
Tackling Conceptual Problems in Gravity with Nu-
merically Simulated Gedanken Experiments

Scuola dottorale in scienze astronomiche, chimiche, fisiche, matematiche e
della terra "Vito Volterra"
PhD in Physics (XXXVI cycle)

Fabrizio Corelli
ID number 1706626

Advisor
Prof. Paolo Pani

Academic Year 2022/2023



Tackling Conceptual Problems in Gravity with Numerically Simulated Gedanken
Experiments
PhD thesis. Sapienza University of Rome

Materials from Ref. [42] © 2021 American Physical Society
Materials from Refs. [43, 44] © 2023 American Physical Society
Materials from Ref. [45] © 2024 American Physical Society
All other materials © 2024 Fabrizio Corelli
All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: fabrizio.corelli@uniroma1.it

mailto:fabrizio.corelli@uniroma1.it


ii

Contents

1 Introduction 1

2 Tests of the weak cosmic censorship conjecture in Einstein-Maxwell
and in Einstein-Maxwell-scalar theories of gravity 9
2.1 Singularities, Reissner-Nordström metric and the cosmic censorship . 9
2.2 Einstein-Maxwell-scalar gravity and scalarized BHs . . . . . . . . . . 10
2.3 Setup for the numerically simulated gedanken experiments . . . . . . 13

2.3.1 Action of the theory and field equations . . . . . . . . . . . . 14
2.3.2 Evolution scheme . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Electric charge in Einstein-Maxwell-scalar theory . . . . . . . 18
2.3.4 Numerical integration scheme . . . . . . . . . . . . . . . . . . 19
2.3.5 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.6 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Collapse of the charged field in a flat background in Einstein-

Maxwell theory . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Collapse of the charged field towards a RN BH in Einstein-

Maxwell theory . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Collapse of charged field towards a RN BH in nonminimally-

coupled Einstein-Maxwell-scalar theory . . . . . . . . . . . . 28

3 Fate of radiating BHs with minimum-mass in Einstein-dilaton-
Gauss-Bonnet theory of gravity 40
3.1 Introduction to Einstein-dilaton-Gauss-Bonnet gravity . . . . . . . . 40

3.1.1 Black hole solutions . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.2 Hawking evaporation . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.3 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Inducing mass loss with a phantom field: framework . . . . . . . . . 47
3.3 Static solutions in horizon-penetrating coordinates . . . . . . . . . . 49

3.3.1 Equations and boundary conditions . . . . . . . . . . . . . . 50
3.3.2 Numerical procedures . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Properties of the solutions for different γ’s . . . . . . . . . . . 51

3.4 Numerical setup: initial value problem in EdGB gravity . . . . . . . 53
3.4.1 System of equations and hyperbolicity . . . . . . . . . . . . . 53
3.4.2 Initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.3 Numerical evolution algorithm . . . . . . . . . . . . . . . . . 57



Contents iii

3.4.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.1 Collapse of a dilaton field on a BH in the upper branch . . . 59
3.5.2 Collapse of a dilaton field on a BH in the lower branch . . . . 60
3.5.3 Collapse of a phantom field on a dilatonic BH . . . . . . . . . 61
3.5.4 Naked singularity formation in EdGB gravity? . . . . . . . . 64
3.5.5 Emulating Hawking pair production: negative- and positive-

energy wave packets emitted near a dilatonic BH . . . . . . . 67

4 Nonlinear plasma-photon interaction and the black hole superra-
diant instability 70
4.1 Introduction to the black hole superradiant instability . . . . . . . . 70
4.2 Triggering the superradiant instability with plasma . . . . . . . . . . 72

4.2.1 Plasma frequency and dispersion relation for the photon . . . 72
4.2.2 Superradiant instability . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Nonlinear regime . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.1 3 + 1 decomposition of the field equations . . . . . . . . . . . 76

4.4 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.1 Integration scheme . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Initialization procedure . . . . . . . . . . . . . . . . . . . . . 78

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.1 Linear regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Nonlinear regime . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Discussion: implications for plasma-driven superradiant instabilities 87

5 Conclusions 90

A Null energy condition in EMS gravity with a complex scalar field 93

B Numerical evolution in EMS gravity with a complex scalar field:
integration scheme and convergence tests 95
B.1 Implementation of the PIRK integration scheme . . . . . . . . . . . 95
B.2 Convergence tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

C Field equations for stationary and spherically symmetric BHs in
EdGB gravity 98
C.1 Schwarzschild coordinates . . . . . . . . . . . . . . . . . . . . . . . . 98
C.2 PG-like coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

D Phase diagram in EdGB gravity: BHs, wormholes, and solitons 101

E Evolution equations for EdGB gravity with an additional phantom
field 103

F Numerical evolution in EdGB gravity: code testing and conver-
gence 107



Contents iv

G Derivation of the 3 + 1 form of the equations for the plasma fluid 111
G.1 Decomposition of Eq. (4.8) . . . . . . . . . . . . . . . . . . . . . . . 111
G.2 Continuity equation in 3 + 1 variables . . . . . . . . . . . . . . . . . 113

H Numerical integration of Maxwell’s equations with a plasma fluid:
convergence tests 115

I Simulations of an EM wave packet scattering off a plasma barrier:
homogeneity along the transverse directions 118



1

Chapter 1

Introduction

Gedanken experiments, i.e. thought experiments [1], are an extremely powerful
tool for the development and illustration of scientific theories and philosophical
arguments. In physics they have been used already by Galileo and Newton, for
instance with the ship experiment [2], the Leaning Tower of Pisa experiment [3], or
the bucket argument [4], while notable and extremely popular examples from the
20th century include the twin paradox [5, 6], the Schrödinger’s cat [7], the Bell’s
spaceship paradox [8, 9], and the Dyson sphere [10].

In general, the idea is to imagine a hypothetical experiment in which some
conceptual aspects or some principles of a theory clearly manifest and can be better
appreciated. The understanding acquired in this way can then be used for different
purposes: to clarify the first principles on which a theory is based (like in the
Galileo’s ship experiment), to investigate and illustrate the implications of a theory
(like in the twin paradox), or eventually to highlight critical aspects that are worth
considering (like in the Einstein-Podolsky-Rosen paradox [11] or in the Schrödinger’s
cat).

One of the main advantages of this approach is that the setups conceived are
not required to be realizable, but only to satisfy all the physical properties that are
relevant for the argument. This means not only that in devising the experiment
one does not need to take into account measurement uncertainties and optimize the
setup to reduce them, but also that one is allowed to consider completely impracti-
cable scenarios in which the impact of the effects under examination is particularly
evident.

However, successfully constructing a gedanken experiment requires a deep un-
derstanding of the theory and the phenomena one is interested in testing, as the
outcome is dictated only by the reasoning of the “experimenter” and not by real-
ity. In particular it is necessary to correctly interpret the foundational aspects of
a theory and their consequences, and in some cases also to predict the evolution of
physical systems. To be more concrete on this latter point, let us consider the New-
ton’s cannonball [12], a gedanken experiment in which a stone is projected from
a mountain, pointing in a direction parallel to the surface of the Earth. Due to
gravitational attraction, the stone will descend following a curved trajectory, until
it touches the ground. If this process is repeated progressively increasing the initial
velocity, the stone will cover larger and larger distances, up to the point in which
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it can return to the original point, entering in a circular periodic motion. Further
increasing the velocity, then, the stone will follow more complex and eccentric tra-
jectories, that corresponds to the orbits of Planets. As we can see in this experiment
the prediction of the trajectory of the stone plays a central role, and it is crucial
that it is based on a well-oriented physical sense.

In theories governed by nonlinear sets of equations the task of visualizing the
behavior of a physical system can become exceptionally challenging or even im-
possible, as the different components of the system interact in complex ways, and
it might be hard to identify the dominant terms and assess how they affect the
evolution. It is the case of general relativity (GR) for instance, given the nonlin-
ear character of Einstein’s equations. Such difficulties show therefore that the fact
that gedanken experiments are only based on human reasoning constitutes also an
intrinsic limitation: overly complicated situations cannot be handled.

Nevertheless in some circumstances the possibility of considering setups that are
completely unattainable from the observational point of view is extremely attractive,
and one might not wish to abandon the gedanken experiment technique even if the
theory is nonlinear. Restricting to gravity for convenience, let me present three
possible use cases.

Firstly, in GR there are deeply conceptual problems that have not been fully
addressed, but can be tackled quite effectively by means of gedanken experiments.
As an example, at the end of the ’80s it was found that some wormhole solutions may
contain closed timelike curves [13], a situation that raises the question of whether
time travel is possible in GR, and leads to well-defined Cauchy problems and self-
consistent evolutions. These aspects where investigated in Refs. [14,15] by analyzing
a fictitious setup in which a billiard ball enters in one of the wormhole mouths, exits
from the other (having travelled backwards in time), and then hits itself before
entering in the first mouth.

Secondly, while the compact objects that have been observed via gravitational
[16–19] and electromagnetic [20–24] facilities are well described by the Kerr metric,
it is still possible that their nature is different. Various models for exotic compact
objects have been proposed in literature, such as wormholes [25–28], gravastars
[29, 30], scalar [31–33] or vector [34] boson stars [35], and others [36]. Gedanken
experiments on such objects provide a way to test them from the theoretical point of
view, and can reveal important information about their structure, highlighting some
specific phenomena that can act as smoking guns for their presence, or, conversely,
highlight inconsistencies that can be used to rule out some models.

Lastly, despite the elegance and the experimental successes of GR, there are
strong indications that it is not the ultimate theory of gravity. For instance, GR
cannot be included in a quantum field theory description of the Universe, since it is
not renormalizable [37], and at the same time cosmology is plagued by the cosmo-
logical constant problem [38], i.e. the incompatibility between the measured value
of the cosmological constant and the zero-point energy. As a result, it is necessary
to introduce modifications to GR, and several alternative theories of gravity have
been proposed (see Refs. [39–41] for reviews). Pretty much as in the previous case,
gedanken experiments can be used to test such theories, helping in identifying their
distinctive features and potential criticalities from the purely conceptual point of
view.
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Clearly, it is not completely impossible to successfully carry out gedanken exper-
iments in gravity, as also testified by the billiard ball experiment discussed above,
but in some cases the complexity of the theory makes controlling the setup exces-
sively hard and error prone. This is particularly true for modified gravity, since
the field equations are often more complex than in GR, and additional fundamental
fields may be included.

A strategy to circumvent such difficulties is to demand the task of evolving the
system under investigation to a numerical integration algorithm. The approach
changes significantly, as the gedanken experiment becomes numerically simulated,
and should be more intended as a conceptual, rather than a thought, experiment.
The research procedure takes the following form. Firstly, one has to devise the
setup to study, modeling in detail all the components of the system and deriving
the equations that govern its evolution. With these informations one can prepare
the evolution code, and construct the initial configuration. Then the simulation can
be run, and the integration algorithm takes full control over the evolution: the role
of the “experimenter” is now reduced to observe the final result and analyze the
output data.

Clearly, setting up a numerical integration code is far from being effortless, as
it often involves optimizations and debugging operations to ensure that the code is
reliable. However, such difficulties are counterbalanced by the fact that the auto-
mated resolution of the equations opens research paths that would have hardly been
viable with standard gedanken experiments, allowing to explore regimes in which
the phenomenology is unknown. In other words, not only one can target specific
conceptual aspects, but also consider setups for which there are few expectations
on the evolution, with the purpose of acquiring knowledge on the phenomenological
behavior of a theory.

Another possible drawback of numerical simulations is that they can be ex-
tremely demanding from the computational of view, and in some cases a supercom-
puter is needed. It is however worth emphasizing that since gedanken experiments
are not required to be realistic, one can work in simplified or highly symmetric
setups, in such a way to reduce the number of variables and equations, decreasing
considerably the computational cost.

In light of these considerations, I will dedicate the next three chapters to present
three numerically simulated gedanken experiments that I carried out with different
collaborators and resulted in the manuscripts in Refs. [42–45]. Each gedanken ex-
periment is aimed at tackling a problem of different nature, and while they have
individual physical motivations and points of interest, it is when they are considered
collectively that they show the points of strength of this research technique.

I will start in Chapter 2 describing the work in Ref. [42], carried out in collabo-
ration with prof. Paolo Pani and Dr. Taishi Ikeda, which constitutes an example of
how numerical simulations can be used to test a conjecture, and at the same time
of how they can lead to the discovery of new phenomena.

In particular, our focus was on the weak cosmic censorship conjecture (WCCC)
[46], according to which if matter satisfies the dominant energy condition, then the
maximal Cauchy evolution of initial data satisfying appropriate falloff conditions at
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spatial infinity is asymptotically flat and strongly asymptotically predictable (see
Refs. [47, 48] for overviews).

Predictability is of utmost importance for a physical theory. In GR this prop-
erty can be spoiled due to the presence of singularities, locations where the theory
breaks down which can act as sources of non-physical information [49, 50]. Since
they generally arise as the result of gravitational collapse [51, 52], their role is par-
ticularly relevant for black holes (BHs). However, as long as a singularity remains
confined inside an horizon, information coming from it cannot propagate in the
entire spacetime, preserving predictability outside the BH. In light of these con-
siderations, WCCC is often informally formulated as requiring that singularities
forming from gravitational collapse should be hidden by an horizon [47].

For the Kerr-Newman configuration, not every choice of the charge Q and di-
mensionless spin a is compatible with the WCCC. Indeed, only when Q2 +a2 ≤M2,
where M is the BH mass and G = c = 4πε0 = 1, there are horizons to censor the
singularity, while in the opposite case the WCCC would be violated. In literature
several gedanken experiments have been performed in order to try to overcharge
or overspin a BH past the extremal condition Q2 + a2 = M2 by means of par-
ticles [53–59], fluids [60], shells of matter [54], test fields [59, 61–63], and even in
binary mergers [64, 65]. While some successful results have been obtained, there
are some critical aspects and they cannot be regarded as proof of the possibility
of violating the WCCC. For example, most of these studies were performed at the
linear level, and it was pointed out that backreaction and finite size effects restore
WCCC [66–74]. As we can see this is a paradigmatic case of how a nonlinear treat-
ment of the gedanken experiment is necessary, which is what we did in Ref. [42].
In particular we focused on the spherically symmetric charged case, in which the
Kerr-Newman configuration reduces to the Reissner-Nordström (RN) one, and the
WCCC imposes Q2 ≤ M2. We simulated the spherical collapse of wave packets of
an electrically charged scalar field, both in flat spacetime, trying to form RN BH
with Q2 > M2 from the beginning, and on a RN background, trying to overcharging
a pre-existing BH past extremality. These numerically simulated gedanken exper-
iments where already performed by Torres and Alcubierre [75], but in our work
we were able to reach BH charges considerably closer to the RN bound Q2 = M2.
While we were not able to violate the WCCC, studying the behaviors of such sys-
tems at the fully nonlinear level gave us the possibility of identifying two cosmic
censors: electrostatic repulsion, and superradiance [72], a mechanism that allows to
extract energy and charge from a BH.

In the same work we also extended our simulations to Einstein-Maxwell-scalar
(EMS) gravity [76], a modification to the matter sector of Einstein-Maxwell in
which a real scalar field is nonminimally coupled to the electromagnetic field. This
theory admits additional hairy BH configurations featuring a nontrivial profile of
the scalar field outside them, called scalarized configurations, that appear only for
large values of the charge-to-mass-ratio and can coexist with RN BHs. For certain
choices of the coupling function, highly charged RN BHs can develop a tachyonic
instability and transit towards a scalarized configuration, in a spontaneous scalar-
ization phenomenon similar to the one occurring in Einstein-scalar-Gauss-Bonnet
gravity [77–79].

Interestingly, scalarized BHs are not subject to the RN bound, but still WCCC
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imposes an upper limit to their charge which is larger than M . We simulated1 the
collapse of charged wave packets on scalarized configurations, and while we were
able to produce scalarized BHs with Q2 > M2, we found no signals of WCCC
violations, as in the Einstein-Maxwell case.

As a byproduct, we were able to simulate a descalarization process, i.e. the
transition from a scalarized to a RN configuration. Indeed, since scalarized solu-
tions exist only above a certain threshold of the charge-to-mass ratio, a scalarized
BH undergoing a dynamical process in which its charge-to-mass ratio decreases be-
low such threshold will be forced to loose its scalar hair, and become of RN type
(see Refs. [85–87] for the analogous phenomenon in Einstein-scalar-Gauss-Bonnet
gravity). Our simulations show that this process can occur thanks to the absorption
of an opposite-charged wave packet, and to the superradiant scattering of a wave
packet with charge of the same sign, in a novel superradiantly induced descalariza-
tion mechanism that we identified for the first time.

Overall, the simulations that we performed in Ref. [42] support the WCCC in
a remarkably clear way, but encode complex physical phenomena that are hard to
treat with semi-analytical methods, showing the effectiveness of numerically simu-
lated gedanken experiments in tackling conceptual problems of this type.

In Chapter 3 I will show a case in which numerical simulations can be used to
tackle an intrinsic conceptual problem in a theory of modified gravity, describing
the work in Refs. [43,44], that I carried out in collaboration with Marina de Amicis,
Dr. Taishi Ikeda, and Prof. Paolo Pani.

In this work we studied Einstein-dilaton-Gauss-Bonnet (EdGB) gravity [88],
a theory that modifies GR in the high energy/curvature regime by introducing
an additional real scalar field, called dilaton, nonminimally coupled to quadratic
curvature terms via an exponential function. Such coupling terms appear in the
context of low-energy expansions of string theory (see e.g. [89]), but here I am going
to take another perspective. Indeed by dimensional arguments it is possible to see
that, due to the presence of quadratic curvature terms, this theory is characterized
by a new fundamental length scale ˜̀ that defines the regime where modifications
appear: for length scales ` � ˜̀ the theory reduces to GR, while for scales ` . ˜̀
modifications become dominant. Now, if one wishes EdGB to provide quantum
gravity corrections to GR, the most natural choice would be to set ˜̀ to the size
of the Planck length. However, currently GR has been tested only on much larger
length scales [39, 90], and it is still possible that modifications appear well before
a quantum description of gravity is needed. With these motivations in mind, we
treated EdGB as a purely classical theory, assuming ˜̀ to be sufficiently far from the
Planckian regime.

Differences between GR and EdGB clearly manifest when studying BHs. In
particular, EdGB BH solutions feature a nontrivial profile of the dilaton outside
them [88], and possess a curvature singularity at finite radius inside the horizon [91].
Furthermore, they possess a minimum value for the mass of O(˜̀) [91–93], unlike
GR BHs, for which the mass is unconstrained. The existence of the minimum-mass

1See also Refs. [76, 80–83] for numerical simulations in Einstein-Maxwell-scalar or Einstein-
Maxwell-dilaton [84] theories
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BH solution, called critical configuration, raises important interrogatives from the
thermodynamic point of view, and calls for further investigation. Indeed, BHs are
subject to an evaporation mechanism in which they lose mass by means of a thermal
radiation, called Hawking radiation [94]. Now, for EdGB BHs it has been shown that
the evaporation process is not halted at the minimum-mass configuration [91,92,95],
and while in general an evaporating BH can reach a configuration with lower mass,
critical BHs do not have such possibility, and is not clear how they will evolve and
what is their fate [92,96].

In our work we tried to answer this question by means of numerical simulations.
Our idea was to include in the matter term of the action a phantom field, i.e. a real
scalar field with “wrong” sign of the kinetic term, which contributes with a negative
term in the total mass of the system. Therefore by collapsing a wave packet of this
field onto a critical BH we were able to dynamically reduce the BH mass, emulating
at the classical level the effect of Hawking’s evaporation. Note, however, that it was
not an emulation of the (quantum) radiation process, but we were only inducing
its effects in order to study where the intrinsic dynamics of the theory (its classical
field equations) drives the BH to when its mass is pushed below the minimum value.

Let me highlight that, in the spirit of gedanken experiments, the setup we consid-
ered is manifestly unrealistic, but allowed to directly tackle the conceptual problem
at hand, explicitly pushing the system in the regime we were interested in. Fur-
thermore, given the fact that we studied a scenario in which nonlinear effects are
extremely relevant, and that the dynamics is governed by the equations of a mod-
ified theory of gravity, an analytical or semi-analytical treatment of the evolution
would have been highly impractical. We can therefore see that this is a case in
which the use of numerical simulations is particularly beneficial, as it allows to shift
the effort to the preparation of the numerical integration code, and then evolve the
system in an automated way, relying on the accuracy of the algorithm.

In Chapter 4 I will describe a work that I did in collaboration with Enrico
Cannizzaro and Prof. Paolo Pani [45], in which we used numerically simulated
gedanken experiments to characterize the dynamics of a system in a regime which
is not easily accessible with semi-analytical methods. While the motivations for this
study are discussed in the chapter, here I would like to highlight few aspects that
are useful to delineate the type of gedanken experiment we performed.

Low-frequency radiation can extract energy from rotating BHs thanks to a pro-
cess called superradiant scattering [97–99] (see [72] for a review). Intriguingly, if
radiation is confined in the vicinity of the BH, energy extraction can happen repeat-
edly and produce instabilities that can lead to explosive phenomena, thus converting
the system into what is known as “BH bomb” [100]. Massive fields are naturally
prone to this instability, as for them the confining mechanism is provided by their
own mass [101,102].

In the case of photons, which are massless, the instability can be promoted
by the presence of plasma surrounding the BH. Indeed plasma is characterized
by a typical frequency, called plasma frequency [103–105], that plays the role of
an effective mass for photons, providing them with a confining mechanism. Such
form of superradiant instability has been studied quantitatively for example for
primordial BHs in the early Universe [106], or for astrophysical BHs due to plasma
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present in intracluster environments [107]. While in these two studies the photon
was approximated as a massive vector field with mass given by the plasma frequency,
more recent computations were carried out using Maxwell’s equations [108,109], but
still neglecting the backreaction of the electromagnetic field on plasma.

While such linear analyses give important information regarding the onset of
the instability, during the evolution the growth of the intensity of the fields drives
the system in a regime where it is necessary to take into account nonlinear effects.
In this respect, in Ref. [110] it was pointed out that for strong electromagnetic
fields plasma can become transparent to radiation [111], losing the ability to con-
fine it and quenching the superradiant instability. Nevertheless, the transparency
phenomenon of [111] applies to idealized scenarios of circularly polarized electro-
magnetic waves propagating through a homogeneous plasma, and it is not yet clear
if it also manifests in the more involved scenario of superradiant instability.

In our work [45] we studied the propagation of the electromagnetic field inside
plasma in the regime relevant for superradiance, in a more generic setting. We
considered a gedanken experiment in which an electromagnetic wave packet of high
amplitude and low frequency is scattered off a barrier of plasma. Being the evolu-
tion dominated by the electromagnetic interaction in this regime, we neglected the
gravitational field, and we performed the analysis in flat spacetime. Thanks to nu-
merical simulations we could integrate the full Maxwell’s equations at the nonlinear
level, and while we did not observe the transparency phenomenon, we were able to
access a regime where the backreaction effects on the plasma density are strong,
and can still quench the superradiant instability.

The conclusions of these works will be summarized in Chapter. 5.

As a convention, throughout the thesis Greek indices will run over spacetime
dimensions (µ, ν ∈ {0, 1, 2, 3}), while Latin indices will run over spatial dimensions
(i, j ∈ {1, 2, 3}). Given that the three gedanken experiments have been performed
in three different physical contexts, a different set of units will be set on each chapter.

Publication list

The manuscripts on which this work is based (Refs. [42–45]) are the following:

• F. Corelli, T. Ikeda, and P. Pani, “Challenging cosmic censorship in Einstein-
Maxwell-scalar theory with numerically simulated gedanken experiments”,
Phys. Rev. D 104 (2021), 084069, arXiv: 2108.08328 [gr-qc].

• F. Corelli, M. de Amicis, T. Ikeda, and P. Pani, “What Is the Fate of Hawking
Evaporation in Gravity Theories with Higher Curvature Terms?”, Phys. Rev.
Lett. 130 (2023), 091501, arXiv: 2205.13006 [gr-qc].

• F. Corelli, M. de Amicis, T. Ikeda, and P. Pani, “Nonperturbative gedanken
experiments in Einstein-dilaton-Gauss-Bonnet gravity: Nonlinear transitions
and tests of the cosmic censorship beyond general relativity”, Phys. Rev. D
107 (2023), 044061, arXiv: 2205.13007 [gr-qc].

http://doi.org/10.1103/PhysRevD.104.084069
http://arxiv.org/abs/2108.08328
http://doi.org/10.1103/PhysRevLett.130.091501
http://doi.org/10.1103/PhysRevLett.130.091501
http://arxiv.org/abs/2205.13006
http://doi.org/10.1103/PhysRevD.107.044061
http://doi.org/10.1103/PhysRevD.107.044061
http://arxiv.org/abs/2205.13007
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• E. Cannizzaro, F. Corelli, and P. Pani, “Nonlinear photon-plasma interac-
tion and the black hole superradiant instability”, Phys. Rev. D 109 (2024),
023007, arXiv: 2306.12490 [gr-qc].

Numerical integration codes

The codes for numerical integration used in all the three works have been written in
C++ and use OpenMP for parallelization. They are completely original and inde-
pendent from any pre-existing code or software platform for numerical relativity.

http://doi.org/10.1103/PhysRevD.109.023007
http://doi.org/10.1103/PhysRevD.109.023007
http://arxiv.org/abs/2306.12490
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Chapter 2

Tests of the weak cosmic
censorship conjecture in
Einstein-Maxwell and in
Einstein-Maxwell-scalar theories
of gravity

In this chapter I describe the numerical simulations I performed in Ref. [42], in
collaboration with Dr. Taishi Ikeda and Prof. Paolo Pani, to test the WCCC in
Einstein-Maxwell and in Einstein-Maxwell-scalar theories of gravity.

However, before entering into the details of our numerical investigations I would
like to dedicate the next two sections to briefly introduce the conceptual framework
in which we will operate. In particular I will start in Sec. 2.1 with an outline of
singularities and WCCC, focusing on RN spacetimes, which are of interest for our
work. Next, in Sec. 2.2, I will introduce EMS gravity, discussing scalarized BH
solutions and the spontaneous scalarization phenomenon.

Then I will move to our work, starting with Sec. 2.3 in which I will describe the
setup for our numerically simulated gedanken experiments. Here I will introduce the
model we used, the evolution equations, and the integration algorithm for numerical
evolution. Finally, in Sec. 2.4 I will discuss the different sets of simulations that we
performed and the results we obtained.

Throughout the chapter I will use geometric units with G = c = 4πε0 = 1.

2.1 Singularities, Reissner-Nordström metric and the
cosmic censorship

Spacetime singularities are locations where GR fails in describing a physical config-
uration and there is a breakdown of the theory. A typical example is the center of a
Schwarzschild BH, but it is not an isolated case. Indeed, Penrose-Hawking singular-
ity theorems [51,52] predict that singularities will inevitably form as a result of the
gravitational collapse, if matter satisfies some reasonable energy conditions. Due
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to their nature, singularities can act as sources of non-physical information that
can propagate inside the spacetime, jeopardizing the predictability of GR [49, 50].
For BHs this problem does not appear, since the information coming from the sin-
gularity cannot cross the horizon, and predictability is not spoiled in the external
region. However GR also admits solutions, called naked singularities in which the
singularity is not covered by an horizon, and in principle information coming from
it can reach also distant observers. To give an example that will be central in
the rest of the chapter, let us analyze the Reissner-Nordström (RN) metric, which
describes spherically-symmetric and electrically charged spacetime configurations,
and is given by the following line element [47]:

ds2 = −
(

1− 2M
r

+ Q2

r2

)
dt2 + 1

1− 2M
r + Q2

r2

dr2 + r2(dθ2 + sin2 θdϕ2), (2.1)

where M is the mass, and Q is its electric charge.
To identify the singularity a more formal definition is needed. However, defining

a singularity in a comprehensive way is not straightforward (see Refs. [47,112] for a
discussion), but since in this thesis we will be interested mainly in phenomenological
aspects, for our purposes we will consider a singularity as a coordinate location
where one or more curvature invariants diverge, also referring to it as a curvature
singularity.

Now, from Eq. (2.1) we see that the metric is ill-defined both at r = 0, and
where 1− 2M

r + Q2

r2 = 0. If we compute the Kretschmann scalar we obtain

K = RµνρσR
µνρσ = 8

r8

(
7Q4 − 12MQ2r + 6M2r2

)
. (2.2)

Since K diverges on r = 0 we can identify the center as a curvature singularity. The
other two locations are horizons, and are located at

r± = M ±
√
M2 −Q2. (2.3)

We can see that if Q2 < M2 the two horizons are well-defined and distinct, if
Q2 = M2 they coincide. Instead if Q2 > M2, the equation 1− 2M

r + Q2

r2 = 0 does not
admit solutions for r, and hence there are no horizons, meaning that the metric (2.1)
represents a naked singularity. Penrose’s weak cosmic censorship conjecture [46]
protects the theory against such configurations, requiring that singularities forming
from gravitational collapse are always hidden by an horizon. For RN spacetimes
this results in the requirement Q2 ≤ M2, and the case Q2 > M2 is explicitly
forbidden. In other words the charge-to-mass ratio Q̄ = Q/M is bound to be in the
interval −1 ≤ Q̄ ≤ 1, a condition that can be expressed with the statement that
RN spacetimes cannot be overcharged.

However, WCCC still lacks a definitive proof, and in this chapter we will chal-
lenge it by trying to dynamically form RN configurations with Q̄ > 1.

2.2 Einstein-Maxwell-scalar gravity and scalarized BHs
As a second step to set the stage for the gedanken experiments discussed in this
chapter, let me introduce Einstein-Maxwell-scalar gravity [76]. It is a theory that
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modifies Einstein-Maxwell in the matter sector by adding a real scalar field non-
minimally coupled to the electromagnetic field. The action is given by:

S = 1
16π

∫
Ω
d4x
√
−g

{
R− 2

(
∇µφ

)(
∇µφ

)
− F [φ]FµνFµν

}
, (2.4)

where φ is the scalar fields, Aµ is the vector field, F [φ] is the coupling function,
Fµν = ∇µAν−∇νAµ is the electromagnetic tensor, gµν is the spacetime metric, and
R is the Ricci scalar.

