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Abstract
The use of mini-batches of data in training artificial neural networks is nowadays very common.
Despite its broad usage, theories explaining quantitatively how large or small the optimal
mini-batch size should be are missing. This work presents a systematic attempt at understanding
the role of the mini-batch size in training two-layer neural networks. Working in the
teacher-student scenario, with a sparse teacher, and focusing on tasks of different complexity, we
quantify the effects of changing the mini-batch sizem. We find that often the generalization
performances of the student strongly depend onm and may undergo sharp phase transitions at a
critical valuemc, such that form<mc the training process fails, while form>mc the student
learns perfectly or generalizes very well the teacher. Phase transitions are induced by collective
phenomena firstly discovered in statistical mechanics and later observed in many fields of science.
Observing a phase transition by varying the mini-batch size across different architectures raises
several questions about the role of this hyperparameter in the neural network learning process.

1. Introduction

The widespread diffusion of neural networks in many scientific fields urges a better understanding of the
processes that underlie their training. The discipline that studies how well simple devices like Turing
machines or more abstract constructions, such as classifier systems, can learn and infer from observed data
after the training process, is the statistical learning theory [1]. The statistical learning theory is at the
cornerstone of Machine learning (ML), and it deals with the statistical inference problem of finding a
predictive function based on data. Even though neural networks are well analyzed from statistical learning,
they have become an active field of research in statistical mechanics. Statistical mechanics predicts the
properties of a macroscopic system from the laws of its microscopic dynamics [2–4]. In this area, a major role
is played by phase transitions that regulate what is achievable in principle (information theoretical
thresholds) and what is achievable in practice (algorithmic thresholds) [5–13]. The graphical representation
(the phase diagram) of the various phases delimited by phase transitions allows researchers to predict the
response of the system as a function of its own tunable parameters. The phase diagrams of simple but
realistic neural networks (e.g. perceptron, one hidden layer, committee machine [14–16]) are well known
and understood, when the algorithmic dynamics is governed by equilibrium processes [17]. However, the
out-of-equilibrium dynamics of the learning processes [18–20] are much more difficult to study and most of
the results about it are restricted to dense models where the Martin–Siggia–Rose formalism [21] can be
applied to derive DMFT equations [22, 23].

Statistical mechanics tools have been also applied in the realm of artificial intelligence [24, 25] for
building up consistent theories for deep learning [26–30]. A deep neural network is a type of ML model, and
when a deep network is fitted to data, this is referred to as deep learning [31]. Deep learning (DL) has shown
very powerful empirical performance for solving very complex real-world problems in areas such as
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computer vision [32], natural language processing [33, 34], speech recognition [35], recommendation
systems [36], drug discovery [37], differential equations [38, 39], and much more [40–42]. In simple words,
DL can be seen a neural network [43], composed by many layers, that takes some data setD, input and
targets, and learns the rules for forecasting new input data. For learning the rules, one minimizes a loss
function by optimizing the weights of the neural network, using an optimization algorithm [44–52]. The
weights are collected into a setΘ. The peculiarity of a DL model is the application of a non-linear function
on each output of the hidden layer, and, in general, on each neuron of the output layer. These non-linear
functions are called activation functions. Statistically, DL estimates a function f̂(!x,Θ), with!x the input data,
that minimizes a loss function L (!y, f̂(!x,Θ)), where!y represents the target. This minimization is performed
over a set of pairs (!x,!y)η , where η indices an element ofD and |D|, the cardinality ofD, can be finite or
infinite.

Over the last decades, the practitioners of neural networks have developed many very useful tricks and
smart procedures, like mini-batch [53], dropout [54], deep residual learning framework (feedforward neural
networks with ‘shortcut connections’) [55] and several other regularizations [31] for speeding up the
training process.

A theory justifying many of these choices is often lacking, and so it is very difficult to make optimal
choices for who is not an expert practitioner. Among these ‘tricks’ the use of the so-called mini-batch,
introduced as a technical requirement for dealing with huge databases, actually turns out to be crucial for
optimal training.

In ML, a mini-batch is a subset of the full dataset that is used to train a model [53]. Rather than training
the model on the entire dataset at once, the training data is divided into smaller batches, or mini-batches,
which are fed to the model one at a time. Mini-batch training is a commonly used optimization technique in
DL. It enables the model to make multiple updates to its weights and biases based on the gradients computed
from each mini-batch. This process of making small updates to the model weights is called Stochastic
Gradient Descent (SGD) [56–58]. The size of the mini-batch is a hyperparameter that can be tuned to
optimize the training process. A larger mini-batch size can lead to faster training times, but it can also make
it harder for the model to converge to a good solution. A smaller mini-batch size can improve the model’s
convergence but may slow down the training process. Mini-batch training provides a compromise between
the two extremes of batch training (using the entire dataset at once) and online training (updating the model
after each individual data point).

