o

A

ernels, whereas HPC, physical simulation, and financial analysis applications feature long vectors.
herefore, the applications can affect the decision on the MVL to support. We analyzed the target
pplications of the EPI project and designed an architecture that supports long vectors, with an
VL of 256 64-bit elements. Using long vectors is beneficial for the following reasons:

• Hide memory latency by combining spatially parallel with temporally parallel execution

• Improve efficiency by avoiding fetches, especially for codes with many loops
• Reduce code size and dynamic instruction count.

itruvius is intended to accelerate HPC applications showing high DLP. We quantified “long vec-
ors” based on the study reported by Ramírez et al. [31]. It shows that for applications featuring
egular DLP, when using long vectors, the number of total instructions dramatically drops, not
nly because of the many scalar instructions being replaced by a single vector instruction but also
ue to the reduced loop counts and control instructions. Another important aspect is the start-up
ime, which represents the latency in clock cycles to fill the vector execution pipeline. The start-up
ime is mainly determined by the execution latency of the vector functional units, and the design
f the VRF. For long vectors, the initial start-up time can be amortized over the several cycles of
xecution for the operations, whereas for short-vector implementations, which typically complete
perations in less than a dozen cycles, the start-up time can drastically decrease performance. For
hese reasons, we designed Vitruvius to support long vectors, where each vector register has an

VL of 256 64-bit floating-point elements, like SX-Aurora VE [36] and Ara [23].

2.2.3 VRF. The VRF design and the prior microarchitecture state space exploration was driven
y the following high-level goals:

• Support for long vectors, where each vector register can hold up to 256 DP-elements, as
explained in Section 2.2.2

• Renaming capabilities, allowing for lightweight out-of-order execution mechanism

• The technology node of the EPI project: GF22FDX, targeting a nominal frequency of 1 GHz.

o allow a more aggressive scalar-vector decoupling empowered by lightweight out-of-order exe-
ution eliminating Write After Write (WAW) and Write After Read (WAR) vector dependen-
ies, we designed the VRF with 40 physical registers to support vector register renaming. There-
ore, the whole VRF size, expressed in bytes, is given by

T ot _ Byte s _ V RF = N um _ V Reдs ·V Reд _ M ax _ Elements · Element _ Bytes,

here Num_VRegs indicates the 40 physical vector registers, VReg_Max_Elements represents the
VL of 256 DP-elements, and Elements_Bytes is the size in bytes of each vector element. With

hese design parameters, the size of the VRF amounts to 80 kB. We organized Vitruvius in a lane-
ased fashion, where each lane contains a slice of the VRF and functional units. The eight-lane
onfiguration splits the VRF into 10-kB slices, one such slice per lane. Therefore, we explored
he available memory instances included in the GF22FDX register file portfolio and conducted an
xperimental study on the type of memory to use. We generated different configurations using the
oundr y-compatible memor y compilers and synthesized them for a clock period of 800 ps. Table 1
ummarizes the results. It shows that multi-ported register file configurations are not desirable
ither because of the large area overhead or because of the timing violations and the high estimated
ower consumption. Therefore, we opted for a VRF configuration that instantiates five 2-kB 1RW
RAM banks in each lane. Beside the lower area overhead, this design choice is also driven by
nother observation. To achieve a peak performance of one DP- Fused Multiply-Add (FMA) and
ne DP-memory-access per cycle, the lane local Finite State Machine (FSM) orchestrates the
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 28:7

Table 1. Early State Space Exploration Results for Different VRF Configurations

Clock Period: 800 ps (1.25 GHz)
Configuration Ports Cell Type Area (µm

2) Slack SS

a /TT

b (ps) Power (mW)

5 × 2 kB 1RW SRAM 21,005.726 0/193 25.2674
1 × 10 kB 3R2W Latch 338,725.864 0/0 119.572
1 × 8 kB 3R2W Latch 273,288.375 0/0 107.601
1 × 10 kB 1R2W Latch 239,603.614 0/0 98.6253
1 × 8 kB 1R2W Latch 184,466.954 0/0 78.5065
5 × 2 kB 1R1W SRAM 35,763.728 –429/–68 32.6354
a Slow corner conditions (SS/0.72V/125 ◦C).
b Typical corner conditions (TT/0.80V/25 ◦C).

Note: 1RW = shared read/write port; 1R1W = one read port and one write port; 1R2W = one read port and two write

ports; 3R2W = three read ports and two write ports.

v

a

b

r

t

t

A

t

i

a

o

s

t

v

n

T

p

l

m

o

n

A

r
ector instruction execution over five states, three of which are for reading the source operands of
n Fused Multiply-Add (FMA), one for the memory access, and another for the arithmetic write-
ack. This means that when the pipeline operates at full speed, the functional units produce five
esults in five cycles, hence the minimum number of banks to support write-back is 5. This way,
he VRF can sustain the target throughput yet with the lowest impact on area.

2.2.4 Out-of-Order Execution. Vitruvius schedules the execution using an out-of-order execu-
ion mechanism. First, the instructions pass through the renaming stage that eliminates the Write
fter Write (WAW) and Write After Read (WAR) dependencies. The renamed instructions are

hen split into two concurrent streams by placing them either in the memory or the arithmetic
nstruction queue. This equips Vitruvius with lightweight out-of-order execution capabilities. As
n example, imagine a sequence of vector-vector add operations, vadd.vv , followed by a sequence
f vector strided loads, vlse.v . The renaming unit eliminates every WAW dependency in the in-
truction flow. The sequence of vadd.vv is placed in the arithmetic queue, whereas the loads go to
he memory queue. This allows for the first vector load to overlap with the execution of the first
add.vv , thus reducing the time for completion.

2.2.5 Lane Interconnect. The modular VPU design features independent vector lanes, which
eed to exchange operand data for certain RVV instructions such as reductions or permutations.
herefore, a lane interconnect needs to be implemented. The lane interconnect design and the
rior microarchitecture state space exploration was driven by the following goals:

• High level of determinism, so that it is possible to know exactly the latency of a packet
in the lane interconnect and schedule new transfers accordingly (note that this requires a
contention-free network even at peak load)

• Ease of routing and simplified flow control scheme
• Low power and area impact while being able to support the most common transfers with

an acceptable throughput.

Therefore, considering that we target up to eight vector lanes, we selected a ring topology as the
ane interconnect. This well-known topology has the property of being completely deterministic,

eaning that the latency of a packet traveling in the network can be calculated up front and relies
nly on the distance between the sender and the receiver. There is no packet deflection in this
etwork. Therefore, it does not need any complex routing algorithm nor a centralized controller.
 router in this network can either accept the incoming data or let it pass to the direct neighboring

outer. For these reasons, we preferred a ring topology over other structures, such as the popular
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

28:8 F. Minervini et al.

Fig. 2. Configuration of the evaluated lane interconnect topologies.

m

b

s

t

m

a

p

l

u

a

v

i

i

a

W

r

t

p

a

t

d

i

t

a

t

5

d

A

esh topology. A mesh has typically more links than a ring, thus reducing the maximum distance
etween nodes in the network. However, more links contributes to higher area and power con-
umption, due to the internal routers now having three ports. Within the set of applications we
arget, listed in Section 6 , some of the most common RISC-V instructions that need inter-lane com-
unication are vslideup and vslidedown , which move elements in a vector register up and down by
 specified offset, respectively. For example, when executing a vslide1up , element 0 ends up in the
osition of element 1, element 1 ends up in the position of element 2, and so on. In other words,

ane 0 sends elements to lane 1, lane 1 sends elements to lane 2, and so on. To justify our choice of
sing a ring interconnect, we developed an in-house cycle-accurate high-level simulator modeling
 mesh and a ring. We modeled the mesh as a 2 × 4 configuration for the eight lanes in Vitru-
ius, using the common XY routing algorithm. The data movement happens in only one direction
n both configurations. Figure 2 represents the analyzed configurations. In this simple model, the
ntermediate nodes of the mesh always try to use the shortest path to reach the destination, if
vailable. Both networks satisfy the following criteria:

• There are no buffers in the network. Buffers are one of the most power- and area-consuming
elements in a network, and their inclusion conflicts with the requirement of low power and
area impact.