The field equations of EMS are:

Gµν = 8π
(
T SF
µν + T EM

µν

)
, (2.5)

∇µFµν = −Fµν 1
F [φ]

δF [φ]
δφ
∇µφ, (2.6)

�φ = ∇µ∇µφ = 1
4
δF [φ]
δφ

FµνF
µν , (2.7)

where Gµν = Rµν − 1
2Rgµν is the Einstein’s tensor and

T SF
µν = 1

4π
(
∇µφ

)(
∇νφ)− 1

8π
(
∇αφ

)(
∇αφ

)
gµν , (2.8)

T EM
µν =

{ 1
4πFµαg

αβFνβ −
1

16πFαβF
αβgµν

}
F [φ]. (2.9)

In this class of theories, due to the presence of the nonminimal coupling, BH so-
lutions can feature a nontrivial profile of the scalar field. In the particular case
F [φ] = 1 the theory reduces to the well-studied Einstein-Maxwell gravity minimally
coupled with a real scalar field, and BHs are generically described by the Kerr-
Newman metric (or Reissner-Nordström in spherical symmetry). In the other cases
the properties of BH solutions depend on the choice of the coupling, and in order
to delineate them it is useful to consider the classification presented in Ref. [113],
which proceeds as follows. First, theories are divided in two classes on the basis of
whether they admit the Kerr-Newman solution, which is characterized by a van-
ishing profile of the scalar field, φ = 0. In particular, class I includes theories such
that φ = 0 is not a solution, while class II includes theories such that φ = 0 is a
solution of the field equations. In order for the Kerr-Newman configuration to be a
solution the condition

F ′[0] = δF [φ]
δφ

∣∣∣
φ=0

= 0, (2.10)

has to be valid, in such a way that Eq. (2.7) is satisfied. Therefore for theories of
class I F ′[0] 6= 0, while for theories of class II F ′[0] = 0.

As an example, Einstein-Maxwell-dilaton (EMd) [84] has F [φ] = e2αφ, where α
is a coupling constant, and belongs to class I. We can see that F ′[0] 6= 0 and it only
admits hairy BH solutions with a nontrivial profile of φ outside them.

Theories of class II instead generically admit both Kerr-Newman BHs, and hairy
BHs with the nontrivial profile of φ, which in this context are called scalarized BH
solutions. The two sets of solutions can be continuously connected or not, giving
rise to a subclassification: theories in which the scalarized solutions continuously
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connect to the set of solutions with φ = 0 are of class IIA, while theories in which
the scalarized solutions are disconnected from the Kerr-Newman solutions are of
class IIB.

Interestingly, in both theories of class IIA and IIB Kerr-Newman BHs can dy-
namically transit towards scalarized configurations, in a process called scalarization.
However, the characteristics of this process can present differences across the two
classes which can be illustrated in the following way [113]. Let us consider a per-
turbation of the scalar field around the Kerr-Newman configuration, φ = 0 + δφ.
Since F ′[0] = 0, Eq. (2.7) reduces to

�δφ− 1
4FµνF

µν δ
2F

δφ2

∣∣∣∣
φ=0

δφ = 0, (2.11)

which can be rewritten as a Klein-Gordon equation for the perturbation, (� −
µ2
eff )δφ = 0, where µ2

eff = 1
4FµνF

µν δ2F
δφ2

∣∣∣
φ=0

plays the role of an effective mass

squared. For theories of the class IIA, if δ2F
δφ2

∣∣∣
φ=0
6= 0 and has a sign such that

µ2
eff < 0, the Kerr-Newman BH can be subject to a tachyonic instability whose end

state can be a scalarized BH. This is the so called spontaneous scalarization, and
happens for example in theories with couplings of the form F [φ] = 1−αφ2 [114] or
F [φ] = e−αφ

2 [76]. It is worth mentioning, however, that in curved spacetime the
negativity of µ2

eff does not automatically imply the appearance of the instability.
In particular, the presence of the instability has to be inspected directly from the
perturbation equation. This is usually done by studying the effective potential
obtained after an appropriate decomposition [79].

If δ2F
δφ2

∣∣∣
φ=0

= 0 instead, then there is no tachyonic instability, and the scalar-
ization can be induced by large perturbations of the scalar field. It is the case of
couplings of the form F [φ] = 1+αφ4 [115], or F [φ] = eαφ

4 [83], which are of class IIB.

Having given an overview of the generic properties of BH solutions in EMS
gravity, let us now specialize to the case of interest for our work: a theory of class
IIA featuring a spontaneous scalarization mechanism. In particular we focused on
a quadratic coupling function F [φ] = 1− λφ2, where λ is a dimensionless coupling
constant; we can immediately see that F ′[0] = 0, and F ′′[0] = −2λ. Furthermore we
restricted to spherical symmetry, since it remarkably simplifies the computations
and the discussions while preserving the elements we were interested in. In this case
the magnetic field vanishes and FµνFµν < 0, therefore the tachyonic instability can
appear only if λ < 0.

The domain of existence of scalarized solutions for quadratic coupling has been
obtained by Fernandes et al. in Ref. [114]. We reproduced their results for configu-
rations with zero nodes of the scalar field with equivalent computations, obtaining
the plot in Fig. 2.1, where we show a parameter space with the coupling constant
on the horizontal axis and the charge-to-mass ratio on the vertical axis. As we will
see in Sec. 2.3.3, there are two meaningful definitions of electric charge, here we
used Q̃, which is constant outside the BH. However, this choice has no impact on
the discussion of this section.
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Figure 2.1. Domain of the existence of nodeless scalarized solutions in Einstein-Maxwell-
scalar theory with F [φ] = 1− λφ2. See also Ref. [114] for an equivalent domain plot.

Interestingly, the parameter space does not include quantities that describe the
content of the scalar field. In fact in principle scalarized BHs are characterized by
the so called scalar charge, defined as [84]:

D = − 1
4π

∫
S2

inf

dΣµ∇µφ, (2.12)

where S2
inf is a 2-Sphere at spatial infinity. However this charge is not a free pa-

rameter, but is determined from the BH mass and electric charge, and might not
be required to identify a BH configuration [116].

The domain of existence of scalarized solutions is bounded by two lines. The
first, called existence line, and shown in green in the plot, is the region where the
scalarized solutions bifurcate from the RN ones. The other instead, called critical
line, and shown in red, contains singular configurations. We see that, given a fixed
value of the coupling constant λ, scalarized BHs exist in a limited interval of the
charge-to-mass ratio that extends from the existence line to the critical line, but can
include values above the RN bound, meaning that scalarized BH can be overcharged.
It is worth mentioning that the way the singularity appears at the upper bound of
the charge-to-mass ratio is different from the RN case. Indeed for scalarized BHs
the horizon area vanishes at the critical line [114], while for a RN BH it reaches
the value of 4πM2 and then the singularity is exposed due the fact that there are
no solutions to 1 − 2M

r + Q2

r2 = 0. However it is interesting also in this case to
investigate the possibility of violating the WCCC by overcharging scalarized BHs
past the critical line.

2.3 Setup for the numerically simulated gedanken ex-
periments

We have seen that for RN spacetimes the absence of naked singularities translates
into the requirement that Q̄ = Q/M ≤ 1. In our work [42] we tried to challenge this
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condition, and hence WCCC, with two different sets of gedanken experiments. In
the first we simulated the spherical collapse of ingoing wave packets of an electrically
charged scalar field on flat spacetime, with the purpose of forming a configuration
which is overcharged from the beginning. In the second set instead we tried to
overcharge a pre-existing RN BH using spherically-symmetric charged scalar wave
packets. Then we also repeated similar sets of simulations for scalarized BHs in EMS
gravity, for which the maximum value of the charge-to-mass ratio can be larger than
one.

Having in mind all these different groups of numerically simulated gedanken ex-
periments, in this section I will present a unified setup to perform them, describing
the evolution equations, and the numerical integration algorithm. Since the initial-
ization procedure can vary considerably across the sets of simulations, I will describe
them in the next section together with the results, keeping only the common aspects
here.

2.3.1 Action of the theory and field equations

We considered the Einstein-Maxwell-scalar model studied in Ref. [76], minimally
coupled to an additional (complex) charged scalar field:

S = 1
16π

∫
Ω
d4x
√
−g

{
R− 2

(
∇µφ

)(
∇µφ

)
−F [φ]FµνFµν − 4

(
Dµξ

)(
Dµξ

)∗}
, (2.13)

where φ and ξ are the real and the complex scalar fields respectively, Aµ is the vector
field, F [φ] is the coupling function, Fµν = ∇µAν − ∇νAµ is the electromagnetic
tensor, Dµ = ∇µ + iqAµ is the gauge covariant derivative for U(1) symmetry, q is
the electric charge of the complex scalar field, and ∗ denotes the complex conjugate
operation. gµν is the spacetime metric, and R is the Ricci scalar.

The field equations that can be derived from (2.13) are

Gµν = 8π
(
T SF
µν + T EM

µν + T ξµν

)
, (2.14)

∇µFµν = −Fµν 1
F [φ]

δF [φ]
δφ
∇µφ+ iq

F [φ]
[
ξ
(
Dνξ

)∗ − ξ∗(Dνξ)], (2.15)

�φ = ∇µ∇µφ = 1
4
δF [φ]
δφ

FµνF
µν , (2.16)

�ξ = −iq
(
∇µAµ

)
ξ − 2iqAµ∇µξ + q2AµA

µξ, (2.17)

where Gµν = Rµν − 1
2Rgµν is the Einstein’s tensor and

T SF
µν = 1

4π
(
∇µφ

)(
∇νφ)− 1

8π
(
∇αφ

)(
∇αφ

)
gµν , (2.18)

T EM
µν =

{ 1
4πFµαg

αβFνβ −
1

16πFαβF
αβgµν

}
F [φ], (2.19)

T ξµν = 1
4π
[(
Dµξ

)(
Dνξ

)∗ +
(
Dµξ

)∗(Dνξ)− (Dαξ)(Dαξ)∗gµν]. (2.20)

As previously mentioned, we used F [φ] = 1 − λφ2 with λ < 0, in order to allow
for scalarized solutions. Since F [0] = 1 and F ′[0] = 0, we see that for vanishing
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configurations of φ Eq. (2.16) is identically satisfied and the theory reduces to
Einstein-Maxwell minimally coupled to a complex scalar field. Therefore this model
can be used for simulations not only in Einstein-Maxwell-scalar, but also in Einstein-
Maxwell if φ is set to zero. However, for the sake of generality for the moment I
will not assume any specific form of F [φ], but I will only require F [0] = 1.

It is worth mentioning that, when considering a spherically symmetric spacetime,
the choice of a positive coupling function is a sufficient condition for the null energy
condition to be satisfied. I report the proof of this statement in Appendix A.

2.3.2 Evolution scheme

For the time integration of the equations of motion we used a generalization of
the original Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism [117,118] in
spherical symmetry [119,120]. The line element is given by

ds2 = (−α2 + βrβ
r) dt2 + 2βr dt dr + e4χ(r,t)

(
a(r, t) dr2 + b(r, t) r2 dΩ2

)
, (2.21)

where α is the lapse, ~β is the shift vector (which in spherical symmetry has only
radial component), and eχ is the conformal factor. The 3-metric of the spacelike
hypersurfaces is γij = e4χdiag(a, br2, br2 sin2 θ) and the lower radial component of ~β
is given by βr = γrrβ

r = e4χaβr. Due to spherical symmetry, all functions depend
on (t, r) only. The metric functions a and b were initialized in such a way that the
conformal metric γ̂ij = e−4χγij was flat, and then in the evolution we considered
the condition

∂tγ̂ = (1− σ)
(
2γ̂∇̂mβm

)
, (2.22)

where γ̂ is the determinant of γ̂ij , ∇̂ is the covariant derivative with respect to the
conformal 3-metric, and σ is a parameter that is set to 0 for the so-called Eulerian
evolution, and to 1 for the Lagrangian evolution [119]. In the simulations described
in this chapter we used the latter.

We also introduced the scalar and vector electromagnetic potentials

ϕ = −nµAµ, (2.23)
ai = γiµA

µ, (2.24)

where γµν is the projector onto the foliation Σt, and nµ is the orthogonal vector of
Σt. The conjugate momenta of the real and complex scalar field are respectively
defined as

Π = nµ∇µφ, (2.25)
P = nµ∇µξ. (2.26)

With these definitions we can rewrite Eqs. (2.16) and (2.17) as two sets of first-order
equations:

∂tφ = βr∂rφ+ αΠ, (2.27)

∂tΠ = βr∂rΠ + αΠK + (∂rφ)(∂rα)
a e4χ + 1

2αa e
4χ(Er)2 δF [φ]

δφ
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+ α

a e4χ

[
∂2
rφ+

(
∂rφ

)(2
r
− ∂ra

2a + ∂rb

b
+ 2∂rχ

)]
, (2.28)

for the real scalar field φ, and

∂tξ = βr∂rξ + αP, (2.29)

∂tP = βr∂rP + αPK + (∂rξ)(∂rα)
a e4χ + 2iqα

(
ϕP + ar∂rξ

ae4χ

)
− q2α

((ar)2

ae4χ − ϕ
2
)
ξ

+ α

a e4χ

[
∂2
r ξ +

(
∂rξ
)(2
r
− ∂ra

2a + ∂rb

b
+ 2∂rχ

)]
, (2.30)

for the complex scalar field ξ. Here K is the trace of the extrinsic curvature Kij .
Due to spherical symmetry the magnetic field vanishes and the only nonvanishing

component of the electric field and of the vector electromagnetic potential is the
radial one. Fixing the gauge with the Lorenz condition ∇µAµ = 0, it is possible to
write the equations of motion for the electromagnetic field as

DiE
i = −Er

(
∂rφ

) 1
F [φ]

δF [φ]
δφ

+ iq

F [φ]
[
−ξ∗P + ξP ∗ + 2iqϕ|ξ|2

]
, (2.31)

∂tE
r = αKEr + βr∂rE

r − Er∂rβr − αΠEr 1
F [φ]

δF [φ]
δφ

+ α

F [φ]
2q2

ae4χ |ξ|
2ar

+ α

F [φ]
iq

ae4χ

[
ξ
(
∂rξ
)∗ − ξ∗(∂rξ)] , (2.32)

∂tar = βr∂rar + ar∂rβ
r − ∂r(αϕ)− αae4χEr , (2.33)

∂tϕ = βr∂rϕ+ αϕK − (∂rα)ar
ae4χ − α

ae4χ

[
∂rar + ar

(2
r
− ∂ra

2a + ∂rb

b
+ 2∂rχ

)]
,

(2.34)

whereDi is the covariant derivative with respect to the 3-metric γij . Equations (2.31)
and (2.32) have been obtained by projecting the field equation for the electromag-
netic field (2.15) onto nµ and onto Σt, respectively. The evolution equation for
ar has been obtained from the definition of the electric field Eν = −nµFµν , while
Eq. (2.34) has been derived from the Lorenz gauge condition [75,121].

For the gravitational field we used the equations of the generalized BSSN formal-
ism in spherical symmetry [119, 120]. Introducing the traceless conformal extrinsic
curvature Âij = e−4χ(Kij − 1

3Kγij), we defined Aa = Ârr and Ab = Âθθ. These two
variables are not independent, since Âij is traceless and Aa + 2Ab = 0, therefore we
only evolved Aa. We also introduced the BSSN variable

∆̂i = γ̂mn(Γ̂imn − Γ̊imn), (2.35)

where Γ̂imn and Γ̊imn are the Christoffel symbols of the conformal and the flat metrics,
respectively.

Having fixed the notation, we can now write the evolution equations for the
gravitational sector as

∂tχ = βr∂rχ−
1
6αK + σ

6 ∇̂mβ
m, (2.36)

∂ta = βr∂ra+ 2a∂rβr − 2αaAa −
2
3σa∇̂mβ

m, (2.37)
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∂tb = βr∂rb+ 2bβ
r

r
− 2αbAb −

2
3σb∇̂mβ

m, (2.38)

∂tK = βr∂rK −D2α+ α
(
A2
a + 2A2

b + 1
3K

2
)

+ 4πα(Sa + 2Sb + E), (2.39)

∂tAa = βr∂rAa + αKAa −
(
DrDrα−

1
3D

2α
)

+ α(Rrr −
1
3R)− 16πα

3
(
Sa − Sb

)
,

(2.40)

∂t∆̂r = βr∂r∆̂r − ∆̂r∂rβ
r + 2

b
∂r

(
βr

r

)
+ 2αAa∆̂r − 2α

(
Aa −Ab

) 2
br

− 2
a

(
Aa∂rα+ α∂rAa

)
+ 1
a
∂2
rβ

r + σ

3

[1
a
∂r∇̂mβm + 2∆̂r∇̂mβm

]
+ 2α

a

[
∂rAa +

(
Aa −Ab

)(∂rb
b

+ 2
r

)
+ 6Aa∂rχ−

2
3∂rK − 8πjr

]
, (2.41)

where Rij and R are respectively the Ricci tensor and the scalar curvature of the
3-metric γij , and the constraint equations read

H = R+ 2
3K

2 − (A2
a + 2A2

b)− 16πρ = 0, (2.42)

M = ∂rAa +
(
Aa −Ab

)(∂rb
b

+ 2
r

)
+ 6Aa∂rχ−

2
3∂rK − 8πjr = 0. (2.43)

The source terms can be divided into three contributions:

• from the electromagnetic field we have

EEM = nµnνT EM
µν = 1

8πa e
4χ(Er)2F [φ], (2.44)

SEM
a =

(
(3)T EM

)r
r
= − 1

8πa e
4χ(Er)2F [φ], (2.45)

SEM
b =

(
(3)T EM

)θ
θ
= 1

8πa e
4χ(Er)2F [φ], (2.46)

• from the real scalar field we have

ESF = nµnνT SF
µν = 1

8π

(
Π2 + (∂rφ)2

a e4χ

)
, (2.47)

jSF
r = −γµrnνT SF

µν = − 1
4πΠ∂rφ, (2.48)

SSF
a =

(
(3)T SF

)r
r
= 1

8π

(
Π2 + (∂rφ)2

a e4χ

)
, (2.49)

SSF
b =

(
(3)T SF

)θ
θ
= 1

8π

(
Π2 − (∂rφ)2

a e4χ

)
, (2.50)

• and from the complex scalar field

Eξ = nµnνT ξµν = 1
4π

(
|P̃ |2 + |Ψ̃|

2

a e4χ

)
, (2.51)

jξr = −γµrnνT ξµν = − 1
4π
(
Ψ̃P̃ ∗ + P̃ Ψ̃∗

)
, (2.52)
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Sξa =
(

(3)T ξ
)r
r
= 1

4π

(
|P̃ |2 + |Ψ̃|

2

a e4χ

)
, (2.53)

Sξb =
(

(3)T ξ
)θ
θ
= 1

4π

(
|P̃ |2 − |Ψ̃|

2

a e4χ

)
, (2.54)

where P̃ and Ψ̃ are defined as

P̃ = nµDµξ = nµ∇µξ + iqnµAµξ = P − iqϕξ, (2.55)
Ψ̃ = γµrDµξ = γµr∇µξ + iqγµrAµξ = ∂rξ + iqarξ. (2.56)

Note that, for practical reasons, in our code we evolved the variable e−2χ instead of
χ.

For the evolution of the lapse function we used the nonadvective 1+log slicing
condition [122]

∂tα = −2αK, (2.57)

while for the shift we used the Gamma-driver condition [120,123]; namely we defined
a new variable Br such that

∂tB
r = 3

4∂t∆̂
r, (2.58)

∂tβ
r = Br. (2.59)

2.3.3 Electric charge in Einstein-Maxwell-scalar theory

Due to the nonminimal coupling, in this theory it is possible to define the electric
charge in two different ways. The equation for the electromagnetic field can in fact
be written as ∇µFµν = −4πJνEM, where

JνEM = 1
4π

{ 1
F [φ]

δF [φ]
δφ

(
∇µφ

)
Fµν − iq

F [φ]
[
ξ
(
Dνξ

)∗ − ξ∗(Dνξ)]}, (2.60)

but also as ∇µ
(
F [φ]Fµν

)
= −4πJ̃νEM, where

J̃νEM = − iq4π
[
ξ
(
Dνξ

)∗ − ξ∗(Dνξ)]. (2.61)

Both these two currents are conserved, namely ∇µJµEM = 0 = ∇µJ̃µEM, and allow to
define the electric charge in two ways:

Q = 1
4π

∫
V
dV DiE

i =
∫
V
dV ρ, (2.62)

Q̃ = 1
4π

∫
V
dV Di

(
F [φ]Ei

)
=
∫
V
dV ρ̃, (2.63)

where the two charge densities are

ρ = −nµJµEM = 1
4π

{
−Er

(
∂rφ

) 1
F [φ]

δF [φ]
δφ

+ iq

F [φ]
[
−ξ∗P + ξP ∗ + 2iqϕ|ξ|2

]}
,

(2.64)
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ρ̃ = −nµJ̃µEM = iq

4π
[
−ξ∗P + ξP ∗ + 2iqϕ|ξ|2

]
. (2.65)

As it can be seen from the above equations, while the charge Q includes the con-
tribution of the real scalar field, Q̃ accounts only for the charge carried by the
complex field ξ. In Einstein-Maxwell theory (F [φ] = 1) or when the scalar field
vanishes (F [φ = 0] = 1), the two charges coincide, as expected.

For a spherically symmetric spacetime, following [75], we can define the electric
charge enclosed in the 2-sphere Sr of radius r in two ways:

Q(r) =
∫
Sr
dV ρ = 1

4π

∫
Sr
dV DiE

i = 1
4π

∫
∂Sr

dS siE
i =
√
abe6χr2Er,

Q̃(r) =
∫
Sr
dV ρ̃ = 1

4π

∫
Sr
dV Di

(
F [φ]Ei

)
= 1

4π

∫
∂Sr

dS siE
iF [φ]

= F [φ]
√
abe6χr2Er, (2.66)

where si is the outward pointing unit vector normal to ∂Sr. Note that, although
I only made the radial dependence explicit, the above quantities can generically
depend also on the time coordinate.

We can see that the electric field can be written as

Er = Q(r)
b
√
ae6χr2 = Q̃(r)

F [φ]b
√
ae6χr2 . (2.67)

and that the two definitions of charge can be related by

Q(r) = Q̃(r)
F [φ] . (2.68)

For a spherically symmetric BH spacetime with a vanishing complex scalar field,
Q̃ is homogeneous outside the horizon, while Q is in general a radial function. For
a scalarized configuration there is a nonvanishing charge density ρ outside the BH
and the total charge of the system does not coincide with the charge enclosed in
the horizon. However, the two charges coincide at infinity since we have always
assumed asymptotic flatness and hence φ→ 0 and F [φ]→ 1 and r → +∞.

2.3.4 Numerical integration scheme

In our framework the equations of motion are regular at the origin, but contain
terms that go as 1

r and 1
r2 , that can cause instabilities in the numerical integra-

tion. To handle these terms we used the second-order Partially Implicitly Runge-
Kutta (PIRK) method [124,125], which does not require the implementation of an
explicit regularization procedure at the origin. This allowed us to integrate the
equations that contain unstable terms with a partially implicit method, while the
other equations could be integrated with an explicit method. The details of this
implementation can be found in Appendix B.1.

For the numerical radial derivatives we used the fourth-order accurate centered
finite differences method, except for the advection terms (which are of the form
βr∂r) for which we used the upwind scheme. In order to avoid the appearance
of high-frequencies instabilities in the evolution, we added to all the equations a
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Kreiss-Oliger dissipation term, that we evolved explicitly; in this term the fourth
derivative has been computed with second-order accuracy. In Appendix B.2 I show
the numerical convergence of our code.

2.3.5 Initial conditions

Since our purpose was to study the collapse of a charged scalar field and the pos-
sibility of forming overcharged BH solutions, we chose an initial profile for ξ that
carries a nonvanishing amount of electric charge and propagates toward the horizon:

ξ(r, t = 0) = B0e
− 1

2σ
2
ξ (r−r0,ξ)2+ik0(r−r0,ξ),

P (r, t = 0) = iB0e
− 1

2σ
2
ξ (r−r0,ξ)2+ik0(r−r0,ξ)

(
k0 + iσ2

ξ (r − r0)
)
, (2.69)

where B0, σ−1
ξ , k0, and r0,ξ are respectively the amplitude, width, frequency, and

position of the initial profile of the complex scalar field.
We chose a vanishing initial shift and a flat conformal 3-metric. We set to

zero the auxiliary variable Br and the radial component of the traceless extrinsic
curvature Aa, while we initialized ∆̂r using its definition in Eq. (2.35), which in
spherical symmetry reduces to [120]

∆̂r = 1
a

[
∂ra

2a −
∂rb

b
− 2
r

(
1− a

b

)]
. (2.70)

To find the initial profile of the electric field, the trace of the extrinsic curva-
ture, and the conformal factor we solved Eq. (2.31) together with the Hamiltonian
and momentum constraints. We also initialized the electromagnetic potentials to a
configuration such that both ϕ and ar do not evolve in a region sufficiently far from
the horizon as long as the signals do not reach the outer boundary. To achieve this
we set ar = 0 at t = 0, and we determined the profile of ϕ by solving the equation
∂tar = 0 which, using Eq. (2.33), reduces to ∂r(αϕ) = −αae4χEr.

The system of equations that we solved at t = 0 for Er, K, ϕ, and ψ := eχ reads

∂2
rψ = 1

48r2ab2

{
2a2bψ

[
r2bψ4(−48πE + 2K2)+ 6

]
+ 6r(∂ra)b

[
r(∂rb)ψ

+ 2b
(
2r(∂rψ) + ψ

)]
− 3a

[
−r2(∂rb)2ψ + 4b2 (8r(∂rψ) + ψ)

+ 4rb
(
4r(∂rb)(∂rψ) +

(
3∂rb+ r∂2

r b
)
ψ
)]}

, (2.71)

∂rE
r = −

(
∂ra

2a + ∂rb

b
+ 6∂rψ

ψ
+ 2
r

)
Er + 2q ξRPI − ξIPR

F [φ] − 2q2ϕ
|ξ|2

F [φ]

− Er(∂rφ) 1
F [φ]

δF [φ]
δφ

, (2.72)

∂rK = 6
[
PR∂rξR + PI∂rξI − qϕ(ξR∂rξI − ξI∂rξR)

]
, (2.73)

∂rϕ = −∂rα
α
ϕ− aψ4Er, (2.74)

where the subscripts XR and XI denote the real and imaginary part of a complex
variable X, respectively.
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2.3.6 Boundary conditions

Thanks to the PIRK integration method at the origin we only imposed the parity
conditions related to the spherical symmetry. Therefore we shifted the numerical
grid in such a way that the origin was placed in the middle of a grid step, and
the first grid point was at r1 = ∆r

2 , where ∆r is the grid step. To compute the
numerical derivatives at r1 and r2 we added two ghost grid points at r−1 = −∆r

2
and r−2 = −3∆r

2 in which the variables were not evolved but were set at each time
step to values that satisfied the parity conditions. In particular βr, Er, Br, ar, and
∆̂r have odd parity at the origin while all the other variables have even parity.

At the outer boundary we added four ghost zones which were used to compute
the fourth-order accurate upwind derivatives. In these zones the variables were
not evolved and they remained constant. This could be done since we considered
an initial profile of ϕ such that the electromagnetic potentials did not evolve at
the outer boundary as long as the signals coming from the horizon region were
sufficiently far from the outer boundary, and we considered a domain large enough
that outward-moving components of the initial field profiles did not reach the outer
boundary during the time of integration.

2.4 Results

2.4.1 Collapse of the charged field in a flat background in Einstein-
Maxwell theory

We started by neglecting the real field (φ = 0, F [0] = 1) and studied the collapse
of the complex scalar field in flat spacetime in Einstein-Maxwell theory, in order to
explore the RN BH formation and the robustness of the cosmic censorship hypothe-
sis in the standard case. This problem was studied in [75] using momentarily static
charged wave packets as the initial data. In that case it was possible to form a RN
BH with final charge-to-mass ratio as large as Q/M ∼ 0.6, therefore still far from
extremality. In our simulation, we started from an ingoing charged wave packet, so
that we could form a BH with higher charge, which is a more stringent test of the
cosmic censorship.

Initial setup

We defined an arbitrary mass scale M to normalize all dimensionful quantities. We
chose the parameters in Eq. (2.69) in such a way that the initial profile of ξ is
narrow enough to obtain final configurations in which the (possibly formed) final
BH is close to extremality. In particular we set

B0 = 0.012 , k0M = 5 ,
σ2
ξM

2 = 2.5 , r0,ξ/M = 5 . (2.75)

For this initial configuration the simulation was computationally demanding:
high resolution and a low Courant–Friedrichs–Lewy (CFL) factor were required.
Therefore in order to obtain higher accuracy without increasing excessively the
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Figure 2.2. Coordinate transformation for the nonuniform grid step. Near the origin small
regions in the (original) r̃ domain are mapped to large regions of the (new) r domain.
Sufficiently far from the origin the two coordinates differ only by a constant.

computational cost, we used a nonuniform grid step by performing the following
transformation on the radial coordinate:r̃ = C(r) = r + 1−η

∆ ln
(

1+e−∆(r−R1)

1+e∆R1

)
∂r̃
∂r = C ′(r) = η + 1−η

1+e−∆(r−R1)

, (2.76)

where we renamed the new radial coordinate as r and the old one as r̃. In the
above equation, R1 and ∆ are the typical radius and typical width of the buffer zone
between the area around the origin that requires the higher numerical resolution and
the asymptotic region, whereas η characterizes the relative scale of the resolution.
The parameters have been set to η = 0.1, ∆ = 1/M and R1 = 10M . The behavior
of r̃ vs r is shown in Fig. 2.2, where it can be seen that a small region around the
center in the old coordinate r̃ is mapped to a larger region in the new coordinates.
In this way the horizon of a final BH which is close to extremality is placed at a
higher value of r allowing for higher accuracy with a larger grid step. On the other
hand C ′(r) ∼ 1 for r � R1, and the two radial coordinates differ only by a constant
near the outer boundary. After this change of coordinates the metric functions a
and b of the flat spacetime are:

a(r, t = 0) = C ′(r)2, (2.77)

b(r, t = 0) = C(r)2

r2 , (2.78)

and the initial profile of ∆̂r has been set according to Eq. (2.70).
The lapse function α was initialized by imposing that ∂tK = 0 at t = 0, therefore

we integrated numerically the equation

∂2
rα =

(
∂rα

)[∂ra
2a −

∂rb

b
− 2∂rψ

ψ
− 2
r

]
+ψ4αa

K2

3 + 4παψ4a(E +Sa + 2Sb) (2.79)
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together with Eq. (2.71)-(2.74). To solve the equations for the initial profile we used
a shooting procedure starting the numerical integration from the origin and moving
outwards. We imposed regularity at r = 0 and the asymptotic behaviors

ψ := eχ = 1 + MADM

2r̃ +O
( 1
r̃2

)
,

K = O
( 1
r̃3

)
,

ϕ = Q∞
r̃

+O
( 1
r̃3

)
,

α = 1− MADM

r̃
+O

( 1
r̃2

)
, (2.80)

where MADM is the Arnowitt-Deser-Misner (ADM) mass, and Q∞ = Q(r∞) is the
electric charge computed at the outer boundary. We performed the numerical in-
tegration using the Runge-Kutta method at the fourth order of accuracy, and the
Newton’s method as a root-finding algorithm in the shooting procedure. At the end
of the initialization process we computed the ADM mass and electric charge at the
outer boundary.

