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Abstract—Ground-truth RGBD data are fundamental for a
wide range of computer vision applications; however, those
labeled samples are difficult to collect and time-consuming to
produce. A common solution to overcome this lack of data is to
employ graphic engines to produce synthetic proxies; however,
those data do not often reflect real-world images, resulting in
poor performance of the trained models at the inference step. In
this paper we propose a novel training pipeline that incorporates
Diffusion4D (D4D), a customized 4-channels diffusion model able
to generate realistic RGBD samples. We show the effectiveness
of the developed solution in improving the performances of
deep learning models on the monocular depth estimation task,
where the correspondence between RGB and depth map is
crucial to achieving accurate measurements. Our supervised
training pipeline, enriched by the generated samples, outperforms
synthetic and original data performances achieving an RMSE
reduction of (8.2%, 11.9%) and (8.1%, 6.1%) respectively on the
indoor NYU Depth v2 and the outdoor KITTI dataset.

Index Terms—Computer vision, diffusion models, deep learn-
ing, monocular depth estimation, generation

I. INTRODUCTION

Deep learning has achieved astonishing results in several
research fields encouraging its fast growth in all of its
aspects, from the study of neural network structure to its
optimization. In computer vision and image processing, it
has gained significant success in tasks like object detection,
depth estimation, and semantic segmentation [1]. However, the
increasing size and capacity of neural network architectures
require the availability of a huge amount of labeled training
data, which are often missing or difficult to collect. This issue
led researchers to focus on several techniques to reduce the
data requirements, such as unsupervised [2] or self-supervised
[3] learning strategies, with the objective of categorizing unla-
beled or partially labeled data. However, unsupervised learning
is intrinsically more complex than (data-driven) supervised
learning due to the lack of labeled output samples. Another
possible solution could be the use of AI-based methodolo-
gies [4] to automatically generate realistic samples and data
augmentation techniques [5] exploited to increase the diver-
sity of training data. Nevertheless, the latter techniques are
usually constrained by the mathematical transformations that
can be used to modify original images while preserving their
information. Moreover, the automatic generation of realistic
samples has been typically attributed to variational autoen-
coders (VAEs) and generative adversarial networks (GANs),
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which lack of samples’ variety and details. Differently, a
commonly used solution to generate novel datasets is based on
synthetic rendering such as Unity® [6] and Unreal Engine® [7]
frameworks. Unfortunately, those technologies often fail to
provide realistic data, lacking of many realistic features such as
accurate light reflections, camera artifacts, and noisy data. As
a result, the data distribution of real samples will differ from
synthesized ones, despite many works have been proposed to
address the problem via domain adaptation and randomization
approaches [8], [9], [10].

The lack of a large amount of ground truth data is par-
ticularly significant in the case of dense prediction appli-
cations, such as depth estimation, where RGB images and
corresponding depth maps are required to perform the task.
This situation is likely related to the difficulties and highly
time-consuming procedures needed to collect congruent RGB
and depth data. Such issues are not limited to calibration
and alignment procedures between cameras and depth sensors
but are also related to unfilled depth maps captured with
LiDAR devices and the wide range of possible scenarios. Even
if many RGBD datasets have been proposed [11], most of
them include less than 50K real-world samples such as NYU
Depth v2 (NYU) [12] and KITTI [13] datasets. In contrast,
millions of labeled samples are available for other computer
vision tasks such as image classification (ImageNet [14]) and
object detection (COCO [15]). Consequently, the objective
of this paper is to automatically generate realistic RGBD
samples in order to increase the amount of training data while
improving the deep learning model’s performances, aiming to
overcome the limits of data augmentation and synthetically
created samples. Our proposed solution, named Diffusion4D
(D4D), is based on denoising diffusion probabilistic models
(DDPMs) [16], [17], a score-based generation techniques that
have shown outstanding results in the creation of high-fidelity
images [18]. Our strategy focuses on a custom 4-channels
DDPM to capture the intrinsic information presents in real
indoor and outdoor RGBD samples in order to generate
realistic RGB images and corresponding depth maps while
improving the data diversity between training samples. D4D
introduces customized architecture configurations which are
based on 4-channels samples, fine-tuned loss functions, and
diffusion schedules. The designed models are used to drive the
learning procedure of the DDPM to generate (unconditioned1)
heterogeneous variations of the original RGBD dataset. Ex-
ploiting the characteristic of DDPMs based on the principle

1The unconditioned generation techniques are identified by the absence of
additional input data.
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Fig. 1. D4D generated RGBD samples based on the indoor NYU Depth v2 (right) and the outdoor KITTI (left) datasets. The images are scaled to match
the aspect ratio of the original samples. The depth maps are converted in RGB format with a perceptually uniform colormap for a better view, while the two
bottom colorbars emphasize the depth data distribution (in meters) over the generated samples.

of non-equilibrium statistical physics, our aim is to extract
key features of real RGBD samples during the forward (infer-
ence) process; subsequently, during the backward (generative)
phase, the model generates realistic variations of original data
obtained merging previously learned features. Therefore, we
do not target the production of highly photo-realistic images
rather than coherent samples where RGB values and depth
distances are correlated as in real-world; some examples are
shown in Figure 1. Furthermore, to demonstrate the effective-
ness of generated RGBD samples, we apply D4D in a novel
supervised training pipeline to tackle the monocular depth
estimation (MDE) [19] task, a dense prediction task consisting
of estimating a per-pixel distance map given a single RGB
image as input.

The main contributions of this work are summarized as
follows: 1) We design a customized 4-channels diffusion
model to generate realistic RGBD samples. 2) We incorpo-
rate D4D-generated data into a novel training pipeline to
boost MDE models’ performances. 3) We demonstrate the
effectiveness of the proposed training strategy to tackle the
MDE task over four reference MDE models. In particular,
we focus on three convolution neural networks (CNN) and
one hybrid vision transformer (hViT), which are respectively
DenseDepth [20], FastDepth [21], SPEED [22], and ME-
TER [23]. We identify those architectures in order to provide
a general overview of the adaptability of the proposed solution
over various MDE architectures; precisely, in Section V, we
will report the quantitative and qualitative estimation error
reduction achieved with the employment of the D4D training
pipeline over both indoor and outdoor scenarios. Furthermore,
we report some additional experiments on two efficient ViT
architectures proposed in [24]. Subsequently, we show the
superior performances of generated samples in three settings:
3.1) When the training of MDE models is performed without
the original dataset. 3.2) When compared against synthetic
datasets, such as SceneNet RGB-D [25] and SYNTHIA-

SF [26] datasets. 3.3) In generalization performances on the in-
door DIML/CVL RGB-D [27] test dataset in blind conditions.
4) Finally, we created two new datasets, namely D4D-NYU
and D4D-KITTI, each dataset refers to the original one (NYU,
KITTI) and it is internally divided according to the generation
resolution used. The datasets collect D4D-generated RGBD
samples at a variety of resolutions, ranging from 64 × 48
pixels to 320× 240 pixels. We hope that such datasets could
be further exploited to improve the performances of MDE
architectures and other depth-based tasks. The project page and
generated datasets are publicly available at the following link
https://github.com/lorenzopapa5/Diffusion4D.