• There is only one physical link connecting a node to another, with reconfiguration capa-
bilities. This means that the data movement is dynamically set according to the type of
instruction to execute and the related offset, to reach the destination with fewer cycles. For
example, executing a vslideup with offset 5 in the clockwise direction, with an eight-lane
configuration, is the same as executing a vslidedown with offset 3 in the counterclockwise
direction. 5 This reduces the cases to study to offset values between 1 and 4.

e simulated both configurations using patterns for the vslideup operation. Table 2 reports the
esults of the simulations for the different offsets, assuming vectors of 256 elements. Results show
hat there is no clear advantage in using a mesh interconnect for the evaluated traffic patterns. In
articular, it can be noted that the mesh performs slightly worse than the ring for offset values 3
nd 4. This is due to the fact that in this analysis the mesh always tries to use the shortest path for
he data transfer. For these cases, the usage of the intermediate direct links causes other nodes to
elay the packet injection which finally increases the total latency. A disclaimer that this analysis
s not suggesting that a ring topology is better than a mesh. This study shows that the design of
he inter-lane interconnect depends on the target traffic patterns. For instance, the mesh is actually
 ring with the intermediate connections, and by using the same links as for the ring makes the
hroughput the same for both configurations. However, this confirms that there is no usage of
 In this case, lane 0 targets lane 5 as the final destination of its packets. Therefore, by moving data in the counterclockwise

irection, the ring takes three cycles to complete the transfer.

CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 28:9

Table 2. Performance Comparison Between the Ring and the Mesh Lane Interconnect for the
Execution of vslideup with Different Offset Values

Operational vl = 256
Configuration Offset Packets Cycles Throughput (DP-element/cycle)

Ring

1 255 33 7.76
2 254 65 3.94

3 253 97 2.64
4 252 129 1.98

Mesh

1 255 33 7.76
2 254 65 3.94

3 253 99 2.59
4 252 131 1.95

Note: The column Packets represents the number of elements to transfer and is obtained by subtracting the

offset from the vl .

Fig. 3. Vitruvius+ top-level block diagram for the eight-lane configuration.

t

m

c

3

I

b

3

T

q
he intermediate links for the target traffic. The ring is more area- and power-efficient than the
esh because of the easier control flow to route the packets and the absence of the intermediate

onnections.

 MICROARCHITECTURE

n this section, we describe the microarchitecture of our VPU, giving details on the most important
locks. A high-level block diagram is shown in Figure 3 .

.1 Front-End

he front-end processes the instructions received from the scalar core. It includes the pre-issue

ueue , which uses a credit-based system to get new instructions from OVI. The unpacker classifies
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

28:10 F. Minervini et al.

Fig. 4. Overlapping of vector instructions example.

t

a

r

e

w

(

m

3

I

t

t

q

b

n

T

i

r

a

t

w

a

f

b

o

s

p

3

V

t

V

A

he instruction according to its type and performs a fine-grain decoding, providing on the output
 vector of control bits used by the lanes to understand what kind of operation to apply. The
enaming unit , already mentioned in Section 2.2.4 , resolves the WAR and WAW dependencies,
mpowering the lightweight out-of-order execution. It holds the Register Alias Table (RAT) ,
hich maps each logical register to the last assigned physical register, and the Free Register List

FRL) , which keeps track of the available physical registers. The queue demultiplexer splits the
emory and the arithmetic instruction streams onto different queues, enabling parallelism.

.2 Issue Stage

nstructions from the queue demultiplexer are split and stored in the issue FIFO queues according
o their type. The number of queue entries is parameterized. Control logic in the issue stage con-
inuously checks the availability of the resources to be used by the instructions at the head of the
ueues. This block analyzes the decoded information of arithmetic operations to enable back-to-
ack execution. This feature, which we term overlapping , allows for opportunistically starting a
ew instruction before the previous one has finished, to fully exploit the vector arithmetic pipeline.
his mechanism is shown in Figure 4 . We name inbound an instruction at the execution stage that

s reading the vector operands from the VRF. As soon as all the vector source elements have been
ead, the instruction becomes outbound . The overlapping enabled by the issue stage control logic
llows, at this point, another instruction to enter the execution phase by making it inbound , so as
o start reading the source operands. By the time the first instruction exits the outbound phase,
hich happens when it has written back all the results, the second one may have already gener-

ted the first results. Therefore, the effect of overlapping is that the second instruction advances
aster in writing back its results. Figure 4 depicts this scenario, showing the reduction in the num-
er of cycles to complete the instructions when overlapping is enabled. Although in a certain way
verlapping resembles the traditional instruction pipelining, it actually enables different lanes to
tart the execution of an instruction earlier, in case the operational vl is higher than the one of the
revious operation. This corresponds to concurrent execution of instructions in different lanes.

.3 Memory Units

itruvius+ supports vector memory operations through a dedicated set of units. These units use
he OVI signals while also communicating with the vector lanes. As explained in Section 2.2.1 ,
itruvius+ does not have access to the memory hierarchy, and it is the scalar core that performs
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 28:11

Fig. 5. VRF 64-bit element mapping showing the interleaved distribution.

m

d

o

t

U

t

3

p

i

0

t

s

c

a

i

I

s

a

n

u

m

f

6

t

t

t

i
emory accesses for vector memory operations. The Load Management Unit (LMU) processes
ata coming from OVI when executing a vector load. Data reaches the vector unit at the granularity
f a cache line, as explained in Section 2.2.1 . The Store Management Unit (SMU) interacts with
he scalar core through the credit system described in Section 2.2.1 . Finally, the Item Management

nit (IMU) is in charge of managing the transactions for the MASK_IDX bus of OVI in Figure 1 ,
hus it is involved in the execution of masked and/or indexed vector memory operations.

.4 Vector Lane

3.4.1 VRF. Each lane holds a slice of the VRF, with the slices being composed of five single-
ort 2-kB SRAM banks, as explained in Section 2.2.3 . The vector registers are organized in an

nterleaved fashion, as shown in Figure 5 . In other words, the first eight bytes are always in lane
, the next eight bytes are always in lane 1, and so on. The distribution of the vector elements in
he VRF is a microarchitecture decision. The interleaving has some benefits. When executing a
tride-1 vector load, each lane can receive exactly one DP-element per cycle from the input 512-bit
ache line. This guarantees that no lane gets starved from not receiving elements in case there is an
rithmetic instruction waiting for data to arrive from a vector load. The VRF banks can be accessed
ndependently, but, on a read, a full set of five elements, one per bank, will be tentatively gathered.
n RVV, the mask register is implicitly vector register v0 . However, the mask registers are kept
eparated from the VRF, to avoid possible bank conflicts when executing predicated operations.

3.4.2 Finite State Machine (FSM). Each lane features an FSM in charge of managing the reads
nd writes from/to the VRF. It is based on a five-state structure (plus an idle state to avoid un-
ecessary state transitions and contributing to energy efficiency). The FSM leaves the idle state
pon having received a start signal from the local control unit and/or having detected that some
emory operation is executing. Then, the FSM cycles over the five active stages. Elements read

rom the VRF are buffered and then provided to the functional units. Since each read provides five
4-bit values, and the FSM state repeats every five cycles, arithmetic operations can fully exploit
he functional unit pipelines, providing a 64-bit result per cycle, after paying the initial start-up
ime. However, as presented in Section 2.2.2 , the start-up time is amortized over the many opera-
ions executed by managing long vectors. Moreover, the FSM capability of addressing each bank
ndependently is leveraged to write to the VRF combining data from different in-flight vector loads.
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

28:12 F. Minervini et al.

r

b

U

a

i

p

l

(

l

a

3

T

a

f

i

f

f

A

t

a

m

3

A

R

t

C

t

t

i

r

4

I

g

T

d

6

A

3.4.3 Execution Wrapper. The source buffers receive vector elements from the VRF in prepa-
ation toward the functional units. Each lane features a Floating-Point Unit (FPU) developed
y the University of Zagreb, 6 that performs floating-point operations, and an Arithmetic Logic

nit (ALU) that manages integer and fixed-point computations. All the units in the vector lanes
re fully pipelined (except square root and division) and have a throughput of 64-bit/cycle, working
n SIMD fashion when the element width is less than 64 bits. The Floating Point Unit (FPU) sup-
orts all classes of operations, including FMA, division, square root, comparison, and other types

ike widening and narrowing operations. Integer operations executed in the Arithmetic Logic Unit
ALU) also range from the most common ones, like FMA, multiplication, addition, and bit manipu-
ation, to others like narrowing, widening, and fixed point. Additionally, our vector unit supports
ll type of vector reduction operations specified by the RVV specifications.