We used a numerical grid that extends from the origin up to r
M = 40, with a grid

step ∆r
M = 0.005. We integrated the equations up to T

M = 24, and the CFL factor
was set to CFL = ∆t

∆r = 0.01. Note that since we employed a radial transformation,
in the central region ∆r was approximately 10 times larger than the corresponding
step in the old radial coordinate ∆r̃. The time step ∆t had then to be chosen
accordingly, leading to small values of the CFL factor.

Results of the simulations

We performed the numerical integration of the evolution equations for different
values of qM ∈ [0, 10], and studied the BH formation by computing the position of
the apparent horizon, r = rAH. For the cases in which the collapse has happened
we computed the horizon charge as

QAH = r2b
√
aEre6χ

∣∣∣
r=rAH

, (2.81)

and the horizon mass using the Christodoulou-Ruffini mass formula [126] in the case
of vanishing spin:

MH = Mirr + Q2
AH

4Mirr
, (2.82)

where Mirr =
√

AH
16π is the irreducible mass and AH is the apparent horizon area.

The use of these formulas for the horizon mass and charge is based on the
assumptions that the end state of the possible gravitational collapse is described
by the RN metric and the final configuration is approximately stationary near the
origin at t = T . The first assumption is guaranteed by the uniqueness of the RN
solution in Einstein-Maxwell theory, while the second assumption is satisfied for the
value of T that we chose.

We then computed the initial (at t = 0) charge-to-mass ratio of the full space-
time, Q̄ST

i = Q∞
MADM

, and the charge-to-mass ratio of the final BH, Q̄BH
f = QAH

MAH
, at
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Figure 2.3. Upper panel: total charge-to-mass ratio of the spacetime at t = 0 (blue) and
charge-to-mass ratio of the final BH at t = T (orange) as functions of the fundamental
charge q of the initial ingoing wave packet. Lower panel: total charge in the spacetime
at t = 0 (blue) and amount of charge ∆Q outside the horizon at t = T (orange) as
functions of q. For low values of q almost all the initial pulse collapses and forms the
final BH, for qM ∼ 5 the charge-to-mass ratio of the final BH reaches its maximum
value and then decreases, due to the electromagnetic interaction that starts becoming
dominant; finally, for qM & 5.65 the gravitational collapse stops occurring, and there is
no formation of a horizon. This condition conventionally corresponds to Q̄BH

f = 0 (i.e.,
∆Q = Q∞).

t = T . The results are shown in the upper panel of Fig. 2.3. For qM . 4.5 almost
all the scalar field present at the beginning of the simulation collapses and forms
the final BH. When qM ∼ 5 the final configuration is close to extremality but the
BH remains subextremal. For qM & 5 the charge-to-mass ratio of the spacetime
at t = 0 exceeds unity and the electric forces start preventing the gravitational
collapse: Q̄BH

f rapidly decreases until qM ∼ 5.65, where a BH stops forming. As a
convention, in the plot we set Q̄BH

f = 0 for the cases in which a horizon does not
form. The maximum value of the BH charge-to-mass ratio that we obtained in our
simulations is Q̄BH

f ∼ 0.96.
We also computed the amount of charge outside the final BH, ∆Q, obtained by

subtracting the horizon charge to the final charge computed at the outer boundary,
and we compared it with the total electric charge at t = 0; the results are shown
in the lower panel of Fig. 2.3. For qM . 4.5 almost all the charge present in the
initial pulse is enclosed in the horizon, then the amount of charge outside horizon
starts increasing, and for qM & 5.65 it coincides with the initial charge of the
spacetime, since for these values of q the electromagnetic interaction is strong enough
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to completely prevent the gravitational collapse.

2.4.2 Collapse of the charged field towards a RN BH in Einstein-
Maxwell theory

Next, we considered the collapse of the complex scalar field towards a RN BH within
Einstein-Maxwell theory, attempting at overcharge it. As I will show, not only this
allows to reach final BHs which are closer to extremality, but the process shows also
superradiant amplification at full nonlinear level.

Initial setup

In this case the initial configuration of the system is given by a complex scalar field
on a RN background. The parameters of the initial profile of ξ are:

B0 = 0.002 , k0M = 5 ,
σ2
ξM

2 = 2.5 , r0,ξ/M = 20 , (2.83)

where in this case M is set to be equal to the initial BH mass, MBH = M , and all
dimensionful quantities are measured in terms of M .

For this analysis we wished to construct a background configuration such that
the mass and the charge of the central BH were fixed as q varies. In order to achieve
this we implemented a shooting algorithm that integrates Eqs. (2.71)-(2.74) starting
from the outer boundary and moving inward, and searches for the parametersMADM

(the ADM mass) and Q in the asymptotic expansions

Er = Q

r2 +O
( 1
r3

)
,

ψ := eχ = 1 + MADM

2r − Q2

8r2 +O
( 1
r3

)
,

K = O
( 1
r3

)
,

ϕ = Q

r
+O

( 1
r3

)
, (2.84)

such that the horizon charge and mass assume the required values. We used a
precollapsed lapse [123] α = 1

ψ2 , and a conformal metric with a = b = 1, while the
horizon mass was computed with the Christodoulou-Ruffini mass formula. After
the initialization we extracted the total ADM mass and electric charge at the outer
boundary.

The BH initial charge-to-mass ratio was set to Q̄BH
i = QBH

i

MBH
i

= {0.9, 0.95, 0.99}.
The numerical grid extends from the origin up to r∞

M = 250 with a grid step
∆r
M = 0.01, and the CFL factor was CFL = 0.4. The final time of integration
was set to T

M = 100, which is sufficient to obtain an approximately stationary final
configuration near the horizon.
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Results of the simulations

After the integration of the evolution equations for values of qM ∈ [0, 20], we com-
puted the charge-to-mass ratio of the final BH, Q̄BH

f . We plotted the results in the
upper panel of Fig. 2.4, where the dots represent Q̄BH

f while the crosses represent
the initial charge-to-mass ratio of the entire spacetime, Q̄ST

i . For low values of q
the charge carried by the complex field is smaller than its mass, the initial pulse is
totally absorbed by the BH and Q̄BH

f is smaller than Q̄BH
i . As q increases the final

charge-to-mass ratio increases, then reaches a maximum and starts decreasing, with-
out producing overcharged final configurations. In this experiment, the maximum
charge-to-mass ratio of the final BH achieved in our simulation is Q̄BH

f ∼ 0.986.
Interestingly, this is not only due to the increasing electromagnetic repulsion

that overcomes the gravitational attraction, but there is also another mechanism at
play. In fact for sufficiently high values of the parameter q the BH mass decreases
during the evolution, as it can be seen from the middle panel of Fig. 2.4, where
I show the behavior of the difference between the final and the initial BH mass
as a function of q. Such behavior hints to the presence of superradiance [72], a
mechanism that allows charge and mass extraction from a BH, analogous to the
one described in Chapter 4.

For a monochromatic test field on a RN background the condition for superra-
diance to take place is [72]

ω < qΦH , (2.85)

where ω is the wave frequency and ΦH is the horizon electric potential. Therefore at
a fixed frequency the superradiance condition (2.85) is met for values of q which are
above the threshold qth = ω

ΦH . Since we are not considering a monochromatic test
field the superradiance condition is more involved, because the initial wave packet
contains both frequencies that satisfy Eq. (2.85) and higher frequencies which are in-
stead absorbed by the BH. Nonetheless, we made an estimate of the threshold value
qth using ω = k0, where k0 is the frequency in the initial profile of ξ, and the horizon
electric potential of a RN BH ΦH = QAH

RH
, where RH is the horizon areal radius; the

results are summarized in Table 2.1. As we can see the threshold values that we
obtained are compatible with the behaviors in the middle panel of Fig. 2.4, since
they fall in the region where the difference between the final and initial BH mass is
decreasing. Furthermore, the threshold value of q decreases with Q̄BH

i , as expected.
It is worth mentioning that the energy of the initial complex field is ∼ 0.1M , so
backreaction is relevant and the expectations from linear perturbation theory are
only indicative. Nonetheless, by comparing the top and middle panels in Fig. 2.4, it
is interesting to notice that the maximum of the final charge-to-mass ratio roughly
corresponds to the BH mass extraction, suggesting that (nonlinear) superradiance
plays an important role in preserving the cosmic censorship in Einstein-Maxwell
theory. I will come back to this point later when discussing a similar gedanken
experiment in Einstein-Maxwell-scalar theory.

Finally, in order to check the behavior of the entropy, in the lower panel of
Fig. 2.4 we plotted difference between the final and initial BH area. We can see
that this value is always positive, in agreement with the BH area law in GR.
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Figure 2.4. Cosmic censorship at play in Einstein-Maxwell theory. Upper Panel:
Charge-to-mass ratio Q̄BH

f of the final BH (dots) and total charge-to-mass ratio Q̄ST
i of

the spacetime at the beginning of the simulations (crosses) for the collapse in Einstein-
Maxwell theory. For low values of q the incoming pulse is absorbed by the BH, and Q̄BH

f

increases with q, while for higher values of q it decreases due to the electric repulsion and
superradiance. Final configurations with an overcharged BH have never been produced.
Middle Panel: Change of the BH mass during the simulation. For high values of q
superradiance takes place and extracts mass from the initial BH. Lower Panel: In all
simulations the BH area increases, in agreement with the BH area law. The dotted lines
in the three panels correspond to the threshold values for the superradiance condition
summarized in Table 2.1.

Q̄BH
i ΦH qthM

0.9 0.63 8.0
0.95 0.72 6.9
0.99 0.87 5.8

Table 2.1. Estimates of the threshold values of the parameter qth from the superradiance
condition 2.85. For ΦH we used the horizon electric potential of a RN BH, ΦH = QAH

RH
,

and for ω we used the frequency k0 in the initial profile of the complex scalar field.
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2.4.3 Collapse of charged field towards a RN BH in nonminimally-
coupled Einstein-Maxwell-scalar theory

Let us now focus on the collapse in Einstein-Maxwell-scalar theory with nonminimal
couplings.

Challenging the cosmic censorship I: dynamical formation of scalarized
charged BHs

We started by studying the dynamical formation of overcharged BHs in the presence
of a nonminimal coupling. We set the coupling parameter to λ = −500 in such a
way that the dynamics of the spontaneous scalarization was sufficiently fast and the
computational cost of the simulation was moderate.

The setup of our gedanken experiment was the following. We should initially
throw a small real scalar field onto a RN BH in a region of the parameter space in
which the BH is unstable and scalarizes. We then threw a second wave packet (this
time made of a charged scalar field) which reached the BH on longer time scales,
i.e. when the BH was reaching a stationary configuration. Given the separation of
scales, our setup was similar to trying to overcharge a hairy charged BH from the
onset.

Thus, we wished to construct the initial configurations in such a way that the
complex scalar field reached the horizon sufficiently after the real scalar field. To
this aim we used the same parameters as in the previous analysis for the initial
profile of ξ and we initialized φ and Π to

φ(r, t = 0) = A0 exp
[
−(r − r0)2

σ2
0

]
,

Π(r, t = 0) = 0, (2.86)

where A0 = 0.0003, r0/M = 10 and σ0/M =
√

8. This initial profile coincides with
the one used in Ref. [76]. Note that the amplitude of φ could be small since, owing
to the tachyonic instability, the real scalar field initially grows exponentially during
scalarization. We adopted the same initialization procedure as in the previous
section, with the difference that in this case the equations contain also the terms
depending on φ as well as the corresponding dynamical equation for it. Initially,
the real scalar field has negligible support near the BH so we can consider the latter
to be initially described by the RN metric. The grid parameters, the time step,
and the end time of the simulations were set to the same values as in the previous
section.

During the evolution we obtained stable hairy BHs with nonvanishing profiles
of the real scalar field. To compute the mass of the scalarized BHs we could not use
Eq. (2.82), since it is based on the hypothesis that the BH is described by the RN
metric. An alternative strategy for extracting the mass could have been to integrate
the evolution equations for longer times, in such a way that the real scalar field pro-
file of the final BH reached a region of the spacetime large enough to compute the
ADM mass explicitly. However this procedure would have been computationally
expensive, since it would have required large numerical grids and larger integration
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times. We instead checked that at t = T the system had reached its final configura-
tion near the horizon while the contribution from the complex scalar field could be
neglected. In this case we could use the horizon data to construct a static scalarized
BH solution from which we could then compute the ADM mass. This procedure
heavily reduced the computational cost since it did not require to evolve the full
system of equations for very long times.

To construct the stationary configuration we integrated the field equations of
EMS gravity in Schwarzschild-like coordinates, which have been obtained by Herdeiro
et al. in Ref. [76]. In particular, we used the following ansatz for the metric:

ds2 = −
(
1− 2m(R)

R

)
e−2δ(R)dt2 + dR2

1− 2m(R)
R

+R2dΩ2 , (2.87)

where R is the areal radius, m(R), and δ(R) are metric functions. Furthermore we
assumed a time-independent profile for the scalar field φ = φ(R), and a electromag-
netic 4-potential of the form Aµ = (At(R), 0, 0, 0). Plugging these expressions into
the field equations we obtained the system:

∂RAt = e−δQ̃

F [φ]R2 , (2.88)

∂Rm = R2

2

[(
1− 2m

R

) (
∂Rφ

)2 + e2δF [φ] (∂RAt)2
]
, (2.89)

∂Rδ = −R (∂Rφ)2 , (2.90)

∂2
Rφ = − 1

1− 2m
R

[
1
2e

2δF ′[φ] (∂RAt)2 −
( 2
R

)
(∂Rφ)

(
∂Rm−

m

R

)]

− (∂Rφ)
R

(
2 +R2 (∂Rφ)2

)
, (2.91)

where Q̃ is the charge excluding the effect of the real scalar field (see Sec. 2.3.3).
At the horizon m(RH) = RH

2 , and, as a consequence, the denominator in (2.91)
vanishes. In order to restore regularity we had to impose

∂Rφ(RH) = 1
2RH

F ′[φ(RH)] Q̃2

Q̃2F [φ(RH)]− F [φ(RH)]2R2
H

. (2.92)

At spatial infinity instead we had the following asymptotic behaviors

m = M − Q̃2 +D2

2R +O
( 1
R2

)
,

δ = D2

2R2 +O
( 1
R3

)
,

φ = D

R
+ MD

R2 +O
( 1
R3

)
. (2.93)

We integrated Eqs. (2.88)-(2.91) taking the horizon areal radius RH and the horizon
electric charge Q̃AH from the numerical evolution at t = T , and searching with
a shooting procedure the values of φ(RH) and δ(RH) for which the asymptotic
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Figure 2.5. Profiles of the real scalar field obtained from the numerical integration at T =
500M (blue) and from the shooting procedure extracting the parameters at t = 100M
(orange). The static scalarized solution is an excellent approximation of the end state
of the evolution for R < T , as expected.

behaviors (2.93) were satisfied. We used the Newton’s method as a root-finding
algorithm. Since the scalarized solution is not unique, we initialized φ(RH) using
the end state of the evolution, in order to obtain the required profile of the real
scalar field.

We then computed the scalar charge D as

D = −R2 dφ

dR

∣∣∣∣
R=R∞

, (2.94)

where R∞ is the areal radius at the outer boundary, and the ADM mass as

M = m(R∞) + Q̃2
AH +D2

2R∞
. (2.95)

In order to show the accuracy of this procedure, we performed a numerical
integration of the field equations in the case of Q̄BH

i = 0.9 until t = T = 500M , using
a grid that extends up to r∞ = 550M ; we then compared the profile of the scalar
field at the final time with the static scalarized solution computed extracting the
parameters at t = 100M . The results are shown in Fig. 2.5, where we can see that
the static solution accurately reproduces the end state of the numerical evolution,
and the integration time T = 100M is sufficient to obtain reliable estimates of the
mass and electric charge of the final scalarized BH.

Once the mass had been extracted we could compute the charge-to-mass ratio
of the final BH using the definition of the charge, Eq. (2.63).

One of our main results is shown in Fig. 2.6, where one can see that overcharged
configurations are generically produced. Nonetheless, the end state of the collapse
was always a (scalarized) BH and no naked singularities were produced in our
gedanken experiments. This suggests that the cosmic censorship is not a prerogative
of GR but is also at play in Einstein-Maxwell-scalar theory. I will further discuss
this point in Sec. 2.4.3.
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Figure 2.6. Charge-to-mass ratio ˜̄QBH
f = Q̃BH

f

MBH
of the final BH (dots) and total charge-to-

mass ratio Q̄ST
i of the spacetime at the beginning of the simulations (crosses) for the

collapse in Einstein-Maxwell-scalar theory. This plot should be compared with the top
panel of Fig. 2.4. In this case overcharged configurations were formed; this is due to
the presence of the nonminimal coupling that quenches the electromagnetic interaction
and allows to enclose a large amount of charge within the horizon.

For the static solution that we constructed the profile of the electric field is given
by Eq. (2.67); in this expression the charge Q̃ accounts only for the contribution from
the charged fields (see discussion in Sec. 2.3.3), and φ appears at the denominator via
the coupling function, which is positive. Therefore the appearance of overcharged
solutions may be explained by the action of the real scalar field that quenches the
electric interaction, allowing to construct configurations in which a large amount of
charged matter is confined within the horizon due to gravitational attraction. In this
sense the electric charge Q = Q̃

F [φ] can be interpreted as a parameter that represents
the “strength” of the electromagnetic interaction. In Fig. 2.7 I show the charge
enclosed in the 2-spheres of areal radius R for a static scalarized configuration,
using the two definitions (2.62) and (2.63); as we can see Q̃ is constant, while Q
decreases near the horizon due to the presence of the real scalar field.

Finally, it is worth mentioning that for high values of Q̄BH
i overcharged final

configurations are produced even when q = 0 and the field ξ does not carry any
contribution to the BH charge. This happens because part the mass of the BH is
ejected in a scalar spherical wave during the scalarization process.

Induced descalarization of hairy BHs by absorption of opposite-charged
wave packets

Next, we studied the possibility of forming a RN BH from a previously scalarized
configuration.

As we can see from Fig. 2.1 for low values of the BH charge-to-mass ratio the
system does not admit scalarized configurations. Our objective was to dynamically
produce a RN BH from a previously scalarized one. To do this we started from a
RN BH and induced the spontaneous scalarization with a perturbation of the real
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Figure 2.7. Charge enclosed in the 2-spheres of areal radius R for a static scalarized
solution computed at the end of the numerical evolution. Q̃ accounts only for the
contribution of the charged field, and is constant in R when the complex scalar ξ is
absent. On the other hand Q can be seen as a parameter that measures the “strength”
of the electromagnetic interaction, and it decreases near the horizon for a scalarized
configuration.

scalar field; once the central BH reached a stable configuration, we sent a pulse of
the complex scalar field with opposite charge in such a way that the final BH had
charge close to zero and it was forced to descalarize.

We constructed the initial configuration using the same procedure described
before, setting the BH mass to MBH

i = M and the initial charge-to-mass ratio to
Q̄BH
i = 0.5. For the real scalar field we considered the profile in Eq. (2.86), while for

the complex scalar field we exchanged the real and the imaginary parts in Eq. (2.69)
(in order to have a wave packet with opposite charge) and we set the parameters to

B0 = 0.0004 , k0M = 5 ,
σ2
ξM

2 = 2.5 , r0,ξ/M = 120 . (2.96)

We also set qM = 20. In this way we obtained an inward-moving, negatively charged
initial profile for ξ, such that the total charge of the spacetime was close to zero.
The profile of the electric charge contained in the 2-spheres of radius r at t = 0 is
shown in Fig. 2.8.

For the numerical evolution we chose a grid that extends up to r∞ = 400M , with
a grid step ∆r = 0.01M . The CFL factor was CFL = 0.5 and the final integration
time was T = 240M .

In Fig. 2.9 I show some snapshots1 of the evolution of φ (in blue) and the real
part of ξ (in red). As we can see in the first part of the evolution the BH is not
affected by the complex scalar field and scalarizes reaching a stable configuration
near in the central region. Later, the charged pulse reaches the horizon and is
absorbed by the BH that, being in a region of the parameter space in which there
is no stable scalarized solution, descalarizes leaving a final RN BH.

1Some animations of this gedanken experiment are available online [127].
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Figure 2.8. Profile of electric charge contained in the 2-spheres of radius r at t = 0.
The charge carried by the complex scalar field was such that the total charge in the
spacetime was close to zero. In this way when the pulse was absorbed by the BH, the
system would be in a region of the parameter space in which no scalarized solutions
exist.

To check that the BH at t = 100M can be described by a scalarized solution,
we compared the profile of the scalar field with the static scalarized configuration
obtained using the shooting procedure described in the previous section. The result
is shown in Fig. 2.10, where we can see that there is a good agreement between the
two profiles. Thus we can assume that in the central region the scalarization process
is completed, and that the subsequent part of the evolution shown in Fig. 2.9 (i.e.,
t & 100M) can be considered a descalarization process.

Challenging the cosmic censorship II: superradiantly-induced descalar-
ization

In this section I describe how we studied the possibility of overcharging a scalarized
BH past its own extremality, showing that also in this case the superradiant extrac-
tion of the BH charge and mass plays a crucial role to bound the final charge-to-mass
ratio below extremality.

In particular, we simulated the following process: we started with a RN BH
and a small perturbation of the real scalar field so that the BH scalarized; once
the scalarization process had completed in a region sufficiently large around the
horizon, a pulse of the complex scalar field interacted with the BH, and set it to a
new equilibrium state that we wanted to study.

In this case the horizon electric potential that appears in Eq. (2.85) should be
computed by integrating Eq. (2.88), in which the coupling function appears at the
denominator. Therefore in order to encounter the superradiant behavior for low
values of q, we chose a small (negative) value of the coupling constant: λ = −10.
This made the initial scalarization time scale longer than in the λ = −500 case
previously explored, so we needed to throw the complex scalar field sufficiently
later in order to make sure it interacted with the BH after the scalarization had
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Figure 2.9. Snapshots of the evolution of the real scalar field φ (blue) and the real
part of the complex scalar field ξ (red) for the process of scalarization and subsequent
descalarization of a RN BH. The black dashed line shows the position of the apparent
horizon. Initially the complex scalar field does not affect the dynamics of the system
and the perturbation of the real scalar field triggers the spontaneous scalarization of the
BH, that reaches a stable configuration. Then, when the complex scalar field reaches
the horizon it is absorbed by the BH, which descalarizes leaving a final RN BH.
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Figure 2.10. Comparison between the profile of the real scalar field at T = 100M for the
induced descalarization process (blue) and the static scalarized configuration obtained
with the shooting procedure described in Sec. 2.4.3 (orange). As we can see there is a
good agreement between the two profiles, and we can consider that in the central region
the scalarization process is completed.

completed. We therefore placed the initial pulse of ξ far from the origin, setting the
initial profile of ξ according to Eq. (2.69) with parameters

B0 = 0.0003 , k0M = 2 ,
σ2
ξM

2 = 0.5 , r0,ξ/M = 150 . (2.97)

This guaranteed that, when the pulse of the complex scalar field reached the BH,
the scalarization process was completed in the horizon region. We also chose a
smaller k0 than in the previous case of standard Einstein-Maxwell theory in order
for superradiance to occur at smaller values of q.

We implemented a nonuniform grid step in order to reduce the computational
cost of the simulations. In particular the radial coordinate was transformed accord-
ing to:r̃ = C(r) = η2r + 1−η1

∆ ln
(

1+e−∆(r−R1)

1+e∆R1

)
+ η2−1

∆ ln
(

1+e−∆(r−R2)

1+e∆R2

)
∂r̃
∂r = C ′(r) = η1 + 1−η1

1+e−∆(r−R1) + η2−1
1+e−∆(r−R2)

(2.98)

where again is understood that r is the new coordinate and r̃ is the old one. We
chose ∆ = 1/M , η1 = 0.1, η2 = 10, R1 = 10M , and R2 = 200M . The profile of
the derivative C ′(r) is schematically depicted in Fig. 2.11; for low values of r this
transformation is analogous to the one used for the collapse on flat background,
while far from the origin large intervals in the coordinate r̃ are mapped into small
intervals in r. In this way we could use a relatively large grid step without losing
accuracy at the horizon, and we satisfied the condition that the signals did not reach
the outer boundary even with a smaller numerical grid.

To construct the initial configuration we used the same shooting procedure as for
the other simulations described in this section, imposing the following asymptotic
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Figure 2.11. Schematic behavior of the derivative of the transformation r̃ = C(r) for the
implementation of the nonuniform grid step. In the horizon region this transformation
is analogous to the one used for the collapse on flat background, allowing larger grid
steps without losing accuracy. Instead far from the origin large regions in the coordinate
r̃ are mapped into small regions in r, allowing the use of a smaller numerical grid.

behaviors:

Er = Q∞

r̃2 ∂r̃
∂r

+O
( 1
r̃3

)
,

ψ := eχ = 1 + MADM

2r̃ +O
( 1
r̃2

)
,

K = O
( 1
r̃3

)
,

ϕ = Q∞
r̃

+O
( 1
r̃3

)
,

(2.99)

where again MADM is the ADM mass and Q∞ = Q(r∞).
The outer boundary was placed at r∞

M = 250, and the grid step was ∆r
M = 0.025.

The final time of integration was T
M = 300, and CFL = 0.05.

We computed the final BH mass using the static scalarized solution that ap-
proximates the configuration of the system in the central region, and we studied the
behavior of the charge-to-mass ratio of the final BH; the results are shown in the
upper panel of Fig. 2.12. As we can see the charge-to-mass ratio increases for small
values of q, then reaches a peak and starts decreasing, as in the Einstein-Maxwell
case. In the middle panel I show the mass difference between the final BH and
the intermediate scalarized one. Interestingly, the mass of the final BH is smaller,
showing that superradiance is at play also for the scalarized BH2. Indeed, also in
this case the maximum of the charge-to-mass ratio roughly corresponds to the onset

2Note that a linear study of superradiant scattering off a scalarized BH in Einstein-Maxwell-
scalar theory is much more involved than in the RN case in Einstein-Maxwell theory, since electro-
magnetic and scalar perturbations are coupled to each other. Hence, in this case we did not have
a prediction for the threshold value of q.
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of superradiance at nonlinear level. As for the collapse of the complex scalar field
on a RN BH in Einstein-Maxwell theory, the extraction of charge is more efficient
than the extraction of mass, so that ˜̄QBH

f decreases. In other words, although the
final charge-to-mass ratio can exceed the RN bound, it cannot grow indefinitely due
to superradiance and reaches a maximum which is below the extremal value.

Interestingly enough, superradiance can be so efficient that the charge-to-mass
ratio of the final BH can eventually cross the scalarization threshold (grey dashed
line in the upper panel of Fig. 2.12), leading to a superradiantly-induced descalariza-
tion. This can be clearly seen from the behavior of the final scalar charge D (lower
panel of Fig. 2.12): for large values of q the scalar charge goes to zero, indicating
that the final BH has lost all its scalar hair. See [127] for some animations of these
simulations.

Finally, in Fig. 2.13 I show the behavior of the difference between the final and
the initial horizon areas. The area always increases, as expected from the area law,
which holds also in our model since the null energy condition is satisfied.
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Figure 2.12. Results for the collapse of a complex scalar field in Einstein-Maxwell-scalar
theory, with quadratic coupling and λ = −10. Upper panel: Charge-to-mass ratio
˜̄QBH
f of the final BH (dots) and total charge-to-mass ratio Q̄ST

i of the spacetime at the
beginning of the simulations (crosses). Middle panel: mass difference between the
final and the intermediate scalarized BH. Lower panel: scalar charge of the final BH.
The charge-to-mass ratio of the final BH increases for low values of q, then it reaches
a peak and starts decreasing. The negative ∆MBH for high values of q indicates the
presence of superradiance. This mechanism can be efficient enough that the final charge-
to-mass ratio falls below the threshold value for scalarization (grey dashed line in the
upper panel), leading to the descalarization of the BH.
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Figure 2.13. Difference between the final and initial BH area. As we can see the BH area
always increases, in agreement with the area law.
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Chapter 3

Fate of radiating BHs with
minimum-mass in
Einstein-dilaton-Gauss-Bonnet
theory of gravity

In this chapter I will describe the work that I performed in collaboration with
Marina de Amicis, Dr. Taishi Ikeda and Prof. Paolo Pani [43, 44], in which we
performed numerically simulated gedanken experiments aimed at investigating the
fate of evaporating minimum-mass BHs in EdGB gravity.

The structure of the chapter is the following. I will start in Sec. 3.1 by intro-
ducing EdGB gravity, its spherically symmetric BH configurations and the problem
of Hawing evaporation. Moreover, I will discuss the phase space of static and
spherically symmetric solutions, which includes wormholes and singular solitons,
considering the possible phase transition that might occur in the process we in-
vestigated. Then, in Sec. 3.2 I will introduce the framework for our numerically
simulated gedanken experiments, including the action, the field equations, and the
metric ansatz that we used in our evolution code. Sec. 3.3 contains a description of
the procedures we used to to construct the BH configurations in our setup, together
with a discussion of some properties of such BH solutions that are relevant for our
purposes, while our numerical evolution algorithm is introduced in Sec. 3.4. I will
then describe the numerical simulations we performed and the results we obtained
in Sec. 3.5.

3.1 Introduction to Einstein-dilaton-Gauss-Bonnet grav-
ity

The action of EdGB gravity is [88] (in geometrized units G = c = 1)

S = 1
16π

∫
Ω
d4x
√
−g

{
R−

(
∇µφ

)(
∇µφ

)
+ 2F [φ]G

}
, (3.1)
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whereR is the scalar curvature, φ is the dilatonic field, F [φ] is the coupling function,
and G = 1

4δ
µναβ
ρσλωR

ρσ
µνR

λω
αβ is the Gauss-Bonnet invariant, δµναβρσλω = εµναβερσλω is

the generalized Kronecker delta, with εµναβ = εµναβ being the Levi-Civita symbol.
As for the coupling function, we will consider an exponential form:

F [φ] = λeγφ, (3.2)

where λ is called Gauss-Bonnet coupling constant and γ is called dilaton coupling
constant. While γ is dimensionless, [λ] = [L2], and sets the length scale below which
modification start becoming relevant.