This paper is organized as follows: Section II reviews
some previous works related to the topics of interest. Sec-
tion III describes the proposed D4D method and the overall
training pipeline in detail. Experiments and hyper-parameters
are discussed in Section IV, while Section V reports the
qualitative and quantitative improvements achieved by the
chosen MDE model with the use of D4D generated samples.
Some final considerations and future applications are provided
in Section VI.

II. RELATED WORK

The task of producing new samples from an existing data
collection is known as generation. There are two basic gener-
ation methodologies: unconditioned, in which the samples are
generated from noise (i.e., Gaussian noise), and conditioned,
in which the samples are generated in response to a given
input, e.g., text prompts and images. In AI-based approaches,
this task is usually tackled through VAEs, GANs, and the
recent DDPMs, deep learning techniques commonly based
on convolutional and transformer operations. Many aspects
in developing models for generating realistic images have
been studied and improved during these years, such as con-
ditioning the output with ad-hoc input variables as well as
speeding up the process by working on the efficiency and
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inference frequency. Zhu et al. [28] (2019) propose DM-GAN,
a text-conditioned architecture able to improve the quality
of generated samples based on information prompts. Karras
et al. [29] (2020) focus on an augmentation solution for
training a GAN model under limited data constraints. Cai et
al. [30] (2020) propose a deep convolutional GAN solution to
generate synthetic data to tackle the imbalanced problem of
training datasets for crash prediction scenarios. Zhao et al. [31]
(2021) integrate and optimize the computational complexity of
transformer architectures into a GAN-based approach in order
to produce high-resolution images.

Furthermore, generative models have also been widely ap-
plied to handle the image translation task, in which an input
image from one domain is translated (mapped) to another one
while preserving the content of the given image. An example is
provided by Zhu et al. [32] (2017) with CycleGAN, where the
authors mainly focus on a cycle consistency loss to enhance
the overall generation performances. Russo et al. [33] (2018),
inspired by [32], introduce a class consistency loss for cross-
domain classification tasks. Moreover, Tang et al. [34] (2021)
propose to guide the translation process through an attention
mechanism in order to achieve high-fidelity images, whereas
Torbunov et al. [35] (2023) improve CycleGAN performances
by incorporating transformers layers as the generator. Simi-
larly to previous related works and closer to our application
scenario, Du et al. [36] (2019) present a specific domain shift
model to extract depth maps from RGB images. This work has
been motivated by the limited amount of labeled data provided
in existing RGBD datasets,

Recently, DDPMs [17], a powerful new family of deep
generative models have been proposed. Such architectures are
based on two Markov chains: a forward chain that perturbs
input data to noise and a reverse chain that translates noise to
data. Ho et al. [16] (2020) demonstrate DDPM capabilities in
computer vision applications for the generation of high-quality
images. Moreover, Dhariwal et al. [37] (2021) shows that
such models are able to achieve superior performances than
GANs to handle image synthesis. However, those architectures
require substantial computational resources to be trained;
consequently, Rombach et al. [38] (2022) propose a latent
diffusion model that can be trained on limited computational
resources proposing to integrate the Markovian structure into
the latent space of a pretrained autoencoder network. Contrar-
ily, Peebles et al. [39] (2022) replace the commonly-used U-
Net [40] with transformer modules improving the generation
capabilities while increasing the computational complexity.

In contrast to such AI-based approaches, another popular
solution for the generation of (potentially unlimited) samples is
based on the extraction of frames and associated ground truth
data from virtual environments, i.e., generated via graphical
engines such as Unity®, Unreal Engine® and the most recent
NVIDIA Isaac Sim™ (Replicator) [41]. Those technologies
often fail to provide realistic data, lacking artifact information
commonly present in real-world images, resulting in poor
performance at the inference step. Synthetic datasets, gener-
ated with graphic engines, have been widely employed in the
MDE task. Zou et al. [42] (2018) use the synthetic SYNTHIA
datasets as a pre-training strategy to improve depth estimation

performances on autonomous driving scenarios, while Chen
et al. [43] (2019) employ the synthetic SceneNet dataset to
increase the number of training samples and the model’s gen-
eralization performances. Contrarily, Xian et al. [44] (2020)
propose to estimate pseudo-depth data trained on relative depth
datasets to improve the model’s generalization in real-world
scenarios. The work also underlies the presence of a domain
gap between synthetic and real data, as well as the need for
domain adaptation techniques to efficiently use synthesized
samples.

Consequently, based on similar motivation of [36], [44], in
this paper, we integrate in a novel training pipeline a custom 4-
channels DDPM in order to generate realistic RGBD samples
for both indoor and outdoor contexts and improve the estima-
tion performances of MDE approaches while overcoming the
limitations introduced by graphical engines. To the best of our
knowledge, no previous works propose a similar solution to
improve a dense prediction task; a detailed description of the
proposed training pipeline is following reported.

III. METHODOLOGY

This section describes the proposed pipeline for generating
RGBD samples with the D4D model. As mentioned in Section
I, one of the primary bottlenecks in the MDE task, a computer
vision application where a dense depth map is predicted from
a single RGB image, is the lack of a large amount of training
data. Therefore, the proposed training pipeline aims to improve
the estimation performances of well-known MDE architectures
by generating RGBD samples learned from real-world 4-
channels (images) data distribution. We report a graphical
representation in Figure 2; as can be seen, the pipeline is
divided into three stages described below.

Stage 1: The first phase is characterized by widely employed
preprocessing techniques. More in detail, we select as training
datasets the NYU for the indoor scenarios and the KITTI for
the outdoor ones, both of which are composed of real-world
RGBD samples. Furthermore, the pixel values of the training
samples are normalized into the [0, 1] range and rescaled to the
working model resolution. Consequently, the image’s height
and width are scaled (resized with a bilinear interpolation pro-
cess) to the working resolutions of the compared architectures
used in Stage 3, such as 640× 480 (DenseDepth), 224× 224
(FastDepth), and 256×192 (SPEED and METER). This choice
will influence (in Stage 2) the generation resolution of D4D
model at inference time.

Stage 2: The second phase is devoted to generating real-
istic samples; precisely, we leverage our custom DDPM to
produce 4-channels samples based on the original training
data. Before introducing our generation strategy, let us briefly
review some basic concepts necessary to better understand
DDPMs, highlighting the motivations that led us to develop
the proposed solutions. DDPMs, inspired by non-equilibrium
statistical physics, exploit the reduction of the input data
distribution into a well-known one, in our case, the Gaus-
sian distribution. This process, known as forward diffusion
(inference), is then reversed (generation) to restore input data
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Fig. 2. Graphical representation of the introduced training pipeline. Stage 1 shows the pre-processing operations applied on 4-channels samples extracted from
the original training dataset. Stage 2 emphasizes the training and unconditioned generation processes of D4D model. Stage 3 depicts the training procedure
of a generic encoder-decoder MDE network by highlighting how the RGBD training samples are composed.

distribution. This procedure is commonly defined in literature
as highly flexible and tractable since the model can poten-
tially represent unlimited data distributions. According to this
behavior, the straightforward baseline idea of this paper is to
use a DDPM to learn the distribution of RGBD data from
real-world benchmark datasets during the forward phase. As
a result, during the generation phase, D4D could produce
multiple realistic 4-channels variations of original ground-truth
data by combining previously extracted features.