.5 Ring Interconnect

he class of permutation instructions in the RISC-V V-extension involves vector elements shuffling
nd manipulation. Due to the mapping presented in Figure 5 , the lanes need a medium to trans-
er/receive data to/from other lanes. As discussed in Section 2.2.5 , a unidirectional ring topology
s used to interconnect the lanes. It is designed to have a single-cycle latency for one-hop trans-
ers (i.e., to transfer data from one lane to its direct neighbor). Reduction operations can benefit
rom leveraging this type of interconnect for transferring partial results to the neighboring lanes.
dditionally, the ring interconnect executes the slide operations, which move elements of a vec-

or register given an offset, and vector register gather operations, which use one vector register
s a set of indices and realize any permutation of the vector register used as source of data. The
aximum injection rate of the ring interconnect is eight DP-elements per cycle.

.6 Reorder Buffer

s the execution of arithmetic and memory instructions can complete in an out-of-order way, a
eorder Buffer (ROB) is used to keep the instruction commit order. While receiving informa-

ion about any in-flight instruction, only one instruction per cycle is marked as completed on the
OMPLETED bus of OVI in Figure 1 . If any exception occurs, the Reorder Buffer (ROB) notifies

he scalar core about this event through specific signals of the interface, and internally triggers
he roll-back process in case the vector unit needs to go back to a previous safe state. While do-
ng so, the ROB disables any possibility for new instructions to proceed in the front-end until the
oll-back phase is finalized.

 VITRU VI US+ OUTSTANDING FEATURES

n the following, we describe the outstanding features that Vitruvius+ implements, which distin-
uish it from the majority of state-of-the-art solutions:

• Implements memory-to-arithmetic vector instruction out-of-order chaining

• Optimizes the execution of vector-vector move operations, by introducing what we call the
fast move operations

• Features reconfiguration capabilities in the inter-lane ring interconnect
• Introduces dedicated support for accelerating the execution of vector reduction operations.

he impact of these new implemented features is highlighted in Section 6 , whereas an extensive
escription of their usage is provided in the next paragraphs.
 https://w w w.fer.unizg.hr/en .

CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

https://www.fer.unizg.hr/en

An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 28:13

Fig. 6. Detail of the out-of-order chaining mechanism. By keeping track of the availability of the element
groups, the operations can generate results in an out-of-order manner.

4

A

o

o

t

n

v

i

o

V

4

k

i

s

p

c

t

o

t

w

b

e

fi

g

e

a

w

4

I

u
.1 Vector Out-of-Order Chaining

 common features of vector processors is chaining . Chaining forwards the results of a vector
peration to another operation that uses them as source operands. Practically, it executes a bypass
f the vector elements produced as results of a functional unit to another functional unit that uses
hem as input for its operation. If we consider arithmetic-to-arithmetic chaining, Vitruvius+ does
ot benefit from it, because only one arithmetic instruction at a time can run in a lane. The type of
ector chaining that is beneficial to our VPU is the memory-to-arithmetic chaining. As explained
n Section 2.2.1 , OVI specifies that the scalar core accesses memory on behalf of a vector load
peration. This makes the order of arrival of the vector elements unpredictable. Referring to the
RF organization in Figure 5 , it is possible, for example, that lane 0 receives the element group
0–72 before it receives the group 0–32. To handle this case, we implement an optimization to
eep track of the availability of the element groups and start the dependent arithmetic operation
f at least a group is ready. The availability of the vector element groups is controlled by a specific
tructure inside the lanes, which we call the ready bits table. This structure is composed of single bit
er group of elements for each vector register. The implementation of this mechanism, which we
all vector out-of-order chaining , helps overcoming the limitation of the OVI standard to disallow
o serve the memory requests on the VPU side. Figure 6 explains through an example how the
ut-of-order chaining works. A vadd.vv uses v2 as one of its source vector operands, and v2 is also
he destination of a previous vle.v . Vector register v2 is represented with some elements already
ritten in the VRF, and some not ready elements marked with the undefined value x . The ready

its for v2 are also depicted. For simplicity, we show only the VRF slice of lane 0, therefore the
lement mapping presented in Section 3.4.1 . At cycle T , a new 512-bit cache line is received with
ve valid elements, with element 80 belonging to lane 0. This element completes the third element
roup from the top in the VRF, and the corresponding ready bit is set to 1. At cycle T+1 , this
lement group is read from the VRF and sent to the functional unit to start the vadd.vv . Note that,
s discussed, this element group is computed before groups 1 and 2, thus allowing for out-of-order
rite-back of the results.

.2 Fast Moves

n RVV, the vector-vector move is encoded as vmv.v.v vd, vs1 , and copies values of vs1 into vd ,
p to the current vl . We made a preliminary analysis on a subset of the target applications where
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

28:14 F. Minervini et al.

Table 3. Percentage of Vector-Vector Moves over the Total Arithmetic Instructions for Some of the
Target Benchmarks

Benchmark Total Arithmetic Instructions Total vmv.v.v Instructions Percentage

Jacobi-2D 20,402 6,163 30.2%

Streamcluster 745,236 165,608 28.6%

LavaMD 37,376 2,048 5.5%

Blackscholes 672,000 9,600 1.4%

MMUL 65,793 256 0.4%

Fig. 7. Fast move mechanism at the renaming stage.

v

a

s

t

p

i

f

w

i

t

t

k

t

u

A

mv instructions are executed. Table 3 shows the number of vmv compared to the total number of
rithmetic instructions. In Jacobi-2D and Streamcluster , this type of instruction represents a con-
iderable percentage of the overall arithmetic operations. With no optimizations, the execution of
his instruction proceeds in the same way as for other arithmetic instructions: it consumes one
hysical register due to renaming, and accesses the VRF to read the source vector and to write it
nto the destination vector. The overall effect is to create a copy of a vector into another. There-
ore, we designed an optimization in Vitruvius+ that enables a smart execution of vmv instructions,
hich we call fast move . In particular, the instruction is completely resolved at renaming. Figure 7

llustrates the mechanism. To support the optimization, we included two additional structures in
he renaming unit. The element table refers to the elements assigned to a vector register the last
ime it was the destination of a vector operation. The 40 alias counters , one per physical register,
eep track of the number of times the same physical register is allocated to multiple logical regis-
ers. When the renaming unit works in the standard mode, associating one physical register to a
nique logical register, the alias counter of that physical register is 0. On the contrary, whenever
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 28:15

a

a

i

t

t

r

s

t

t

o

s

i

m

p

f

o

t

o

s

v

a

c

p

o

i

e

4

T

e

d

a

T

t

F

e

a

t

7

i

n

T

l

t

d

7

e

i
 fast move is executed, one physical register is associated with multiple logical registers, and the
lias counter is increased according to the number of fast moves that rename to that physical reg-
ster. We assume the initial state is the one represented in Figure 7 (a), and the instructions enter
he renaming stage in the shown order. In Figure 7 (b), the vadd renames its destination register v28

o the physical register vr32 . The instruction will be issued to the lanes, freeing the old physical
egister vr28 when retired. Next, a vmv enters the renaming stage as shown in Figure 7 (c). This in-
truction can be executed in the fast mode. In one cycle, it accesses the Register Alias Table (RAT)
o read the last physical registers assigned to v3 and v28 , which are vr3 and vr32 , respectively. In
he next cycle, it writes vr32 to the RAT entry corresponding to v3 , and updates the alias counter
f vr32 and the new value of assigned elements in the element table. In the next cycle, the in-
truction is completed, as it does not need to be executed in the vector lanes. From now on, v3

s mapped to vr32 with vector length 13. We say vr32 is now an “alias” of v3 . Therefore, the fast
ove optimization reduces the latency of execution of the vmv to just three cycles, and reduces

ower dissipation by avoiding unnecessary accesses to the VRF. Similarly, in Figure 7 (d), another
ast move is executed. The process is the same as the one described before, with the alias counter
f vr32 increased to 2. However, note that this time the element table entry for v0 is updated with
he elements from v3 , instead of the vl value that comes with the instruction. The lowest number
f valid elements between the last assigned to the physical vector register used as alias and vl is
elected when executing the fast move at renaming. In this way, when accessing v0 , it will read
alid elements only until vl = 13. When a fast move is retired from the ROB, the alias counters
re decreased. The physical register is written back to the Free Register List (FRL) when the alias
ounter is 0. If we imagine a long sequence of vmv , by executing them in the fast mode we could
otentially have all 32 logical registers renamed to the same physical register. This means that
nly one out of the 40 physical registers is allocated. The other 39 are available for renaming new
nstructions. In this way, the vector instruction window can be expanded as more instructions
nter the vector pipeline.