The field equations that can be obtained from the action read 1

Rµν −
1
2gµνR = 8πTµν , (3.3)

�φ = −δF [φ]
δφ
G, (3.4)

where � = ∇µ∇µ and

Tµν = 1
8π

[(
∇µφ

)(
∇νφ)− 1

2
(
∇αφ

)(
∇αφ

)
gµν − 2

(
∇γ∇αF [φ]

)
δγδκλαβρσR

ρσ
κλδ

β
(µgν)δ

]
.

(3.5)
Crucially, the field equations are of second order, making the theory of Horndeski
type [130,131]. This guarantees that EdGB is free from the Ostrogradsky instability
[132], a ghost-like instability potentially occurring when the fields equations are of
order higher than two.

In 4 dimensions, the presence of the nonminimal coupling between the dilatonic
field and the Gauss-Bonnet invariant is crucial to introduce modifications to GR.
Indeed if F [φ] = 1 then the Gauss-Bonnet term is topological, and the theory
reduces to GR with a Klein-Gordon field in the matter sector. This can be also
clearly seen from the fact that in this case the right hand side of Eq. (3.4) vanishes,
and Tµν reduces to the stress-energy tensor of a minimally coupled scalar field.

3.1.1 Black hole solutions

For theories whose action can be described by Eq. 3.1, the field equations can in
principle admit GR BHs as solutions, provided that the dilaton field assumes a
constant value φ0 such that

δF [φ]
δφ

∣∣∣∣
φ=φ0

= 0. (3.6)

This is not possible for a coupling of the form (3.2), meaning that EdGB BHs are
always characterized by a nontrivial profile of the dilaton field outside them 2.

1A derivation of the field equations can be found in Appendix A of [128], but see also Appendix A
of [129] for a more detailed computation.

2For couplings of the form F [φ] = λ
24 (1 − e−3φ2

) [77, 133–135] or F [φ] = 1
16λφ

2 [78, 136–140]
also the Kerr-Newmann BH is a solution of the field equations, and the BH configurations with
a nontrivial profile of the scalar field are called scalarized. Theories with these coupling are usu-
ally referred to as Einstein-scalar-Gauss-Bonnet gravities, and exhibit a spontaneous scalarization
phenomenon similar to the one discussed in Sec. 2.2 : in certain regions of the parameter space Kerr-
Newman BHs are subject to a tachyonic instability whose end state is a scalarized configuration
(see Ref. [79] for a review).
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In order to study their main properties, let us now construct these static dila-
tonic BH configurations, restricting to the spherically-symmetric case for simplicity.
While this has been first done in Ref. [88], I will follow Ref. [44] highlighting only
the main steps. More explicit derivations can also be found in Refs. [141,142].

Let us use Schwarzschild-like coordinates, so that the line element can be written
as:

ds2 = −eΓ(r)dt2 + eΛ(r)dr2 + r2dΩ2 , (3.7)

where Γ(r) and Λ(r) are functions of the areal radius r. Substituting this expres-
sion in the field equations (3.3),(3.4) we can obtain a set of 4 ordinary differential
equations for Γ, Λ and φ, whose explicit expression can be found in Appendix C.
After some manipulations one obtains an analytic expression for Λ in terms of Γ
and φ, and two second-order equations for Γ and φ. Since we are in Schwarzschild
coordinates, gtt = −eΓ(r) is defined up to a multiplicative constant (expressing the
residual freedom in rescaling the coordinate time), and Γ appears in the equations
only through its radial derivatives.

At the horizon gtt vanishes and grr diverges, so that the metric functions and
the dilatonic field can be expanded as

eΓ(r) = Γ1(r− rH) +O
[
(r− rH)2]

e−Λ(r) = λ1(r− rH) +O
[
(r− rH)2]

φ(r) = φH + φ′H(r− rH) +O
[
(r− rH)2] , (3.8)

where Γ1, λ1, φH and φ′H are real coefficients.
From the second-order equation for φ it is possible to see that φ′′ contains terms

that diverge at the horizon, and in order to remove them φ′H must be set to

φ′H = − rH
8F ′[φH ]

(
1−

√
1− 192

r4H
F ′[φH ]2

)
, (3.9)

where F ′[φ] = δF [φ]
δφ .

Γ1 is the multiplicative factor expressing the residual gauge freedom in the defini-
tion of the coordinate time, while λ1 can be obtained by substituting the expansion
at the horizon in the analytic expression for Λ. The result is

λ1 = 1
rH + 4F ′[φH ]φ′H

. (3.10)

Therefore we have that for a given coupling function, and fixing the horizon areal
radius rH , the near-horizon solution depends only on the parameter φH .

Near spatial infinity, instead,

eΓ(r) ' e−Λ(r) ' 1− 2MBH
r

+O
(
r−2
)

(3.11)

φ(r) ' −D
r

+O
(
r−2
)
, (3.12)

where MBH is the BH mass and D is the dilaton charge.
The static dilatonic solutions can be obtained by fixing the parameter φH in

such a way that the asymptotic behavior (3.12) is satisfied. Once done this Γ1 can
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be fixed by imposing (3.11), i.e. that asymptotically coordinate time coincides with
proper time.

Unfortunately this procedure cannot be carried out at the analytical level, but
numerical methods have to be used. Here I will directly move to describe the
characteristic of dilatonic BH configurations, and a discussion on the numerical
procedures used for this kind of computations is postponed to Sec. 3.3.2.

For concreteness, I will focus on the case with γ = 4; different values of the dila-
ton coupling constant are discussed later, including γ =

√
2, which is motivated by

string theory [89] and shares the same qualitative features that are relevant for our
purposes. In Fig. 3.1 I show the areal radius of the event horizon as a function of the
BH massMBH in this theory. When λ/r2H � 1, there exists only one asymptotically-
flat solution for given BH mass, which reduces to the GR Schwarzschild BH in the
λ → 0 limit. In this limit one gets rH ≈ 2MBH as in GR. However, for any finite
λ there exists a minimum-mass3 BH solution [88, 91–93], MBH ≥Mcrit ' 8.244

√
λ.

This is called critical solution, and divides two branches of solutions with the same
mass and different radii. The upper branch (i.e., larger radii) is linearly stable,
whereas the lower branch (i.e., smaller radii) is linearly unstable [95, 143]. As later
discussed, the details (and existence) of the second branch depend on the specific
values of γ. In our context it is important to highlight that, just as the Schwarz-
schild solution, these metrics have a curvature singularity inside the horizon [91],
except for the solution at the end of the unstable branch in which such singular-
ity coincides with the horizon and becomes naked (see, e.g., [142, 144] for BHs in
shift-symmetric theories with F [φ] ∝ φ). Since for γ & 1 this singular solution does
not coincide with the minimum-mass solution, the latter is regular on and outside
the horizon, just as in the GR case. On the other hand, the singular solution is
unphysical as it is part of the unstable branch.

3.1.2 Hawking evaporation

An interesting aspect that arises when quantizing a field in curved spacetime is that
there is not a unique way of performing a mode decomposition which is valid for
all the observers. Two observers may decompose a field using two different sets
of modes, having two distinct notions of vacuum. Therefore a state identified as
vacuum for an observer, might be seen as containing particles by another observer
[145]. This happens also in collapsing scenarios and it is at the root of the Hawking
effect [94].

Let us consider a system that is undergoing gravitational collapse to a BH and
two asymptotic observers, one placed “in the past” and one “in the future”. The
modes from the first observer will experiment a gravitational blueshift when getting
close to the collapsing body, and a redshift when departing from it in the future
direction. Now, in the spacetime position where the modes exit from the body the
collapse is in a more advanced state with respect to the entrance, thus the redshift
will be more intense than the blueshift, with a net effect that is more relevant for
the modes that pass close to horizon formation. As a consequence, the modes of
the observer “in the past” will appear distorted to the observer “in the future”, and

3As later discussed, other values of γ & 1 change the proportionality factor of the minimum
mass but in general Mcrit ∝

√
λ.
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Figure 3.1. Areal radius of the event horizon as a function of the BH mass for static BH
solutions in EdGB gravity with coupling F [φ] = λe−4φ. The gray dashed line is the
Schwarzschild limit rH = 2MBH, reached when M � Mcrit ≈ 8.244

√
λ. The inset is a

zoom-in around the minimum-mass solution, which separates a stable branch from an
unstable branch. The minimum-mass, minimum-radius, and singular BH solutions are
denoted by a circle, cross, and triangle, respectively.

the vacuum state of the observer “in the past” will be seen as containing particles
by the observer “in the future”. In particular the particles detected by this second
observer come from the BH and assume a thermal spectrum with temperature [145]

TH = κ

2π , (3.13)

where κ is the surface gravity. TH is called Hawking temperature, and the effect is
called Hawking radiation [94]. The result is that BHs radiate away energy and lose
mass at a rate given by the luminosity of radiation, which is given by [145]

dM

dt
= − 1

2π
∑
lm

∫
dω

ωGlm(ω)
eω/TBH ± 1

, (3.14)

where the sum is over the (l,m) angular mode of the radiation and, at the denomi-
nator, the plus/minus applies to the emission of fermions/bosons. Glm(ω) is called
graybody factor, and accounts for the fact that not all modes are able to penetrate
the effective potential barrier.

For a spacetime of the form (3.7) the Hawking temperature can be expressed as

TBH = 1
4π lim

r→rH

dgtt/dr√
gttgrr

, (3.15)

which, for a Schwarzschild BH, evaluates to 1
8πM . For EdGB black holes instead we

evaluated it numerically, obtaining the results shown in Fig. 3.2, where we can see
that it is always higher that that of the corresponding Schwarzschild BH with the
same mass. Furthermore, the temperature is nonvanishing also for the minimum-
mass solution, suggesting that the BH continues emitting energy once it reaches the
minimum-mass configuration.

However, in order to assess if this is the case it is necessary to compute the
graybody factor relative to the emitted modes. In our work [43, 44] we computed
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this quantity for minimally-coupled scalar massless particles and for photons4 (see
also [146]). In particular, we considered the lowest angular modes, i.e. l = 0
and l = 1, for the scalar and vector emission, respectively, which give the leading
contribution to the mass loss in this case.

The scalar Ψ and electromagnetic Aµ fields satisfy the following field equations:

∇µ∂µΨ = 0 ,
∇µ(∂µAν − ∂νAµ) = 0 ,

(3.16)

on the background metric described by the dilatonic BH solution. Since the back-
ground metric (3.7) is spherically symmetric, it is possible to decompose the scalar
field in spherical harmonics Ylm(θ, ϕ) and the electromagnetic field in vector har-
monics [147]:

Ψ(t, r, θ, ϕ) =
∑
lm

Rlm(t, r)
r

Ylm ,

Aµ(t, r, θ, ϕ) =
∑
lm


flm(t, r)
hlm(t, r)

alm(t, r) 1
sin θ∂ϕ + klm(t, r)∂θ

alm(t, r) sin θ∂θ − klm(t, r)∂ϕ

Ylm .
Substituting these expansions in the field equations (3.16) and assuming a time
dependence e−iωt, the radial part of the equations separates and takes the form of
a Schrödinger-like equation:

d2

dr2∗
Θlm(r) +

[
ω2 − Vslm(r)

]
Θlm(r) = 0 , (3.17)

4Of course also gravitons would be radiated, and in EdGB theory the gravitational sector is
coupled to the dilaton. The computation of the graybody factor for gravitons and dilatons is
technically more involved but does not change the qualitative picture.
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Figure 3.3. Graybody factors of the dilatonic BH with minimum mass (λ ≈ 0.01552
in units such that rh = 2, as we shall fix from now on), for the emission of massless
scalar particles (purple) and photons (orange) in their lowest angular modes (l = 0, 1,
respectively). We compare each curve with the corresponding graybody factors of a
Schwarzschild BH with same mass (dashed blue lines).

where Θlm collectively denotes the master function for the scalar or the electromag-
netic field, and

Vs=0(r) = l(l + 1)
r2

eΓ(r) + e
Γ(r)−Λ(r)

2
1
r

d

dr
e

Γ(r)−Λ(r)
2 ,

Vs=1(r) = l(l + 1)
r2

eΓ(r) ,

(3.18)

for the scalar (s = 0) and electromagnetic (s = 1) cases, respectively. In the above
equations, r∗ is the generalized tortoise coordinate defined through

dr∗
dr

= e
Λ(r)−Γ(r)

2 . (3.19)

The potentials in Eq. (3.18) vanish both at the horizon and at spatial infinity and
their radial profile is in fact qualitatively very similar to the case of a Schwarzschild
BH. The asymptotic solutions are ingoing/outgoing waves in tortoise coordinates,
Θlm ∼ e±iωr∗ . Normalizing the flux coming from infinity, the graybody factor is
simply related to the transmission coefficient of the master function,{

Θlm = e−iωr∗ +Rlmeiωr∗ r∗ →∞
Θlm = Glme

−iωr∗ r∗ → −∞
. (3.20)

We studied this scattering problem for the lowest angular modes of the massless
scalar and the electromagnetic field, for different values of the coupling constant
λ. In Fig. 3.3, I show the graybody factors of the dilatonic BH with minimum
mass, compared with those of a Schwarzschild BH of equal mass. Overall these two
quantities are very similar to each other for any value of the coupling (of course
the agreement further improves for smaller values of the coupling than that shown
in Fig. 3.3). This is consistent with the fact that the graybody factor is mainly
governed by the BH photon-sphere, which is slightly outside the horizon, where the
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higher-curvature corrections are already smaller relative to their value at and inside
the horizon.

Therefore, the main difference between the spectrum of a dilatonic and a Schwarz-
schild BH comes from the (slightly) different temperature. Since the temperature
of a dilatonic BH is (slightly) higher than that of a Schwarzschild BH of the same
mass, the former evaporates (slightly) faster than the latter. Using Eq. (3.14), we
estimated that near the minimum mass a dilatonic BH evaporates ≈ 7% and ≈ 14%
faster than in GR for scalar and vector modes, respectively.

Intriguingly, when the dilatonic BH reaches the minimum-mass configuration,
the graybody factor and temperature are finite and nonvanishing. In other words,
the BH should continue evaporating, but since there are no static BH solutions with
lower mass, it is natural to ask toward which state the BH evolves.

3.1.3 Phase diagram

To start addressing the question related to the evolution of BHs past the minimum
mass in EdGB gravity, it is useful to study in detail the parameter space of static and
spherically-symmetric solutions in this theory. In particular, one might entertain
the idea of phase transitions from the critical BH toward some other solutions,
should the parameter space allow for that. Interestingly, EdGB gravity admits
other, horizonless, asymptotically flat solutions: traversable wormholes [148, 149]
and particle-like (solitonic) solutions characterized by a singularity in the second
derivative of the dilaton field [150, 151]. In our work we have built these solutions
following Refs. [148–151]. Details are presented in Appendix D.

Fig. 3.4 contains the phase diagram (D/M,λ/M2), first computed in Ref. [150,
151]. BHs and solitons form a one-parameter family of solutions, so they are repre-
sented by curves which encloses a two-dimensional surface. The latter is the domain
of existence of the wormhole solutions. An interesting feature of this phase diagram
is that the BH solutions (including the minimum mass) correspond to double points
in the phase space, wherein the BH and the wormhole solution co-exist (see inset in
Fig. 3.4). Furthermore, the singular BH solution at the end of the unstable branch
connects also to the solitonic solution which has a derivative singularity (i.e., a
cusp), being therefore a triple point in the phase space of the theory. Thus, even
though the solitonic solution is probably not a good candidate for the endpoint of
a phase transition, the regular wormhole solution is more appealing.

3.2 Inducing mass loss with a phantom field: frame-
work

To investigate the fate of a critical BH that undergoes Hawking evaporation, in the
work of Refs. [43, 44] we decided to construct a numerically simulated gedanken
experiment in which we push the BH mass below the minimum value, and then
observe how the system evolves. The main conceptual difficulty here was to devise
a method to dynamically reduce the BH mass in a controlled way. Our strategy
was to simulate the collapse of wave packets of a phantom field, i.e. a real scalar
field whose kinetic term has the opposite sign with respect to our conventions. Such
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Figure 3.4. Families of asymptotically flat solutions to EdGB gravity as plotted in the
phase space (D/M,λ/M2), where D is the dilatonic charge and M is the mass of
the object measured by an observer at spatial infinity (see also [148–151]). The gray
region represents the domain of existence of the wormhole solutions, each colored line
represents a family of wormhole solutions characterized by a specific value of λ (in
units where the wormhole throat is r0 = 2): λ = 0.0015 (orange), λ = 0.009 (yellow),
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black line (asterisks) corresponds to regular wormhole solutions in the f0 → ∞ limit
(see Appendix D). The lower black line (crosses) corresponds to BH solutions, whereas
the dashed line (dots) corresponds to solitonic solutions with a singularity in the second
derivative of the dilaton.

a field contributes with negative terms to the total mass of the system, and when
absorbed by a black hole, leads to a decrease of its mass.

With this approach in mind, we constructed the setup for our numerically sim-
ulated gedanken experiment, which I will now start describing.

The action of the model we considered is obtained by supplementing Eq. (3.1)
with a phantom field:

S = 1
16π

∫
Ω
d4x
√
−g

{
R−

(
∇µφ

)(
∇µφ

)
+
(
∇µξ

)(
∇µξ

)
+ 2F [φ]G

}
, (3.21)

where ξ is the phantom field, and the other symbols preserve the same meaning as
in Eq. (3.1).

The fields equations derived from the new action read

Rµν −
1
2gµνR = 8πTµν , (3.22)

�φ = −δF [φ]
δφ
G, (3.23)

�ξ = 0, (3.24)

where

Tµν = 1
8π

[(
∇µφ

)(
∇νφ)− 1

2
(
∇αφ

)(
∇αφ

)
gµν −

(
∇µξ

)(
∇νξ) + 1

2
(
∇αξ

)(
∇αξ

)
gµν

− 2
(
∇γ∇αF [φ]

)
δγδκλαβρσR

ρσ
κλδ

β
(µgν)δ

]
(3.25)
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is the effective stress-energy tensor.
In the case ξ = 0 the field equations reduce to (3.3)-(3.4), and allow to study the

stability of dilatonic BHs in EdGB by simulating the collapse of wave packets of the
dilaton φ. While the main focus of our work was to study the fate of evaporating BHs
past the minimum mass, we decided to carry out such additional set of simulations,
which, from the numerical point of view, differ from the case of collapse of the
phantom field only in the initial condition.

We used Painlevé-Gullstrand (PG)-like coordinates, which are horizon penetrat-
ing and read

ds2 = −α(t, R)2dt2 + (dR+ α(t, R)ζ(t, R) dt)2 +R2dΩ2, (3.26)

where R is the areal radius. Since we were interested in simulating the BH evolution
close to the critical configuration, for which the curvature singularity is close to the
horizon, we also needed small grid steps to resolve properly the BH region. In order
to reduce the computational cost by increasing the resolution only in the central
region, we defined a new radial coordinate r related to the areal radius R by the
relation R = η2r + 1−η1

∆ ln
(

1+e−∆(r−r1)

1+e∆r1

)
+ η2−1

∆ ln
(

1+e−∆(r−r2)

1+e∆r2

)
∂R
∂r = η1 + 1−η1

1+e−∆(r−r1) + η2−1
1+e−∆(r−r2)

. (3.27)

The strategy is analogous to the one used in the previous chapter, and in fact (3.27)
coincides with the transformation (2.98). In this way, since in the inner region
R′ ∼ η1 < 1, and in the outer region R′ ∼ η2 > 1 (cf. Fig. 2.11), discretizing the
radial coordinate r with a uniform grid step, we obtained a higher resolution in R
in the inner region and a lower resolution in the outer region.

In this new coordinates the line element reads

ds2 = −α(t, r)2dt2 + (R′(r)dr + α(t, r)ζ(t, r) dt)2 +R(r)2dΩ2. (3.28)

An important ingredient for our simulations is the construction of the static dilatonic
BH configurations, that are needed both for initializing the code and for analyzing
the final state of the evolution. Therefore in the next section I will describe the
procedures we used to obtain them, re-expressing the relations of Sec. 3.1.1 in
PG-like coordinates and describing the numerical techniques. I will also include
a discussion on the properties of BH solutions for different values of the dilaton
coupling constant appearing in F [φ] (Eq. (3.2)), motivating our choice of setting
γ = 4 in our analysis.

3.3 Static solutions in horizon-penetrating coordinates
Since here we need to consider static solutions in EdGB, for this section I will refer
again to the action (3.1), and consider profiles of α, ζ and φ that depend solely on
the radial coordinate r.
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3.3.1 Equations and boundary conditions

Replacing the line element (3.28) into the field equations (3.3)-(3.4) and performing
algebraic operations, we can obtain two first-order equations for α and ζ, and a
second-order equation for φ, which are reported in Appendix C.

The expansion of the future-directed outgoing null geodesics normal to the 2-
spheres SR of (areal) radius R is given by

θ(l) = 2
R

(1− ζ), (3.29)

where lµ =
( 1
α ,

1−ζ
R′ , 0, 0

)
is the future-directed null vector normal to SR. Thus, the

horizon rh is located where ζ = 1.
The denominator of the right-hand side of the equation for the dilaton (Eq. (C.8))

goes to zero at the horizon, and imposing that the singular terms in φ′′h := φ′′(rh)
vanish, we recover the regularity condition [88]:

φ′h =
R′h

(
−R2

h +
√
R4
h − 192F ′[φh]2

)
8RhF ′[φh] , (3.30)

where the subscript h indicates that the quantities are evaluated at the horizon, and
F ′[φ] = δF [φ]

δφ . This expression is the analog of Eq. (3.9) in different coordinates.
In PG-like coordinates the spatial 3-metric is flat, and thus the ADM mass

identically vanishes. Following [152], we used the asymptotic value of the Misner-
Sharp mass function mMS(r) as a definition of the total mass of the spacetime:

MMS := lim
r→+∞

mMS(r) = lim
r→+∞

R

2 ζ
2. (3.31)

The asymptotic behaviors of φ, α and ζ in the asymptotically flat case can then be
written as

φ = −D
R

+O
( 1
R2
)
, (3.32)

ζ =

√
2MMS

R
+O

( 1
R5/2

)
, (3.33)

α = A+O
( 1
R2

)
, (3.34)

where the constant A in Eq. (3.34) is a free parameter, since α can be arbitrarily
rescaled by a constant with a redefinition of the coordinate time.

3.3.2 Numerical procedures

We used two procedures for constructing the static dilatonic BH solutions.
The first is a standard shooting, wherein (for fixed values of the coupling con-

stant λ and the horizon radius Rh) we integrated the equations from the horizon
outward, using Newton’s method to find the value of the only free parameter φh
for which the asymptotic boundary conditions (3.32)-(3.34) are satisfied. We finally
obtained the static dilatonic solution by performing an integration both outside and



3.3 Static solutions in horizon-penetrating coordinates 51

inside the BH region. Note that since the equations for φ and ζ do not depend on
α, we did not integrate the equation for this metric function.

The second procedure is based on the invariance of the theory under the trans-
formation

φ→ φ+ C λ→ λeγC , (3.35)
where C is a real constant. The strategy is similar to the one outlined in Ref. [153].
Namely, we started by fixing the horizon radius and setting the coupling constant
to a generic value. We initialized φh, and then ζh and φ′h with the conditions
at the horizon. We then integrated equations (C.6)-(C.7), obtaining the generic
asymptotic behavior for φ ∼ cost − D

R . Finally, we performed a symmetry trans-
formation (3.35) to impose (3.32). This second procedure has the advantage of
being faster, since it does not require solving the field equations multiple times to
construct a single solution. Furthermore, it simplifies finding multiple solutions for
the same coupling constant, when they exist. On the other hand, since it takes
advantage of a symmetry of the theory, it can only be used with couplings such
that the action is invariant under (3.35).

In both cases, we performed the numerical integration using the fourth-order
accurate Runge-Kutta method, starting from the horizon and moving both inward
and outward. Even though from an analytical point of view the conditions at the
horizon guarantee the regularity of the field equations, the presence of (1 − ζ2) at
the denominator of the equation for the dilaton can cause instabilities when used
in a numerical integration algorithm. To overcome this issue we used the following
strategy. First we integrated the field equations with the fourth-order accurate
Runge-Kutta method for a single step from rh to rh + ∆r

2 , where ∆r is the required
grid step. We used the analytic expression of φ′′h and ζ ′h (Eqs. (C.9)-(C.10)) as the
right-hand sides of the equations at the horizon, while we used Eqs. (C.7)-(C.6)
in the intermediate steps. Then, we continued the numerical integration up to the
outer boundary using ∆r as integration step. We repeated the same procedure
inside the BH region and we obtained that in the final numerical data the horizon
is staggered between two grid points. We found that, when the static solution
was used to initialize the evolution code described in the next section, this strategy
produced a better behaved constraint violation with respect to the standard Taylor’s
expansion at the horizon.

Let me stress that the BH solutions have a curvature singularity inside the
horizon [91], so we could only integrate the equations from the horizon inward
up to the radius of such singularity. The position of the singularity inside the
horizon depends on the specific value of the coupling constant, which motivates the
discussion presented in the next subsection.

3.3.3 Properties of the solutions for different γ’s

In Fig. 3.5 I show the domain of existence of spherically symmetric BH solutions in
the Rh −MBH plane for some representative values of γ. For γ = 1, there is only
one branch of solutions and no local minimum of the BH mass. In this case the
minimum-mass solution is also singular at the horizon, as in the shift-symmetric
case [142, 144]. For slightly larger values of γ (e.g. γ =

√
2 in the plot), there is

a critical (minimum-mass) BH which is regular in and outside the horizon. This
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Figure 3.5. Dilatonic solutions in the Rh−MBH plane for different values of γ. For γ = 1
the singular configuration has minimum mass, for γ =

√
2 a second branch forms and

the singular configuration has minimum radius, while for γ = 4 both the minimum-mass
and minimum-radius solutions are regular at the horizon.

solution separates two branches, with the lower one terminating at the minimum-
radius solution, which is singular at the horizon [92, 154]. Finally, for even larger
values of γ (e.g., γ = 4 in the plot), also the minimum-radius solution is regular in
the BH exterior [155]. In this case the second branch terminates at a different solu-
tion which is not the minimum-mass nor the minimum-radius one. Note, however,
that the lower branch is linearly unstable [143], therefore the physically interesting
solutions are those on the upper branch, and we are particularly interested in the
critical (minimum-mass) BH in those cases in which it is regular.

It is also interesting to investigate in more details the locationRs of the curvature
singularity inside the horizon as a function of the dilaton coupling. To identify the
singularity, we considered the numerical data obtained from the integration in the
BH region, which started from the horizon and proceeded inward. At the singularity
the denominatorDφ in the right-hand side of the equation for the dilaton (Eq. (C.7))
vanishes, thus the algorithm failed and the numerical data became less smooth,
featuring spurious jumps. We determined Rs as the radius where this happened,
imposing numerical conditions that detected changes of sign or discontinuities in
Dφ and its derivatives near the root. In Fig. 3.6, I compare the location of the
singularity with the horizon radius at the critical BH solution for different values
of γ. The units are fixed in such a way that Rh = 2. Overall, the smaller the γ
the smaller the areal distance between the singularity and the horizon, which also
requires higher resolution to resolve the region around the horizon. Thus, in order
to reduce the computational cost of the nonlinear time evolution presented Sec. 3.5,
in addition to using the radial transformation R(r) we decided to set γ = 4. We also
checked different values of γ, finding a qualitatively similar behavior. Note that in
Fig. 3.6 I also show the radius of the excised region, Re, obtained by initializing the
evolution algorithm presented in Sec. 3.4. Details on the excision are given later on.

Finally, in Fig. 3.7 I show the behavior of the excision radius (black curve) and
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Figure 3.6. Position of the excision boundary and curvature singularity at the critical
configuration for different choices of the parameter γ. Given a fixed value of the horizon
radius, the radii of the excision boundary and the singularity at the critical configuration
decrease as γ increases. For this reason, using larger values of γ allowed us to use larger
grid steps and reduce the computational cost.

of the singularity (red curve) with respect to the coupling constant λ when γ = 4.
As anticipated, for the minimum-mass solution the singularity is well within the
horizon, whereas near the singular configuration both the excision boundary and
the singularity approach the horizon radius. Moreover, since these solutions have
been computed at fixed horizon areal radius Rh = 2 the coupling constant starts
decreasing after the configuration that minimizes Rh√

λ
.

3.4 Numerical setup: initial value problem in EdGB
gravity

Having discussed the static dilatonic BH solutions in PG-like coordinates, I now
present our numerical setup for the spherical collapse of fields onto a dilatonic BH
in EdGB gravity. We mostly followed the formalism used in Ref. [152]5 for shift-
symmetric (i.e., F [φ] ∝ φ) EdGB gravity. Let me remind that we considered the
collapse both of the dilatonic field φ directly coupled to the higher-curvature terms,
and that of a phantom field ξ, which was needed to mimic BH evaporation at the
classical level.

3.4.1 System of equations and hyperbolicity

To obtain the evolution equations for the system we started by defining the variables

Q = ∂rφ, Θ = ∂rξ, (3.36)
5See also Refs. [85–87,128,156–174] for numerical simulations in EdGB/EsGB gravity.
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Figure 3.7. Position of the excision boundary (black) and the curvature singularity (red)
for the static dilatonic solutions in the case of γ = 4. Both curves reach the horizon
(blue line) at the singular configuration.

and the conjugate momenta

P = 1
α
∂tφ−

ζQ

R′(r) , Π = 1
α
∂tξ −

ζΘ
R′(r) . (3.37)

We then substituted these definitions and the ansatz for the metric in the field
equations and obtained a set of 7 evolution equations for φ, Q, P , ξ, Θ, Π, ζ, plus
2 constraint equations for α and ζ. All equations are reported in Appendix E. The
evolution equations for φ and ξ are redundant, since the profiles of the scalar fields
can be obtained using Eqs. (3.36) as constraints.

An important aspect to consider when solving systems of partial differential
equations is well-posedness, which is the requirement that the solution is unique
and depends continuously on the initial data [175]. If this condition is not satisfied,
not only it is not possible to perform the numerical integration, but the theory
itself loses predictive power; indeed, given an initial condition, the solution might
not exist, or might be dramatically affected by small variations in initial data, even
those that are within measurement uncertainties or truncation errors in numerical
computations [175,176].

Well-posedness is guaranteed by a mathematical condition called strong hyper-
bolicity [177, 178], which I will now introduce following the approach of [179, 180].
While here I will be rather informal, a more in-depth treatment on the topic of
well-posedness and hyperbolicity can be found in Refs. [175–178].