This hyperparameter is chosen for fitting the GPU hardware during the training process, and only few
theoretical analysis have been performed to understand if exists or not an optimal value for it [59–62]. In
[59], the authors present an empirical law for selecting the mini-batch size that minimizes SGD learning time
for single and multiple learner problems, where the empirical law depends by some empirical parameters
that must be deduced by the data, the model topology and the learning algorithm used. In other words, the
empirical law is not universal. In [60], the authors review the small mini-batch methods for DL and present
numerical analyses in which the best performance is obtained for mini-batch sizes betweenm= 2 and
m= 32. The results provided evidence that increasing the mini-batch size implies a degradation of the test
performance and a progressively smaller range of learning rates that allows stable training. However, there is
no theoretical motivation supporting these results. The manuscripts [61, 62] showed that one can improve
the performance of SGD, on both training and test sets, by keeping constant the learning rate and increasing
the mini-batch size during training. Those results were obtained over different architectures of neural
networks.

From the point of view of statistical physics, understanding the key role of the mini-batch in the learning
process, in particular, whether it exists a phase transition that sets an optimal value for the mini-batch size, is
still an open question. Here we consider this problem and provide a positive answer by showing the existence
of a phase transition in the mini-batch size ruling the ability to train optimally neural networks. More
precisely, we confine ourselves into the ‘Teacher-Student’ scenario, where the teacher is sparse and with
binary weights, while the student can be sparse, or dense, with binary or continuous weights depending on
the information that the teacher gives to the student. We choose this setting because it is simple and we can
keep control on the true model that we can infer or generalize. The teacher builds its own neural network and
creates an infinite set of dataD. She gives to the student the whole data set and asks to build her own neural
network. The student can have information or not about the topology of the teacher network. In the case she
knows everything, she needs only to infer the sign of the teacher’s weights. Therefore, the student could use a
greedy algorithm. If she does not know the topology of the neural network, she is allowed to build a neural
network with continuous weights and use a SGD algorithm for generalizing the teacher weights.

The ‘Teacher-Student’ model has been a useful tool for building up knowledge in science, and in DL. For
instance, in [63] the authors studied the generalization analyzing the dynamics and the performance of
over-parametrized two-layer neural networks in the teacher-student setup, showing that the dynamics of the
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SGD, in the online learning case, can be described by a set of differential equations that are asymptotically
exact in the limit of large inputs, in the case where the student networks have more parameters than the
teacher. In [64], instead, the authors provide closed-form asymptotic expressions for multi-class
teacher-student perceptron generalization errors in the high-dimensional regime. Again, in the
high-dimensional regime some authors [65] studied the generalization of the model where the teacher and
student can act on different spaces, generated with fixed, but generic feature maps. They show a rigorous
formula for the asymptotic training loss and generalization error.

In this setup, the few analytical results on the existence of phase transitions in the thermodynamic limit
are for the Ising perceptron [17]. In this case, the generalization error as a function of the ratio between the
number of training examples and the dimension of the input space has a first-order phase transition that
allows identifying the value at which the Ising perceptron learns.

These analyses, however, leave open the issue of whether it exists a phase transition for the mini-batch
size in two-layer neural networks. For filling this gap, in this paper, we present, as far as we know for the first
time, the existence of a phase transition in the hyperparameterm such that, for each value ofm smaller than
mc, the critical value of mini-batch size, the generalization/inference of the teacher weights is impossible,
while for each value ofm bigger thanmc the generalization/inference is possible. Moreover, we present strong
evidence that the phase transitions are independent of the model used or the algorithm used, and that they
seem to be of the first order, depending on the value of the sparsity in the teacher model. To make our results
general and robust we study several neural network topologies and inference problems. We will consider
both dense and sparse topologies. The latter is much less used, but there are promising future applications
given the large saving in memory and computing power.

The paper is organized as follows: in section 2 we make a short summary of our results. In section 3 we
introduce the probabilistic model called ‘Teacher-Student’, the notation used, and the algorithms used for the
numerical analysis. In section 4 we present our numerical analysis for the models listed in section 3. In
section 5 we discuss the results.

2. Short summary of the main results

To help the reader of getting the main message of this manuscript, here we summarize our results.
We study four different teacher-student models.

• The first one, i.e. ST-SS-2M-OC (see sections 3 and 4.1), the teacher and the student have the same sparse
topology embedded by a bipartite random d-regular graph between the input and the hidden layer, and
between the hidden and the multidimensional output layer, with LeakyReLu activation functions on the
hidden and output neurons. In this case, we observe that the normalized validation loss goes to zero dis-
continuously for each value of d> 2 at different values of the mini-batch sizem. In other words, the student
easily can infer the weights of the teacher only above a particular value of the mini-batch sizemc.

• In the second model, i.e. ST-SS-2M-MC (see sections 3 and 4.2), the teacher is the same as the first one,
while the student neural network is embedded with a random ds-regular graph, with ds bigger than the one
of the teacher dt (the activation functions are LeakyReLu). In other words, the aim of the student is to infer
the weights of the teacher and at the same time understand which weights of its own network must be set to
zero for reaching the perfect inference. We observe the existence of phase transitions in the mini-batch size,
but this time of two different natures. For dt = 2 and ds > 2 we observe a second-order phase transition,
while for dt > 2 and ds > dt we observe again phase transitions of the first order.

• The third model, i.e. ST-SS-1M-OC (see sections 3 and 4.3), differs from the other two by changing the
activation function, which now becomes an erf(·) on the hidden neurons and identity on the output neuron.
The multidimensional output layer now becomes one-dimensional. The student knows the topology of
the teacher network and needs only to infer the weights. In this case, the perfect inference is not anymore
possible, however, as shown in figure 6, the existence of a first-order phase transition in the size of the mini-
batch is still present. This time, the transition divides two regions, one where the generalization is poor, and
another where it is possible having good performance in generalizing the planted teacher weights.