Therefore, we introduce some basic knowledge about diffu-
sion model methodologies by focusing on the main parameters
that would impact D4D generation performance. More in de-
tail, diffusion models are characterized by forward and reverse
procedures. The training process of our diffusion model is
principally driven by the cost function L(·, ·) and the diffusion
rate β. The first function, usually a L1(·, ·) (mean-absolute) or
L2(·, ·) (mean-squared) loss, is computed between the input
data distribution q(xt0) and the generated one p(xt0) to fit
the DDPM data distribution π(y), which usually represents
a Gaussian distribution. At the forward phase, the diffusion
rate, as defined in [17], drives the Markov diffusion kernel
tπ(y|y′;βt) with t = [t0;T ] steps, to make the distribution
π(y) analytically tractable, while the reverse phase is trained
to describe the same trajectory, but in a reverse way; we report
the two procedures in the following equations.

forward → q(xt) = q(xt0)ΠT
t0tπ(x|x

′;βt) (1)

reverse → p(xt) = π(xT )ΠT
t0tπ(x

′|x) (2)

Moreover, the configuration of the diffusion rate is funda-
mental for its final performances; in [16], [17] authors set a
linear β variance ranging from β1 = 10−4 to βT = 0.02 with
T = 1000. In contrast, in [45], authors propose to improve
diffusion models with a reparametrization of the generation
process variance, i.e., replacing the linear schedule with a
squared cosine to prevent abrupt changes of noise levels. This
choice leads to a slower forward process with T = 4000 steps
while increasing reconstructed image details.

Based on the just introduced description on diffusion model
methodologies and influenced by the loss function formulation
commonly employed in the MDE task [20], [46], where the
learning process usually relies on multiple loss functions
focused on contours, fine details, and images as a whole, we
design D4D with a similar behavior. Precisely, the proposed
strategy would combine two configurations of loss functions
and beta scheduler setups in order to ensure diversity and
consistency in the generated RGBD samples. The combination
of diversity and consistency of the generated samples, which
are combined into the training set, act as a powerful and
realistic data augmentation schema, which is able to increase
the generalization capabilities of our network, resulting in a
lower testing error as shown in the Results section. More in
detail, we propose a merging strategy based on two comple-
mentary configurations, namely S1 and S2, that are able to
generate realistic samples with various data distributions in
order to enhance the overall depth estimation performances of
well-known MDE models. In the first configuration (S1), the
model focuses on creating realistic images mainly composed
of constant or gradually increasing depth distances. As a
result, we develop S1 with a slow convergence behavior, i.e.,
characterized by an L1 loss function to mitigate the error
during the training process, and a linear diffusion rate (β) [16],
[17] leading the model to a faster forward process with the
constant addition of noisy data. Moreover, by defining with P
the set of pixels, for any pixel p ∈ P , the S1 configuration
can be formalized as reported in Equation 3.

S1 : L1 =
1

|P|
∑
p∈P

||xp − yp||1, β = linear (3)

In contrast, in the second configuration (S2), we look for
generated images that are rich in detail with stronger distance
variations. Consequently, we implement S2 with a slower
forward process better focusing on details and objects in
the images, i.e., a cosinusoidal diffusion scheme (β) [45]
combined with a L2 loss function to achieve a fast convergence
of the learning system. Moreover, by defining with P the set
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of pixels, for any pixel p ∈ P , the S2 configuration can be
formalized as reported in Equation 4.

S2 : L2 =
1

|P|
∑
p∈P

||xp − yp||22, β = cosine (4)

Finally, the proposed configuration (S3) is composed by
merging the generated RGBD samples from S1 and S2. We
opted to set the number of steps T equal to 1000 as a trade-
off between training time and image photorealism. Under these
settings, S3 effectively encompasses a wide range of possible
RGB and depth data distributions while balancing the conver-
gence speed and the diffusion rate of the 4-channels DDPM.
Moreover, by defining with s1 and s2 the set of generated
RGBD data, respectively, from S1 and S2 configurations, the
proposed strategy can be summarized as follows:

S3 = (s1 ∪ s2) where

{
S1 : {loss : L1, β : linear}
S2 : {loss : L2, β : cosine}

(5)

We conclude this stage by merging the generated RGBD
samples with the original training data in order to create a
unique augmented training set. Furthermore, because DDPM
has a significant computing cost during the training and
generation stages, we perform all of the operations described
in this step offline.

Stage 3: Following the proposed training pipeline, in the
last phase, we employ the novel augmented training set to
tackle the MDE task. Precisely, we employ the RGB images
and respective depth maps to train commonly used encoder-
decoder architectures, which are represented as transparent
blocks in Figure 2; in particular, we focus on DenseDepth,
FastDepth, SPEED, and METER, which are typically deep and
shallow architectures commonly used in the MDE task. We
chose these models due to their different working resolutions,
architectural components, and estimation capabilities in order
to demonstrate the effectiveness of D4D-generated samples
at different scales and performances. This final phase is
fundamental for demonstrating the efficacy of the proposed
training pipeline and for quantitatively measuring the attained
improvement.

IV. EXPERIMENTAL SETUP

In this section, we describe hyperparameter setups of trained
architectures and evaluation metrics used to compare their
performances. The proposed method is implemented on the
PyTorch framework [47]. To generate new samples with the
D4D procedure, we employ two benchmark MDE datasets,
i.e., NYU Depth v2 and KITTI, following the Eigen et
al. [48] (2014) split strategy. NYU and KITTI are respectively
composed of around (50K, 23K) training and (654, 652) test
samples at a resolution of (640 × 480, 1242 × 375) and a
maximum depth range of (10, 80) meters. Furthermore, to
compare the performances achieved by generated samples with
respect to synthetic ones (Figure 2, Stage 3), we use the
SceneNet dataset for the indoor scenario and the SYNTHIA-
SF for the outdoor one. We use a subset of 300K samples for

the first dataset and the entire training set for the second one,
composed of 3K samples. Finally, we use the 503 samples of
the DIML test dataset to show the generalization performances
on an unseen set of data. Moreover, following the training
pipeline outlined in the previous section, we describe the
hyperparameters and evaluation metrics used in this paper.

In Stage 2, we train each configuration (S1 and S2) at
different image resolutions ranging from 64 × 48 pixels to
320 × 240 pixels on NYU and KITTI datasets. The DDPM
layers are initialized as described in [16], [49]. We train
D4D for 150 epochs with a batch size ranging from 256
to 16 depending on the image resolution on an NVIDIA
A100 SXM4. We use Adam as optimizer with decoupled
weight decay [50] of 1 × 10−2, a learning rate equal to
1× 10−4 and a decay of 1× 10−1 after 100 and 125 epochs.
Following common practice we set remaining hyperparameters
as β1 = 0.9, β2 = 0.999 and ϵ = 1× 10−8.