Let us consider a first-order system of N partial differential equations. We can
define the principal symbol as

PIJ(ηµ) = δEvI

δ∂µvJ
ηµ, (3.38)

where I, J ∈ {1, . . . , N}, vI schematically denotes a variable of the system of equa-
tions, EvI is an equation, and ηµ is a 4-vector.
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If there exist N linearly independent vectors l(1)
I , . . . , l

(N)
I , such that for each

m ∈ {1, . . . , N}

l
(m)
I PIJ(η(m)

µ ) = 0, (3.39)

with real η(m)
µ , then the system of equations is strongly hyperbolic. This results in

the condition that the so called characteristic equation

detP(ηµ) = 0, (3.40)

admits a complete set of real ηµ. The mere existence of real solutions to Eq. (3.40)
is instead called weak hyperbolicity. While a strongly hyperbolic system is also
well-posed, weak hyperbolicity is not sufficient to guarantee well-posedness.

For EdGB gravity it has been shown [152] that there is a region in which the sys-
tem of evolution equations and constraints in PG-like coordinates is not hyperbolic.
Such region generally appeared inside the horizon, where information propagates
inward, so it was possible to implement an excision procedure and integrate the
equations only where the system was strongly hyperbolic.

We decided to use the same approach, and therefore we derived the condition
of hyperbolicity for our set of equations following Ref. [128]. In particular, in our
case the variables are vI = (φ,Q, P, ξ,Θ,Π, α, ζ), while the EvI comprise the field
equations written in implicit form (6 evolution equations for φ, Q, P , ξ, Θ, Π, and
2 constraint for ζ, α). The determinant of P has the form

detP ∝ η2
t η

2
r

[
aξ

(
ηt
ηr

)2
+ bξ

(
ηt
ηr

)
+ cξ

][
aφ

(
ηt
ηr

)2
+ bφ

(
ηt
ηr

)
+ cφ

]
, (3.41)

where aφ, bφ, cφ, aξ, bξ, and cξ are lengthy expressions that depend on all the fields.
This determinant vanishes if η2

t η
2
r = 0, aφ

( ηt
ηr

)2+bφ
( ηt
ηr

)
+cφ = 0, or aξ

( ηt
ηr

)2+bξ
( ηt
ηr

)
+

cξ = 0. The first equation has two solutions ηr = 0, which come from the fact that
α and ζ are constrained degrees of freedom, and two solutions ηt = 0, which come
from the redundancy of the equations for ∂tφ and ∂tξ.

The second and the third equations have real solutions if the corresponding
discriminants, ∆ = b2 − 4ac, are nonnegative. In this case the solutions c± =
−
(
ηt
ηr

)
±
are given by

c
(φ)
± =

bφ ±
√

∆φ

2aφ
, c

(ξ)
± =

bξ ±
√

∆ξ

2aξ
, (3.42)

and are called characteristic speeds. In order for the system to be strongly hyperbolic
both discriminants

∆φ = b2
φ − 4aφcφ , ∆ξ = b2

ξ − 4aξcξ (3.43)

have to be positive, so that there are 4 different real characteristic speeds. We
referred to the region where this does not happen as the elliptic region, somewhat
stretching the definition, and, as I will discuss later, we removed it from the domain
of integration with an excision strategy.
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3.4.2 Initial data

Our purpose was to simulate the evolution of small perturbations of scalar fields
around initially static dilatonic BHs. To construct these initial configurations we
first used the procedures described in Sec. 3.3 to find the profiles φ0(r), Q0(r), and
ζ0(r) corresponding to a static isolated BH. Next, we initialized the dilaton as

φ(r, t = 0) = φ0(r) + δφ(r),
Q(r, t = 0) = Q0(r) + δQ(r),

P (r, t = 0) = P0(r) + δP (r) = −ζ0(r)Q0(r)
R′(r) + δP (r), (3.44)

where

δφ(r) = A0,φ
R(r)e

−
(R(r)−R0,φ)2

σ2
φ ,

δQ(r) = ∂rδφ(r),

δP (r) = δφ(r)
R(r) + ∂Rδφ(r) = δφ(r)

R(r) + 1
R′
δQ(r) . (3.45)

Similarly, since the phantom field vanishes in the background, we initialized its
perturbation as

ξ(r, t = 0) = δξ(r) = A0,ξ
R(r)e

−
(R(r)−R0,ξ)2

σ2
ξ ,

Θ(r, t = 0) = δΘ(r) = ∂rδξ(r),

Π(r, t = 0) = δΠ(r) = δξ(r)
R(r) + ∂Rδξ(r) = δξ(r)

R(r) + 1
R′
δΘ(r). (3.46)

In Eqs. (3.45)-(3.46), A0,φ and A0,ξ represent the amplitudes of the dilaton and
phantom perturbations, respectively, R0,φ and R0,ξ represent the peak value of
the Gaussian profiles, whereas σφ and σξ are the typical widths. The conjugate
momenta of the perturbations are similar to Ref. [128]. With this choice, the wave
packets are approximately inward moving.

We then integrated the constraints with the fourth-order accurate Runge-Kutta
method, starting from the first grid point outside the horizon and moving both
outward and inward. We assumed that the perturbations of both fields were far
enough from the horizon that we could consider the metric to be initially unper-
turbed in that region, and we started the numerical integration using the value of
ζ obtained from the shooting procedure. Initially we set α = 1, and at the end of
the initialization process we rescaled it in such a way that α(r∞) = 1, where r∞ is
the outermost grid point.

The fourth-order accurate Runge-Kutta method requires evaluating the right-
hand side of the equations in intermediate grid points. In order to obtain the values
of the dilatonic field in these points we constructed the static BH solution using a
double resolution compared to that required by the numerical evolution. Namely,
if we wanted the grid step of the numerical evolution to be ∆r, we performed the
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shooting procedure with ∆r
2 as a grid step, and we used half of the grid points

as intermediate values for the Runge-Kutta method. We then discarded them at
the end of the initialization procedure. We evaluated ∂rQ and ∂rP on the right-
hand side of the constraints by applying the fourth-order accurate centered finite
differences scheme on the data from the shooting procedure, i.e., using the profiles
obtained with grid step equal to ∆r

2 .

3.4.3 Numerical evolution algorithm

We performed the numerical integration with the method of lines, using the fourth-
order accurate Runge-Kutta method for the time integration, and the fourth-order
accurate finite differences method for computing the radial derivatives. In partic-
ular, at each step of the time integration we used Eqs. (E.1)-(E.7) to evaluate the
intermediate profiles of φ, Q, P , ξ, Θ, Π, and ζ required by the Runge-Kutta method,
and we performed a fourth-order accurate numerical integration of Eq. (E.10) to
obtain the profile of α.

This latter numerical integration could not be performed using the Runge-Kutta
method, as it requires the evaluation of the fields in intermediate grid steps, whereas
in our setup the fields are only defined on the grid points. Nevertheless the constraint
for α can schematically be written as

∂rα

α
= L[R,φ,Q, P,Θ,Π, ζ], (3.47)

where L does not depend on α. The solution then reads

α(r) = exp
[
lnα(r∞) +

∫ r

r∞
Ldr

]
, (3.48)

where α(r∞) is given by the boundary conditions on the outermost grid point. We
computed the integral in the above equation using the trapezoidal rule when r and
r∞ were adjacent grid points, and with a combination of the Simpson’s rules in the
other cases. In this way we obtained an accuracy of order four in all the numerical
grid except in the last grid step.

We used an excision procedure to remove the region where the system was not
hyperbolic. The strategy was similar to the one used in Ref. [152]: at the end of each
time step we computed the discriminants (3.43), we found the outermost radius in
which at least one of the two was nonpositive, and then we excised the region in the
interior. The field equations were not evolved in the excised region, thus the radius
of the excision boundary Re could not decrease, but would at most have remained
constant if the elliptic region shrunk.

We also monitored the evolution of the apparent horizon, which is located at
the coordinate radius rh where the expansion vanishes, θ(l)(rh) = 0. We estimated
rh using a linear interpolation. Since the results of the numerical integration lose
physical meaning when an elliptic region appears outside the BH6, we stopped the
simulation if the apparent horizon entered in the excision boundary.

6Note, however, that since the apparent horizon does not coincide with the event horizon in
dynamical situations, the emergence of an elliptic region outside the apparent horizon is not nec-
essarily pathological. In other words, it is not possible to exclude in general that an elliptic region
outside the apparent horizon would remain confined within the event horizon.
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Finally, we implemented a fifth-order Kreiss-Oliger dissipation scheme in order
to stabilize the integration algorithm against high-frequency modes arising from the
inner- and near-horizon region. The action of the dissipation term was restricted
to the central region by means of a weighting function ρ(r). Specifically, if we
schematically denote a generic variable with u, we added to the right-hand side of
each evolution equation the term Qu contained in Appendix C of Ref. [181], which
we expressed as

Qu = ηKO
64 ∆t

(
∆r)6(D3

+
)
ρ
(
D3
−
)
u, (3.49)

where ηKO is a constant, ∆r is the grid step, ∆t is the time step, ρ = ρ(r) is the
weighting function, and D± are the operators of first-order numerical differentiation
with the one-sided finite difference scheme. In particular, we used ηKO = 0.1 and

ρ(r) = 1
1 + e5 (R(r)−5) . (3.50)

Since the computation of the numerical derivatives in Eq. (3.49) requires three
grid points on each side, we did not use the dissipation term in the three grid points
near each boundary of the domain of integration.

3.4.4 Boundary conditions

We did not impose conditions at the excision boundary, since it lied always inside
the horizon, where information propagates inward. We only used the upwind dif-
ferentiation scheme in the first two grid points outside the excision, while we used
the centered scheme in the rest of the grid.

At the outer boundary we imposed α(r∞) = 1, and we kept all the other variables
constant in the outermost three grid points, which were used only for computing the
numerical derivatives. We could do this since we used numerical grids large enough
that the signals coming from the outer boundary did not reach the horizon region
we were interested in. Actually, in the code the condition α = 1 was imposed at
the first point in which the time integration was performed (the fourth outermost
grid point), however the errors introduced in α were of order 1

R2 and did not affect
the accuracy of the code at late times, as we can see from the results of the test
simulations reported in Appendix F.

We tested our implementation of the integration algorithm by checking the scal-
ing of the violation of the constraint for ζ. Our code appeared to be accurate and
reliable for the evolution of a static dilatonic BH and for the collapsing scenarios
discussed in the next sections. The results of the convergence tests are presented in
Appendix F.

3.5 Results
I now turn to describe our simulations of the spherical collapse of wave packets on
static dilatonic BHs in EdGB gravity. In Secs. 3.5.1 and 3.5.2 I discuss the case
of dilatonic perturbations onto BHs in the upper and lower branch, respectively.
In Secs. 3.5.3, 3.5.4, and 3.5.5 I consider different setups of phantom perturbations
that reduce the BH mass, thus mimicking BH evaporation at the classical level. Let
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Figure 3.8. Profile of the dilaton φ at the end of the simulation of the collapse of a dilaton
wave packet on a static BH in the upper branch. The blue curve is obtained at the
end of the numerical evolution while the orange curve is obtained from the shooting
procedure initialized with the horizon data at t = T .

me remind that we used units such that the horizon areal radius of the initial BH
is Rh(t = 0) = 2, which corresponds to setting the initial BH mass to unity in the
GR limit.

3.5.1 Collapse of a dilaton field on a BH in the upper branch

Let me first discuss the case of an initial dilatonic BH in the upper branch. We set
the coupling constant to λ = 0.01536, and we constructed the initial data using the
procedure described in Sec. 3.4.2. The parameters Aφ, Rφ, and σφ were set to

A0,φ = 0.02, R0,φ = 15, σφ = 0.5, (3.51)

while Aξ = 0, which implies that the phantom field was always zero in this case.
The outer boundary was placed at R∞ = 520, the final simulation time was set to
T = 500, and the grid step to ∆r = 0.01, with a CFL factor CFL = ∆t

∆r = 0.025. 7

Since the upper branch is expected to be linearly stable [143], after the dilaton
wave packet is absorbed the BH mass should increase, and the end state of the
numerical simulation should be approximated by a (slightly heavier) static dilatonic
configuration in the upper branch. In order to check this we initialized the shooting
algorithm described in Sec. 3.3 with the horizon data at the end of our simulation
(t = T ), and constructed a static dilatonic BH solution. We then compared it with
the profile of the dilaton at the end of the simulation, see Fig. 3.8. The profile
obtained by the shooting procedure (orange curve) is in excellent agreement with
that obtained at the end of the numerical evolution (blue curve), except in the outer
region. This is consistent with the fact that the information of the absorption of
the pulse has not yet reached the outer boundary.

7This small CFL factor was required by the fact that near and inside the horizon the areal
radius step ∆R was approximately 20 times smaller than ∆r.
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Figure 3.9. Evolution in the Rh−MMS plane for the collapse of a dilaton wave packet on
a BH in the upper branch. The blue curve is the domain of existence of static dilatonic
solutions, while the blue point represents the static BH configuration that approximates
the end state of the numerical evolution.

In Fig. 3.9 I show the evolution of the system during the simulation in the
Rh −MMS plane. The point corresponding to the initial configuration (red circle)
is on the right of the domain of existence of static dilatonic BH solutions (blue
curve), since the wave packet of the dilaton adds a positive contribution to the
total Misner-Sharp mass. The initial (isolated) BH solution is marked by an empty
circle, connected to the red one by a horizontal dotted line. The blue full circle
represents the static configuration that approximates the end state of the numerical
integration. It is clear that the final state of the evolution is in the upper branch,
providing a first numerical confirmation of the stability of this family of solutions
at the fully nonlinear level.

3.5.2 Collapse of a dilaton field on a BH in the lower branch

We then performed a set of four simulations of the same type with different values
of the coupling constant λ in the range [0.01554, 0.0156]. In this regime, there
are two BH solutions for each mass, and we considered those in the lower branch
(i.e., with smaller radii) as initial configurations. These solutions should be linearly
unstable [143].

We considered a dilaton wave packet with parameters

A0,φ = 0.01, R0,φ = 15, σφ = 2.5. (3.52)

We used a grid that extends up to R∞ = 2850, with a grid step ∆r = 0.02. The
total integration time was set to T = 2800.

In Fig 3.10 I show the evolution of the systems in the Rh − MMS plane. In
this case the BHs in the lower branch migrate toward the upper branch, hinting at
the instability of the former and stability of the latter at the fully nonlinear level.
The dynamics of the transition is shown in Fig. 3.11, which contains a plot of the
evolution of the apparent horizon areal radius. After the absorption of the wave
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Figure 3.10. Same as in Fig. 3.9 but for the simulations starting from dilatonic BHs in
the lower branch. These solutions are unstable and migrate toward stable static BH
configurations in the upper branch.

packet, Rh increases with time and approaches a constant value, which corresponds
to the horizon radius of the final stable BH configuration. Interestingly, when
the wave packet enters in the BH, the horizon areal radius experiences a strong
oscillation which is visible at early times. Such behavior is due to the fact that
the wave packet, being of dilatonic type, is subject to the nonminimal coupling.
To verify this we performed a simulation in which the transition is induced by
means of a minimally coupled scalar field, using the code developed for the analysis
in Sec. 3.5.5. We obtained that when the wave packet is absorbed by the BH, the
horizon areal radius only increases slightly, and the oscillation appearing in Fig. 3.11
is not produced.

3.5.3 Collapse of a phantom field on a dilatonic BH

I now move to discuss the dynamics of dilatonic BHs under a mass loss due to
absorption of the phantom field. Let me stress that the role of the phantom field
was solely to mimic the mass loss due to BH evaporation at the classical level, but
after the absorption of the initial perturbation the evolution was governed only by
the nonlinear dynamics of the theory, and the Hawking radiation was not taken
into account anymore during the simulation. This allowed us to dynamically reduce
the BH mass below the critical value, and investigate the intrinsic behavior of the
classical theory in this peculiar regime.

One might be concerned by the fact that a phantom field can lead to patho-
logical dynamics, but this is not the case in spherical symmetry. Indeed, in this
case the phantom field does not induce runaway instabilities due to the absence
of gravitational-wave emission. We checked this point by performing test simula-
tions of the spherical collapse of a phantom field onto a Schwarzschild BH in GR
(see Appendix F). In this case the phantom perturbation is simply absorbed by the
BH, which settles down to a stable Schwarzschild solution with a slightly smaller
mass (and smaller horizon). Note that here the second law of BH thermodynamics
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Figure 3.11. Evolution of the apparent horizon for a dilatonic perturbation on an initially
static BH in the lower branch, showing the dynamics of the transition from the lower
(unstable) to the upper (stable) branch.

is violated even in GR, since the phantom field does not satisfy the null energy
condition.

We performed different simulations choosing the coupling constant

λ = {0.01543, 0.01545, 0.01547, 0.01549, 0.01551}, (3.53)

which correspond to Rh/
√
λ = {16.10, 16.09, 16.08, 16.07, 16.06}. The parameters

of the initial phantom perturbation (see Eq. (3.46)) were set to

A0,ξ = 0.01, R0,ξ = 15, σξ = 2.5. (3.54)

The initial BH was always in the upper branch, and when λ = 0.01551 the total
Misner-Sharp mass at the beginning of the simulation was slightly smaller than the
critical mass. The outer boundary was at R∞ = 2850, the grid step was ∆r = 0.02,
and the final time of integration was T = 2800. The CFL factor was again set to
0.025.

The results of the simulations are shown in Fig. 3.12, in which we can see that
the BH reaches a final stable configuration as long as the total mass in the spacetime
at t = 0 is larger than the critical value. For λ = 0.01551 the situation changes
dramatically. In this case the apparent horizon shrinks significantly until it crosses
the excision boundary and the simulation ends.

In this specific case we repeated the numerical integration at different resolu-
tions: ∆r = {0.01, 0.005, 0.0025}, see Sec. 3.5.4. In Fig. 3.13 I show the dynamics
of the apparent horizon and of the excision boundary using the highest resolution.
During the last stages of the simulation, the horizon shrinks increasingly fast8, and
at the same time, the excised region expands at a similar pace. Eventually, they
cross each other, and the simulation ends.

8Note that the small phantom field is accreted in ≈ 10 (in our units). Therefore, as discussed
in more detail below, the dramatic shrink shown in Fig. 3.13 at much later times is entirely due to
the intrinsic (nonperturbative but classical) dynamics of the theory past criticality, regardless of
the details of the phantom-field accretion.
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Figure 3.12. Collapse of a wave packet of the phantom field on different dilatonic BH
configurations in the upper branch. The BH reaches a final stable configuration as long
as the total mass in the spacetime at t = 0 is above the critical value Mcrit ∼ 8.244
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Instead, when λ = 0.01551 the apparent horizon shrinks significantly and the excised
region expands, until it emerges out of the apparent horizon and the simulation ends,
see Fig. 3.13.
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Figure 3.13. Evolution of the apparent horizon and excision boundary for the accretion
of a phantom wave packet on a dilatonic BH in the subcritical case. After the initial
absorption of the wave packet, on a much longer time scale the apparent horizon shrinks
and the excised region expands, until they cross each other. The simulation ends as
soon as this happens, due to the presence of elliptic regions outside the BH.
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Figure 3.14. Contour plot of the Ricci scalar near the BH region for the simulation
that passes the minimum BH mass. The black region is the excised region, and the
gray region has been excluded from the computation to avoid inconsistencies due to
the change of derivation and dissipation schemes near the excision boundary. The
level curves of R follow the behavior of the excision boundary, and the region of high
curvature expands. In the left panel I show the full evolution, while in the middle and
right panels I focus on the region where the apparent horizon is about to cross the gray
area.

3.5.4 Naked singularity formation in EdGB gravity?

Since in the final time steps of the mass-loss evolution past the critical mass the
apparent horizon is rapidly shrinking, it is interesting to understand whether it
crosses the singularity, thus violating the weak cosmic censorship [46]. Furthermore,
as previously discussed, in the static case the curvature singularity is always inside
the elliptic region, and thus it is natural to ask whether the expansion of the elliptic
region9 is related to the curvature singularity moving outward.

To address this point, in Fig. 3.14 I show the spacetime evolution of the Ricci
scalar R in this simulation. The black area is the excised region, while the gray area
contains the first 3 grid points in the hyperbolic region. We decided to exclude this
region from the computation of R in order to avoid possible inconsistencies due to
the change of the derivation and dissipation schemes.

The curvature at the horizon is modest at the beginning of the simulation
(R(rh, t = 0) ≈ 0.0089). However, by the time the apparent horizon crosses the
excision (in fact, already when it crosses the gray area in Fig. 3.14), the Ricci scalar
at the apparent horizon has grown by a factor ≈ 58 compared to its initial value.
This indicates that the apparent horizon is approaching the curvature singularity.
It is important to note, however, that the Ricci scalar remains finite throughout the
simulation, as the curvature singularity, where R diverges, is outside the domain
integration.

We have performed this simulation with different spatial resolutions (∆r =
{0.02, 0.01, 0.005, 0.0025}), finding that the curvature converges well until t = 2569.0.
This is shown in Fig. 3.15, in which I present the radial profile of the Ricci scalar at
different time snapshots and for different resolutions. As a reference, at t ≈ 2569.6
the apparent horizon has crossed the excision boundary, i.e. only 0.6 after the last

9The elliptic region is always inside the excised region, and since the excised region cannot
shrink, we do not know the real dynamics of the elliptic region. However, the evolution of the
excision boundary is governed by the discriminants (3.43); therefore, if the radius of this boundary
increases, then also the elliptic region is expanding.
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Figure 3.15. Radial profile of the Ricci curvature for the same simulation shown in
Fig. 3.14 using different resolutions. Each panel shows a different time snapshot very
close to the end of the simulation (as a reference, the apparent horizon has crossed the
gray region in Fig. 3.14 at t ≈ 2569.6). Dashed vertical lines denote the outer boundary
of the gray region in Fig. 3.14, so the elliptic region starts close on their left. Overall,
as the apparent horizon approaches the elliptic region an increasingly higher resolution
is required to make the curvature converge. Furthermore, the curvature dramatically
grows before the simulation stops.

snapshot of the bottom panel10. Our results show that the curvature when the
apparent horizon crosses the gray region grows as the grid step decreases. This
suggests that a large curvature region located just across the excision is emerging
out of the apparent horizon.

An important point is that the apparent horizon is foliation dependent and, in
highly dynamical configurations, it does not generically coincides with the event
horizon. Furthermore, due to the violation of the null energy condition [88] in
EdGB gravity the GR theorem [112] proving that the apparent horizon, if it exists,
should always be enclosed by the event horizon does not necessarily apply. However,
due to the breakdown of hyperbolicity, the future null infinity of the spacetime
might not be complete, leading to difficulties in defining the event horizon. In this
regard, we took an operational approach, defining it as the surface where future
directed null geodesics converge when traced backwards in time. To explore the
dynamics of the event horizon, we then proceeded as follows (see, e.g., Ref. [182]
for a similar computation in a different context). For a given null tangent vector
nµ, we computed the null geodesic equation by solving nµnνgµν = 0. In PG-like

10As a further check of our code, we have computed the Ricci scalar R by replacing the field
equations in its definition both at the analytical and numerical level. The two computations give
the same result.
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Figure 3.16. Left panel: ray tracing for the simulation showed in Fig. 3.14 to find the
event horizon, which corresponds to the surface where the geodesics converge. The
event horizon tracks the apparent horizon and shrinks in time toward higher-curvature
regions. The fact that the event horizon is within the apparent horizon is a feature of
EdGB gravity but is not generic. This is shown in the right panel for a transition from
the unstable to the stable branch (rightmost simulation in Fig. 3.10). In this case the
event horizon is slightly outside the apparent horizon, as in GR.

coordinates, this translates into

d r(t)
d t

= −α(t, r)
R′(r) (ζ(t, r)− 1) , (3.55)

for outgoing rays described by the radial coordinate r = r(t). We solved this
equation backward in time with initial condition r(tF ) = rF where tF is near the
final time of our simulation (which does not necessarily correspond to a stationary
configuration) and rF is a free parameter. The result is presented in the left panel of
Fig. 3.16. This shows two interesting features: i) in the last stages of the simulation
the event horizon is inside the apparent horizon; this effect is forbidden in GR and
it is due to the GB coupling;11 ii) the event horizon shrinks in time following the
same behavior as the apparent horizon, probing regions of increasing curvature.

Intrigued by the fact that the event horizon is located inside the apparent hori-
zon, we performed ray tracing also in other configurations. First of all, already for
the same aforementioned simulation we noted that the event horizon and the appar-
ent horizon coincide at times earlier than those shown in the left panel of Fig. 3.16.
This is because the dynamics is initially slow. Furthermore, when the dynamics is
less extreme, the behavior of the event horizon is more similar to what is expected
in GR. This is shown in the right panel of Fig. 3.16, in which I present the ray trac-
ing for a transition from an unstable BH in the lower branch to a stable BH in the
upper branch (rightmost simulation in Fig. 3.10). The event horizon approximately
tracks the apparent horizon also in this case, but it is (slightly) outside of it, as in
GR.

Since the curvature singularity is always located inside the excised region, our
simulations cannot access the region where R actually diverges12. Nonetheless,

11Note that the phantom field is tiny at late times, since it is initially already small and soon
gets absorbed by the BH. Thus, the phantom perturbation cannot be responsible for the different
dynamics of the horizons at late times.

12Note that for the minimum-mass solution the curvature singularity is initially already very
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Figure 3.17. Left panel: analog of Fig. 3.12 for a simulation of a pair of negative- and
positive-energy wave packets onto a dilatonic BH near the critical mass. As in the
leftmost evolution shown in Fig. 3.12, the BH mass decreases past criticality upon
accreting the phantom perturbation, triggering a runaway instability on much longer
time scales. Right panel: some time snapshots of the Misner-Sharp mass function,
mMS(R), for the same simulation. While the Misner-Sharp mass decreases near the BH
due to the accretion of the phantom field, as the ordinary field χ moves outward it gives
an outgoing positive contribution to the mass function.

it is important to note that the level curves in Fig. 3.14 follow the trajectory of
the excision boundary, suggesting that also the radius of the curvature singularity
increases during the evolution. Although our formalism is limited, these results
might suggest that a naked singularity can form as the outcome of BH evaporation
in EdGB gravity. I will come back to this point in the concluding discussion in
Chapter. 5.

3.5.5 Emulating Hawking pair production: negative- and positive-
energy wave packets emitted near a dilatonic BH

In the simulations discussed so far, we have emulated BH mass loss through the
accretion of a phantom perturbation. This was a trick to mimic one of the salient
features of Hawking evaporation at the classical level. However, Hawking emission
can also be roughly interpreted as pair creation of entangled particles near the
horizon [183], with one (“positive-energy”) particle escaping to infinity and the
other (“negative-energy”) particle falling inside the BH and decreasing its mass. In
order to emulate Hawking pair production more closely, we considered an extended
setup in which we evolved two wave packets initially located near the horizon of a
dilatonic BH. In particular, besides “vacuum” EdGB gravity, the matter content of
the model is described by the action

Smatter = 1
16π

∫
Ω
d4x
√
−g

((
∇ξ
)2 − (∇χ)2) , (3.56)

where ξ is again the phantom field (that emulates the negative-energy Hawking
quantum), while χ is a new minimally-coupled scalar field that emulates the positive-
energy Hawking quantum.

close to the outer boundary of the elliptic region, see Fig. 3.6, so the high-curvature region is just
across the boundary of the elliptic region.
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Figure 3.18. Analog of Fig. 3.13 but for the case of a pair of phantom field ξ and ordinary
scalar field χ. Solid and dashed curves correspond to the apparent horizons and excision
boundaries, respectively. Regardless of the presence of χ and of the details of the initial
phantom field, the dynamics is very similar and, on long time scales, leads to a shrink
of the apparent horizon and to the formation of a naked elliptic region.

For concreteness, I will present the simulation of a dilatonic BH near the critical
configuration to which we added two Gaussian perturbations. For ξ we used the
profile in Eq. (3.46), while we initialized χ with the profile

χ(r, t = 0) = δχ(r) = A0,χ
R(r)e

−
(R(r)−R0,χ)2

σ2
χ ,

Y (r, t = 0) = δY (r) = ∂rδχ(r),

H(r, t = 0) = δH(r) = −δχ(r)
R(r) − ∂Rδχ(r) = −δχ(r)

R(r) −
1
R′
δY (r), (3.57)

where Y := ∂rχ and H := 1
α∂tχ −

ζ Y
R′(r) is the conjugate momentum of the scalar

field χ. With these choices the initial perturbation of the phantom field ξ is (ap-
proximately) ingoing whereas the initial perturbation of the ordinary field χ is
(approximately) outgoing.

The parameters of the profiles (3.46) and (3.57) are set to

Aξ = 8× 10−4 , R0,ξ = 2.1 , σξ = 0.02 , (3.58)
Aχ = 7× 10−3 , R0,χ = 2.1 , σχ = 0.02 . (3.59)

In this way the pulses are generated inside the BH photon-sphere (located at R ≈
3.05 for an almost critical configuration) and close to the horizon (initially located at
RH = 2), but the scalar perturbations approximately vanish on it. The amplitudes
are chosen in such a way that the total Misner-Sharp mass is approximately the
same as the one of the initial BH, but when the phantom field is absorbed the
BH mass decreases below the critical value by an amount similar to those of the
simulations presented in the previous sections. We also tried different choices for the
wave-packet initial location (e.g., inside and outside the photon-sphere) and width,
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Figure 3.19. Analog of Fig. 3.14 but for an ingoing phantom perturbation and an outgoing
standard field perturbation both starting near the horizon (which would more closely
mimic the production of a Hawking quantum pair), see main text for details.

the latter parametrizing the frequency content and hence – within the Hawking pair
emission analogy – the temperature scale of the evaporating BH. We used a grid step
∆r = 0.005 since, as we can see from Fig. 3.15, this is sufficient to obtain results
accurate enough for our purposes. In all cases we obtained the same qualitative
features as presented below.

Overall, we observed a very similar dynamics as that presented in Sec. 3.5.3 for a
single phantom perturbation. As an example, in the left panel of Fig. 3.17 I show the
equivalent of Fig. 3.12 but for this setup with a pair of negative- and positive-energy
wave packets. In this case the Misner-Sharp mass shown on the horizontal axis is
evaluated at R = 500 so for t & 500 it represents the BH mass without the (positive)
contribution of the outgoing field χ. The behavior is qualitatively the same as
previously reported: due to the absorption of the small phantom perturbation, the
BH mass immediately goes slightly past criticality, where no static BH solutions
exist. On much longer time scales, the horizon starts shrinking. The behavior of
the Misner-Sharp mass function, mMS(R), at different time snapshots is shown in
the right panel of Fig. 3.17, from which it is evident that the BH mass decreases
upon accreting the phantom field ξ, whereas the (positive-energy) contribution of
the ordinary field χ moves outward as this wave packet reaches infinity.