.3 Switched Ring Reconfiguration

he inter-lane interconnect of our VPU is built over a unidirectional ring topology. This is an
xtremely low-power and area-efficient interconnect, while providing sufficient support for the
ata movement operations needed by our applications. As explained in Section 2.2.5 , vslideup

nd vslidedown are the most common data movement operations in our set of applications.
herefore, Vitruvius+ implements an optimization in the inter-lane ring to enhance the execu-

ion of these instructions. In the baseline unidirectional ring topology, like the one shown in
igure 2 (a), in the eight-lane configuration, eight packets can be injected into the ring where
ach hop takes one cycle, until they reach their final destination. Therefore, in the worst case,
ssuming the data movement occurs in the clockwise direction, a packet reaches its destina-
ion after a maximum of seven cycles, which happens when executing a vslideup with offset
, for example, since lane 0 targets lane 7 as the final destination of its packets. By introduc-
ng limited reconfiguration capabilities in the ring, the maximum latency in the worst-case sce-
ario is reduced to four cycles, at the cost of just a 2% of area overhead and no timing issues.
he reconfigurability of the links depends on the type of instruction to execute and the re-

ated offset value. By taking the previous example of the vslideup with offset 7, with this op-
imization the ring recognizes that is more convenient to move data in the counterclockwise
irection to reduce the latency of the operation. In this way, packets sent by lane 0 reach lane
 in only one cycle. Figure 8 presents the reconfiguration of the inter-lane ring to move data in
ither one or the other direction. In particular, the clockwise direction is selected when execut-
ng vslideup with offset values whose mod8 is between 1 and 3, and vslidedown with offset values
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

28:16 F. Minervini et al.

Fig. 8. Inter-lane ring configurations for the data movement.

w

e

v

I

d

4

R

s

o

g

o

v

e

A

r

B

e

b

l

m

a

v

i

t

p

w

t

v

e

7

A

hose mod8 is between 5 and 7. On the contrary, the counterclockwise direction is selected when
xecuting vslideup with offset values whose mod8 is between 5 and 7, and vslidedown with offset
alues whose mod8 is between 1 and 3. The expression mod8 is the modulo of the number of lanes. 7

f the result of mod8 is 4, the direction of movement is selected by the operation itself—that is, by
efault, clockwise for vslideup and counterclockwise for vslidedown .

.4 Vector Reductions Enhancement

VV-0.7.1 includes vector reduction instructions. These operations take a vector register and a
calar held in element 0 of a second vector register, and perform a reduction using some binary
perator. The result is then stored in element 0 of the destination vector register. The ISA distin-
uishes between ordered and unordered reduction operations. Ordered vector reductions operate
n the element values in order, starting with the scalar value held in element 0 of the second
ector operand. Unordered reductions provide some flexibility on how to operate with the vector
lements. Vitruvius+ supports all the reduction instructions listed in RVV-0.7.1. The FPU and the
LU share a common structure for the execution of reductions, called the reduction handler . The

eduction handler splits the execution of reduction operations into two phases:

• Intra-lane reduction : This refers to the initial steps to reduce the vector elements locally in
each lane, generating intermediate results for the second phase.

• Inter-lane reduction : Reduce the partial results from the first phase to the final scalar result
to be placed in element 0 of the destination vector register.

ecause of the element distribution observed in Section 3.4.1 , the ordered reduction operations
ffectively use only the inter-lane phase, since each value has to be transmitted to the neigh-
or lane for each step of the computation. Ordered and unordered reductions use the inter-
ane ring for the inter-lane phase. However, the flexibility to compute the source vector ele-

ents in the unordered reductions allows for optimizing both phases. Assume the operation is
 floating-point reduction sum, vfredsum.vs vd, vs2, vs1 , with the source vector operands being
s2 and vs1 , with the latter providing the element 0 as the initial scalar value. The final result
s given by vd[0] = vs1[0] +vs2[0] +vs2[1] + · · · +vs2[vl − 1] . Being an unordered reduction,
he sequence of operations can be optimized. Figure 9 shows the optimization for the intra-lane
hase. It depicts a set of N 64-bit accumulators that are used as inputs to the functional unit,
ith the other input being elements of vs2 . This structure is placed in all the lanes. We define

he array vsrc for each lane as vsrc[0] = vs 2[0] , vs rc[1] = vs 2[8] , vs rc[2] = vs2[16] , . . . for lane 0,
src[0] = vs 2[1] , vs rc[1] = vs 2[9] , vs rc[2] = vs2[17] , . . . for lane 1, and so on, according to the
lement mapping in Figure 5 . The first N elements of vsrc are directly placed as initialization
 The mechanism holds for a generic power of 2 Num_Lanes . The maximum latency in ring is therefore Num_Lanes /2.

CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 28:17

Fig. 9. Usage of the accumulators for the optimization of the intra-lane phase of a vector reduction.

Fig. 10. Tree-like scheduling of the operations for the inter-lane phase of a vector reduction.

v

i

u

a

s

e

s

o

w

r

m

n

r

t

a

e

t

I

o
alue of the accumulators, with the exception of lane 0, where the first accumulator is initial-
zed with vs1[0] +vsrc[0] . At step 0, the first pair of operands to enter the pipelined functional
nit is (Ac c [0]; vsrc [N]). At step 1, although this pair is already in the execution pipeline, a new
ccumulator is selected and a new pair of operands feeds the functional unit. The mechanism keeps
electing a different accumulator in a round-robin fashion. When all the elements of vsrc local to
ach lane are computed, the final step combines the N results in the accumulators to produce a
ingle value. After that, the partial results of the lanes need to be combined to finalize the reduction
peration.
To combine the partial results of the lanes, the inter-lane ring is used. A naive implementation

ould pass the result of lane 0 to lane 1, compute a new partial result, then pass it to lane 2 and
epeat the process, until all the partial results are computed to generate the final scalar result. This
echanism is strictly sequential and does not benefit from the parallelism of the multi-lane orga-
ization. Therefore, we design an additional optimization for the execution of unordered vector
eductions with the objective of parallelizing the computation of the final result. By orchestrating
he computation steps between pairs of lanes, the latency of the inter-lane phase can be reduced,
s well as the number of data transfers in the inter-lane ring. This is done by scheduling the op-
rations in a tree-like fashion, as represented in Figure 10 . In step 1, all the lanes are involved in
he computation of partial results by operating in pairs. Thus, three computations are parallelized.
n step 2, the results generated as the outcome of step 1 are further processed by only two pairs
f lanes. Then, step 3 operates on the last two partial results and generates the final scalar result
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

28:18 F. Minervini et al.

t

s

5

5

V

l

f

g

M

I

t

i

o

G

t

a

b

e

S

5

W

d

b

t

M

(

s

c

w

f

t

i

o

t

p

6

I

o

6

V

F

a

a

A

o be stored in element 0 of the destination vector register, held in lane 0 as per the VRF mapping
hown in Section 3.4.1 .