In Stage 3, we train all the compared MDE models
(DenseDepth, FastDepth, SPEED, and METER) with the
following hyperparameter setting: we use Adam optimizer
configuration as before with a learning rate equal to 1× 10−3

and a decay of 1 × 10−1 every 20 epochs for a total of 80
epochs on an NVIDIA RTX 3090. Furthermore, we initialized
the convolutional kernels as suggested in respective papers
[20], [21], [22], [23] and trained/tested the MDE architectures
with original input-output model resolutions, i.e., (640 ×
480, 320×240), (224×224, 224×224), (256×192, 64×48)
and (256×192, 64×48 or 640×192, 160×48)2 respectively for
DenseDepth, FastDepth, SPEED, and METER. The training
procedure is further enriched using the strategy proposed
in [20] with the addition of the random crop. Finally, we
evaluate the trained models following the evaluation metrics
introduced in [48]: root mean squared error (RMSE, in meters
[m]), mean absolute error (MAE, in meters [m]), absolute
relative error (AbsRel), and accuracy values such as δ1, δ2
and δ3. Moreover, for any pixel p ∈ P , we define its
ground truth depth map as yp while ŷp is the predicted one.
Those evaluation metrics are formally defined in the following
equations.

RMSE =

√
1

|P|
∑
p∈P

||yp − ŷp||2 (6)

MAE =
1

|P|
∑
p∈P

|yp − ŷp| (7)

AbsRel =
1

|P|
∑
p∈P

|yp − ŷp|
yp

(8)

For estimating the accuracy values δz∈N with z ∈ [1, 3], a
threshold (thr) is commonly set to 1.25z while the set of
pixel P∗

z is defined as follows:

P∗
z =

{
p ∈ P s.t.max

(
yp
ŷp

,
ŷp
yp

)
< thrz

}
(9)

2Differently to the other compared CNN architecture, METER has different
image resolutions between the indoor and outdoor scenarios (same height but
different width).
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TABLE I
QUANTITATIVE EVALUATION OF DIFFERENT MDE ARCHITECTURES AND CONFIGURATIONS. THE ORIGINAL SAMPLES ARE TAKEN FROM NYU DATASET

(THIRD COLUMN, NYU = 50K), THE Synthetic SAMPLES ARE FROM SCENENET, WHILE THE GENERATED SAMPLES (Add) ARE FROM D4D-NYU. THE
PROPOSED S3 CONFIGURATION IS IN BOLD, WHILE THE OPTIMAL STRATEGY FOR EACH COMPARED MODEL IS HIGHLIGHTED IN GRAY.

Model Configuration NYU [K] Add [K] Res [pix] RMSE↓ [m] MAE↓ [m] AbsRel↓ δ1↑ δ2↑ δ3↑

DenseDepth

S0 50 0 - 0.5021 0.3663 0.1445 0.8087 0.9507 0.9846
Synthetic 50 50 320× 240 0.4882 0.3438 0.1367 0.8199 0.9583 0.9888
Synthetic 50 150 320× 240 0.4713 0.3487 0.1358 0.8251 0.9634 0.9910

S1 50 50 320× 240 0.4575 0.3352 0.1294 0.8379 0.9640 0.9899
S2 50 50 320× 240 0.4598 0.3354 0.1273 0.8390 0.9667 0.9921
S3 50 50 320× 240 0.4568 0.3368 0.1327 0.8340 0.9659 0.9912
S3 50 100 320× 240 0.4480 0.3262 0.1236 0.8499 0.9693 0.9923
S3 50 50 256× 192 0.4788 0.3513 0.1340 0.8241 0.9614 0.9912
S3 50 100 256× 192 0.4578 0.3364 0.1286 0.8376 0.9672 0.9917

FastDepth

S0 50 0 - 0.5714 0.4317 0.1751 0.7535 0.9374 0.9820
Synthetic 50 100 320× 240 0.5468 0.4122 0.1617 0.7747 0.9450 0.9858
Synthetic 50 300 320× 240 0.5198 0.3883 0.1519 0.7948 0.9533 0.9870

S1 50 100 256× 192 0.5029 0.3741 0.1455 0.8058 0.9586 0.9892
S2 50 100 256× 192 0.5313 0.3995 0.1600 0.7775 0.9454 0.9869
S3 50 100 256× 192 0.4980 0.3678 0.1414 0.8119 0.9603 0.9901
S3 50 50 320× 240 0.5132 0.3810 0.1467 0.8014 0.9553 0.9886
S3 50 100 320× 240 0.5103 0.3802 0.1492 0.7903 0.9507 0.9865

SPEED

S0 50 0 - 0.5638 0.4275 0.1676 0.7601 0.9357 0.9836
Synthetic 50 100 320× 240 0.5606 0.4247 0.1657 0.7605 0.9404 0.9857
Synthetic 50 300 320× 240 0.5542 0.4217 0.1633 0.7696 0.9496 0.9864

S1 50 100 256× 192 0.5170 0.3877 0.1482 0.7948 0.9549 0.9897
S2 50 100 256× 192 0.5216 0.3943 0.1486 0.7905 0.9565 0.9912
S3 50 100 256× 192 0.4982 0.3712 0.1430 0.8054 0.9610 0.9911
S3 50 50 320× 240 0.5132 0.3870 0.1494 0.7973 0.9559 0.9885
S3 50 100 320× 240 0.5001 0.3767 0.1441 0.8090 0.9587 0.9903

METER

S0 50 0 - 0.5112 0.3854 0.1439 0.8138 0.9577 0.9876
Synthetic 50 100 320× 240 0.4893 0.3675 0.1446 0.8130 0.9592 0.9890
Synthetic 50 300 320× 240 0.4957 0.3709 0.1446 0.8150 0.9574 0.9882

S1 50 100 256× 192 0.4649 0.3471 0.1353 0.8320 0.9685 0.9915
S2 50 100 256× 192 0.4760 0.3584 0.1388 0.8202 0.9660 0.9923
S3 50 100 256× 192 0.4574 0.3390 0.1290 0.8357 0.9667 0.9924
S3 50 50 320× 240 0.4669 0.3495 0.1334 0.8303 0.9673 0.9923
S3 50 100 320× 240 0.4615 0.3447 0.1320 0.8350 0.9695 0.9928

Finally, the accuracy values can be expressed as reported in
Equation 10.

δz∈N,z∈[1,3] =
|P∗

z |
|P|

(10)

V. EXPERIMENTS

In this section, we show the effectiveness of the proposed
pipeline in terms of improvements obtained over the four
chosen MDE models. The first performed analysis is computed
with respect to indoor and outdoor D4D-generated datasets,
i.e., when selected models are trained by adding the D4D-
NYU and D4D-KITTI datasets. Subsequently, we investigate
the effects of the different resolutions and amounts of RGBD
data generated by D4D on the trained models. We conclude
this section by analyzing the generalization performances
on an unseen test dataset DIML/CVL RGB-D (DIML), the
estimation improvement over efficient variants of METER
architecture and with an analysis of similarity distances over
probabilistic distributions. We compare the obtained results
with respect to S1, S2, S3, a baseline configuration (S0), i.e.,
when the models are trained on original datasets (NYU and
KITTI), as well as an alternative augmentation schema based
on synthetic datasets (Synthetic).