• The fourthmodel, i.e. ST-DS-1M-MC (see sections 3 and 4.4), has a teacher network which is the same as in
the case of ST-SS-1M-OC, but the student does not know anything about the topology of the network. She
has access only to the data and creates her own dense neural network. By tuning the hyperparameters of the
studentmodel, we observe that the presence of an optimal mini-batch that allows a very good generalization
is still present in correspondence with another optimal value of the learning rate (associated with the SGD
used as an optimizer). This model will be analyzed more deeply in future work, but it suggests a possible
existence of phase transitions.
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3. The models and the algorithms

In this section, we introduce the probabilistic model called ‘Teacher-Student’. This model is pretty simple. We
have one teacher and one student. The teacher builds a neural network, and asks the student to infer its
weights, given a data setD made of input-output pairs.

In other words, a teacher generates a random neural network. She generates a certain numberM of input
vectors!xη , η = 1, . . . ,M and computes the associated outputs using the neural network, i.e.!yη , η = 1, . . . ,M,
whereM is |D|. The student, thus, is provided with the data, i.e. the input-output pairs (!xη,!yη)η∈[M], and her
objective is to infer teacher’s weights from these data. The teacher could give or not the exact topology of the
model to the student: if she does, then, we call this scenario optimal-case, otherwise, we call it mismatch-case.

For example, consider a supervised regression task. The data setD is composed ofM pairs
(!xη,!yη)η∈[M] ∈ Rdx+dy identically and independently sampled from P(!x,!y). The prior probability P(!x) is
assumed to be known and P(!y|!x) is modeled by a two layer neural network. Given a feature vector!xη ∈ Rdx ,
the respective label!yη ∈ Rdy is defined as

!yη = ψ (W∗
outφ(W

∗
in!xη)) , (1)

where φ : R→ R and ψ : R→ R are two activation functions that act element-wise, whileW∗
in is a k× dx

matrix andW∗
out is a dy× kmatrix. In most cases, we choose these matrices to be sparse, with non-zero

elements taking values±1,
Given a new sample!x∼ P(!x) outside the training data, the goal is to obtain an estimation function

f̂(!x,Θ) : Rdx → Rdy (whereΘ is an arbitrary set of parameters to be learned from the data) for the respective
label!y. The error is quantified by a loss function L (!y, f̂(!x,Θ)). The loss function used in this manuscript is a
quadratic loss of the type

L
(
!y, f̂(!x,Θ)

)
=

1

2

M∑

η=1

(
f̂(!xη,Θ)−!yη

)2
(2)

We are interested in understanding the role of sparsity in neural networks. More precisely, our goal is to
estimate the teacher model with another two-layer neural network with the same activation functions and
the same number of neurons in each layer, which we will refer to as the student. Formally the student model
reads

f̂(!xη,Θ) = ψ (Woutφ(Win!xη)) , (3)

whereΘ identifies the set of the parameters that must be inferred, i.e. the elements of the matricesWout and
Win.

3.1. Training algorithms
We allow the student to choose between two different algorithms for estimating the teacher model. More
precisely, the student can choose between a greedy algorithm and a SGD algorithm (to be better described
below), depending on the nature of the parameters to be optimized, which in turn depends on the
information provided by the teacher. We choose to work with a virtually infinite data set, i.e. we never
present to the student twice the same data item, because we have found a very weak dependence of the results
on the data set sizeM and a fast convergence towards the largeM limit. Once the algorithm is fixed and the
data set infinitely large, the most relevant parameter in the training process is the mini-batch sizem, that is
how many data items are used in each step of the training. We will show that an optimal choice for this
parameter can drive the algorithms to infer/generalize the teacher model. To the best of our knowledge, this
is the first time a phase transition in this important parameter is found.

The first algorithm that the student can use for minimizing the loss function is a greedy algorithm. This
algorithm is used when the teacher provides the student with information about the discrete nature of the
matrix elements. The greedy algorithm is just a Metropolis updating rule [66] at zero temperature, that is the
proposed newΘ configuration must imply a lower value for the loss function (computed on the validating
set) in order to be accepted. At zero temperature there are no thermal fluctuations helping the evolution to
escape local minima in the loss function. However, the finite (and small) value ofm introduces a different
kind of noise that can play the same beneficial role in escaping local minima to reach the optimal
configuration.

At any given step of the greedy algorithm, an element wij of one of the matrices entering the model
definition (3) is selected at random and let us assume the support of this weight is±1. Calling wij =−wij the
new value we propose for this weight, the change in loss is given by
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∆L =
1

2

m∑

η=1

(
f̂
(
!xη,

((
Θ \

{
wij

})
∪
{
wij

}))
−!yη

)2
− 1

2

m∑

η=1

(
f̂(!xη,Θ)−!yη

)2
. (4)

We define withΘ \ {wij} the set of parameterΘ where the element wij has been removed. Therefore,
(Θ \ {wij})∪ {wij} defines the set of parameterΘ where element wij has been substituted with the element
wij. The algorithm accepts the flip only if∆L ! 0. This difference∆L depends on the mini-batch sizem
and can fluctuate a lot changing the mini-batch for small values ofm. We use the same mini-batch set for an
entire Monte Carlo Sweep, i.e. the attempt to update all the non-zero matrix elements.