 METHODOLOGY

.1 Experimental Setup

itruvius+ is fully described at the Register Transfer Level (RTL) using the SystemVerilog
anguage. The generated Register Transfer Level (RTL) code passes through RTL simulation for
unctional verification, synthesis, and physical design. Functional verification, driven by randomly
enerated binaries and directed tests, is performed through a dedicated Universal Verification
ethodology environment. It is based on a co-simulation scenario with the Spike [41] RISC-V

SA simulator as a golden reference for the vector instructions. We use QuestaSim-64 2021.3_2 for
he RTL simulation. The tests are executed on both Spike and Vitruvius+. The check with Spike
s done on a per-instruction basis. In case of any mismatch, the simulation stops and information
f the discrepancies is generated to ease debugging. Then, we synthesized Vitruvius+ targeting
F22FDX using Cadence Genus Synthesis Solution 19.11. The generated netlist is then used for

he physical implementation phase with Cadence Innovus 19.11. The netlist is also used in the
forementioned Universal Verification Methodology environment to run our set of vectorized
enchmarks, with back-annotation on timing information to estimate the switching activity for
ach of the selected applications. Then, we used this information in Cadence Joules RTL Power
olution to extract power metrics.

.2 Benchmarks Description

e benchmarked several long-vector compatible kernels from the HPC applications and other
omains [31]. Among the HPC applications, axpy represents a common kernel in applications
ased on BLAS (Basic Linear Algebra Subprograms). Because of its low arithmetic intensity (i.e.,
hree memory operations for each arithmetic), it is a typical memory-bound kernel. The second is

atrix-Matrix Multiplication (MMUL) , a compute-bound Basic Linear Algebra Subprograms
BLAS) kernel highly used for benchmarking, as it gives insights on the top performance of the
ystem. The Fast Fourier Transform (FFT) kernel is an efficient method for computing the dis-
rete Fourier transform of a sequence of complex numbers. From the molecular dynamics domain,
e have LavaMD . This application calculates the particle potential and relocation due to mutual

orces between particles within a large 3D space. Another kernel is Blackscholes , which represents
he broad field of analytic PDE solvers and their application in computational finance. Jacobi2D

s part of the PolyBench suite and implements an iterative algorithm for calculating the solutions
f a diagonally dominant system of linear equations. Pathfinder uses the ghost zone optimization
echnique to find the shortest path on a 2D grid. Finally, Streamcluster solves an online clustering
roblem by assigning each of the input points to its nearest center.

 EXPERIMENTAL RESULTS

n this section, we present the experimental results of our VPU, including comparisons with state
f the art vector processors.

.1 FPGA Evaluation

itruvius+ was synthesized for the preliminary FPGA evaluation using Vivado 2020.1 on a VCU128
PGA from Xilinx. We used specific micro-kernels for evaluating the impact of the overlapping
nd the vector reductions enhancement. To characterize the impact of overlapping, we created
 sequence of back-to-back FMA operations first for a version of the VPU that does not enable
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 28:19

Fig. 11. Evaluation of the overlapping and the vector unordered reductions optimizations.

o

F

e

1

n

o

g

c

fi

t

t

l

d

a

r

o

o

s

W

6

V

c

c

n

W

s

t

w

p

V

o

8

o

verlapping, then enabling this feature. We ran this test for a considerable range of vl values.
igure 11 (a) compares the performance in terms of DP-FLOP/cycle for the two cases. Because
ach lane has an FPU, the ideal throughput of Vitruvius+ equipped with eight lanes amounts to
6 DP-FLOP/cycle. 8 Despite the low performance in the short-vector region, affected by the non-
egligible start-up time, the overlapping optimization performs significantly better than the non-
verlapping case. The low performance in the short-vector region is due in part to the VRF accesses
enerated by the FSM. When the number of elements assigned to each lane is low, such as the
ase of vl = 16 where each lane has only 2 DP-elements, the FSM accesses only two out of the
ve banks of the VRF. A smart operation scheduler may detect this case and pack the access to
he VRF of the following instruction with the one of the previous instruction, trying to optimize
he usage of the resource, provided there are no bank conflicts. However, the necessary control
ogic could have a non-negligible impact on area. On the contrary, the overlapping optimization
rastically increases performance in the long-vector region. Overall, this optimization gives an
verage speedup of 1.7X. We also evaluated the optimizations for the execution of vector unordered
eduction operations presented in Section 4.4 . In particular, we executed a micro-kernel composed
f vfredsum instructions, for different vector length values. Figure 11 (b) compares the performance
btained by enabling both the usage of the multiple accumulators and the tree-based execution
cheme, explained in Section 4.4 . It shows the decrease of the cycle count due to the optimizations.
e measured a peak reduction of 40 cycles.

.2 Synthesis Results

itruvius+ was synthesized for the GF22FDX technology. We selected the 8-Tracks (8T) standard
ell library. In the synthesis process, we used a clock period of 700 ps, a bit lower than the target
lock corresponding to the frequency of 1.2 GHz, to force the synthesizer to optimize the output
etlist and give some margin to the Place and Route (PnR) tool to meet the timing constraints.
e enabled the retiming feature to deal with the timing critical paths of our design. We set the

ynthesizer to use both Super Low V t (SLVT) and Low V t (LVT) cells, where V t represents the
ransistor threshold voltage , to use the fast SLVT cells in the timing critical paths of the design,
hereas using slower LVT cells in the parts of the design with no timing issues, contributing to
ower efficiency. We also enable the clock-gating feature. In the typical corner (TT/0.80 V/25 ◦C),
itruvius+ successfully meets the timing constraints, reaching an estimated maximum frequency
f 1.4 GHz. In the slow corner (SS/0.72 V/125 ◦C), the maximum frequency is around 1.2 GHz, with
 Each FMA accounts for two operations: one multiplication and one addition. Therefore, each lane has a peak throughput

f 2 DP-FLOP/cycle.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

28:20 F. Minervini et al.

Fig. 12. Floorplan of Vitruvius+ with eight lanes.

Fig. 13. Breakdown of the area in Vitruvius+. The area distribution of a single lane is also shown.

t

S

a

6

T

p

w

µ

1

a

s

z

c

o

t

c

a

r

t

A

he critical path being in the Load Management Unit (LMU), one of the memory units presented in
ection 3.3 . The final synthesis report shows that 45.7% of the total cells are LVT cells and 54.3%
re SLVT cells.

.3 Physical Design

he netlist obtained from the synthesis entered the Place and Route (PnR) phase. We tried different
lacements of the synthesized netlist, and we ended up with the configuration shown in Figure 12 ,
here the different lanes and their VRF slices are highlighted. The floorplan fits in a 1,600 × 1,100
m

2 rectangle, where 20 µm on each side are left for the power ring. Therefore, a total area of
.7064 mm

2 is left for the design. Our results show that Vitruvius+ occupies 76% of the available
rea, giving a total of 1.3 mm

2 . Power estimation in the typical corner reported by the PnR tool
hows a maximum power of ∼920 mW. Figure 13 shows the area breakdown of Vitruvius+ and
oom-in on the area distribution of the internal module of a single lane, with the percentage of area
onsumed by the internal blocks. As depicted, the renaming unit, which enables the lightweight
ut-of-order execution in Vitruvius+, accounts for only the 2.5% of the total area of the VPU. As for
he area breakdown of the single lane, the FPU and the VRF represents the most area-consuming
omponents, occupying 35.1% and 29.8% of the total lane area, respectively. The reduction handler
nd related improvements described in Section 4.4 accounts for the 6% of the lane area. Figure 14
eports the breakdown of the maximum estimated power consumption. As shown, the impact of
he renaming unit is negligible and accounts for only the 1.63% of the total estimated power.
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 28:21

Fig. 14. Breakdown of the maximum power consumption in Vitruvius+.