To further support the generality of this dynamics, in Fig. 3.18 I compare the
dynamics of the apparent horizon and excision boundary for two simulations with
and without the initial perturbation of the ordinary field χ, showing that the qual-
itative behavior already presented in Fig. 3.13 – in particular the formation of a
naked elliptic region – is the same. This was expected since, as discussed above,
there exists a hierarchy of scales between the accretion of the phantom field (reduc-
ing the BH mass past criticality) and the formation of a naked elliptic region. The
latter occurs when the small phantom field perturbation has been already accreted
and cannot play any role in the late-time dynamics. Indeed, the shrinking of the
horizon and the appearance of a naked elliptic region are entirely due to the intrin-
sic, nonperturbative, dynamics of the theory triggered by going past the critical BH
solution.

Finally, in Fig. 3.19 I show the analog of Fig. 3.14 in this setup with a pair
of negative- and positive-energy wave packets. The striking similarity between
Figs. 3.14 and 3.19 confirms that the late-time dynamics does not depend on the
details of the BH mass loss past criticality.



70

Chapter 4

Nonlinear plasma-photon
interaction and the black hole
superradiant instability

In this chapter I will present the work that I did in collaboration with Enrico Can-
nizzaro and Prof. Paolo Pani [45], in which we simulated the nonlinear interaction
between an electromagnetic (EM) wave packet and a plasma barrier, being inter-
ested in application to the superradiant instability.

I will start in Sec. 4.1 introducing the superradiant instability 1 and in Sec. 4.2 I
will specialize to the plasma-driven scenario, discussing the issue of nonlinear effects.
Then I will start describing the core of our work. In particular, in Sec. 4.3 I will
derive the set of evolution equations and constraints for a system composed by the
EM field and plasma, which is treated as a fluid, while in Sec. 4.4 I will describe our
numerical setup. The results of the simulations will be presented in Sec. 4.5, and
their implications for the plasma-driven superradiant instability will be discussed
in Sec. 4.6.

4.1 Introduction to the black hole superradiant insta-
bility

The extraction of energy from physical systems by means of amplification of radia-
tion, called superradiance, is a transversal phenomenon that appears different areas
of physics, both in the classical and the quantum world. Indeed, while the term
superradiance was coined in a work from 1954 by Robert Dicke in the context of
quantum optics [184], the occurrence of this phenomenon in classical systems like
BHs has attracted considerable interest from the gravity community.

The starting point of this latter line of research can be placed in the early
’70s, when Zel’dovich [97, 98], found that cylindrical electromagnetic waves can be
amplified by an absorbing rotating cylinder provided that the condition

ω < mΩ (4.1)
1Clearly the topic is very broad, and while here I will briefly touch many aspects, an in-depth

review can be found in Ref. [72].
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is met. Here Ω is the angular velocity of the cylinder, ω is the frequency of the wave
and m its azimuthal number.

In order to get a sense of this condition it is worth considering the following ar-
gument by Zel’dovich. Intuitively, in order to have amplification one should require
the velocity of the cylinder to be larger than the phase velocity of the wave. This
can be achieved thanks to the cylindrical symmetry of the system: the presence of
a multipole moment decreases the angular phase velocity to ω

m , so that it can be in
principle lower than Ω, and the condition for this to happen coincides exactly with
Eq. (4.1).

In the same seminal papers, Zel’dovich observed that the same phenomenology
occurs also for Kerr BHs, with the event horizon playing the role of the absorbing
surface of the cylinder, and with Ω in the superradiant condition (4.1) being the
angular velocity of the horizon. This scenario was then investigated by Teukolsky
and Press, who computed the amplification factors for gravitational and EM waves
scattering off a Kerr BH, obtaining that in general this quantity decreases with m,
with the maximum value being 138% and 4.4% for the gravitational and EM fields
respectively [99].

The possibility of extracting energy from a BH is extremely interesting, as it
can be basis of previously unknown macroscopic processes involving BHs and fun-
damental fields. In this context, a remarkable example if the so called BH bomb, a
phenomenon occurring in a gedanken experiment devised by Press and Teukolsky
in their seminal paper [100]. If a rotating BH is surrounded by a mirror, a wave
packet undergoing superradiant scattering close to the BH will not be able to es-
cape to infinity, but will be reflected back and amplified via superradiance multiple
times. This results in an exponential growth of the field energy that can lead to the
explosion of the mirror.

While at first one might be tempted to think that this process cannot have phe-
nomenological applications, as it is not possible to place a mirror around a BH, it
was soon realized that there exist in nature systems exhibiting a mirror-like behav-
ior. It is the case of a massive scalar field [101]: intuitively, the effective potential
of the massive field possesses a well that acts as a cavity where modes satisfying
the Eq. (4.1) can be exponentially amplified. More formally, it was shown that in
the limit GµM

~c � 1, where µ is the scalar field mass and M is the BH mass, the
Klein-Gordon equation on a Kerr background can be written in a Schrödinger-like
form that is similar the one of the hydrogen atom, and possesses bound-state solu-
tions that are unstable when the superradiance condition is met [102]. Extending
these results to a wider range of masses it has been found that when GµM

~c � 1
the instability is suppressed [185], and the largest growth rate of the scalar field
occurs for GµM

~c . 0.5, meaning that the instability is more efficient when the re-
duced Compton wavelength of the scalar field λC = ~

µc is comparable to the BH size
RBH ∼ GM

c2 [186].
Over the years also higher spin massive fields have been analyzed with various

techniques, and it was shown that superradiant instability occurs also for vector
[187–192] and tensor [193,194] fields.

This behavior appears therefore to be generically related to the presence of mas-
sive bosons around rotating BH spacetimes, and leads to a rich variety of possible
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observational consequences. In particular, energy and angular momentum extrac-
tion from the BH via superradiance can take place until the angular velocity of
the horizon decreases below ω/m and the condition (4.1) ceases to be valid, leav-
ing a BH surrounded by a boson cloud [195–204] that can then emit gravitational
waves [205–218].

Moreover, given the ability of superradiance to reduce the BH spin, one should
not expect to observe BHs with parameters corresponding to a sufficiently fast in-
stability time scale. As a result, experimental observations of BHs should populate
the Regge plane (i.e. the plane J/M2 vs M , where J and M are the BH angu-
lar momentum and mass respectively) in a non-uniform way, producing “holes”
in regions determined by the characteristics of the bosonic field under considera-
tion [187,188,190,194,195,205,209,211,215,217].

These are only two possible detectable effects, and do not exhaust the huge
impact of the presence of the boson cloud on BH phenomenology, which includes,
e.g. , modifications in the BH shadow [219–226] and in the dynamics of binary
systems [227–239].

The relevance of these effects is maximized in configurations for which the super-
radiant instability is most efficient, i.e. when GµM

~c ≈ 0.5, that results in values of µ
that go as µ ≈ 0.5 ~c

GM ∼ 10−10
(
M�
M

)
eV
c2 . Bosonic field with such small masses arise

in different contexts, as a solution of the strong CP problem in QCD [240–242], as
dark matter candidates [243–245], and also in string theory [195,246–248]. Therefore
the eventual detection (or absence of detection) of observational signatures of the
presence of a boson cloud can be used to constrain the existence of such ultralight
bosons [187,188,190,194,209,211,212,217,249–263]. This means that superradiance
can not only give us interesting information about the structure of BHs and their
interaction with external fields, but also provide a new way to test physics beyond
the Standard Model.

4.2 Triggering the superradiant instability with plasma
Another interesting way of triggering the superradiant instability is by means of
plasma. Indeed photons behave as effectively massive particles when propagating
into plasma, and can therefore be subject to the confining mechanism discussed in
the previous section. Starting with a with a brief overview of the necessary plasma
physics concepts, here I will introduce the plasma-driven superradiant instability
and then discuss the issue of nonlinear effects.

4.2.1 Plasma frequency and dispersion relation for the photon

Plasma is a state of matter in which atoms are ionized, and presents characteristics
similar to the ones of a globally neutral gas. Its components, electrons and ions, are
subject to the electromagnetic interaction and, having charges with opposite sign,
tend to dynamically create disomogeneities in the charge density at the local level.

At the first level of approximation, in order to study the behavior of plasma,
one may consider a homogeneous system in which ions and electrons have constant
number densities, ne = n(ions). By studying linear perturbations to this system one
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finds that charge density perturbations are characterized by a typical oscillation
frequency, called plasma frequency, which is given by [103,104]

ωp =

√
nee2

ε0me
, (4.2)

where e is the elementary charge, ε0 is the vacuum permittivity, and me is the
electron mass.

Moreover, when studying the propagation of electromagnetic waves through
plasma in the same linear regime, one finds the following interesting dispersion
relation [104]

ω2 = c2k2 + ω2
p, (4.3)

where c is the speed of light, while ω and k are respectively the frequency and the
wave vector of the electromagnetic wave. As we can see, the plasma frequency plays
the role of an effective mass for the photon, and when considering the superradiance
scenario, this can give rise to the instability described in Sec. 4.1.

To better appreciate how this can take place, we can consider the case of an
electromagnetic wave impinging on a barrier of plasma. If the frequency of the
wave ω is larger than the plasma frequency ωp, then the wave vector can take
real values and the wave can propagate trough the barrier. On the other hand, if
ω < ωp, then k takes imaginary values, that correspond to an exponential damping
of the fields inside the barrier [104] and a reflection of the wave. Imagining this as
a rudimentary description of the interaction between the plasma surrounding a BH
and an electromagnetic wave that has undergone a superradiant scattering process,
we see that in the regime ω < ωp the system exhibits the mirror-like behavior that
can trigger a superradiant instability.

4.2.2 Superradiant instability

The existence of an effective mass for the photon, however, does not guarantee that
the superradiant instability is efficient enough to be observed, but we have the ad-
ditional requirement that µ ≈ 10−10

(
M�
M

)
eV
c2 , which results in ωp = 105

(
M�
M

)
rad
s .

Conlon and Herdeiro [107] noticed that for stellar mass BHs (M ≈ 1 ÷ 100M�)
this optimal value can be reached in intracluster environments where ne ≈ 10−3 ÷
10−2cm−3, as ωp ≈ 103

√
ne

10−3cm−3
rad
s , and they also considered the interesting

possibility that BHs undergoing plasma-driven superradiant instability in these en-
vironments are the source of the observed Fast Radio Bursts. Moreover, plasma is
present also in the early Universe, and Pani and Loeb [106] have studied how the
eventual superradiant instability of primordial black hole can alter the spectrum of
the cosmic microwave background.

These studies were performed approximating the EM field as a Proca field with
constant mass ωp, and while the results already show the potential relevance of
this phenomenon, the approach used suffers mainly from two limitations. Firstly,
as noted in [108], Proca waves have three propagating degrees of freedom, two
transverse and one longitudinal, while an EM wave propagating in a cold plasma has
only two propagating degrees of freedom, since the longitudinal one is electrostatic.
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Secondly, while the assumption of a constant ωp holds for a homogeneous plasma, it
might be not valid for the more complex density profiles that appear when accretion
is included.

In order to address this latter issue, Dima et al. [264] performed numerical
simulations of the superradiant amplification with a varying plasma frequency, using
a toy model in which the EM field was replaced by a massive Klein-Gordon field.
Cannizzaro et al. [108,109], instead, carried out a linear analysis in which they used
the Maxwell’s equations and a fluid description for the plasma, finding quasibound
states that become unstable when the superradiance condition (4.1) is met, even in
the case of a spatially-dependent ωp.

4.2.3 Nonlinear regime

While linear studies show that plasma is capable of triggering a superradiant insta-
bility, the presence of an exponential growth of the electromagnetic field demands
to investigate the impact of nonlinear effects in this process.

This was first done in Ref. [110] where it was pointed out that at the nonlinear
level circularly polarized transverse EM waves can propagate in a homogeneous
plasma even if [111]

ωp

(
1+
(

eE

mecω

)2)−1/4

< ω < ωp, (4.4)

where E is the amplitude of the electric field. This effect, called plasma trans-
parency, can be viewed as due to the fact that electrons are accelerated to relativis-
tic speed by the electric field, and their relativistic mass increases, resulting in an
effective reduction of the plasma frequency to

ωp →
√√√√√ nee2

meε0

√
1 +

(
eE
mecω

)2
. (4.5)

Eq. (4.4) can also be translated into a lower threshold for E above which radiation
is able to propagate through plasma:

E > Etrans
crit = mec

e

√
ω4
p

ω2 − ω
2, (4.6)

where, here and in the rest of the thesis, ωp =
√

nee2

meε0
as a convention.

This poses a bound on the amount of energy that can be extracted via plasma-
driven superradiant instability, since confinement of radiation is possible only for
small values of E, and as soon as it reaches the critical value Etrans

crit the plasma will
become transparent, dispersing the accumulated EM energy to infinity.

This is not the only mechanism that can quench the amplification process [265],
but is the most relevant, and can severely limit the possibility of detecting obser-
vational signatures of the superradiant instability, as it come into play when only a
small amount of energy has been extracted from the BH [110].

Even though such an argument shows exceptionally well the potential impact of
nonlinear effects, the existence of the solutions found in Ref. [111] is made possible
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by a vanishing Lorentz term (the cross product of the velocity of electrons times the
magnetic field, ~v× ~B), which has the effect of crucially reducing the nonlinear terms,
allowing low-frequency, circularly polarized, transverse waves with large amplitude
to propagate inside a homogeneous plasma without inducing an evolution of the den-
sity profile, or a longitudinal motion of electrons. These characteristics are hardly
representative of the superradiance scenario, where deviations from the planar ge-
ometry, different polarizations, and an inhomogeneous profile of the plasma density
are to be expected. In the more generic case where these possibilities are included
the phenomenology is significantly richer as transverse and longitudinal modes are
coupled, and plasma can evolve. For instance, by considering a circularly polar-
ized wave scattering off a sharp boundary plasma it was found [266] that electrons
tend to pile up in narrow regions, increasing the plasma density and the threshold
for relativistic transparency. Moreover, 1D numerical simulations show [267, 268]
that in this case while propagation of low-frequency radiation is possible, plasma
does not genuinely behave as transparent, but in an articulated fashion involving
complex profiles of the plasma density. It is therefore clear from these results that
removing restrictions from the system of evolution equations can significantly af-
fect the dynamics, and in order to assess whether nonlinear effects can hamper the
superradiant instability, a more complete description has to be used.

With these considerations in mind, in our work [45] we developed a code to
perform the 3+1 nonlinear numerical evolution of systems composed by the EM
field and plasma. Clearly, this is a classical topic in plasma physics (see Ref. [269]
for a review), but in our work, being interested in the applications to BH superra-
diance, we focused on a regime that is seldom studied in standard plasma-physics
applications, namely a low-frequency, high-amplitude EM wave propagating in an
inhomogeneous overdense plasma.

4.3 Field equations
For simplicity, and because the stress-energy tensor of the plasma and EM field is
negligible even during the superradiant growth, we considered a fixed background
and neglected the gravitational field. We considered a system composed by the EM
field and a plasma fluid, described by the field equations (in rationalized Heaviside
units with c = 1):

∇µFµν = Jν , (4.7)

uν∇νuµ = e

me
Fµνuν , (4.8)

∇µ(neuµ) = 0, (4.9)

where Fµν is the EM tensor, Jµ is the EM 4-current, uµ is the 4-velocity field for
the plasma fluid, and ne is the rest number density of electrons inside the plasma.
Note that we considered a fluid model with vanishing pressure, as in the regime of
interest for plasma-driven superradiant instability pressure is expected to be small
and to give negligible contributions [108, 109]. However, a relevant limitation is
that, due to this choice, the system can undergo the formation of caustics, with
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divergences in the plasma density. I will come back on this point when discussing
the results of our numerical simulations.

Having in mind future extensions, we performed a 3 + 1 decomposition of the
field equations that is valid for any curved background spacetime. However, in this
work we performed our simulations in flat spacetime, ds2 = ηµν dx

µ dxν .

4.3.1 3 + 1 decomposition of the field equations

Generic spacetime

Let us introduce a foliation of the spacetime into spacelike hypersurfaces Σt, or-
thogonal to the 4-velocity of the Eulerian observer nµ. We then express the line
element as

ds2 = −(α2 − βiβi) dt2 + 2βi dxi dt+ γij dx
i dxj , (4.10)

where α is the lapse, βi is the shift vector, and γij is the spatial 3-metric. We can
define the electric and the magnetic fields as [121]

Eµ = −nνF νµ, Bµ = −nνF ∗νµ, (4.11)

where F ∗µν = −1
2ε
µνλσFλσ is the dual of Fµν . The EM tensor can be decomposed

as
Fµν = nµEν − nνEµ + (3)εµνσBσ, (4.12)

where (3)εµνσ = nλε
λµνσ is the Levi-Civita tensor of the spacelike hypersurface

Σt. Note that Eµ and Bµ are orthogonal to nµ and are spacelike vectors on the
3-surfaces Σt.

We can define the charge density as ρ = nµJ
µ, and the 3-current as (3)Jµ =

hµνJ
ν , where hµν is the projection operator onto Σt. Finally, we can write the

Maxwell’s equations as [121]

DiE
i = ρ, (4.13)

DiB
i = 0, (4.14)

∂tE
i = LβEi + αKEi + [ ~D × (α~B)]i + α (3)J i, (4.15)

∂tB
i = LβBi + αKBi − [ ~D × (α~E)]i, (4.16)

where Di is the covariant derivative with respect to the 3-metric γij , and Kij is the
extrinsic curvature. Here the first equation is the Gauss’ law, the second equation is
equivalent to the absence of magnetic monopoles, and the last two are the evolution
equations for the electric and magnetic fields, respectively. The EM 4-current is
given by ions and electrons Jµ = Jµ(ions) + Jµ(e). We assume ions to be at rest, due
to the fact that me � m(ions), so that Jµ(ions) = −ρ(ions)n

µ. For electrons instead we
have Jµ(e) = −eneuµ. Let us decompose uµ into a component along nµ, Γ = −nµuµ,
and a component on the spatial hypersurfaces, (3)uµ = hµνu

ν . The 4-velocity of the
fluid can be written as

uµ = Γnµ + (3)uµ = Γ(nµ + Uµ) , (4.17)
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where Uµ is defined by (3)uµ = ΓUµ. The above expression allows us to write
ρ = nµJ

µ = ρ(ions) + ρ(e) = ρ(ions) + enEL, where nEL = Γne is the electron density
as seen by the Eulerian observer. The density of ions is constant in time, and will
be fixed when constructing the initial data2. As Jµ(ions) is orthogonal to Σt, the
3-current (3)Jµ receives only contributions from electrons, and we have (3)Jµ =
−eneΓUµ = −enELUµ. Thus, the source terms that appear in Eqs. (4.13)-(4.15) are

ρ = ρ(ions) + enEL,
(3)Jµ = −enELUµ. (4.18)

Let us now move to Eq. (4.8). Projecting it on nµ and Σt we obtain respectively
(see Appendix G for the explicit computation):

∂tΓ = βi∂iΓ− αU i∂iΓ + αΓKijU iU j − ΓU i∂iα+ e

me
αEiUi , (4.19)

∂tU i = βj∂jU i − U j∂jβi − αai − αU iKjlU jU l + 2αKi
jU j + U iU j∂jα− αU jDjU i

+ α

Γ
e

me

(
−U iEjUj + Ei + (3)εijlBlUj

)
(4.20)

Finally, we can write the continuity equation (4.9) as

∂tnEL = βi∂inEL + αKnEL − αU i∂inEL − αnEL∇µUµ. (4.21)

While the above decomposition is valid for a generic background metric, from now
on we will focus on a flat spacetime.

Flat spacetime

Let us use Cartesian coordinates, so that gµν = ηµν = diag{−1, 1, 1, 1}. As a
consequence, we have that for any 3-vector (3)V i = (3)V i, and

α = 1, βi = 0, Kij = 0. (4.22)

In these coordinates the equations for the EM field can be written as

∂iE
i = ρ(ions) + enEL, (4.23)

∂iB
i = 0, (4.24)

∂tE
i = [~∂ × ~B]i − enELU i, (4.25)

∂tB
i = −[~∂ × ~E]i, (4.26)

the evolution equations for Γ and U i as

∂tΓ = −U i∂iΓ + e

me
EiUi, (4.27)

∂tU i = −U j∂jU i + 1
Γ
e

me

[
−U iEjUj + Ei + (~U × ~B)i

]
, (4.28)

and the continuity equation as

∂tnEL = −U i∂inEL − nEL∂iU i. (4.29)

Moreover, from the normalization condition uµuµ = −1 we can obtain a con-
straint for Γ and U i:

Γ2(1− U iUi) = 1. (4.30)
2Note that with the conventions we used, electrons carry positive charge, while ions carry neg-

ative charge.
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4.4 Numerical setup
I now move to discuss our numerical setup, describing the integration scheme and
the initialization procedure.

4.4.1 Integration scheme

We evolved ~E, ~B, Γ, ~U , and nEL with Eqs. (4.25)-(4.29), using the constraints (4.23)
and (4.30) to evaluate the convergence of the code. The profile of ρ(ions) was kept
constant, consistently with the approximation that ions are at rest. For the numer-
ical integration we used the fourth-order accurate Runge-Kutta algorithm, comput-
ing the spatial derivatives with the fourth-order accurate centered finite differences
scheme. For simplicity we simulated the propagation of plane EM wave packets
along the z direction, and therefore we obtained field configurations that are homo-
geneous along the x and y directions. This feature allowed us to impose periodic
boundary conditions in the x and y directions, as they preserve the homogeneity
of the solution without introducing numerical instabilities. We imposed periodic
boundary conditions also on the z axis, while choosing grids with extension along
z large enough that the wave packet does not interfere with itself during the all
duration of the simulations.

4.4.2 Initialization procedure

When constructing the initial data for the simulations we first set the profile of the
plasma. We started by setting Γ(t = 0, ~x) = 1 and ~U(t = 0, ~x) = 0, so that the
plasma is initially at rest. Then, we initialized the profile of nEL with barrier-like
shape of the following form:

nEL(t = 0, ~x) = 2nbkg−nmax + (nmax−nbkg)
[
σ(z;W1, z1) +σ(z;−W2, z2)

]
, (4.31)

Where σ(z;W, z0) = (1 + e−W (z−z0))−1 is a sigmoid function. The qualitative be-
havior of Eq. (4.31) is shown in Fig. 4.1, where we can see that nbkg is the back-
ground value of the plasma density and nmax is the plasma density at the top of
the barrier. The parameters z1,2 determine the location and width of the bar-
rier, while the parameters W1,2 control its steepness. Note that this profile was
chosen to reproduce a very crude toy model of a matter-density profile around a
BH [270], where the accretion flow peaks near the innermost stable circular orbit
and is depleted between the latter and the BH horizon. Finally, the constant pro-
file of ρ(ions) was determined by imposing that the plasma is initially neutral, so
that ρ(ions)(t = 0, ~x) = −enEL(t = 0, ~x). Once the profile of the plasma had been
assigned we could proceed to initialize the EM field. We considered a circularly
polarized wave packet moving forward in the z-direction:

~E = AE

cos[kz(z − z0)]
sin[kz(z − z0)]

0

 e− (z−z0)2

2σ2 , (4.32)

~B = AE
kz
ω

− sin[kz(z − z0)]
cos[kz(z − z0)]

0

 e− (z−z0)2

2σ2 , (4.33)
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Figure 4.1. Qualitative behavior of the barrier-shaped initial profile for the plasma,
Eq. (4.31). nmax and nbkg are the values of the plasma density inside the barrier
and on the background, while the parameters z1,2 and W1,2 determine the position and
the steepness of the boundaries of the barrier, respectively.

where AE is the amplitude of the wave packet, σ is its width, z0 its central position,
ω is the frequency, and kz =

√
ω2 − ω2

p, where ωp =
√

e2 nbkg
me

is the plasma frequency
computed using nbkg, as the wave packet is initially located outside the barrier (i.e.,
σ � z1 − z0).

Let me stress that while the configuration we considered is by no means realistic,
it allowed us to study the nonlinear interaction between EM field and plasma in a
setup that already gives an intuition on the possible implications for the superradi-
ance scenario.

4.5 Results
Here I present the results of our numerical simulations of nonlinear plasma-photon
interactions in different configurations. We considered a low-frequency, circularly
polarized wave packet propagating along the z direction and scattering off the
plasma barrier with the initial density profile given by Eq. (4.31).

4.5.1 Linear regime

As a consistency check of our code, we tested that for sufficiently low amplitude
waves our simulations were in agreement with the predictions of linear theory. We
set units such that e = me = 1 and considered an initial wave packet of the elec-
tric field centered at z0 = 0, with a characteristic width σ = 5. We also set
ω = 0.5 and AE = 10−6, so that the evolution could be described by the linear
theory. The plasma barrier was situated between z1 = 40 and z2 = 100, and
we set W1 = W2 = 1. The background density of the plasma was nbkg = 0.01
so that ω(bkg)

p = 0.1 and all the frequency content of the EM wave was above
the plasma frequency of the background. We ran 6 simulations with nmax =
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{nbkg, 0.25, 0.5, 0.75, 1, 1.25}, that correspond to plasma frequencies at the top of
the barrier ω(max)

p = {0.1, 0.5, 0.707, 0.866, 1, 1.12}, respectively, and fall in differ-
ent parts of the frequency spectrum of the EM wave packet. In the linear regime,
we expected that the frequency components above ω(max)

p propagated through the
plasma barrier, while the others were reflected, and this setup allowed us to clearly
observe this mechanism at play. In all these simulations we used a grid that extends
in [−1, 1]× [−1, 1]× [−450, 450], with a grid step ∆x = ∆y = ∆z = 0.2 and a time
step ∆t = 0.1, so that the CFL factor was CFL = 0.5. The final time of integration
was set to T = 400.

Figure 4.2 shows some snapshots of the numerical results at different times for
different values of ω(max)

p . It is evident that the analytical predictions of linear the-
ory are confirmed: as the plasma frequency of the barrier increases, less and less
components are able to propagate through it and reach the other side. In particular,
when ω(max)

p & 0.9 the wave is almost entirely reflected, and the transmitted com-
ponent becomes negligible. Furthermore, in the linear regime the backreaction on
the density is effectively negligible, as the barrier remains constant over the entire
simulation (in fact, we observed a maximum variation of nEL of the order of 10−11,
which is clearly not appreciable on the scale of Fig. 4.2).

To better quantify the frequency components that are propagated and the agree-
ment between the simulations and the analytic expectation in the linear regime, we
computed the (discrete) Fourier transform of the time evolution of Ex in two points
along the z axis: z = −50 and z = 150, which are located before and after the
plasma barrier, respectively. Figure 4.3 shows the absolute value of the Fourier
transform for the different values of the plasma frequency in the barrier, which are
represented as vertical dotted lines. As we can see from the Fourier transform at
z = 150, the transmitted waves have only components with frequency ω > ω

(max)
p ,

in agreement with the fact that only modes above this threshold can propagate.
Hence, the barrier perfectly acts as a high-pass filter, with a critical threshold given
by the plasma frequency.

4.5.2 Nonlinear regime

We then proceeded to increase the amplitude of the field until linear theory breaks
down and the interaction becomes fully nonlinear. As anticipated, the evolution is
more involved than in the idealized model described in [111]. Indeed, even from
a first qualitative analysis, it is evident from the z-component of the momentum
equation (4.28) that in the nonlinear regime electrons will experience an acceleration
along the z axis due to the nonlinear Lorentz term (~U × ~B)z. The formation of a
current along the z directions implies a modification of the density profile because
of the continuity equation, and also the formation of a longitudinal electric field
that tries to balance and preserve charge neutrality. In the following, I will support
this qualitative analysis with the results of our numerical simulations and show that
nonlinear effects can have a dramatic impact on the system dynamics.

In this set of simulations, we set units3 such that e = 1 and me = 1000, and we
3Note that, in rationalized Heaviside units, changingme (and hence the classical electron radius)

simply accounts for rescaling lengths, times, and masses in the simulations. Lengths and times are
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Figure 4.2. Propagation of an EM wave packet on a barrier of plasma in the linear regime.
Here I show some snapshots of the evolution of Ex for different values of the plasma
density in the barrier, nmax, representing the initial profile of nEL with a gray dashed
line. When the plasma frequency in the barrier ω(max)

p becomes larger than ω, the wave
packet is mostly reflected by the barrier, while the transmitted component is suppressed.
The corresponding animations are available online [127].
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Figure 4.3. Absolute value of the discrete Fourier transform of Ex extracted before (upper
panel) and after (lower panel) the plasma barrier. The different colors refer to the
different values of the plasma density inside the barrier, and hence to different values
of the plasma frequency ω

(max)
p , indicated with vertical dotted lines. We can clearly

see that the barrier reflects the frequency components below ω
(max)
p , and transmits the

components above it.

considered an initial wave packet of the electric field centered at z0 = −150, with
a width4 σ = 100 and ω = 0.001. We varied the amplitude of the EM field in a
range 0.1 ≤ AE ≤ 1000. As for the plasma profile, we adopted a similar geometric
model to the linear case, with the barrier placed between z1 = 100 and z2 = 650,
with W1 = W2 = 0.1. We considered a background density nbkg = 5 × 10−6, and
a maximum barrier density nmax = 0.5, that corresponds to a plasma frequency
of ω(max)

p = 0.022. We used a numerical grid that extends in [−2, 2] × [−2, 2] ×
[−750, 850], with a grid spacing ∆x = ∆y = ∆z = 0.2, and a time step ∆t = 0.1,
so that CFL = 0.5. The final time of integration was set to T = 500.

The parameters were chosen such that the frequency of the wave packet was
always much larger than ω(bkg)

p , but a significant component of the spectrum, namely
≈ 97.5%, was below the plasma frequency of the barrier, and should therefore
be reflected, if one assumes linear theory. First of all, we quantified the value
of the electric field which gives rise to nonlinearities. A crucial parameter that
characterizes the threshold of nonlinearities in laser-plasma interactions is the peak
amplitude of the normalized vector potential, defined as a0 = eA/me (see e.g. [269,
271]). Specifically, when a0 & 1, electrons acquire a relativistic transverse velocity,
and therefore the interactions become nonlinear. Given our units, and estimating

rescaled by [me]−1, while the electric field amplitude scales as [me]2. Hence, the results of this
section can be obtained in the case me = 1 by rescaling the other quantities accordingly.