During this manuscript, we will also analyze a model where the support of the random variable is given
by {1,−1,0}. In such a case, we modify slightly the Metropolis update, for fitting the new support of the
random variable, by sampling uniformly the new state where the weights should go.

The second algorithm is a SGD algorithm. This algorithm is used when no information is given to the
student about the teacher model. Thus, the student can model the teacher by her choice and chooses to use
real variables forΘ. To update the weights the student computes the gradient of the loss function in (2) over
a mini-batch of sizem and uses the usual updating rule

Θ←Θ−λ∇L
(
!y, f̂(!x,Θ) ,m

)
, (5)

where∇ is the gradient operator over the weights and λ is the learning rate.

3.2. Teacher-student scenarios
The above algorithms are used for analyzing different cases of the teacher-student scenario. We list them
below.

• Sparse teacher-student, twomatrices, optimal-case (ST-SS-2M-OC). In this case, the teacher is sparse and
the matricesW∗

in andW
∗
out have non-zero values equal to±1. The student knows the topology of the neural

network, i.e. she knows the position of the non-zero values in W∗
in/out, and she knows that the non-zero

elements of these matrices can take only the values ±1. The student needs only to infer the sign of the
weights. The analysis of this model is explained in section 4.1.

• Sparse teacher-student, two matrices, mismatch-case (ST-SS-2M-MC). In this case, the teacher is sparse
and the matricesW∗

in andW
∗
out have non-zero values equal to ±1. The student does not know exactly the

topology of the neural network, as the teacher provides her with a topology of larger connectivity, that
contains the teacher network. The student is allowed to infer the teacher network by setting some weights to
zero. So the student weights will take values in {±1,0}. The analysis of this model is explained in section 4.2

• Sparse teacher-student, one matrix, optimal-case (ST-SS-1M-OC). In this case, the teacher matrixW∗
in is

still sparse with ±1 elements and needs to be inferred, while the matrixW∗
out is fixed and provided to the

student. For simplicity, we consider a scalar output y (i.e. dy = 1) equal to the mean of the neurons of the
hidden layer. The student knows also the topology of the teacher’s neural network and that weights take
values in ±1. So, she just needs to infer the sign of the weights. The analysis of the model is explained in
section 4.3

• Sparse teacher, dense student, one matrix, mismatch-case (ST-DS-1M-MC). As in the previous case, the
teacher matrixW∗

in is sparse, with±1 weights, while theW∗
out is dense with all elements equal to 1 (i.e. takes

the mean of the hidden layer). The student is provided with the matrixW∗
out and needs to infer the matrix

W∗
in. Having no information about the topology of the latter, she decides to train a dense neural network

with the aim of generalizing the values of the sparse matrixW∗
in with continuous values. The analysis of the

model is explained in section 4.4

All this model will be fully explained in the next section, where we will also present the numerical results.

4. Results

In this section, we present our results on each single model listed in section 3.

4.1. Sparse teacher-student, twomatrices, optimal-case
For this analysis, we assume the framework given in (1). The teacher builds a neural network with the same
amount of neurons in each layer. More precisely, the teacher buildsW∗

in andW
∗
out to be sparse, with

dx = dy = k= N. The total number of non-zero entries is Nd for each matrix. In other wordsW∗
in andW

∗
out

are two square matrices N ×N, where each row and each column contains only d non-zero elements (in
positions randomly chosen). The activation functions ψ and φ are non linear and set to be LeakyRELU(x):

5



Mach. Learn.: Sci. Technol. 5 (2024) 015015 R Marino and F Ricci-Tersenghi

Figure 1. The figure shows the validation loss function normalized to the number of non-zero elements, averaged over 100
samples, as a function ofm, i.e. the mini-batch size, for different values of d, and different values of N. Error bars are standard
deviation of the mean.

LeakyRELU(x) =

{
ax x< 0
x x" 0

(6)

We fix the parameter a= 0.1. In this analysis, the student knows the model and the positions of the
non-zero entries in the two matrices. She also knows that non-zero weights are discrete, taking values±1.
The activation functions are known as well. The student builds her own neural network and decides to use a
greedy algorithm for inferring the values of the matrices elements. She defines the loss function as in (2).

Under the above assumptions, we perform an accurate analysis of the model as follows. We build the
teacher neural network, fixing the value of N to 50, 100, 200, 400 and the parameter d, i.e. the number of
non-zero entries in each row and column of matricesW∗

in/out, to d= 2, 3, 4, 5, and 6. Each non-zero element
is±1 with 50% probability. We sample the independent components of the input vectors!x ∈ RN from a
normal distribution of zero mean and unitary variance, i.e. xi ∼N (0,1). Thus, we create the associated
labels!y ∈ RN, using the neural network defined above.