Indoor results. The first analysis is performed on D4D-NYU
dataset under different configurations (Si with i = [0, 3] and
Synthetic), settings (NYU = 50K or NYU = 0), number of
generated samples (Add) and D4D resolutions (Res). These
training combinations have been taken in order to show how
the presence of the original dataset and the generation reso-
lution of the samples influence the estimation performances
of chosen models. Precisely, we report the same tests over
the four chosen reference MDE models with and without the
original datasets (NYU), respectively in Table I and Table II,
in order to understand differences, similarities, and respec-
tive quantitative improvement obtained when using generated
samples, i.e., how much D4D mimic original samples or
how much those generated samples differs from original one.
Generally speaking, we noticed that the proposed merging
strategy (S3) has superior estimation performances in indoor
scenarios with respect to all the compared configurations.
Based on the achieved results, we derive that the closer
the generation resolution of the samples is to the input
resolution of the trained model, the better the estimation
results, although the error difference is small (e.g., 2.2% of
the RMSE in the DenseDepth case). This finding, based on
the best D4D generation resolution, has been used in the
experiments listed below and will be further investigated in
the following ablation studies. Moreover, we observe that by
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TABLE II
QUANTITATIVE EVALUATION OF DIFFERENT MDE ARCHITECTURES AND CONFIGURATIONS. THE Synthetic SAMPLES ARE FROM SCENENET WHILE THE

GENERATED SAMPLES (Add) ARE FROM D4D-NYU WHILE NO NYU (ORIGINAL) SAMPLES ARE USED (THIRD COLUMN, NYU = 0K). THE PROPOSED S3
CONFIGURATION IS IN BOLD, WHILE THE OPTIMAL STRATEGY FOR EACH COMPARED MODEL IS HIGHLIGHTED IN GRAY.

Model Configuration NYU [K] Add [K] Res [pix] RMSE↓ [m] MAE↓ [m] AbsRel↓ δ1↑ δ2↑ δ3↑

DenseDepth

S0 0 0 - - - - - - -
Synthetic 0 50 320× 240 1.1034 0.8648 0.4298 0.4123 0.6886 0.8465
Synthetic 0 150 320× 240 1.0383 0.8292 0.4019 0.4197 0.7228 0.8825

S1 0 50 320× 240 0.5559 0.4250 0.1736 0.7549 0.9373 0.9821
S2 0 50 320× 240 0.6087 0.4767 0.1931 0.6619 0.9297 0.9773
S3 0 50 320× 240 0.5306 0.4030 0.1580 0.7755 0.9489 0.9873
S3 0 100 320× 240 0.5301 0.4003 0.1578 0.7754 0.9490 0.9873
S3 0 50 256× 192 0.5473 0.4163 0.1654 0.7654 0.9446 0.9866
S3 0 100 256× 192 0.5398 0.4096 0.1597 0.7720 0.9469 0.9877

FastDepth

S0 0 0 - - - - - - -
Synthetic 0 100 320× 240 1.1169 0.9779 0.4538 0.3866 0.6903 0.8621
Synthetic 0 300 320× 240 1.0852 0.9051 0.4167 0. 4247 0.7275 0.8817

S1 0 100 256× 192 0.5709 0.4319 0.1768 0.7543 0.9412 0.9839
S2 0 100 256× 192 0.5952 0.4569 0.1845 0.7047 0.9292 0.9842
S3 0 100 256× 192 0.5502 0.4165 0.1730 0.7649 0.9464 0.9877
S3 0 50 320× 240 0.5735 0.4397 0.1756 0.7468 0.9389 0.9844
S3 0 100 320× 240 0.5651 0.4343 0.1721 0.7473 0.9394 0.9854

SPEED

S0 0 0 - - - - - - -
Synthetic 0 100 320× 240 1.2278 1.0606 0.5424 0.3159 0.6279 0.8290
Synthetic 0 300 320× 240 1.1635 0.9827 0.4732 0.3923 0.6850 0.8532

S1 0 100 256× 192 0.5833 0.4430 0.1687 0.7493 0.9385 0.9857
S2 0 100 256× 192 0.6003 0.4646 0.1779 0.6875 0.9224 0.9825
S3 0 100 256× 192 0.5590 0.4260 0.1622 0.7665 0.9438 0.9874
S3 0 50 320× 240 0.5803 0.4482 0.1735 0.7456 0.9352 0.9852
S3 0 100 320× 240 0.5694 0.4379 0.1674 0.7439 0.9423 0.9862

METER

S0 0 0 - - - - - - -
Synthetic 0 100 320× 240 1.2242 1.0100 0.4319 0.3688 0.6770 0.8547
Synthetic 0 300 320× 240 1.0480 0.8556 0.3837 0.4468 0.7403 0.8909

S1 0 100 256× 192 0.5445 0.4140 0.1636 0.7679 0.9474 0.9863
S2 0 100 256× 192 0.5905 0.4574 0.1837 0.7180 0.9322 0.9851
S3 0 100 256× 192 0.5370 0.4075 0.1577 0.7711 0.9510 0.9886
S3 0 50 320× 240 0.5778 0.4465 0.1709 0.7729 0.9366 0.9862
S3 0 100 320× 240 0.5368 0.4125 0.1602 0.7686 0.9491 9887

TABLE III
QUANTITATIVE EVALUATION OF DIFFERENT MDE ARCHITECTURES AND CONFIGURATIONS. THE ORIGINAL SAMPLES ARE TAKEN FROM KITTI

DATASET, THE Synthetic SAMPLES ARE FROM SYNTHIA-SF WHILE THE GENERATED SAMPLES (Add) ARE FROM D4D-KITTI. THE PROPOSED S3
CONFIGURATION IS IN BOLD, WHILE THE OPTIMAL STRATEGY FOR EACH COMPARED MODEL IS HIGHLIGHTED IN GRAY.

Model Configuration KITTI [K] Add [K] Res [pix] RMSE↓ [m] MAE↓ [m] AbsRel↓ δ1↑ δ2↑ δ3↑

DenseDepth

S0 23 0 - 5.2099 3.1749 0.1417 0.7991 0.9475 0.9840
Synthetic 23 3 1940× 1080 5.2982 3.2499 0.1448 0.7871 0.9458 0.9856

S1 23 50 320× 240 5.1284 3.0221 0.1341 0.8057 0.9546 0.9882
S2 23 50 320× 240 5.1437 3.0539 0.1349 0.7989 0.9533 0.9869
S3 23 50 320× 240 4.9636 2.9874 0.1294 0.8168 0.9580 0.9892
S3 23 50 256× 192 5.1478 3.1324 0.1337 0.8058 0.9542 0.9883

FastDepth

S0 23 0 - 6.1884 3.9174 0.1910 0.7147 0.9088 0.9684
Synthetic 23 3 1940× 1080 6.1257 3.8100 0.1895 0.7184 0.9182 0.9764

S1 23 50 256× 192 5.9277 3.6774 0.1854 0.7286 0.9240 0.9781
S2 23 50 256× 192 5.9417 3.6994 0.1884 0.7292 0.9223 0.9777
S3 23 50 256× 192 5.6310 3.5062 0.1682 0.7551 0.9316 0.9804
S3 23 50 320× 240 5.8244 0.3613 0.1759 0.7374 0.9290 0.9792

SPEED

S0 23 0 - 5.3957 3.0473 0.1480 0.7797 0.9387 0.9841
Synthetic 23 3 1940× 1080 5.4219 3.1233 0.1565 0.7574 0.9307 0.9808

S1 23 50 256× 192 5.2321 2.9477 0.1409 0.7890 0.9445 0.9848
S2 23 50 256× 192 5.0945 2.8758 0.1401 0.7980 0.9476 0.9857
S3 23 50 256× 192 4.9828 2.8017 0.1337 0.8104 0.9521 0.9878
S3 23 50 320× 240 5.2640 3.0663 0.1437 0.7823 0.9421 0.9839