Table 4. Performance Evaluation for the Set of Benchmarks and Speedup over Vitruvius

Frequency: 1.4 GHz

Application

FLOP/cycle

Power [mW] GFLOPS/W Speedup

Vitruvius Vitruvius+

Axpy 4.1 6.1 347 24.6 1.5X

MMUL 14 15.5 459 47.3 1.1X

FFT 2.5 3.1 348 12.5 1.2X

Jacobi2D 7.4 8.2 400 28.7 1.1X

Blackscholes 5 6 427 19.7 1.2X

LavaMD 6 6.6 446 20.7 1.1X

Pathfinder 2.5 3.0 365 11.5 1.2X

Streamcluster 3.9 7.1 516 19.3 1.8X

6

T

l

t

i

O

p

t

i

b

f

b

o

s

a

p

T

6

W

V

p

o

p

p
.4 Benchmarks

able 4 shows performance, power, and efficiency results, as well as the speedup over the base-
ine architecture, Vitruvius, for the target benchmarks. Power data were obtained by simulating
he back-annotated netlist of the whole design on QuestaSim-64 2021.3_2. The resulting activ-
ty was processed in Cadence Joules RTL Power Solution for each of the evaluated benchmarks.
verall, Vitruvius+ scores better than Vitruvius for all the benchmarks due to the optimizations
resented in Section 4 . In particular, axpy benefits from the out-of-order chaining mechanism, as
he functional unit can start processing data not strictly from the first element group, as discussed
n Section 4.1 . Similarly, Fast Fourier transform (FFT) includes indexed operations, and partially
enefits from the out-of-order chaining while encountering the bottleneck on the memory inter-
ace. FFT also has vrgather , one of the longest-latency operations in Vitruvius+. Streamcluster is the
enchmark that most benefits from the optimizations described in Section 4 . In particular, both the
ptimizations of vector reductions and the fast-move mechanism contribute to the considerable
peedup over the previous design. Jacobi-2D also improves a bit after the fast-move optimization
nd the reconfiguration of the inter-lane ring, with a 10% increase on the FLOP/cycle. Pathfinder re-
orts a 1.2X speedup due to the switched-ring capabilities. For MMUL, we observe a light speedup.
he performance is very close to the peak, showing an efficiency of 97% of FPU utilization.

.5 Comparison with State-of-the-Art Vector Units

e compare the results obtained from the evaluation of Vitruvius+ with relevant state-of-the-art
PUs. Results are collected in Table 5 . We consider metrics of vector units in isolation as much as
ossible. We also believe that for a decoupled unit such as ours, the final efficiency would depend
n the type and design of the scalar core.

6.5.1 Comparison with RISC-V Vector Units. Hwacha [21] is a single-lane vector unit that im-
lements a custom vector ISA and was taped out with an MVL of 512 bits. The authors report a
eak energy efficiency of 16.7 GFLOPS/W at 0.65 V, running at 250 MHz. Hwacha V4 [6] increases
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

28:22 F. Minervini et al.

Table 5. Comparison with Relevant State-of-the-Art Vector Units

RISC-V Vector Processors

Name RVV version VLEN Area Frequency Peak Efficiency

(bits) (mm

2) (GHz) (GFLOPS/W)

Vitruvius+ (this work) 0.7.1 16,384 1.3 1.4 47.3

[21] Hwacha Non-Standard 512 1.31 a 1.0 16.7

[6] HwachaV4 Non-Standard 512 4.06 a N/A

b 40+

[23] Ara 0.5 16,384 0.6 1.3 46.4

[5] Xuantie910 VPU 0.7.1 256 0.2 a 2.0 N/A

[2] Andes NX27V 1.0 512 N/A 1.4 N/A

[40] SiFive P270 1.0rc 256 N/A N/A N/A

[39] SiFive X280 1.0 512 N/A N/A N/A

Non-RISC-V Vector Processors

Name Vector ISA VLEN Area Frequency Peak Efficiency

(bits) (mm

2) (GHz) (GFLOPS/W)

[27] SX-Aurora VE NEC Vector ISA 16,384 30.22 a 1.6 N/A

[28] A64FX Scalable Vector Extension (SVE) 128–2,048 1.22 a 1.8 26.8 a

a Estimated from publicly available resources.
b Not publicly available.

Note: The reported values come from taped-out implementations.

t

o

t

a

G

V

v

b

l

t

i

c

v

c

a

t

w

R

V

s

c

m

p

A

i

A

he peak energy efficiency up to 40+ GFLOPS/W. Vitruvius+ gets higher peak energy efficiency
f 47.3 GFLOPS/W when running a 256 × 256 MMUL kernel, and also runs at higher frequency
han the reported Hwacha implementations. Ara [23] targets long vectors with 256 DP-elements
nd was taped out in a four-lane configuration. This implementation reports an efficiency of 46.4
FLOPS/W when running a 256 × 256 MMUL kernel. The peak energy efficiency is similar to
itruvius+. However, Ara supports only a subset of the RVV-0.5, and is missing the support for
ector reductions and vector register grouping. Xuantie-910 [5] was taped out with an MVL of 256
its, way lower than the vector length supported in Vitruvius+. We did not find any other pub-
icly available information for a deeper analysis. Although Table 5 reports ASIC implementations,
here are vector units oriented at FPGA implementation, like Arrow [4] and Vicuna [30]. Arrow
mplements a subset of RVV-0.9, with no support for reductions and permutation instructions, in-
luding vector register gather and slide operations, as well as memory indexed operations. Vitru-
ius+ implements all these features. Platzer and Puschner [30] report a peak efficiency of +90% for
ompute-bound tasks and different configuration with up to 2,048 bits of MVL. Vitruvius+ reaches
 peak efficiency of +97% for compute-bound tasks like the MMUL kernel or the sequence of back-
o-back FMAs as reported in Section 6.1 . With these works being FPGA-based implementations,
e cannot make a fair comparison in terms of area and power efficiency.

6.5.2 Comparison with Non-RISC-V Vector Units. We consider two of the most popular non-
ISC-V vector units. A disclaimer that by no means the following paragraphs are advocating
itruvius+ is at the maturity level of the commercial vector units. We report the following con-

iderations as a qualitative analysis to better understand how Vitruvius+ positions itself when
ompared to the best-in-class vector processors. Because of the lack of publicly available infor-
ation on power analysis of the NEC SX-Aurora TSUBASA VE [27], we considered performance

er area for a qualitative analysis. We retrieved information about the fabrication aspects of SX-
urora from Schor [36]. By removing the estimated area due to caches from the reported area

nformation, and by equally splitting the remaining area of the single vector core between the
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 28:23

s

g

o

V

A

a

a

1

t

o

I

r

w

o

o

r

F

7

T

I

b

v

t

b

l

a

t

f

o

c

R

calar pipeline and the VPU, we estimated an area of 30.22 mm

2 for the SX-Aurora VPU. This
ives ≈10.16 GFLOP/mm

2 at 1.6 GHz (16 nm). Calculating the same metrics for Vitruvius+, we
btain 17.23 GFLOP/mm

2 at 1.4 GHz, as a proof of its efficient resource utilization. We believe that
itruvius+ would be even more efficient when scaling to the same technology node.
For the SVE VPU of the A64FX core from Fujitsu [28], we used the results from the work of

rima et al. [3]. Again, by eliminating the area contribution due to caches, we extrapolated an
rea per core of 2.44 mm

2 . We equally distributed the calculated per-core area among its scalar
nd vector pipelines. This favors the VE, which gets 1.22 mm

2 and results in 47 GFLOPS/mm

2 at
.8 GHz (7 nm). Vitruvius+ yields a total of 17.23 GFLOPS/mm

2 at 1.4 GHz (22 nm). We believe that
echnology scaling from 22 nm down to 7 nm will place Vitruvius+ efficiency closer to the result
f A64FX. From the work of Arima et al. [3], we could also retrieve information on power metrics.
n particular, it reports that the power consumption of a core group composed of 12 cores when
unning DGEMM is ≈26 W. This gives an estimated power per core of 2.1 W. From Moss [25],
here the peak performance of DGEMM is revealed, we deduced a peak performance per core
f around 56.2 GFLOPS, which corresponds to almost 97% of efficiency of FPU utilization. Based
n this, we calculate a peak power efficiency of 26.8 GFLOPS/W (1.8 GHz, 7 nm). Based on the
esults of MMUL we measure in Section 6.4 , for Vitruvius+ we calculate an efficiency of 97% of
PU utilization, with a peak power efficiency of 47.3 GFLOPS/W (1.4 GHz, 22 nm).