Given the teacher neural network defined byW∗
in/out, the two weight matricesWin/out defining the student

network have non-zero elements in the same positions, and only the signs need to be inferred.
For every value of N and d, we perform the numerical analysis, starting from a random initialization for

the student weights and aiming at minimizing the loss in (2) using the greedy algorithm described above
with different mini-batch sizem. Each Monte Carlo sweep4 is performed with a new set of sizem of pairs
(!xη,!yη)η=1,...,m. We never use twice the same data pair (as in the online learning problem) or equivalently we
assume to have an infinite amount of data to train the network with. Moreover, we define a set of pairs
(!xη,!yη)η=1,...,30 to be the validation data set. These data are used only for computing the validation loss, and
they are never used during the training process.

In figure 1, we show the validation loss function normalized to the number of non-zero elements,
averaged over 100 samples, as a function ofm, i.e. the mini-batch size. The value of the validation loss is the
one obtained after a time of 1024 Monte Carlo sweeps. We have checked that at that time the process has
reached a stationary regime and more iterations would not change the results. The curves drawn, for any
values of d, seem to be independent of the value of N used. In other words, finite size effects are negligible
and we can consider the results as in the thermodynamic limit.

Results in figure 1 show that for d= 2 the inference of the teacher network is possible for any value ofm,
while the curves with d> 2 show a more interesting behaviour. For d> 2 the validation loss value jumps
discontinuously to zero at a critical value for the mini-batch size that we callmc(d). This means that by
running the learning algorithm withm>mc(d) the student is able to infer perfectly the teacher network,
while perfect learning is impossible for lower values ofm.

What happens atm=mc(d) looks like a phase transition. To the best of our knowledge, such a clear
phase transition in the mini-batch size was never observed before. To better understand the nature of this

4 One Monte Carlo sweep is equal to 2Nd attempts to update a weight.
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Figure 2. Left: the figure displays the averaged Hamming distance over 100 samples as a function of the mini-batch sizem, for
different values of the parameter d, i.e. the number of non-zero entries in each row and column of each matrixW∗

in/out. Error bars
are standard deviation of the mean. Right: the figure displays the fraction of Hamming distance trajectories that have found an
asymptotic value smaller than 0.25 as a function ofm−mc(d). In this case all the curves collapse one on top of the other, showing
a step function.

Figure 3. In this figure the value ofmc, i.e. the critical value of the mini-batch size, as a function of d is plotted. The values of
mc(d) fit well a linear behavior as a function of d.

transition, we study a different observable, the (normalized) Hamming distance between teacher and student
matrices weights. The Hamming distance is simply the number of weights elements which are different. The
normalized version we use is just divided by the number of non-zero elements. In case the student guesses at
random the signs of the teacher’s weights, the mean Hamming distance is equal to 0.5, while a perfect
inference of the teacher matrix would correspond to a zero Hamming distance.

Data for the mean Hamming distance are reported in the left panel of figure 2. As for the validation loss
discussed above, we observe no N-dependence in the data and therefore we average the Hamming distance
over all values of N. The variation of the mean Hamming distance when the value ofm is increased is
consistent with a discontinuous phase transition atmc(d) for d> 2. We definemc(d) as the first value ofm at
given d for which the Hamming distance is compatible with 0.

To get a quantitative measure of the sharpness of the phase transition atmc(d) we compute the fraction
of trajectories (over different samples and different N values) that have a Hamming distance smaller than
0.25.5 The nice scaling and the step-like behavior as a function ofm−mc(d) suggest the transition is very
sharp (see right panel in figure 2).

The last quantitative aspect to discuss is the dependence of the critical valuemc on the number d of
non-zero elements in the network matrices. As shown in figure 3 we find that a linear scaling nicely fit all the
data. This is very reasonable: indeed, the number of parameters (i.e. signs) to infer is exactly 2dN and each
mini-batch of data contains 2mN numbers. So a linear scaling ofmc(d) seems the best achievable scaling.

5 The results do not depend on this threshold value as long as it is chosen in the ‘gap’ visible in the left panel of figure 2.

7



Mach. Learn.: Sci. Technol. 5 (2024) 015015 R Marino and F Ricci-Tersenghi

Figure 4. The figures display the averaged validation loss normalized to the number of non-zero elements as a function of the
mini-batch sizem, for different values of N and different values of ds, averaged over 100 samples (error bars are the standard
deviation of the mean). In the left panel we fix dt = 2, while in the right panel we fix dt = 4.

4.2. Sparse teacher-student, twomatrices, mismatch-case
For this analysis, we assume the framework given in (1), where the teacher is built exactly as in the case
discussed in section 4.1: matricesW∗

in,out are sparse with exactly dt non-zero elements per row and column;
non-zero weights take values±1 with equal probability. The activation functions ψ and φ are non-linear and
set to be equal to (6).

In this analysis, the teacher does not give to the student complete information about the topology of her
network (i.e. the location of non-zero elements in the matrices). The teacher gives to the student just partial
information, that is sparse matricesWin,out built as before but with ds(>dt) non-zero elements per row and
column. The network corresponding to this slightly more connected topology is such that it contains the
teacher network as a subgraph. In other words, the student can infer the teacher network by just setting some
proper weights to zero. The reason beyond this choice is straightforward: we are interested in checking how
general the results shown in section 4.1 are, in particular, when some sort of noise is added to the inference
process. The present setting is meant to model a situation where a perturbation is introduced in the network
topology, such that the ground truth (i.e. the teacher network) is preserved.