METER

S0 23 0 - 4.8398 2.7284 0.1278 0.8153 0.9462 0.9859
Synthetic 23 3 1940× 1080 5.2139 3.0725 0.1468 0.7753 0.9428 0.9847

S1 23 50 256× 192 4.8961 2.7206 0.1275 0.8118 0.9512 0.9864
S2 23 50 256× 192 4.7908 2.8271 0.1456 0.7840 0.9450 0.9845
S3 23 50 256× 192 4.7288 2.6833 0.1308 0.8155 0.9533 0.9875
S3 23 50 320× 240 4.7519 2.6780 0.1314 0.8083 0.9503 0.9857
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Fig. 3. Indoor results. Qualitative analysis of the estimated prediction obtained with DenseDepth method. The model has been tested on NYU (indoor)
dataset. S0 is the baseline setup, i.e., when the MDE model is trained only on the NYU dataset. In Synthetic setup, DenseDepth has been trained over NYU
and a 50K subset from the SceneNet dataset. In Si with i = [1, 3], as described in Section 3, DenseDepth has been trained over NYU and 50K samples
taken from our proposed D4D-NYU datasets generated at a resolution of 320 × 240. The Difference Map is computed as a per pixel-difference between
predicted (ŷ) and expected depth (y), while the reported colorbars are used to emphasize the depth/error range in centimeters (cm).

doubling the amount of generated data with respect to the
original training dataset (from 50K to 100K), the proposed
configuration (S3) outperforms the baseline configuration (S0)
and the Synthetic datasets with an RMSE reduction equal to
(10.8%, 4.9%) on DenseDepth, (14.7%, 9.7%) on FastDepth,
(11.6%, 11.1%) on SPEED and (10.5%, 6.5%) on METER.
Furthermore, when trained only on D4D-NYU (NYU = 0), S3
is able to achieve better performances than S0 in the case of
FastDepth and SPEED, while slightly worse for DenseDepth
and METER. Contrarily, the synthetic RGBD data performs
poorly without the original training dataset. These results
demonstrate the ability of D4D-generated samples to mimic
real-world samples. To summarize, the overall average per-
centage improvement obtained with the proposed training
pipeline, computed with respect to the baseline configuration
over the evaluation metrics used, is equal to 7.3%, 9.6%, 8.2%,
and 6.2% respectively for DenseDepth, FastDepth, SPEED,
and METER.

Finally, to have a complete understanding of the obtained
improvement, we report in Figure 3 a qualitative comparison
of the estimation performances of the DenseDepth model
under the compared configurations, i.e., Si with i = [0, 3]
and Synthetic. Based on predicted depth maps and related
difference maps3 reported for each configuration, we note
that DenseDepth, in the synthetic configuration, produces the

3The difference map is computed as a per pixel-difference between pre-
dicted (ŷ) and expected (y) depth map.

highest estimation error (more than 100cm) with respect to
compared setups. Contrarily, S3 is the only configuration
with an error range less than 80cm (demonstrated by darker
difference map in Figure 3). Furthermore, we notice that all the
compared predicted depth maps have well-defined contours.
However, in the reported case, the proposed configuration (S3)
is able to correctly estimate distances in the situation where
all the others fail, i.e., where the scene distance varies rapidly
(e.g., behind a wall); we highlight this area on the difference
map with a dashed red rectangle.

Outdoor results. Along with the previous findings, the pro-
posed method (S3) achieves notable estimation improvements
also in the outdoor scenario, especially when the D4D gener-
ation resolution is close to the MDE model input resolution.
We report in Table III the results obtained by the selected
MDE models when trained on KITTI dataset and in combina-
tion with D4D-KITTI or the synthetic SYNTHIA-SF dataset.
Precisely, the maximum RMSE reduction with respect to S0
and the Synthetic dataset is obtained by tripling the amount of
training data, and it is equal to (4.7%, 6.3%) on DenseDepth,
(9.1%, 8.1%) on FastDepth, (8.3%, 8.8%) on SPEED, and
(2.3%, 9.3%) on METER. However, we cannot rule out that
further improvements could be obtained by greatly increasing
the number of generated samples. Summarizing, the overall
average percentage improvement achieved with the proposed
training pipeline, when compared with S0, is equal to 4.0%,
6.7%, 5.7%, and ≃ 1.0% respectively, for DenseDepth, Fast-
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Fig. 4. Outdoor results. Qualitative analysis of the estimated prediction obtained with DenseDepth method. The model has been tested on KITTI (outdoor)
dataset. S0 is the baseline setup, i.e., when DenseDepth is trained only on KITTI dataset. In Synthetic setup, the model has been trained over KITTI and
SYNTHIA-SF datasets. In the proposed configuration (S3), the model has been trained over KITTI and 50K samples taken from our proposed D4D-KITTI
datasets generated at a resolution of 320 × 240. The Difference Map is computed as a per pixel-difference between predicted (ŷ) and expected depth (y),
while the reported colorbars are used to emphasize the depth/error range in decimeters (dm).

TABLE IV
GENERALIZATION PERFORMANCES OF DENSEDEPTH ON DIML/CVL RGB-D TEST DATASET. THE PROPOSED STRATEGY IS IN BOLD, WHILE THE

OPTIMAL CONFIGURATION IS HIGHLIGHTED IN GRAY.

Model Configuration NYU [K] Add [K] Res [pix] RMSE↓ [m] MAE↓ [m] AbsRel↓ δ1↑ δ2↑ δ3↑

DenseDepth

S0 50 0 - 0.8723 0.7295 0.1268 0.4466 0.7968 0.9337
Synthetic 0 50 320× 240 1.0901 0.8999 0.3738 0.4221 0.7188 0.8800
Synthetic 0 150 320× 240 1.0510 0.8721 0.3747 0.4294 0.7248 0.8766

S1 0 50 320× 240 0.8443 0.7126 0.2696 0.4876 0.8225 0.9331
S2 0 50 320× 240 0.9417 0.7975 0.1432 0.4005 0.7255 0.8943
S3 0 50 320× 240 0.7959 0.6660 0.2486 0.5069 0.8381 0.9540
S3 0 50 256× 192 0.8142 0.6864 0.2730 0.4998 0.8278 0.9365
S3 0 100 320× 240 0.8001 0.6701 0.2522 0.4921 0.8377 0.9537
S3 0 150 320× 240 0.7914 0.6623 0.2439 0.5116 0.8421 0.9548

Depth, SPEED, and METER. The latter results obtained for
the hViT architecture are most likely attributed to the D4D
generation resolution. Consequently, similar to the indoor
scenario, we expect comparable RMSE reductions to the CNN
architectures in the case of images generated at the same work-
ing resolution of METER. These results confirm the soundness
of D4D for increasing the performances of any kind of MDE
model. Finally, we report in Figure 4 a qualitative comparison
for the estimation performances of the DenseDepth model in
S0, Synthetic, and S3 configurations. Based on the reported
predictions and associated difference maps, we noticed that the
maximum depth error for all the configurations is in between
(50, 60)dm. However, the proposed setup (S3) predicts object
edges and overall distances more precisely than the other
configurations; we highlight these areas on the difference map
with three dashed red circles (the darker is the area the better).