4While formally the initial profile of the EM field, Eq. (4.33), represents a circularly polarized
wave packet, the chosen value of the parameter σ reduces the y component of the electric field,
making the polarization effectively elliptic.
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Figure 4.4. Snapshots of the evolution of Ex (solid lines) and nEL (dotted lines) for the
simulations of the propagation of an EM wave packet inside a plasma barrier in the
nonlinear regime. The initial profile of nEL is not varied across the simulations, and
the different panels refer to different choices of the initial amplitude of the wave packet.
The backreaction effects of the EM field onto the plasma density increase with AE , and
for AE & 50 the wave packet “transports” electrons along the z axis, eventually creating
a plasma-depleted region (blowout regime). The corresponding animations are available
online [127].
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A ≈ E/ω, we obtained a critical electric field Ecrit & meω/e ≈ 1.
We performed a set of simulations choosing different values of the initial am-

plitude of the EM wave packet in the range 0.1 ≤ AE ≤ 1000. Figure 4.4 shows
snapshots of the numerical simulations for some selected choices of AE . It is possible
to observe that in the case AE = 1 (top panel) the density profile of plasma is not
altered throughout the simulation, as in the linear case discussed in the previous
section. Moreover, at sufficiently long times, the wave packet is reflected by the
barrier, in agreement with linear theory predictions. From the second panel on (i.e.
as AE & 10), instead, the wave packet induces a nonnegligible backreaction on the
plasma density. This effect increases significantly for higher amplitudes, and it is due
to the nonlinear couplings between transverse and longitudinal polarizations: the
nonlinear Lorentz term (~U × ~B)z in the longitudinal component of the momentum
equation (4.28) induces a radiation pressure on the plasma, and hence a longitudi-
nal velocity ~Uz; as electrons travel along the z direction and ions remain at rest, a
large longitudinal field due to charge separation is created, which tries to balance
the effect of the Lorentz force and restore charge neutrality. This phenomenology
resembles the one of plasma-based accelerators, where super-intense laser pulses are
used to create large longitudinal fields that can be used to accelerate electrons [272].

To quantify the collective motion induced by nonlinearities we computed the
velocity dispersion of electrons as

√
〈U2〉 =

√∫
V d

3xnEL UiU i∫
V d3xnEL

. (4.34)

Since the fields are constant along the transverse directions5, then nEL(x, y, z) =
nEL(z) and U i(x, y, z) = U i(z). This allowed us to evaluate the above integral as

√
〈U2〉 =

√√√√∫ z+∞z−∞
dz nEL(z)Ui(z)U i(z)∫ z+∞
z−∞

dz nEL(z) , (4.35)

where z±∞ are the boundaries of the z domain and we computed the integral using
the trapezoidal rule. In the upper panel of Fig. 4.5 we plotted the behavior of the
velocity dispersion with respect to the initial amplitude AE for different times. As
we can see the nonlinearities start becoming relevant in the range 1 . AE . 10,
where electrons start to acquire a collective motion. This is also confirmed by the
middle panel, where the solid and dashed lines denote the maximum of |~U| and
Uz, respectively. While these quantities do not represent the collective behavior of
the system, they have the advantage of not containing the contribution given by
the portion of the plasma barrier that has not yet been reached by the EM wave.
From this plot we can observe that in the range 1 . AE . 10, the electrons start
acquiring a relativistic velocity with a large component on the transverse plane.

As already mentioned, the longitudinal motion of electrons generates a longi-
tudinal field. Nevertheless, plasmas can sustain longitudinal fields only up to a
certain threshold, usually called wave-breaking (WB) limit, above which plasma
is not able to shield and sustain anymore electric fields, and the fluid description

5In Appendix I I show how the homogeneity of the fields along the transverse plane is preserved
during the evolution.
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Figure 4.5. Collective behavior of plasma in the nonlinear regime as a function of the
initial amplitude AE of the EM wave packet. The upper panel shows the velocity
dispersion

√
〈U2〉, the middle panel shows the maximum value of |~U| (solid lines) and

of the longitudinal velocity Uz (dashed lines), while the lower panel shows the collective
longitudinal velocity 〈Uz〉. The nonlinearities start becoming relevant in the range
1 . AE . 10, where the velocity dispersion increases and the motion of electrons
has a large component on the transverse plane. For AE & 10 the plasma enters in
the blowout regime, where electrons are “transported” by the EM field, and acquire a
positive collective longitudinal velocity.
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Figure 4.6. Evolution of the electric field and plasma density in the case of AE = 1.
Left panel: snapshots of Ex (solid lines) and nEL (dotted lines) of the full evolution,
where we can see that the wave packet is mostly reflected by the plasma barrier. Right
panel: snapshots of the longitudinal component Ez (solid lines) and nEL (dotted lines)
focusing on the last stages of evolution. Here we can clearly see the WB phenomenon
taking place, with the plasma density developing spikes in regions where the longitudinal
component of the electric field increases steeply.

breaks down. This phenomenon was pioneered in [273] for the case of nonlin-
ear, nonrelativistic cold plasmas, where the critical longitudinal field for WB was
found to be EzWB = meωp/e, and later generalized for pulses with relativistic phase
velocities [274]. This threshold field represents the limit after which the plasma
response loses coherence as neighbouring electrons start crossing each other within
one plasma frequency period. Therefore, above this critical electric field the plasma
is not anymore able to coherently act as a system of coupled oscillators, and the
fluid model based on collective effects breaks down. This leads to the formation of
a spike in nEL, which eventually diverges, and to a steepening of the longitudinal
component of the electric field. Full particle-in-cell numerical simulations are re-
quired after the breakdown (see, e.g., [275, 276]). In our simulations, we observed
the WB phenomenon at late times for large values of the electric field, in which
cases we could only extract information before the breakdown of the model.

In order to better appreciate how theWB takes place, we repeated the simulation
with AE = 1 for a longer integration time and a larger grid. In the left panel of
Fig. 4.6 I show the evolution of Ex (solid lines) throughout the simulation, where
we can clearly see that the incoming wave packet is reflected by the plasma barrier.
However, for t ≈ 700, the longitudinal component of ~U leads to an evolution of the
plasma density. In this stage the plasma loses coherence and nEL develops local
spikes that increase in height and becomes sharper with time. When one of these
spikes becomes excessively narrow, the fluid description of the system breaks down
and the simulation crashes. This can be observed from the right panel of Fig. 4.6,
where I show the longitudinal component of ~E together with the plasma density
profile. Note that WB occurs as soon as the nonlinearities come into play (we
observed it already for AE = 1), and the fluid description in the nonlinear regime
cannot be used for long-term numerical simulations. However the good convergence
of the code even slightly before WB takes place (see Appendix H) ensures the
reliability of the results up to this point.

Overall, Figs. 4.4 and 4.6 show that for AE ∼ 1 the system becomes weakly
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nonlinear, in agreement with the previously mentioned analytical estimates.
Since we considered a model with vanishing pressure, it is worth examining the

possibility that with the inclusion of a pressure term the formation of the observed
spikes in nEL can be contrasted. However, in order for the model to describe the
regime of interest for the superradiant instability, the pressure has to be small [108,
109], and it has been shown that in a warm plasma the threshold for WB receives
only small corrections with respect to the cold plasma case [277]. It is therefore to
be expected that the WB phenomenon observed here would not be substantially
altered by the inclusion of a pressure term.

Going back to the snapshots of the evolutions in Fig. 4.4, I now move to ana-
lyze the behavior of the system for larger electric fields, where the backreaction is
macroscopic. We can see that in this case, i.e. for AE & 50, all the electrons in the
plasma barrier are “transported” in the z direction and piled up within a plasma
wake whose density grows over time. This corresponds to a blowout regime induced
by radiation pressure. In order to better describe how the system reaches this phase,
we computed the longitudinal component of the collective electron velocity as

〈Uz〉 =
∫
V d

3xnEL Uz∫
V d

3xnEL
=
∫ z+∞
z−∞

dz nEL(z)Uz(z)∫ z+∞
z−∞

dz nEL(z) , (4.36)

where, again, we took advantage of the homogeneity of the system along the trans-
verse directions to reduce the dimensionality of the domain of integration. The
results are shown in the lower panel of Fig. 4.5, where we can see that for AE . 10,
the longitudinal momentum remains low and is not influenced by the wave packet.
For AE & 10 instead, 〈Uz〉 starts to increase in time, indicating that the system is in
the blowout regime, as electrons are collectively moving forward in the z direction.

Overall, the above analysis shows that when the idealized situation studied
in [111] cannot be applied and the nonlinear Lorentz term does not vanish, the
general physical picture is drastically different and that penetration occurs in this
setup due to radiation-pressure acceleration rather than transparency.

4.6 Discussion: implications for plasma-driven super-
radiant instabilities

Motivated by exploring the plasma-driven superradiant instability of accreting BHs
at the full nonlinear level, we performed 3 + 1 numerical simulations of a plane
wave of very large amplitude but small frequency scattered off an inhomogeneous
plasma barrier. Although nonlinear plasma-photon interactions are well studied in
plasma-physics applications, to the best of our knowledge this is the first analysis
aimed at exploring numerically this interesting setup in generic settings.

One of our main findings is the absence of the relativistic transparency effect
in our simulations. As already mentioned, the analysis performed in [111] showed
that, above a critical electric field, plasma turns from opaque to transparent, thus
enabling the propagation of EM waves with frequency below the plasma one. As
we have seen, such critical electric field for transparency is given by Eq. (4.6). In
our simulations, we considered electric fields well above this threshold, yet we were
not able to observe this effect. On the contrary, in the nonlinear regime the plasma
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strongly interacts with the EM field in a complex way. The role of relativistic
transparency in more realistic situations than the one described in [111] was rarely
considered in the literature and is still an open problem [278]. Nevertheless, some
subsequent analysis found a number of interesting features, and revealed that its
phenomenology in realistic setups is more complex.

In Ref. [266] an analytical investigation of a similar setup was performed by con-
sidering the scattering between a laser wave packet and a sharp boundary plasma.
The conclusion of the analysis is that, when plasma is inhomogeneous, nonlinear-
ities tend to create a strong peaking of the plasma electron density (and hence of
the effective plasma frequency), suppressing the laser penetration and enhancing
the critical threshold needed for transparency. Subsequently, Refs. [267, 268] con-
firmed this prediction numerically, and showed that in a more realistic scenario
transparency can occur but the phenomenology is drastically different from the one
predicted in [111]. For nearly-critical plasmas, transparency arises due to the prop-
agation of solitons, while for higher densities the penetration effect holds only for
finite length scales. Nevertheless, these simulations were performed by considering
a simplified momentum equation due to the assumption of a null-vorticity plasma,
which is typically suitable for unidimensional problems, but likely fails to describe
complex-geometry problems as the one of superradiant fields. Using particle-in-cell
simulations, it was then realized that radiation-pressure can push and accelerate the
fluid to relativistic regimes, similarly to our results, and produce interesting effects
such as hole-boring, ion acceleration, and light-sail [279,280].

While the complicated interplay between relativistic transparency and radiation-
pressure acceleration is still an open problem [278, 281], we argue that the latter,
which arises in generic situations with very overdense plasmas and high amplitude
electric fields, is sufficient to dramatically quench the plasma-driven superradiant
instability. To enforce this conclusion, we provided a rough estimate of the total
energy extracted from the BH before nonlinear effects take place [110]. In order for
the instability to be efficient on astrophysical timescales, ω . ωp ≈ O(1/(GM)),
where G is the Newton’s constant and M is the BH mass [108,109,264]. This gives
a critical electric field

Ecrit = meω

e
≈ 4× 105 V

cm
(M�
M

)
. (4.37)

The associated total energy can be estimated as U = E2
critL

3, where L is the size
of the condensate formed by the superradiant instability, and corresponds to the
location of the plasma barrier. This gives

U ≈ 107J
( M
M�

)( L

6M
)3
, (4.38)

where we assumed that the peak of the plasma barrier roughly corresponds to the
location of the peak density of an accretion disk, L ≈ 6M . On the other hand, the
total rotational energy of the BH is given by K = MR2Ω2, where R and Ω are the
radius and the angular velocity of the horizon, respectively. To efficiently satisfy
the superradiant condition, Ω & ωp ≈ O(1/(GM)), so that

K ≈ 1043J
( M
M�

)
. (4.39)
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Therefore, when the electric field reaches the threshold for nonlinearities, the total
energy extracted from the BH is tiny, U/K ≈ 10−36.

Another argument supporting this conclusion is that, for the superradiant insta-
bility to be sustainable, the maximum energy leakage of the confining mechanism
cannot exceed the superradiant amplification factor of the BH. For EM waves, the
maximum amplification factor (for nearly extremal BHs and fine-tuned frequency)
does not exceed ≈ 4% and is typically much smaller [72]. Therefore, the instability
is not quenched only if the plasma is able to confine more than 96% of the EM field
energy. Our simulations show that in the nonlinear regime the situation is quite the
opposite: almost the entirety of the EM field is not confined by the plasma, thus de-
stroying its capability to ignite the instability. We expect this argument to be valid
also when ωp � ω, in which case plasma depletion through blowout is negligible,
but the EM field can still transfer energy into longitudinal plasma motion.

Note that the arguments above are extremely conservative, since are based on
a number of optimistic assumptions that would maximize the instability. First
of all, realistic accretion flows around BHs are not spherical nor stationary, espe-
cially around spinning BHs. This would generically introduce mode-mixing and
decoherence, rendering the instability less efficient. More importantly, even in the
linear regime a disk-shape accretion geometry can (partially) confine modes that are
mostly distributed along the equatorial plane, but would naturally provide energy
leakage along off-equatorial directions [282,283]. Finally, a sufficiently high plasma
density in the corona could quench photon propagation in the first place [264], at
least at the linear level during the early stages of the instability.
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Chapter 5

Conclusions

In this thesis I have discussed three works in which my collaborators and I tackled
conceptual problems by means of numerically simulated gedanken experiments.

In the work discussed in Chapter 2, we challenged the weak cosmic censorship
conjecture in Einstein-Maxwell and in Einstein-Maxwell-scalar theories of gravity,
by performing extensive fully nonlinear simulations of the spherical collapse of a
charged field in different contexts, in the attempt of forming naked singularities.

In particular, we started by simulating the spherical collapse of a complex scalar
field in flat spacetime in Einstein-Maxwell theory, trying to form a RN BH with
Q̄ > 1. While we could form configurations with Q̄ < 1, and even very close to the
upper bound, in situations that could have led to the formation of overcharged BHs
the strength of the electromagnetic interaction was able to overcome gravitational
attraction, preventing the collapse to naked singularities. This showed that, at least
in our setup, WCCC is enforced by electric repulsion.

Also when starting from a pre-existing BH we were not able to produce naked
singularities. While this is consistent with the theorem proven in Ref. [284], our
analysis allowed us to identify the physical process that prevent the violation of
WCCC. Specifically, we observed that the main role of cosmic censor is played by
superradiance, that extracts energy and charge from the BH with the final effect
of decreasing its charge-to-mass ratio. The analysis performed in this case gave us
also the possibility of observing superradiant scattering at the fully nonlinear level
(see Ref. [285] for a study specifically on this topic, and Ref. [286] for the rotating
case).

Interestingly, the absence of formation of BH configurations with Q̄ = 1 in this
second set of simulations, can also be viewed as a numerical confirmation of the third
law of black hole thermodynamics, which states that it is impossible to convert a
sub-extremal BH to an extremal one with a continuous process. Nevertheless, in
a subsequent work Kehle and Unger [287], considering an Einstein-Maxwell model
with a charged scalar field analogous to the one of our work, have shown the ex-
istence of a spherically symmetric spacetime configuration in which the third law
is violated. While it might be hard to reproduce such configuration in a numer-
ical simulation, the results of Ref. [287] show that it is conceptually possible to
dinamically push the charge-to-mass ratio of a RN BH at least to Q̄ = 1.
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In the case of Einstein-Maxwell-scalar we were able to dynamically form BHs
with charge-to-mass ratio above unity, but still we did not produce naked singular-
ities; however we observed that superradiance is at play also for scalarized BHs.

With our setup we could also study the descalarization in EMS gravity, which oc-
curs when the charge-to-mass ratio of a scalarized BH decreases below the existence
line, reaching a region where the RN solution is the only one allowed. We induced
this process by simulating the absorption of an opposite-charged wave packet, but
we also observed that it can take place with wave packets whose charge has the
same sign as that of the BH, with the decrease in charge-to-mass ratio being driven
by superradiance.

In the work described in Chapter 3 we simulated the collapse of a wave packet
of a phantom field on a nearly-critical EdGB BH, with the purpose of investigating
its evolution after Hawking evaporation. We observed that the system undergoes
a runaway instability in which the horizon shrinks while the elliptic region inside
the BH expands, until it gets exposed and the simulations has to be stopped. The
behavior of the curvature hinted to the possibility of formation of a naked singu-
larity, but the major problem to address was whether the dynamics of the elliptic
region was gauge dependent or not. In fact at the time of writing the manuscripts
in Refs. [43, 44] this was not yet clear, and one could still hope that in a different
gauge the system of evolution equations was well-posed on the singularity, allowing
to determine if a naked singularity formed.

However, in Ref. [288] the principal symbol of EdGB in spherical symmetry has
been expressed in a gauge invariant way, meaning that the breakdown of hyperbol-
icity cannot be cured by a different gauge choice.

Nonetheless, given the good convergence of the code even close to the formation
of a naked elliptic region, our simulations can be still useful as a knowledge base
to analyze the same problem in other eventual alternative theories of gravity that
present a minimum-mass solution. For instance, a research direction that my collab-
orators and I are interested in following, is the study of a modified version of EdGB
in which the Einstein-Hilbert term is replaced by a f(R) term. The idea is that a
theory of this kind may still possess a minimum-mass BH, due to the presence of
the Gauss-Bonnet term, but without suffering of problems related to hyperbolicity,
thanks to the modifications in the principal symbol coming from the f(R) term. In
the case we will repeat a similar analysis also in the new model, it may be useful
to compare the results with the EdGB case discussed here, as eventual differences
or similarities can help in identifying the reasons that lead to the appearance of the
observed behaviors.

Moreover, as we have seen, EdGB BHs coexist in the phase space with worm-
hole solutions. A possibility that we considered for EdGB gravity, but might be
also taken into account for an eventual extension that preserves this characteristic,
is that after losing mass critical BHs undergo a transition towards wormhole con-
figurations, and the evaporation process is halted. Such a scenario can also have
applications in the field of dark matter. Indeed horizonless remnants evade the
constraints on light BHs [289] that arise from Hawking evaporation, and can in
principle account for all the dark matter content of our Universe.
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Lastly, in the work described in Chapter 4 we performed 3+1 nonlinear nu-
merical simulations of the interaction between a high-amplitude, low-frequency EM
wave packet and a plasma barrier, having in mind applications to the plasma-driven
superradiant instability. We did not observe any signal of transparency, but the in-
tense EM fields induced strong backreactions on the plasma, setting it in a blowout
state in which electrons acquired a collective motion along the direction of propa-
gation of the wave packet.

While the wave breaking phenomena that we encountered indicate that a particle-
in-cell approach is required to perform simulations in the regime we explored, the
dynamics appears to be complex, and a detailed model of plasma surrounding the
BH is needed in order to draw definitive conclusions on whether nonlinear effects
quench the superradiant instability. Nevertheless, our analysis already shows that
plasma can be pushed severely out of equilibrium already in the first stages of the
instability, and it is hard to imagine how a system in this state could sustain an
exponential growth of the EM field.

As possible extensions to our work we could use the computational framework
we developed to explore different scenarios, with a particular focus in beyond the
Standard Model contexts. For instance, in Refs. [290,291] superradiance was studied
in a model containing the ordinary photon and the dark photon, finding behaviors
qualitatively similar to ours, with strong evolutions of the plasma profile. Therefore
it would be interesting to study the propagation of the EM field in this regime using
the techniques discussed here.

In conclusions, in these three works the use of gedanken experiments allowed us
to tackle the problems at hand in a remarkably effective way. We could consider
setups that were even markedly unrealistic, but in which the systems were explicitly
pushed into the appropriate regimes to answer our questions, and the effects we
would like to identify were forced to manifest. Furthermore, thanks to numerical
simulations we could explore scenarios in which nonlinearities are relevant, and a
semi-analytical approach would have been hardly viable. We could access extreme
regimes in which the phenomenology is unknown, and by observing the evolution of
the systems we simulated, we gained new insights on intrinsic aspects of the theories
we examined.

The works I discussed in this thesis constitute only a small sample of the possible
applications of numerically simulated gedanken experiments, and also thanks to the
computational framework we developed, in the future it will be interesting to apply
this research technique in many other contexts.
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Appendix A

Null energy condition in EMS
gravity with a complex scalar
field

In this appendix I show that in the model (2.13) with a positive coupling function
and in spherical symmetry, the null energy condition is always satisfied. To prove
this statement I have to show that

Tµνm
µmν ≥ 0 (A.1)

for any null vector mµ, where Tµν is the total energy-stress tensor. The latter is
made of three terms, respectively due to the real scalar field φ, the complex scalar
field ξ, and the electromagnetic field Fµν .

Let us consider these three terms separately. For two scalar fields one can show
that

T SF
µνm

µmν = 1
4π
(
mµ∇µφ

)2 ≥ 0 , (A.2)

T ξµνm
µmν = 1

2π
∣∣mµDµξ

∣∣2 ≥ 0 . (A.3)

Finally, for the electromagnetic component we have

T EM
µν m

µmν = − 1
4πm

µFµαF
α
νm

νF [φ]. (A.4)

Now, in spherical symmetry the magnetic field is absent and we can perform a 3+1
decomposition of the electromagnetic tensor as Fµν = nµEν − nνEµ, where the
electric field Eµ is orthogonal to nµ (see Ref. [121]); therefore

T EM
µν m

µmν = − 1
4πF [φ]mµmν[EµEν − nµnν(EjEj)

]
= 1

4πF [φ]
[
(mµn

µ)2(EjEj)− (miE
i)2], (A.5)

Since mµ is a null vector

0 = mµm
µ = mµg

µ
νm

ν = mµ(γµν − nµnν)mν = mim
i − (mµn

ν)2, (A.6)
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and thus (mµn
ν)2 = mim

i. Substituting in Eq. (A.5) we obtain that if F [φ] ≥ 0
then

T EM
µν m

µmν = 1
4πF [φ]

[
mim

i(EjEj)− (miE
i)2] ≥ 0, (A.7)

where in the last step the Cauchy-Schwarz inequality was used. Since the term
Tµνm

µmν can be decomposed in a sum of three positive terms then the null energy
condition (A.1) is satisfied.
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Appendix B

Numerical evolution in EMS
gravity with a complex scalar
field: integration scheme and
convergence tests

This appendix contains additional information on the numerical integration code
used in the work described in Chapter 2. In particular I will discuss the implemen-
tation of the numerical integration scheme we used, and the convergence tests we
performed to evaluate the reliability of the code.

B.1 Implementation of the PIRK integration scheme
Here, I summarize the PIRK integration scheme. The equations of motion are
written as [124,125] {

∂tu = L1(u, v)
∂tv = L2(u) + L3(u, v)

, (B.1)

where u schematically denotes the variables that are evolved fully explicitly whereas
v the variables that are evolved partially implicitly.

We used an analogous procedure to Ref. [292]. Namely we first evolved explicitly
the variables X, a, b, α, βr, Er, ξ and φ. As a second step we evolved partially
implicitly Aa and K, usingL2(K) = −D2α,

L3(K) = βr∂rK + α
(
A2
a + 2A2

b + 1
3K

2
)

+ 4πα(Sa + 2Sb + E)
, (B.2)

L2(Aa) = −
(
DrDrα− 1

3D
2α
)

+ α(Rrr − 1
3R)

L3(Aa) = βr∂rAa + αKAa − 16πα
3

(
Sa − Sb

) , (B.3)
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Then, we evolved ∆̂r, Π, P , ar and ϕ using

L2(∆̂r) = 2
b∂r
(
βr

r

)
− 2α

(
Aa −Ab

) 2
br −

2
a

(
Aa∂rα+ α∂rAa

)
+2α

a

[
∂rAa +

(
Aa −Ab

)(∂rb
b + 2

r

)
− 3Aa ∂rXX − 2

3∂rK
]

+ 1
a∂

2
rβ

r + σ
3

1
a∂r∇̂mβ

m

L3(∆̂r) = βr∂r∆̂r − ∆̂r∂rβ
r + 2αAa∆̂r + 2σ3 ∆̂r∇̂mβm − 16πα

a jr

, (B.4)


L2(Π) = αX2

a

[(
∂rφ

)(2
r −

∂ra
2a + ∂rb

b −
∂rX
X

)
+ ∂2

rφ
]

+ (∂rφ)(∂rα)
a X2

+1
2
αa
X2 (Er)2 δF [φ]

δφ

L3(Π) = βr∂rΠ + αΠK
, (B.5)


L2(P ) = αX2

a

[(
∂rξ
)(2

r −
∂ra
2a + ∂rb

b −
∂rX
X

)
+ ∂2

r ξ
]

+ (∂rξ)(∂rα)
a X2

+2iqα
(
ϕP + ar∂rξ

a X2
)
− q2α

(
(ar)2

a X2 − ϕ2
)
ξ

L3(P ) = βr∂rP + αPK

, (B.6)

{
L2(ar) = ar∂rβ

r − ∂r(αϕ)− αa
X2E

r

L3(ar) = βr∂rar
, (B.7)L2(ϕ) = −αX2

a

[
ar
(

2
r −

∂ra
2a + ∂rb

b −
∂rX
X

)
+∂rar

]
− (∂rα)ar

a X2

L3(ϕ) = βr∂rϕ+ αϕK
. (B.8)

Finally, we evolved Br fully implicitly.

B.2 Convergence tests
We checked the convergence of our code by computing the violation of the Hamil-
tonian constraint and studying its scaling with respect to the grid step.

We evolved the evolution equations using the initial condition discussed in
Sec. 2.4.3, setting the initial BH charge-to-mass ratio to 0.9, and qM = 5. The
grid extends from the origin up to r∞ = 250M , and the grid steps we used are
∆r = 0.01M and ∆r = 0.005M . In both cases the CFL factor was set to CFL = 0.4.

We then computed the violation of the Hamiltonian constraint at T = 100M ,
and the results are shown in Fig. B.1. As we can see from the plots, near the horizon
the violation of the Hamiltonian constraint behaves as a third-order term, while in
an outer region it scales as a second-order term, in agreement with the order of our
numerical scheme.
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Figure B.1. Convergence of the code. Continuous lines denote the violation of the Hamil-
tonian constraint for the two spatial resolutions, while the dots denote the behavior
corresponding to the higher resolution rescaled by the factor indicated in the legend.
These plots show third-order convergence near the horizon, and second-order conver-
gence in the outer region.
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Appendix C

Field equations for stationary
and spherically symmetric BHs
in EdGB gravity

In this appendix I present the equations for stationary and spherically-symmetric
BH solutions in EdGB gravity, both using Schwarzschild-like coordinates and PG-
like coordinates. In both cases the dilaton and the metric functions depend only
on the radial coordinate, so for them the primes denote radial derivatives. On the
other hand for the coupling function F ′[φ] = δF [φ]

δφ .