The student will work with variables, representing the weights, taking values in {±1,0}. In such a way
she is in principle able to infer the exact network of the teacher if enough information is provided to her. The
student uses the greedy algorithm described in section 3 to optimize the loss function. As before, we use an
online learning setting, where each data pair (!xη,!yη) is used for just one Monte Carlo sweep. Moreover 30
data pairs are reserved for the computation of the validation loss and never used in the training.

In figure 4 we report the mean validation loss function normalized to the number of non-zero elements,
averaged over 100 samples, as a function ofm, the mini-batch size. In the left panel we have fixed dt = 2 and
we observe that the curves goes to zero in a continuous way, and without showing any evident finite size
effect. We callmc(ds|dt) the critical value ofm at which the mean loss attains the zero value. The phase
transition atmc(ds|dt) separates a phase where the teacher network can not be correctly learned, from a
phase where the student can almost perfectly learn it. A careful inspection of the regionm>mc(ds|dt)
reveals that the validation loss is not exactly zero, and it increases slightly withm. A possible explanation for
this observation is the following: the mini-batch size acts as a source of noise that allows the greedy algorithm
to better optimize the loss function by escaping from local minima, but ifm becomes too large, the effective
noise decreases and the training algorithm can get trapped in sub-optimal minima with a very small values of
the loss (in any case the value of the loss is tiny and the student network still generalizes very well the teacher
one).

In the left panel of figure 4, a comparison with the optimal case (i.e. ds = 2 and dt = 2) shows an
interesting phenomenon. In the case where the complete information is given to the student, the system does
not present any phase transition. Even with a mini-batch of sizem= 1 the student is able to infer almost
completely the teacher weights. In contrast, when the teacher hides a little bit of information to the student,
providing a noisy version of the network topology, the amount of knowledge that the student needs to infer
the teacher weights is much larger. We observe that the minimal size of the mini-batch that the student needs
for completely inferring the teacher weights is roughly ten times bigger if ds = 3 and even more if ds = 4.

In the right panel of figure 4 we present the averaged validation loss obtained by the student when the
value dt = 4 is used by the teacher. Also in this case, finite size effects are negligible, thus suggesting that we
are already probing the large N limit. As before, we compare the optimal case ds = dt = 4 with the
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Figure 5. TP and TN rates measure the fraction of correctly inferred non-zero and zero weights in the matrixWin. They are
plotted as a function of the mini-batch sizem for several values of the network connectivity: dt = 2,ds = 3 (top left),
dt = 2,ds = 4 (top right), dt = 4,ds = 6 (bottom left), dt = 4,ds = 8 (bottom right).

mismatched cases ds = 6,8. The latter cases require more information to infer the teacher network and this
implies a larger critical valuemc(ds|dt). The nature of the phase transition atmc(ds|dt) remains
discontinuous as in the optimal case, but the jump at the critical point seems to decrease, so we can not
exclude that the transition could become continuous for larger values of ds.

The phase transition can be observed also in the fraction of weights inferred correctly by the student. For
simplicity, we show in figure 5 results only for the matrixWin, but similar results hold forWout as well. We
define the True Positive (TP) rate as the fraction of non-zero weights correctly inferred by the students and
the True Negative (TN) rate as the fraction of zero weights correctly inferred by the student. In case the
teacher network is perfectly recovered, both TP and TN equal 1.

In figure 5, we show TP and TN rates for different values of dt and ds. The top panels refer to the dt = 2
case, where the TP and TN rates reach the value 1 atmc(ds|dt = 2) in a continuous way and slightly decrease
for largerm values (in agreement with the results obtained via the validation loss). The bottom panels are for
dt = 4 and we observe the TP and TN rates to jump atmc(ds|dt = 4) to the value 1, corresponding to a
perfect recovery of the teacher network (again in agreement with results from the validation loss).

An interesting observation is that increasing the value of ds for a given dt has the main effect of
translating the transition point, without changing sensibly the nature of the transition. The increase of
mc(ds|dt) with ds is simple to explain: for a larger value of ds (i.e. a larger noise) the number of configurations
of the student weights is much greater and much more information is required to select the proper weights.

4.3. Sparse teacher-student, one matrix, optimal-case
For this analysis, the teacher modifies the setting in (1) by fixing the matrixW∗

out of size k× 1 and with all
elements equal to 1. Moreover, the activation function ψ becomes linear. In practice, the output signal is
nothing but the average of the hidden layer. The function φ remains non-linear, and to make a connection
with previous works, we fix φ(t) = erf(t/

√
2) and dx = k= N. Under these assumptions, the teacher model

can be written as

y=
1

N

N∑

r=1

φ

(
((W∗)ᵀ!x)r√

d

)
, (7)

where y ∈ R, andW∗ =W∗
in to simplify the notation. The matrixW∗ is assumed sparse, with exactly d

non-zero elements in each row and column, set randomly to±1 with equal probability.
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Figure 6. Top panels displays the averaged validation loss as a function of the mini-batch sizem for different values of N at d= 2
(left) and d= 3 (right). Error bars are the standard deviation of the mean, obtained from 100 samples. Bottom panels display the
fraction of successful learning processes, defined as those reaching a loss function value smaller than the threshold value 0.02 after
1024 Monte Carlo Sweeps.