Generalization. After showing the efficacy of the proposed
solution in the two most common MDE scenarios, we illustrate
the generalization performances of DenseDepth in a blind test,
i.e., when the model is trained and tested over two different

datasets without fine-tuning. In detail, we used the selected
model as in previous indoor analysis and tested it on a different
real-world dataset (DIML). We report the obtained results in
Table IV. It is possible to point out that when the model is
trained on S3 configuration, with the same amount of training
samples (Add = 50K), it outperforms the generalization per-
formances of S0 (NYU). In the case of Synthetic (SceneNet),
such behavior is evident even when the number of training
samples is increased to 150K. Moreover, using 320 × 240
pixels as D4D generation resolution, S3 achieves over S0 and
Synthetic data an RMSE reduction equal to (8.7%, 26.9%)
respectively. Furthermore, the increase (100K and 150K)
of D4D-generated samples results in comparable estimation
performances with the previously analyzed S3 configuration
(Add = 50K), as shown in Table IV, which does not justify
the time required to produce the additional samples. More in
detail, Figure 5 reports a qualitative analysis of DenseDepth
model trained on NYU, SceneNet, or D4D-NYU (separately)
and tested (without fine-tuning) on the DIML/CVL RGB-D
dataset over the compared configurations of Table IV. Based
on predicted depth maps and related difference maps for each
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Fig. 5. Generalization. Qualitative analysis of the estimated prediction obtained with DenseDepth method. The model has been tested in blind condition
(i.e., without fine-tuning) on DIML/CVL RGB-D dataset when trained on a different indoor dataset, i.e., NYU for S0, SceneNet for Synthetic, and D4D-NYU
for S1, S2, and S3. The Difference Map is computed as a per pixel-difference between predicted (ŷ) and expected depth (y), while the reported colorbars are
used to emphasize the depth/error range in centimeters (cm).

configuration, it is possible to notice that S3 achieves a lower
estimation error than all the other configurations. Precisely,
with a maximum distance error of almost 40cm with respect
to the 100cm and 57cm achieved by synthetic and baseline
(S0) setups. These quantitative and qualitative comparisons
demonstrate the superior performances of the proposed D4D-
NYU dataset even when testing MDE models on an unseen
dataset.

Image resolution. In previous experiments, we showed that
the image resolution of D4D-generated samples leads to better
depth estimation performances when it is closer to the input
image resolution of the trained model. Therefore, we report in
Table V a detailed analysis of the effects of D4D-generated
resolutions over deep (DenseDepth) and shallow (FastDepth)
MDE models. This experiment has been performed on indoor
samples (D4D-NYU) with the best parameters’ setup, i.e.,
S3 configuration, NYU = 50K, and Add = 100K. The
previous trend is confirmed since working with a genera-
tion resolution significantly different from the model input
leads to a noticeable performance decrease, with a maximum
difference on the RMSE equal to (19.9%, 15.3%) and an
overall averaged percentage reduction of (17.3%, 12.2%) on
DenseDepth and FastDepth. Thanks to this fact, we could
keep limited computational requirements needed to generate
RGBD samples, avoiding the use of unnecessary high res-
olutions. Finally, Figure 6 reports a qualitative analysis of
FastDepth architecture (other models show similar behavior)
when trained on NYU and the proposed D4D-NYU dataset (S3
settings) when its samples are generated at different resolutions
ranging from 64×48 to 320×240 pixels. Based on predicted
depth maps and related difference maps for each generation
resolution, we qualitatively confirm the fact that the closer

TABLE V
QUANTITATIVE COMPARISON OF MDE MODELS TRAINED ON SUBSETS OF

D4D-NYU GENERATED AT DIFFERENT RESOLUTIONS. THE OPTIMAL
VALUES FOR EACH COMPARED MODEL ARE HIGHLIGHTED IN GRAY.

Model Res [pix] RMSE↓ [m] AbsRel↓ δ1↑

DenseDepth

64× 48 0.5595 0.1595 0.7678
160× 120 0.4829 0.1342 0.8258
256× 192 0.4578 0.1286 0.8376
320× 240 0.4480 0.1236 0.8499

FastDepth

64× 48 0.5880 0.1758 0.7410
160× 120 0.5443 0.1616 0.7816
256× 192 0.4980 0.1414 0.8119
320× 240 0.5103 0.1492 0.7903

the generation resolution of D4D to the input resolution of
FastDepth, the better is the estimation for the MDE model. In
fact, as noticed, the dataset generated at an image resolution
of 256 × 192 pixels, which is closer to FastDepth’s input
resolution (224 × 224), has a lower error distribution. This
can be noticed from the dark region areas that are larger with
respect to the other predictions (underlined by the gray dashed
rectangle in Figure 6).

Based on the obtained findings, we assume that the just
described behavior, due to the different D4D generation reso-
lutions, is caused by the varying feature extraction capabilities
of each MDE architecture. More in detail, since each MDE
architecture has been developed to work with a specific input
resolution, it follows that this parameter defines the quantity
of information (pixels) that the model is able to process in
order to ensure optimal performance. Consequently, the closer
the resolution used to generate samples is to the network’s
working resolution, the better the performance; in contrast,
samples that are larger/smaller than the working resolution of
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Fig. 6. Image resolution. Qualitative analysis of the estimated prediction obtained with FastDepth method. The model has been tested on NYU (indoor)
dataset and trained under S3 settings over NYU and D4D-NYU datasets, where its samples have been generated at different resolutions. The Difference Map
is computed as a per pixel-difference between predicted (ŷ) and expected depth (y), while the reported colorbars are used to emphasize the depth/error range
in centimeters (cm).

the network will be compressed/expanded, thus resulting in
information loss or inaccurate data.

Amount of generated samples. Once the optimal generation
resolution has been analyzed, in this ablation study, we inves-
tigate how different amounts of generated samples impact the
performance of MDE models. More in detail, we study the
behavior of FastDepth architecture when the number of D4D-
generated (training) samples varies; precisely, we examine a
data range between 0 and 250K RGBD samples generated by
D4D-NYU in the optimal S3 configuration at the resolution
of 256 x 192 pixels. We report the obtained results in the two
compared setups, i.e., with and without the original training
dataset (NYU), in Table VI.

Based on the obtained results, it can be noticed that the
higher estimation performances are obtained with the addition
of 200K generated training data (Add = 200K). More in de-
tail, we obtain an average RMSE reduction of 7.9% and 4.6%
when the best performing model is compared with respect to
the other configurations (Add = i ∗ 50K with i ∈ [0, 3]) in
the two analyzed scenarios, i.e., when the original training
dataset is used (NYU=50K) and when it is not considered
(NYU=0K). Based on the two compared configurations, we
can note that when comparing the best-performing setup with

TABLE VI
QUANTITATIVE COMPARISON OF FASTDEPTH MODEL TRAINED ON

DIFFERENT AMOUNT OF D4D-NYU GENERATED SAMPLES (S3
CONFIGURATION) AT THE RESOLUTION OF 256× 192 PIXELS. THE BEST

VALUES FOR EACH COMPARED SETUP ARE HIGHLIGHTED IN GRAY.