 CONCLUSION AND FU T URE WORK

his work presented Vitruvius+, a VPU with 256-DP-element vectors targeting HPC applications.
t implements RVV-0.7.1 and adopts a hybrid in-order/out-of-order execution scheme supported
y register renaming and arithmetic/memory instruction decoupling. In its next generation, Vitru-
ius+ will support RVV-1.0, the latest version of RVV. We identify mainly two challenging features
o support. The first feature is the new mask layout, which always maps bit i of the mask register to
it i of the vector register v0 , regardless of the element size and the LMUL settings. Due to the inter-
eaving of the vector elements shown in Figure 5 , this implies the need of a mechanism to distribute
ccordingly the mask bits to the vector lanes when executing predicated instructions. Another fea-
ure supported in RVV-1.0 is what the ISA calls fractional LMUL . RVV-1.0 allows LMUL to assume
ractional values, specifically 1/2, 1/4, and 1/8. The overall effect of this feature is the reduction
f the vector length within a single vector register. We believe that this feature does not have a
ritical impact on the current design and can be implemented with a few changes in the front-end.

EFERENCES

[1] Rob Aitken. 2021. Performance per Watt Is the New Moore’s Law. Retrieved December 15, 2022 from https://w w w.

arm.com/blogs/blueprint/performance-per-watt .

[2] AndesCore. 2020. AndesCore NX27V Processor 64-bit CPU with RISC-V Vector Extension. Retrieved May 29, 2022

from http://w w w.andestech.com/en/products- solutions/andescore- processors/riscv- nx27v/ .

[3] Eishi Arima, Yuetsu Kodama, Tetsuya Odajima, Miwako Tsuji, and Mitsuhisa Sato. 2021. Power/performance/area

evaluations for next-generation HPC processors using the A64FX chip. In Proceedings of the 2021 IEEE Symposium in

Low-Power and High-Speed Chips (COOL CHIPS’21) . 1–6. DOI: https://doi.org/10.1109/COOLCHIPS52128.2021.9410320

[4] Imad Al Assir, Mohamad El Iskandarani, Hadi Rayan Al Sandid, and Mazen A. R. Saghir. 2021. Arrow: A RISC-V

vector accelerator for machine learning inference. arxiv:2107.07169 (2021).

[5] Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo, Dongqi Liu, Yimin Lu, et al. 2020. Xuantie-910: A

commercial multi-core 12-stage pipeline out-of-order 64-bit high performance RISC-V processor with vector exten-

sion. In Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA’20) .

52–64.

[6] Schmidt Colin, Ou Albert, and Asanović Krste. 218. Hwacha V4: Decoupled Data Parallel Custom Extension. Retrieved

December 15, 2022 from https://riscv.org/wp- content/uploads/2018/12/Hwacha- A- Data- Parallel- RISC- V- Extension-

and- Implementation- Schmidt- Ou- .pdf.
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

https://www.arm.com/blogs/blueprint/performance-per-watt
https://www.arm.com/blogs/blueprint/performance-per-watt
http://www.andestech.com/en/products-solutions/andescore-processors/riscv-nx27v/
https://doi.org/10.1109/COOLCHIPS52128.2021.9410320
https://riscv.org/wp-content/uploads/2018/12/Hwacha-A-Data-Parallel-RISC-V-Extension-and-Implementation-Schmidt-Ou-.pdf
https://riscv.org/wp-content/uploads/2018/12/Hwacha-A-Data-Parallel-RISC-V-Extension-and-Implementation-Schmidt-Ou-.pdf

28:24 F. Minervini et al.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

A

[7] Control Data Corporation. 1975. Control Data STAR-100 Computer . Control Data Corporation. http://bitsavers.

trailing-edge.com/pdf/cdc/cyber/cyber _ 200/60256000 _ STAR-100hw _ Dec75.pdf.

[8] Marius Cornea. 2015. Intel AVX-512 Instructions and Their Use in the Implementation of Math Functions . Intel Corpora-

tion.

[9] R. G. Dreslinski, M. Wieckowski, D. Blauw, D. Sylvester, and T. Mudge. 2010. Near-threshold computing: Reclaiming

Moore’s law through energy efficient integrated circuits. Proceedings of the IEEE 98 (2010), 253–266.

10] Ralph Duncan. 1990. A survey of parallel computer architectures. Computer 23, 2 (1990), 5–16.

11] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam, and Doug Burger. 2011. Dark sili-

con and the end of multicore scaling. In Proceedings of the 2011 38th Annual International Symposium on Computer

Architecture (ISCA’11) . 365–376.

12] Roger Espasa and Mateo Valero. 1996. Decoupled vector architectures. In Proceedings of the 2nd International Sympo-

sium on High-Performance Computer Architecture .

13] R. Espasa, M. Valero, and J. E. Smith. 1998. Vector architectures: Past, present and future. In Proceedings of the Interna-

tional Conference on Supercomputing (ICS’98) . ACM, New York, NY, 425–432. https://doi.org/10.1145/277830.277935

14] EuroHPC. 2018. The European High Performance Computing Joint Undertaking (EuroHPC JU). Retrieved May 29,

2022 from https://eurohpc-ju.europa.eu/ .

15] European Processor Initiative. 2019. EPI Accelerator. Retrieved May 29, 2022 from https://w w w.european-processor-

initiative.eu/accelerator/ .

16] Exascale Computing Project. 2018. Exascale Computing Project. Retrieved May 29, 2022 from https://w w w.

exascaleproject.org/ .

17] Fujitsu Post-K. 2019. Fujitsu Begins Production of Post-K. Retrieved December 15, 2022 from https://w w w.fujitsu.

com/global/about/resources/news/press-releases/2019/0415-01.html .

18] Fabrizio Gagliardi, Miquel Moreto, Mauro Olivieri, and Mateo Valero. 2019. The international race towards Exascale

in Europe. CCF Transactions on High Performance Computing 1 (2019), 3–13.

19] GREEN500 List. 2022. GREEN500 List—June 2022. Retrieved December 15, 2022 from https://w w w.top500.org/lists/

green500/2022/06/ .

20] Jonathan Koomey. 2016. Our Latest on Energy Efficiency of Computing over Time, Now Out in Electronic Design.

Retrieved December 15, 2022 from https://w w w.koomey.com/post/153838038643 .

21] Yunsup Lee, Andrew Waterman, Rimas Avizienis, Henry Cook, Chen Sun, Vladimir Stojanović, and Krste Asanović.

2014. A 45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V processor with vector accelerators. In Proceedings of

the 40th European Solid State Circuits Conference (ESSCIRC’14) . 199–202. DOI: https://doi.org/10.1109/ESSCIRC.2014.

6942056

22] Y. Lu. 2019. Paving the way for China exascale computing. CCF Transactions on High Performance Computing 1 (2019),

63–72.

23] Matheus Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini. 2020. Ara: A 1-GHz+ scalable and energy-

efficient RISC-V vector processor with multiprecision floating-point support in 22-nm FD-SOI. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems 28, 02 (Feb. 2020), 530–543. DOI: https://doi.org/10.1109/TVLSI.2019.

2950087

24] Kim McMahon. 2022. Intel Corporation Makes Deep Investment in RISC-V Community to Accelerate Innovation

in Open Computing. Retrieved May 30, 2022 from https://riscv.org/blog/2022/02/intel- corporation- makes- deep-

investment- in- risc- v- community- to- accelerate- innovation- in- open- computing .

25] Sebastian Moss. 2018. Fujitsu Reveals Specs of A64FX, Its Post-K Supercomputer CPU. Retrieved December 15, 2022

from https://w w w.datacenterdynamics.com/en/news/fujitsu-reveals-specs-a64fx-its-post-k-supercomputer-cpu/ .

26] Sam Naffziger and Jonathan Koomey. 2016. Energy Efficiency of Computing: What’s Next? Retrieved December

15, 2022 from https://w w w.electronicdesign.com/technologies/microprocessors/article/21802037/energy-efficiency-

of- computing- whats- next .

27] NEC. 2020. SX-Aurora TSUBASA. Retrieved December 15, 2022 from https://w w w.nec.com/en/global/solutions/hpc/

sx/architecture.html .

28] Ryohei Okazaki, Takekazu Tabata, Sota Sakashita, Kenichi Kitamura, Noriko Takagi, Hideki Sakata, Takeshi Ishibashi,

Takeo Nakamura, and Yuichiro Ajima. 2020. Supercomputer Fugaku CPU A64FX realizing high performance, high-

density packaging, and low power consumption. Fujitsu Technical Review 2020 (2020), 1–9.