A variant of this model is studied in [67], where the authors describe the different regimes of the SGD
learning algorithm for this two-layer neural networks in the high-dimensional input layer limit, but with a
mini-batch size fixed to 1. Moreover, in order to solve exactly the dynamics, they need to work with a matrix
W∗ which is dense for both the teacher and the student. Eventually, the student network is over-parametrized
by enlarging the hidden layer with respect to the teacher one (ks > kt). However, this study provides no clue
on what happens changing the mini-batch size, nor making the teacher (and/or the student) sparse.

As a first analysis, we assume that the teacher provides the complete topology to the student. In other
words, the student knows the activation function φ, and the position of the non-zero elements inW∗, and
just needs to infer the sign of the weights in her own neural network

f̂(!x,Θ) =
1

N

N∑

r=1

φ

(
(Wᵀ!x)r√

d

)
, (8)

where f̂(!x,Θ) is a scalar function, i.e. f̂ : RN→ R, and the setΘ contains all the non-zero parameters of the
matrixW. Before the learning process starts the non-zero elements of this matrix are set to±1 randomly.
Also in this case, the natural choice of the student the learn the matrix is to use the greedy algorithm, with a
loss function defined in (2).

Although, the model described by (7) and (8) is simpler with respect to the ones described in sections 4.1
and 4.2, the inference of W is more complicated since the output layer is just performing an average and this
introduces new permutation symmetry, which in turn implies that several permuted weights are able to
generalize well the teacher model. For this reason, we are going to study the learning process by just
measuring the loss function.

Also in this case, we perform a numerical analysis to understand whether changing the mini-batch sizem
the learning process undergoes a transition between two phases, one where the inference is impossible and
one where the inference is possible. In this case, it is more appropriate to say that the transition is between
two phases, one where the student is not able to generalize the teacher model, and one where the
generalization is possible. We define a set of pairs (!xη,yη)η=1,...,1024 to be the validation data set.

In figure 6, we present the analysis performed over different values of N and d. More precisely, in the top
panels we present the averaged validation loss as a function of the hyper-parameterm, for two values of d, i.e.
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Figure 7. Data formc(N|d)/d grow linearly with N, thus supporting the scalingmc(N|d)∼ dN for the critical batch size.

d= 2 top left panel and d= 3 top right panel, and different values of N= 32, 64, 128. For each data set, we
observe a clear sharp decrease in the mean value of the loss function whenm crosses a critical valuemc(N|d),
thus suggesting a sort of first-order transition in the minimization of the loss. The validation loss function,
however, does not reach the 0 value. This effect is in agreement with the observation written above. This
effect is also observed in the Hamming distance, which is not plotted. In this case, we observe that for both
values of d, the Hamming distance starts from a random guess value for small values ofm, and reaches at
mc(N|d) a value of 0.15 for each value of N analyzed. In contrast to the validation loss function that remains
constant above the value ofmc(N|d), the Hamming distance increases as well asm increases, showing,
therefore, that the configurations found are far away from the true planted model, but they are able to
generalize well the teacher model.

Given the jump-like behavior of the loss shown in the upper panels of figure 6, we can easily define a
threshold value for the loss that discriminates successful learning processes. This fraction is plotted in the
bottom panels of figure 6, where we observe good scaling in the success probability of the learning process.

The values formc(N|d)/d are reported in figure 7 as a function of N. The linear growth supports the
scalingmc(N|d)∼ dN for the critical batch size. In analogy with the argument presented at the end of
section 4.1, we can compare this critical mini-batch size with the number of parameters to be inferred. In the
present model, the parameters in theWmatrix are dN and, given y is a scalar, each mini-batch provides
O(m) informative numbers. So one would expect the optimal scaling to bemc ∼ dN and this is confirmed by
the data in figure 7.

4.4. Sparse teacher, dense student, one matrix, mismatch-case
For this analysis, we assume that the teacher model is the same as the one described in section 4.3. In other
words, the components of!x ∈ RN are i.i.d. fromN (0,1) and y ∈ R is defined by equation (7) with the same
activation function φ. In contrast to section 4.3, here we assume the student has no knowledge about the
topology of the teacher neural network, i.e. the non-zero elements of W, while she knows the functional
form in equation (7). Because of her lack of knowledge, the best the student can do is to try to model the
teacher neural network using a dense matrixW with real elements. The learning of the optimalWmatrix can
be possibly achieved by optimizing the loss function defined in equation (2). This training process is very
similar to the one which is commonly used to train modern neural networks through a DL approach, so
relevant in many different disciplines.

Having no knowledge about the teacher neural network, the problem is not anymore an inference
problem, but a learning problem. The student wants to find a configuration of the weights that is able to
generalize the teacher model. Again, our main focus is to understand whether the mini-batch size plays a
crucial role in this process of generalizing the teacher model. In this particular case, however, a new
hyper-parameter comes into play. It is the learning rate λ. It determines the step size at each iteration while
moving toward a minimum of the loss function. It needs to be set a priori and can eventually be changed
dynamically during the learning process. For the sake of simplicity, we always keep it fixed during the
learning process.