Model NYU [K] Add [K] RMSE↓ [m] AbsRel↓ δ1↑

FastDepth

50 0 0.5714 0.1751 0.7535
50 50 0.5585 0.1643 0.7666
50 100 0.4980 0.1414 0.8119
50 150 0.4962 0.1411 0.8121
50 200 0.4919 0.1406 0.8127
50 250 0.5076 0.1517 0.7981
0 0 - - -
0 50 0.5996 0.1746 0.7500
0 100 0.5502 0.1730 0.7649
0 150 0.5449 0.1619 0.7665
0 200 0.5397 0.1607 0.7678
0 250 0.5444 0.1616 0.7629

the best one (Add = 100K) reported in Table I and Table II
(also reported in Table VI), the RMSE reduction is limited
to 1.2% and 1.9%, respectively. Moreover, when compared to
the Add = 250K setups, the Add = 200K ones results in an
RMSE reduction of 3.1% (NYU= 50) and 0.9% (NYU= 0).
Consequently, we can assume that the Add = 200K setup
is FastDepth’s best configuration with respect to the amount
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of generated samples; however, when considering the time
required to generate a larger number of RGBD data and
the limited percentage improvement, we can conclude that
100K samples are a good trade-off, ensuring good estimation
performance on the NYU dataset while limiting the overall
computational time.

Additional experiments on efficient ViT. Once the main
parameters of D4D have been analyzed, we present some ad-
ditional results on efficient ViT architectures to emphasize the
proposed solution’s versatility. We outline the following anal-
ysis motivated by the practical applicability of MDE models
on embedded/mobile devices, which are usually characterized
by limited computational powers. In order to infer on such de-
vices, factors like reduced network computational capabilities,
number of trainable parameters, or model depth typically result
in a reduction of the estimation performances. Consequently,
this analysis investigates the percentage boost that D4D is
able to achieve when combined with efficient architectures.
In particular, we analyze the performance improvement of the
proposed pipeline across two efficient METER configurations,
namely, Meta-METER (MetaM) and Pyra-METER (PyraM)
proposed in [24]. The latter architectures were developed
by exploiting the efficiency capabilities of MetaFormer [51]
and Pyramid Vision Transformer [52], which aims to re-
duce/linearize the computational cost of self-attention.

We compare the reported architectures using the same
METER’s optimal4 hyperparameters identified in TableI and
TableIII respectively for the NYU and KITTI datasets. Based
on the obtained results (Table VII), we can note an average
percentage RMSE reduction of 6.4% and δ1 increment of
2.0% when the D4D pipeline is used instead of a standard
training pipeline. As a result, it can be noticed that in this
scenario, where model learning capabilities are limited with re-
spect to deeper architectures due to computational constraints
introduced by embedded devices, the proposed pipeline still
provides a good percentage boost for the model’s estimation
performances.

TABLE VII
QUANTITATIVE COMPARISON ACROSS EFFICIENT HVIT CONFIGURATIONS.
THE ✓AND ✗ARE USED TO INDICATE WHEN D4D-GENERATED DATA ARE

EMPLOYED.

Model D4D NYU KITTI
RMSE↓ [m] δ1↑ RMSE↓ [m] δ1↑

METER ✗ 0.5112 0.8138 4.8398 0.8153
✓ 0.4574 0.8357 4.7288 0.8155

MetaM ✗ 0.5058 0.8111 4.9493 0.8014
✓ 0.4556 0.8373 4.6714 0.8166

PyraM ✗ 0.5196 0.8062 5.2308 0.7652
✓ 0.4944 0.8139 4.9652 0.7737

Analysis on feature space. We conclude the result section by
performing similarity measurements among different config-
urations on the feature space in order to provide an in-depth
explanation of the obtained results. More in detail, we analyze
the learning capabilities of D4D configurations (S1, S2, and

4For the NYU dataset: configuration S3, Add= 100K, Res. 256 × 192.
For the KITTI dataset: configuration S3, Add= 50K, Res. 256× 192.

S3) with respect to the NYU training setup (S0). We extract the
visual features characterizing each dataset with two pretrained
neural networks (initialized on ImageNet): the ResNet18 [53]
and the EfficienNetB4 [54]. This procedure is performed by
removing the last classification layer (fully connected) from
each respective model. Therefore, a final embedding vector
of each dataset is obtained as the average features vector
extracted from 50K input samples. Subsequently, we compute
the distance between the mean of the embedding vectors
using two evaluation metrics: the Euclidean distance (ED)
and the Hillinger distance (HD) [55]. Table VIII shows such
differences computed between the embedding vectors related
to each configuration and the NYU test dataset.

TABLE VIII
EMBEDDING VECTORS’ DISTANCES COMPUTED BETWEEN EACH

CONFIGURATIONS (Si WITH i = [0, 3]) AND NYU TEST SET. EACH SUBSET
COUNTS 50K TRAINING SAMPLES.

Model Configuration RGB Depth
ED HD ED HD

ResNet18

S0 0.1158 0.0771 0.1243 0.0826
S1 0.2626 0.1720 0.2739 0.1815
S2 0.2384 0.1597 0.2568 0.1719
S3 0.3636 0.2403 0.3608 0.2361

EffB4

S0 0.7714 0.4442 1.2708 0.7262
S1 1.7724 1.0307 2.0593 1.1886
S2 1.4572 0.8330 1.8667 1.0584
S3 1.9611 1.1356 2.1222 1.2283

Based on reported values, S3 has higher values both for ED
and HD rather than other configurations. Moreover, observing
the metrics reported in Table I, Table II, and Table IV we
noticed that the increasing distances correspond to greater
estimation performances. Therefore, without loss of generality,
we derive that the higher the distance of the features from

the test dataset, the better the performance of the MDE model.
We hypothesize that a greater distance corresponds to stronger
generalization capabilities due to a more efficient covering of
heterogeneous samples.

VI. CONCLUSION

This paper presents a novel training pipeline composed of
D4D, a custom 4-channels DDPM to produce realistic RGBD
samples used to improve the estimation performances of deep
and shallow MDE models. The proposed methodology demon-
strates superior performances with respect to synthetically
generated datasets in indoor and outdoor scenarios, with an
average RMSE reduction equal to 8.2% and 8.1%. Moreover,
our solution achieves an RMSE reduction equal to 11.9% and
6.1% with respect to the baseline indoor NYU Depth v2 and
outdoor KITTI datasets. We hope that our method, together
with the generated datasets (D4D-NYU and D4D-KITTI), will
encourage the combined use of DDPM with deep learning
architectures to address the lack of labeled training data in a
variety of computer vision applications. A key element of the
proposed strategy is the use of real-world images to generate
novel augmented samples, thus improving the estimation and
generalization of MDE model capabilities for deploying in
real-case scenarios.
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Our technique is applied to tackle the MDE task, where the
generated depth map is crucial to obtain accurate performance.
However, the generated RGBD samples could also contribute
to other applications, such as monocular SLAM or other
computer vision tasks where a fourth (depth) channel can be
used to improve standard RGB approaches, as in semantic
segmentation [56], human action recognition [57] and object
detection [58]. Consequently, in the future, we will further
evaluate our method and employ generated samples in different
RGBD tasks, study their performances on different archi-
tectures, and propose new diffusion architectures specifically
tailored for depth data.
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