29] Gianmarco Ottavi, Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Luca Benini, and Davide Rossi. 2020. A

mixed-precision RISC-V processor for extreme-edge DNN inference. In Proceedings of the IEEE Computer Society An-

nual Symposium on VLSI (ISVLSI’20). 512–517. DOI: https://doi.org/10.1109/ISVLSI49217.2020.000-5 arxiv:2010.04073

30] Michael Platzer and Peter Puschner. 2021. Vicuna: A timing-predictable RISC-V vector coprocessor for scalable par-

allel computation. In Proceedings of the 33rd Euromicro Conference on Real-Time Systems (ECRTS’21) . 1–18. DOI: https:

//doi.org/10.4230/LIPIcs.ECRTS.2021.1
CM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

http://bitsavers.trailing-edge.com/pdf/cdc/cyber/cyber_200/60256000_STAR-100hw_Dec75.pdf
http://bitsavers.trailing-edge.com/pdf/cdc/cyber/cyber_200/60256000_STAR-100hw_Dec75.pdf
https://doi.org/10.1145/277830.277935
https://eurohpc-ju.europa.eu/
https://www.european-processor-initiative.eu/accelerator/
https://www.european-processor-initiative.eu/accelerator/
https://www.exascaleproject.org/
https://www.exascaleproject.org/
https://www.fujitsu.com/global/about/resources/news/press-releases/2019/0415-01.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2019/0415-01.html
https://www.top500.org/lists/green500/2022/06/
https://www.top500.org/lists/green500/2022/06/
https://www.koomey.com/post/153838038643
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/TVLSI.2019.2950087
https://riscv.org/blog/2022/02/intel-corporation-makes-deep-investment-in-risc-v-community-to-accelerate-innovation-in-open-computing
https://riscv.org/blog/2022/02/intel-corporation-makes-deep-investment-in-risc-v-community-to-accelerate-innovation-in-open-computing
https://www.datacenterdynamics.com/en/news/fujitsu-reveals-specs-a64fx-its-post-k-supercomputer-cpu/
https://www.electronicdesign.com/technologies/microprocessors/article/21802037/energy-efficiency-of-computing-whats-next
https://www.electronicdesign.com/technologies/microprocessors/article/21802037/energy-efficiency-of-computing-whats-next
https://www.nec.com/en/global/solutions/hpc/sx/architecture.html
https://www.nec.com/en/global/solutions/hpc/sx/architecture.html
https://doi.org/10.1109/ISVLSI49217.2020.000-5
https://doi.org/10.4230/LIPIcs.ECRTS.2021.1
https://doi.org/10.4230/LIPIcs.ECRTS.2021.1

An Area-Efficient RISC-V Decoupled Vector Coprocessor for HPC Applications 28:25

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

R

31] Cristóbal Ramírez, César Alejandro Hernández, Oscar Palomar, Osman Unsal, Marco Antonio Ramírez, and Adrián

Cristal. 2020. A RISC-V simulator and benchmark suite for designing and evaluating vector architectures. ACM Trans-

actions on Architecture and Code Optimization 17, 4 (Nov. 2020), Article 38, 30 pages. DOI: https://doi.org/10.1145/

3422667

32] Venu Gopal Reddy. 2008. Neon Technology Introduction . ARM Corporation.

33] Antonio Regalado. 2022. MIT Technology Review: Covid Variant Tracking. Retrieved May 30, 2022 from https://w w w.

technologyreview.com/2022/02/23/1044975/covid- 19- variant- tracking- scientists/ .

34] RISC-V V-extension. 2022. RISC-V V-extension. Retrieved May 29, 2022 from https://github.com/riscv/riscv- v- spec .

35] Richard M. Russell. 1978. The CRAY-1 computer system. Communications of the ACM 21, 1 (Jan.1978), 63–72. https:

//doi.org/10.1145/359327.359336

36] David Schor. 2018. SX-Aurora-Microarchitectures-NEC. Retrieved December 15, 2022 from https://en.wikichip.org/

wiki/nec/microarchitectures/sx-aurora .

37] GitHub. 2020. OVI: Open Vector Interface. Retrieved December 15, 2022 from https://github.com/semidynamics/

OpenVectorInterface .

38] Semidynamics. 2021. Semidynamics High Bandwidth RISC-V IP Core Avispado. Retrieved December 15, 2022 from

https://semidynamics.com/products/avispado .

39] SiFive. 2022. SiFive Intelligence X280. (2022). Retrieved August 21, 2022 from https://w w w.sifive.com/cores/

intelligence-x280 .

40] SiFive. 2022. SiFive Performance P270. Retrieved August 21, 2022 from https://w w w.sifive.com/cores/performance-

p270 .

41] GitHub. 2014. Spike RISC-V ISA Simulator. Retrieved May 30, 2022 from https://github.com/riscv/riscv- isa- sim .

42] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Giacomo Gabrielli, Matt Horsnell, et al.

2017. The ARM scalable vector extension. IEEE Micro 37, 2 (2017), 26–39.

43] European Processor Initiative. 2021. EPI EPAC 1.0 RISC-V Test Chip Taped-out. Retrieved December 15, 2022 from

https://w w w.european-processor-initiative.eu/epi-epac1-0-risc-v-test-chip-taped-out/ .

44] TOP500 List. 2022. TOP500 List—June 2022. Retrieved December 15, 2022 from https://w w w.top500.org/lists/top500/

2022/06/ .

45] W. J. Watson. 1972. The TI ASC: A highly modular and flexible super computer architecture. In Proceedings of the Fall

Joint Computer Conference, Part I (AFIPS’72, Fall, Part I) . 221–228. https://doi.org/10.1145/1479992.1480022
eceived 31 May 2022; revised 30 September 2022; accepted 10 November 2022

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 2, Article 28. Publication date: February 2023.

https://doi.org/10.1145/3422667
https://doi.org/10.1145/3422667
https://www.technologyreview.com/2022/02/23/1044975/covid-19-variant-tracking-scientists/
https://www.technologyreview.com/2022/02/23/1044975/covid-19-variant-tracking-scientists/
https://github.com/riscv/riscv-v-spec
https://doi.org/10.1145/359327.359336
https://doi.org/10.1145/359327.359336
https://en.wikichip.org/wiki/nec/microarchitectures/sx-aurora
https://en.wikichip.org/wiki/nec/microarchitectures/sx-aurora
https://github.com/semidynamics/OpenVectorInterface
https://github.com/semidynamics/OpenVectorInterface
https://semidynamics.com/products/avispado
https://www.sifive.com/cores/intelligence-x280
https://www.sifive.com/cores/intelligence-x280
https://www.sifive.com/cores/performance-p270
https://www.sifive.com/cores/performance-p270
https://github.com/riscv/riscv-isa-sim
https://www.european-processor-initiative.eu/epi-epac1-0-risc-v-test-chip-taped-out/
https://www.top500.org/lists/top500/2022/06/
https://www.top500.org/lists/top500/2022/06/
https://doi.org/10.1145/1479992.1480022

	1 INTRODUCTION
	2 BACKGROUND AND BASELINE ARCHITECTURE
	2.1 State of the Art
	2.2 Baseline Architecture

	3 MICROARCHITECTURE
	3.1 Front-End
	3.2 Issue Stage
	3.3 Memory Units
	3.4 Vector Lane
	3.5 Ring Interconnect
	3.6 Reorder Buffer

	4 VITRUVIUS+ OUTSTANDING FEATURES
	4.1 Vector Out-of-Order Chaining
	4.2 Fast Moves
	4.3 Switched Ring Reconfiguration
	4.4 Vector Reductions Enhancement

	5 METHODOLOGY
	5.1 Experimental Setup
	5.2 Benchmarks Description

	6 EXPERIMENTAL RESULTS
	6.1 FPGA Evaluation
	6.2 Synthesis Results
	6.3 Physical Design
	6.4 Benchmarks
	6.5 Comparison with State-of-the-Art Vector Units

	7 CONCLUSION AND FUTURE WORK
	REFERENCESendgraf