For the teacher model, we use a sparse matrixW∗ with dt = 2 non-zero elements in each column and in
each row: they are set in random positions to±1 with equal probability. We use N= 32, 64 and build a
student network with a hidden layer composed of N neurons. The matrixW is dense, and each element of
the matrix is initialized uniformly random in [0,1]. We define a set of pairs (!xη,yη)η=1,...,1024 to be the
validation data set.
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Figure 8. Left: the figure displays the validation loss as a function of the SGD steps (i.e. the number of times that we compute the
gradient) for the training of a student network with N= 32 neurons in the hidden layer (λ= 0.1, dt = 2, ds = 32) and different
values ofm. Right: the figure displays the phase diagram of the validation loss achieved after 106 SGD steps as a function of the
learning rate λ and the mini-batch sizem (here N= 64, dt = 2, ds = 64).

In the left panel of figure 8 we show the evolution of the validation loss as a function of the number of
steps of the SGD algorithm (i.e. the number of times that we compute the gradient). Data are for a student
network with N = 32 neurons in the hidden layer, and the SGD algorithm uses λ= 0.1 and different values of
m. The behavior of the learning process has a marked dependence on the mini-batch sizem. Form= 1 we
observe that the SGD dynamics get trapped by local minima with a very large loss function. For largerm
values we observe a steady improvement of the generalization, which becomes better both by increasing the
SGD steps and them value. Focusing on the validation loss value at the largest time (106 SGD steps) we
observe that the improvement stops around the optimal value of the mini-batchmc * 64. Above such a value
we do not observe any improvement in the generalization (actually the validation loss can even become a
little bit larger by further increasingm).

For the optimal valuem= 64, it becomes very clear the typical shape of the SGD relaxation, that proceeds
through successive plateaus. This is a very well known phenomenon [67–69] and it is interesting to notice
that it shows up only if the mini-batch size is set to the optimal valuemc.

The behaviour discussed above, where the learning and generalization processes get improved by
increasing the mini-batch sizem, looks very general. In the right panel of figure 8 we show the value of the
validation loss achieved after 106 SGD steps as a function of the learning rate λ and the mini-batch sizem.
We observe that for any value of λ the generalization error decreases as a function ofm until an optimal value
mc is reached. The value ofmc depends on the learning rate λ but its existence seems very robust in a wide λ
range. It is worth noticing that the validation loss varies by several orders of magnitude increasing the value
ofm.

5. Discussion

Given the central role played by the mini-batch in training artificial neural networks, it is surprising that very
little results are available on the effects of changing its size. In this work we try to fill this gap by presenting an
accurate numerical analysis that better quantifies the role of the mini-batch sizem in training two-layer
artificial neural networks. Working within the teacher-student scenario and fixing the teacher to be a sparse
neural network, we study four different models for the student neural network. In all the cases we observe a
crucial dependence of the generalization error on the mini-batch sizem. In some cases, such a strong
dependence turns into a sharp phase transition between phases where the student is able or unable to
generalize well the teacher’s neural network. In other words, we observed that above the critical valuemc, the
student can either infer exactly the teacher model or at least generalize it very well.

The phase transitions we observed are closely tied to the model’s architecture, particularly the makeup of
the output layer. Models designed for classification tasks, with just one neuron in the output layer,
demonstrated distinct behavior compared to those geared for regression tasks with multiple neurons. The
presence of a classification task introduces new permutations, adding complexity to the generalization
process. This highlights the critical role of both the output layer’s structure and the mini-batch size,
especially in models where outputs are simple averages of inputs, leading to new permutation symmetries.

The robustness of our results is supported by the fact we find similar behavior in four different models,
where the kind of task and the amount of information provided to the student vary. In particular we have
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studied both the case where the network topology is known to the students and the case where it is not.
Moreover we have studied a regression problem where the output of network has the same input size and a
simpler classification problem where the network has a single output neuron. To train the student network
we have used SGD (in case the network parameters are real variables) and a SGD-like algorithm working
with discrete variables otherwise. In all cases the effect of changing the mini-batch size is clear.

To extend our findings to various architectures and optimizers, one could embark on similar numerical
experiments but in a more intricate setting. Firstly, the sparsity of the model is an integral aspect that must be
considered when attempting to generalize results. Moreover, it is imperative that the teacher model remains
encapsulated within the student model, ensuring consistent and meaningful extrapolation of outcomes.
Additionally, selecting a deeper architecture, choosing the appropriate dataset, and committing the necessary
computational resources for training the neural network with varying mini-batch sizes is essential. When
considering optimizers, besides traditional methods (as the one used in this manuscript), there’s potential in
employing Simulated Annealing [49], or Parallel Tempering [70], or Monte Carlo algorithms [71] with a
specific temperature setting, akin to the approach we adopted in [72].

The general picture that comes out from this study is the following. For small values ofm the
information provided to the algorithm at each step is too noisy and the training process get stuck in
sub-optimal configurations, that are called glassy states in statistical physics. Only form large enough the
information collected at each step from the data allows the training algorithm to optimize the loss function
and in turn produce a student network with good generalization skills.

We have shown that in some models these two regimes are separated by a clear phase transition, and the
critical valuemc scales with the model parameters (e.g. the input size N and the teacher connectivity d) in a
way to match the amount information provided in each batch with the number of parameters to be
assigned/inferred in the training process. This matching is a very simple rule that may help in understanding
a priori what is the optimal value for the mini-batch size.
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