C.1 Schwarzschild coordinates
Adopting the ansatz (3.7), the field equations (3.3),(3.4) read

Λ′
(

1 + 4
r
F ′[φ]φ′

)
− 1− eΛ

r
− 1

2rφ
′2 + 4

r
F ′[φ]

[
−3e−ΛΛ′φ′ + 2(e−Λ − 1)φ′′

]
+ 8

r
F ′′[φ]φ′2

(
e−Λ − 1

)
= 0 , (C.1)

Γ′
(

1 + 4
r
F ′[φ]φ′

)
+ 1− eΛ

r
− 1

2rφ
′2 − 12

r
e−ΛΓ′F ′[φ]φ′ = 0 , (C.2)

Γ′′ + Γ′
(1
r

+ Γ′ − Λ′

2

)
− Λ′

r
+ φ′2 + 4

r
F ′[φ]

[
Γ′φ′e−Λ (3Λ′ − Γ′

)
− 2e−Λ (φ′Γ′′ + Γ′φ′′

)]
− 8

r
e−ΛF ′′[φ]φ′2Γ′ = 0 , (C.3)

φ′′ + Γ′ − Λ′

2 φ′ + 2φ′

r
− 2

r2
F ′[φ]

[
Γ′
(
Γ′ − Λ′ + 3e−ΛΛ′ − e−ΛΓ′

)
+ 2Γ′′

(
1− e−Λ

)]
= 0 . (C.4)
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C.2 PG-like coordinates
After substituting the ansatz for the metric (3.28) in the field equations Eqs. (3.3)-
(3.4), and performing algebraic manipulation using Wolfram Mathematica it is
possible to obtain the following system of ordinary differential equations:

α′ = α

4R′ (RR′ + 4 (3ζ2 − 2)φ′F ′[φ])

{
48ζ3R′ζ ′φ′F ′[φ] + 4ζR′ζ ′

(
RR′ − 8φ′F ′[φ]

)
+ ζ2

(
R2R′φ′2 + 2R′3

)
+R2R′φ′2 + 16ζ4

(
R′φ′2F ′′[φ] + F ′[φ]

(
R′φ′′ −R′′φ′

))}
,

(C.5)

ζ ′ = 1
4ζR′ (RR′ + 4 (3ζ2 − 2)φ′F ′[φ])

{
R2R′φ′2 − 16ζ4

[
R′φ′2F ′′[φ]

+ F ′[φ]
(
R′φ′′ −R′′φ′

)]
− ζ2

(
16R′′φ′F ′[φ] +R′

(
φ′2
(
R2 − 16F ′′[φ]

)
− 16φ′′F ′[φ]

)
+ 2R′3

)}
, (C.6)

φ′′ = − 1
Dφ

{(
ζ2 − 1

)
R′2φ′

[(
ζ2 − 1

)
F ′[φ]φ′3 −R′R′′

]
R5 +R′φ′

[(
ζ2 − 2

)
R′4

− 4ζ2
(
ζ2 − 1

)
φ′2F ′′[φ]R′2 − 4

(
7ζ4 − 13ζ2 + 6

)
F ′[φ]φ′R′′R′

− 8
(
ζ2 − 1

)2
F ′[φ]2φ′4

]
R4 + 4R′F ′[φ]φ′2

[(
12ζ4 − 25ζ2 + 12

)
R′3

− 4ζ2
(
3ζ4 − 5ζ2 + 2

)
φ′2F ′′[φ]R′ − 24

(
ζ2 − 1

)2 (
3ζ2 − 2

)
F ′[φ]φ′R′′

]
R3

− 32
(
ζ2 − 1

)
F ′[φ]2φ′3

[
6
(
ζ2 − 1

)
R′φ′2F ′′[φ]ζ4 +

(
−21ζ4 + 32ζ2 − 12

)
R′3

+ 2
(
15ζ6 − 39ζ4 + 32ζ2 − 8

)
F ′[φ]φ′R′′

]
R2 + 4R′2F ′[φ]

[
720F ′[φ]2φ′4ζ8

− 24φ′
(
94F ′[φ]2φ′3 +R′2F ′′[φ]φ′ −R′F ′[φ]R′′

)
ζ6 +

(
2624F ′[φ]2φ′4

− 3R′
(
R′3 − 8φ′2F ′′[φ]R′ + 8F ′[φ]φ′R′′

))
ζ4 − 1344F ′[φ]2φ′4ζ2

+ 256F ′[φ]2φ′4
]
R− 96ζ4

(
ζ2 − 1

)
R′2F ′[φ]2φ′

[
R′3 + 8

(
ζ2 − 1

)
φ′2F ′′[φ]R′

− 8
(
ζ2 − 1

)
F ′[φ]φ′R′′

]}
, (C.7)

where

Dφ =
(
ζ2 − 1

)
R′
[
96
(
3ζ4 − 5ζ2 + 2

)
R′F ′[φ]2φ′2R3

+ 64
(
15ζ6 − 39ζ4 + 32ζ2 − 8

)
F ′[φ]3φ′3R2 +R′3

(
R4 − 96ζ4F ′[φ]2

)
R

+ 4R′2F ′[φ]
(
R4
(
7ζ2 − 6

)
− 192ζ4

(
ζ2 − 1

)
F ′[φ]2

)
φ′
]
. (C.8)

The denominator Dφ vanishes at the horizon, since ζ = 1. However the field
equations are regular when the condition (3.30) is imposed. In this case ζ ′h and φ′′h
are given by

φ′′h = − 3
R4
hR
′
h

(
R4
h − 96F ′[φh]2

)
+ 4R7

hφ
′
hF
′[φh]

[
32R4

hR
′′
hφ
′
hF
′[φh]2
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+ 4R5
hR
′
hR
′′
hF
′[φh] +R3

hR
′2
h φ
′
h

(
4R2

hF
′′[φh] +R4

h − 32F ′[φh]2
)

+ 48R′3h
(
R2
hF
′[φh]F ′′[φh] + 4F ′[φh]3

)]
, (C.9)

ζ ′h = − R′2h
2RhR′h + 8φ′hF ′[φh] . (C.10)
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Appendix D

Phase diagram in EdGB
gravity: BHs, wormholes, and
solitons

Here I present the methods used to find the static wormholes and the solitonic so-
lutions with cusp singularities discussed in Sec. 3.1.3, and I discuss some of their
properties [148–151]. Let me start with the wormhole solution. In spherical symme-
try, the starting point is to consider the ansatz (3.7) in Schwarzschild coordinates.
However, in this ansatz wormholes have a coordinate singularity, that can be re-
moved defining the new coordinate l2 = r2− r2

0, where l > 0 and r0 is the wormhole
throat [148]. In terms of the coordinates (t, l, θ, ϕ), we used the following ansatz for
the metric:

ds2 = −e2ν(l)dt2 + f(l)dl2 +
(
l2 + r2

0

) (
dθ2 + sin2 θ dϕ2

)
. (D.1)

Substituting into the modified Einstein equations (3.3)-(3.4), this yields

f ′ + f

lr2

(
fr2 − l2 − 2r20

)
− r2

2l f
(
φ′
)2 − 4γλ

lr2
e−γφ

[
4lr20
r2 φ′ +

(
r2 − 3l2

f

)
f ′φ′

+ 2γφ′2
(
r2f − l2

)
+ 2φ′′

(
l2 − r2f

)]
= 0 , (D.2)

ν ′ − ν ′ 4γλ
l
e−γφ

(
1− 3l2

r2f

)
φ′ + l

2r2 −
f

2l −
r2

4lφ
′2 = 0 , (D.3)

ν ′′ + ν ′2 + ν ′
(
l

r2
− f ′

2f

)
− lf ′

2r2f + r20
r4

+ 1
2φ
′2 + 4γλ

r2f
e−γφ

[
2lφ′ν ′′ + 2lν ′φ′′

+
(

2r20
r2
− 3 lf

′

f
+ 2lν ′ − 2lγφ′

)
ν ′φ′

]
= 0 , (D.4)
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φ′′ + ν ′φ′ +
(2l
r2
− f ′

2f

)
φ′ + 4e−γφγλ

r2f

[
−4 lr

2
0

r4
ν ′ + 2

(
f − l2

r2

)
ν ′′

+
(

3l2

r2f
− 1

)
f ′ν ′ +

(
2f − 2l2

r2

)
ν ′2
]

= 0 . (D.5)

To impose the boundary conditions, we first expanded the dilaton and the metric
functions at the throat (i.e., near l ∼ 0):

f(l) = f0 + f1l +O(l2) ,
e2ν(l) = e2ν0 (1 + ν1l) +O(l2) ,
φ(l) = φ0 + φ1l +O(l2) ,

(D.6)

where the parameters (f1, ν1, φ1) are functions of (f0, ν0, φ0) [148, 149]. At spatial
infinity, we required:

f(l) = 1 + 2M
l

+O(l−2)

ν(l) = −M
l

+O(l−2)

φ(l) = −D
l

+O(l−2)

(D.7)

where M and D are the mass and scalar charge of the wormhole as measured by an
observer at infinity. To obtain the wormhole solutions, we integrated Eqs. (D.2)–
(D.5) from the throat at l = 0 outward, imposing Eqs. (D.6) as initial conditions.
The parameter ν0 was fixed though a rescaling by requiring asymptotic flatness of
the metric, while φ0 was fixed through a shooting procedure such that the dilaton
field at infinity vanishes as in Eq. (D.7). We used units such that r0 = 2. In this case
the dimensionality of the parameter space is larger than for BHs: for each value of λ
there exists a one-parameter family identified by f0. This yields a two-dimensional
domain of existence, see Fig. 3.4.

In particular, for λ < 0.015228 in the limit f0 → 1 we obtained wormhole
solutions that coexist with BH solutions, as can be seen from the inset of Fig. 3.4.
For λ = 0.015228 and f0 → 1 the wormhole solutions coexist with the singular BH at
the end of the unstable branch. For λ > 0.015228 we found f0 > 1 for all wormhole
solutions. In particular, at the minimum value of f0 allowed for these families,
the wormhole solutions coexist with asymptotically flat and horizonless solutions,
characterized by a singularity in the second radial derivative of the dilaton field.
These “cusp” solutions also bound the domain of existence of horizonless, particle-
like solutions whose scalar field diverges at the origin [150,151].

The coordinates in Eq. (D.1) cover only part of the spacetime. If we try to
extend them to values l < 0, we find a curvature singularity [149]. An interesting
feature of these wormhole solutions is that this singularity disappears if we consider
the existence of matter at the throat, as discussed extensively in [149].
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Appendix E

Evolution equations for EdGB
gravity with an additional
phantom field

Here I discuss the system of equations used in the time evolution code described in
Sec. 3.4. At variance with the cases discussed in Appendix C here the scalar fields
and the metric functions depend on (r, t).

The evolution equations for the scalar fields have been obtained from the defi-
nition of the conjugate momenta (Eq. (3.37)) and are:

∂tφ = αP + αζQ

R′
, (E.1)

∂tξ = αΠ + αζΘ
R′

. (E.2)

Note that I am using a prime to indicate differentiation with respect to the single
variable of a function, while I am using ∂r and ∂t to denote partial differentiation of
spacetime variables. The evolution equations for Q and Θ are obtained by perform-
ing the time derivative of their definitions, and substituting the radial derivatives
of Eqs. (E.1),(E.2) in place of the mixed derivatives of the scalar fields. The result
is

∂tQ = ∂r
(
αP + αζQ

R′

)
, (E.3)

∂tΘ = ∂r
(
αΠ + αζΘ

R′

)
. (E.4)

Finally, using the field equations it is possible to obtain three evolution equations
for P , Π, and ζ and two constraints for α and ζ. The evolution equations are

∂tP = 1
DP

{
αR′2

[
Q
(
R′(∂rα)− αR′′

)
+R′

(
PζR′(∂rα) + α

(
(∂rQ)

+R′ (ζ(∂rP ) + P (∂rζ))
))]

R4 − 2αR′
[
2F ′[φ]

((
ζ2 + 4

)
R′(∂rα)

+ α
(
ζR′(∂rζ)− 4R′′

))
Q2 +R′

(
20PζR′F ′[φ](∂rα) + α

(
−R′2
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+ 4F ′[φ] (2ζ(∂rP ) + 3P (∂rζ))R′ + 8F ′[φ]
(
(∂rQ)− PζR′′

)))
Q

+R′
(
10P 2ζF ′[φ]

(
ζ(∂rα) + α(∂rζ)

)
R′2 + Pαζ

(
−R′2 + 8ζF ′[φ](∂rP )R′

+ 8F ′[φ](∂rQ)
)
R′ − 2

(
2ΘΠR′ + ζ

(
Θ2 + Π2R′2

))
F ′[φ] (ζ(∂rα) + α(∂rζ))

)]
R3

− 2αF ′[φ]
[
8αζ2R′F ′′[φ]Q4 − 8

(
2
(
ζ2 + 2

)
R′F ′[φ](∂rα) + α

(
F ′[φ]

((
ζ2 − 4

)
R′′

+ 2ζR′(∂rζ)
)
− 2PζR′2F ′′[φ]

))
Q3 +R′

(
α
(((

8
(
P 2 −Π2

)
F ′′[φ]− 3

)
ζ2

+ 16
)
R′2 + 8

(
−2ζ

(
ΘΠF ′′[φ] + 2F ′[φ](∂rP )

)
− P

(
ζ2 + 8

)
F ′[φ](∂rζ)

)
R′

− 8ζ
(
ζΘ2F ′′[φ]− 6PF ′[φ]R′′

)
+ 8

(
ζ2 − 4

)
F ′[φ](∂rQ)

)
− 8Pζ

(
ζ2 + 16

)
R′F ′[φ](∂rα)

)
Q2 + 2

(
Pαζ

(
15R′2 − 32ζF ′[φ](∂rP )R′

− 24F ′[φ](∂rQ)
)
R′2 + 4

(
2ΘΠR′ + ζ

(
Θ2 + Π2R′2

))
F ′[φ]

(
2ζR′(∂rα)

+ α
(
ζR′′ + 2R′(∂rζ)

))
− 4P 2ζF ′[φ]

(
16ζR′(∂rα)− 3α

(
ζR′′ − 4R′(∂rζ)

))
R′2
)
Q

+ ζR′
(
8R′(∂rα)

(
Pζ
(
2ΘΠR′ + ζ

(
Θ2 +

(
Π2 − 5P 2

)
R′2
))
F ′[φ] +R′(∂rζ)

)
+ α

(
−32P 2ζ2F ′[φ](∂rP )R′3 + 2ΘΠ

(
R′2 + 8PF ′[φ](∂rζ)R′ − 8F ′[φ](∂rQ)

)
R′

+ ζ
(
17P 2R′4 −Π2R′4 + 3Θ2R′2 − 24P 2F ′[φ](∂rQ)R′2 − 8Π2F ′[φ](∂rQ)R′2

+ 8P
(
Θ2 +

(
Π2 − 5P 2

)
R′2
)
F ′[φ](∂rζ)R′ − 8Θ2F ′[φ](∂rQ)

)))]
R2

− 8R′F ′[φ]
[
4α2

(
ζ2 − 4

)
R′F ′[φ]Q3 + 4αζR′

(
Pα

(
ζ2 − 12

)
R′F ′[φ]

+ 2ζF ′′[φ](∂rα)
)
Q2 + 4ζ

(
2R′F ′[φ](∂rα)2ζ3 + α2R′

(
2F ′[φ](∂rζ)2

+ 2PR′F ′′[φ](∂rζ)−
(
Θ2 +

(
13P 2 −Π2

)
R′2
)
F ′[φ]

)
ζ

+ 2α(∂rα)
(
ζ
(
3PζR′2F ′′[φ]− F ′[φ]R′′

)
+ 2

(
ζ2 − 2

)
R′F ′[φ](∂rζ)

))
Q

+ ζ2R′
(
−20P 3α2ζF ′[φ]R′3 + 16P 2αζF ′′[φ]

(
ζ(∂rα)

+ α(∂rζ)
)
R′2 + 4PF ′[φ]

(
ζ
((

Π2R′2 −Θ2
)
α2 + 2(∂rα)2

)
− 6α(∂rα)(∂rζ)

)
R′

+ α
((
R′
((

2ζ2 − 1
)
R′ + 8ζ

(
3− 2ζ2

)
F ′[φ](∂rP )

)
+ 8F ′[φ](∂rQ)

)
(∂rα)

+ 2αR′
(
ζR′ + 4

(
1− 2ζ2

)
F ′[φ](∂rP )

)
(∂rζ)

))]
R

+ 4ζF ′[φ]
[
ζ
(
64QR′

(
2Q+ PζR′

)
F ′[φ]2(∂rζ)2 + 8F ′[φ]

(
−8ζR′F ′′[φ]Q3

+ 8
(
2PF ′′[φ]R′2 + ζF ′[φ]R′′

)
Q2 +R′

(
R′
(
5ζR′

(
8F ′′[φ]P 2 + 1

)
+ 16

(
1− 2ζ2

)
F ′[φ](∂rP )

)
− 8ζF ′[φ](∂rQ)

)
Q+ PζR′3

(
3ζR′

(
8F ′′[φ]P 2 + 1

)
+ 8

(
1− 3ζ2

)
F ′[φ](∂rP )

))
(∂rζ) + ζR′

(
8ζR′F ′′[φ]P 2 + 8QF ′′[φ]P + ζR′

− 8
(
ζ2 − 1

)
F ′[φ](∂rP )

)(
R′3 − 8

(
F ′′[φ]Q2 + F ′[φ](∂rQ)

)
R′

+ 8QF ′[φ]R′′
))
α2 + 8F ′[φ](∂rα)

(
16ζR′F ′′[φ]Q3 + 16

(
ζ
(
4PζR′2F ′′[φ]
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− F ′[φ]R′′
)

+ 2
(
ζ2 − 1

)
R′F ′[φ](∂rζ)

)
Q2 + 2ζR′

((
ζ2
(
36F ′′[φ]P 2 + 2

)
− 1

)
R′2

+ 4F ′[φ]
(
2ζ
(
3− 2ζ2

)
(∂rP ) + 3P

(
ζ2 − 2

)
(∂rζ)

)
R′

+ 8F ′[φ]
(
(∂rQ)− PζR′′

))
Q+ Pζ2R′2

((
3ζ2

(
8F ′′[φ]P 2 + 1

)
− 2

)
R′2

− 8F ′[φ]
(
ζ
(
3ζ2 − 5

)
(∂rP ) + 2P (∂rζ)

)
R′ + 16F ′[φ](∂rQ)

))
α

+ 128ζ2R′
(
Qζ + PR′

) (
Q+ PζR′

)
F ′[φ]2(∂rα)2

]}
, (E.5)

∂tΠ = 1
RR′3

{
RR′(∂rα)

(
R′ζΠ + Θ

)
+ α

[
R′
(
R
(
R′(∂rζ)Π + (∂rΘ)

)
+R′ζ

(
2R′Π +R(∂rΠ)

))
+ Θ

(
2R′2 −RR′′

)]}
, (E.6)

∂tζ = 1
4R′ζ (8F ′[φ] (R′Pζ +Q)−RR′)

{
2ζ2
[
α
(
8(∂rζ)F ′[φ]

(
2R′Pζ +Q

)
+R′

(
−8R′P 2ζF ′′[φ]−R′ζ − 8PQF ′′[φ] + 8(∂rP )

(
ζ2 − 1

)
F ′[φ]

))
− 8R′2(∂tP )ζF ′[φ]

]
+R2α

(
2R′(ΘΠ− PQ) +R′2ζ

(
Π2 − P 2

)
+ ζ

(
Θ2 −Q2

))
− 4RR′αζ2(∂rζ)

}
, (E.7)

where

DP = R′2
[
αR′3R4 − 16αR′2

(
Q+ PζR′

)
F ′[φ]R3 + 64αR′

(
Q+ PζR′

)2
F ′[φ]2R2

+ 128ζ3R′2F ′[φ]2 (ζ(∂rα) + α(∂rζ))R− 32ζ3F ′[φ]2
(
8ζR′

(
4Q

+ 3PζR′
)
F ′[φ](∂rα) + α

(
ζ
(
R′3 − 8

(
F ′′[φ]Q2 + F ′[φ](∂rQ)

)
R′ + 8QF ′[φ]R′′

)
+ 8R′

(
4Q+ 3PζR′

)
F ′[φ](∂rζ)

))]
. (E.8)

The constraints are

∂rζ = − 1
4R′ζ (RR′ − 8F ′[φ] (R′Pζ +Q)) (RR′ − 4F ′[φ] (3R′Pζ + 2Q))

×
{

8R′2ζ2F ′[φ]
(
R′P +Qζ

)[
R2(PQ−ΘΠ) + 8ζ2 (PQF ′′[φ] + (∂rP )F ′[φ]

)]
−
[
4F ′[φ]

(
Q
(
ζ2 − 2

)
− 2R′Pζ

)
+RR′

][
R2R′

(
2R′ζ(PQ−ΘΠ)

+R′2
(
P 2 −Π2

)
+Q2 −Θ2

)
+ 2ζ2

(
R′
(
8R′ζ

(
PQF ′′[φ] + (∂rP )F ′[φ]

)
+ 8Q2F ′′[φ] + 8(∂rQ)F ′[φ]−R′2

)
− 8R′′QF ′[φ]

)]}
, (E.9)

∂rα = α

2R′ζ (RR′ − 8F ′[φ] (R′Pζ +Q)) (RR′ − 4F ′[φ] (3R′Pζ + 2Q))

×
{

2R2R′F ′[φ]
[
R′2ζ

(
5P 2Q− 6PΘΠ +QΠ2)+ 4R′Q(PQ−ΘΠ)

+Qζ
(
Θ2 −Q2

)]
− 8RR′3ζ2

(
PQF ′′[φ] + (∂rP )F ′[φ]

)
+R3R′3(ΘΠ− PQ)

+ 4ζ2F ′[φ]
[
−8R′Q3ζF ′′[φ] + 24R′3P (∂rP )ζF ′[φ] +R′Q

(
16R′(∂rP )F ′[φ]
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+ ζ
(
R′2

(
24P 2F ′′[φ] + 1

)
− 8(∂rQ)F ′[φ]

))
+ 8Q2

(
R′′ζF ′[φ] + 2R′2PF ′′[φ]

)]}
. (E.10)

These equations have been derived using Wolfram Mathematica.
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Appendix F

Numerical evolution in EdGB
gravity: code testing and
convergence

Here I discuss the simulations we performed to test the accuracy of the integration
algorithm.

We first evolved a static BH in the upper branch (γ = 4, λ = 0.01536) in
absence of perturbations of both scalar fields (Aφ = Aξ = 0). The outer boundary
was placed at R∞ = 520, the final time was T = 500, and the CFL factor was set
to CFL = 0.025.

In Fig. F.1 I show how the violation CVζ of the constraint (E.9) at t = T scales
with the resolution. As we can see the fourth-order scaling is not satisfied in all the
radial domain. This can be due to the fact that CVζ assumes small values and is
dominated by noise. However, as we can see from the insets, the constraint violation
scales as a fourth-order term in ∆r in the horizon region, and as a fifth-order term
in the region 3 . R . 6. While the behavior near the horizon is consistent with
the accuracy of the evolution algorithm, the fifth-order scaling might be due to the
Kreiss-Oliger dissipation term, which is of order 5 in ∆r.

Moreover, we observed that the profile of the dilaton field remains constant in
time, which is consistent with the fact that our starting configuration is a static
solution to the field equations.

In order to corroborate the reliability of the integration algorithm in the region
in which the constraint violation is dominated by noise, we used a second-order
accurate version of the code. In this way CVζ is typically larger, allowing us to
check its scaling properties above the noise floor. The modifications introduced
alter as little as possible the structure of the integration algorithm and they can be
summarized as follows:

• We used the second-order Runge-Kutta method for the time integration;

• We used the second-order accurate finite differences method for the radial
derivatives; we continued using the (second-order) upwind scheme for the first
2 grid points (instead of 1);
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Figure F.1. Scaling of the violation CVζ of the constraint (E.9), at the end of the evolution
of a stable static dilatonic BH configuration. We can see a fourth-order scaling near the
horizon and a fifth order scaling for 3 . R . 6.

• We performed the integration of the constraint for α using only the trapezoidal
rule;

• We performed the integration in the shooting procedure and in the initializa-
tion part with the second-order accurate Runge-Kutta method;

• We computed the numerical derivatives in the right-hand side of the con-
straints during the initialization part with second-order accuracy; however
the resolution of the shooting procedure was still the double of the resolution
in the evolution (half of the grid points were discarded after initialization);

• We used the third order Kreiss-Oliger dissipation term

Qu = − ηKO
16 ∆t(∆r)

4(D2
+)ρ(D2

−)u, (F.1)

where u is a generic field, ηKO = 0.05, and

ρ = 1
1 + e5(R−15) ; (F.2)

we continued excluding the innermost and outermost 3 grid points from the
computation of the dissipation term (instead of 2);

• We used CFL = 0.01 since we observed that when using the second-order
accurate code a lower CFL was needed.

We performed the numerical evolution of the same initial configuration as before
with this version of the code. In Fig. F.2 I show the scaling of the constraint
violation at the end of the simulations with resolutions ∆r = 0.005 and ∆r = 0.01.
In this case we obtained the expected second-order scaling in all the radial domain
except in a small region around R ∼ 15 where CVζ seems to scale as a third order
term. This may be due to the Kreiss-Oliger dissipation term, which is of order 3.
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Figure F.2. Scaling of the constraint violation at the last time step of the evolution of
a static stable dilatonic BH with λ = 0.01536 using the second-order accurate code.
In this case CVζ scales as a second-order term, except in a region around R ∼ 15,
where there is third order scaling. This behavior may be due to the presence of the
Kreiss-Oliger dissipation term.

We then moved to consider some collapsing scenarios in order to test the be-
havior of our second- and fourth-order accurate codes in the dynamical setups of
our interest. We first considered the collapse of a wave packet of the dilaton on a
Schwarzschild BH in GR (λ = 0). In this case we could estimate the BH mass at
the horizon as Mh = Rh

2 , and we could compare it with the Misner-Sharp mass at
infinity to check that the results of the numerical evolution were in agreement with
physical expectations. We obtained that initially Mh < MMS since part of the total
mass in the spacetime is stored in the profile of the dilaton outside the horizon,
while at the end Mh = MMS with excellent accuracy. This is consistent with the
fact that the pulse of the dilaton has been absorbed by the BH.

We then considered a wave packet of the phantom field instead of the dilaton.
In this case Mh > MMS at the beginning of the simulation since the profile of the
phantom field outside the BH adds a negative contribution to the total Misner-
Sharp mass. At the end of the simulation instead, Mh = MMS. Also in this case
the results of the simulations are consistent with physical expectations since the BH
mass decreases upon absorbing the phantom perturbation.

We finally studied the convergence in some collapsing scenarios when λ 6= 0.
I discuss here a test simulation of the collapse of a wave packet of the phantom
field on a static dilatonic BH in the case λ = 0.01528. The outer boundary was at
R∞ = 720, the final time of integration was T = 700, and the parameters of the
initial wave packet were

A0,ξ = 0.02, R0,ξ = 15, σξ = 0.5. (F.3)

In the left panel of Fig. F.3 I show the scaling of the constraint violation at the
end of the numerical evolution. As we can see it is not possible to evaluate the
convergence of the code since CVζ is very small and dominated by noise. However
we repeated the simulation with the second-order accurate version of the code and
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Figure F.3. Scaling of the constraint violation at the end of the simulation of the collapse
of a wave packet of the phantom field on a dilatonic BH in the upper branch. The
left and the right panels refer respectively to the fourth and the second-order accurate
versions of the code.

we obtained the expected scaling properties (see the right panel of Fig. F.3)
In summary, even though it was not possible to evaluate properly the conver-

gence of the code, the constraint violation appears to be very small and dominated
by noise. The results of the test simulations are consistent with physical expecta-
tions, and the good scaling properties of the second-order accurate version of the
code corroborate the reliability of our implementation of the integration algorithm
that we used.
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Appendix G

Derivation of the 3 + 1 form of
the equations for the plasma
fluid

Here I report the explicit computation to express Eqs. (4.8), (4.9) in 3 + 1 form.

G.1 Decomposition of Eq. (4.8)
Let me rewrite Eq. (4.8) for clarity:

uν∇νuµ = e

me
Fµνuν . (G.1)

We have to project it separately on nµ and on Σt.

Projection on nµ

Contracting Eq. (4.8) with nµ we obtain

nµu
ν∇νuµ = e

me
Fµνuνnµ. (G.2)

In the right hand side we have
e

me
Fµνuνnµ = − e

me
Eνuν = − e

me
Eν (3)uν , (G.3)

where in the last step we used the fact that Eµ lies on Σt. The left hand side
requires more manipulation. In particular we have that

nµu
ν∇νuµ = uν∇ν(nµuµ)− uµuν∇νnµ = −uν∇νΓ− uµuν∇νnµ. (G.4)

Let us now consider only the second term:

uµuν∇νnµ = uµuνδλν∇λnµ = uµuν(hλν − nλnν)∇λnµ
= uνuµhλν∇λnµ − uνnνuµaµ
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= uνuµhλνδ
σ
µ∇λnσ + Γuµaµ

= uνuµhλνh
σ
µ∇λnσ − uνuµhλνnσnµ∇λnσ + Γuµaµ. (G.5)

Here we used the definition of the projection operator hµν = δµν +nµnν , the defini-
tion of Γ, and defined the 4-acceleration of the Eulerian observer, aµ = nν∇νnµ =
Dµ lnα. Given that nµnµ = −1 the second term in the last line vanishes. Fur-
thermore, by recognizing that Kµν = −hλνhσµ∇λnσ, we can write the first term as
−Kµνu

µuν . Substituting all these terms in Eq. (G.2) we obtain

− uµ∇µΓ +Kµνu
µuν − ΓuµDµ lnα = − e

me
Eµ (3)uµ. (G.6)

Using now the decomposed form of uµ (Eq. (4.17)) we can write

∂tΓ = βi∂iΓ− αU i∂iΓ + αΓKijU iU j − ΓU i∂iα+ e

me
αEiUi. (G.7)

Projection on Σt

Let us now project Eq. (4.8) with hµν :

hµσu
ν∇νuσ = e

me
hµσF

σνuν . (G.8)

In the right hand side we have
e

me
hµσF

σνuν = e

me
hµσ(nσEν − nνEσ + (3)εσνλBλ)uν

= − e

me
nνuνE

µ + e

me

(3)εµνλBλuν

= e

me
ΓEµ + e

me
Γ (3)εµνλBλUν . (G.9)

In the left hand side, instead, we start by substituting the decomposition (4.17):

hµσu
ν∇νuσ = hµσu

ν∇ν(Γnσ + (3)uσ)
= hµσu

νnσ∇νΓ + Γhµσuν∇νnσ + hµσu
ν∇ν (3)uσ

= Γhµσ(Γnν + (3)uν)∇νnσ + hµσ(Γnν + (3)uν)∇ν (3)uσ

= Γ2hµσa
σ − ΓKµ

ν
(3)uν + Γhµσnν∇ν (3)uσ + hµσ

(3)uνDν
(3)uσ,

(G.10)

where in the third step we used the orthogonality between nµ and hµν , while on
the fourth step we used the definition of the 4-acceleration aµ and the extrinsic
curvature Kµν . The covariant derivative Dµ has been introduced according to the
definition Dν

(3)uµ = hσνh
µ
λ∇σ (3)uλ. Let us now rewrite this equation in terms of

Uµ:

hµσu
ν∇νuσ = Γ2aµ − Γ2Kµ

νUν + ΓUµnν∇νΓ + Γ2hµσn
ν∇νUσ

+ UνUµΓDνΓ + Γ2hµσUνDνUσ. (G.11)
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Now we wish to rewrite the spatial components of this equation in the form
of an evolution equation, and for this purpose we use a procedure similar to the
one in Eqs. (A14) - (A20) of [121]. First we note that for any 3-vector (3)V µ,
Ln (3)V ν = nµ∇µ (3)V ν − (3)V µ∇µnν , so that

hνσn
µ∇µ (3)V σ = hνσLn (3)V σ + hνσ

(3)V µ∇µnσ

= hνσLn (3)V σ − (3)V µKν
µ . (G.12)

Now, the Lie derivative can also be written in terms of partial derivatives, and
setting ν = i we obtain

hiσn
µ∇µ (3)V σ = hiσLn (3)V σ − (3)V jKi

j

= 1
α
∂t

(3)V i − βj

α
∂j

(3)V i +
(3)V j

α
∂jβ

i − (3)V jKi
j , (G.13)

where we made use of the explicit expressions of hµν and nµ.
If we now substitute Eq. (G.13) in the i-th component of Eq. (G.11), we get

hiσu
ν∇νuσ = Γ2ai + ΓU inν∇νΓ + U iU jΓDjΓ

+ Γ2

α

(
∂tU i − βj∂jU i + U j∂jβi

)
+ Γ2U jDjU i − 2Γ2Ki

jU j . (G.14)

Next, nν∇νΓ = 1
α [∂tΓ − βi∂iΓ], which is given by Eq. (G.7). Substituting in

Eq. (G.14) we obtain

hiσu
ν∇νuσ = Γ2ai + Γ2U iKjlU jU l − Γ2U iU j ∂jα

α

+ Γ2

α

(
∂tU i − βj∂jU i + U j∂jβi

)
+ e

me
ΓU iEjUj + Γ2U jDjU i − 2Γ2Ki

jU j . (G.15)

We are now ready to replace Eq. (G.15) and the spatial components of Eq. (G.9)
in the original equation (G.8) and isolate the evolution operator. The result is:

∂tU i = βj∂jU i − U j∂jβi − αai − αU iKjlU jU l

+ α

Γ
e

me

(
−U iEjUj + Ei + (3)εijlBlUj

)
+ 2αKi

jU j + U iU j∂jα− αU jDjU i . (G.16)

G.2 Continuity equation in 3 + 1 variables
Let us now use the variables that we have introduced to rewrite the continuity
equation Eq. (4.9). Using the decomposition uµ = Γ(nµ + Uµ) and the definition
of the electron density seen by the Eulerian observer, nEL = Γne, we can rewrite
Eq. (4.9) as

0 = ∇µ[neΓ(nµ + Uµ)] = ∇µ[nEL(nµ + Uµ)]
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= nµ∇µnEL + Uµ∇µnEL + nEL∇µnµ + nEL∇µUµ . (G.17)

Expressing nµ∇µnEL in terms of Lie derivatives, Eq. (G.17) can be written as an
evolution equation for nEL:

∂tnEL = βi∂inEL + αKnEL − αU i∂inEL − αnEL∇µUµ. (G.18)
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Appendix H

Numerical integration of
Maxwell’s equations with a
plasma fluid: convergence tests

We evaluated the accuracy and the convergence properties of our code for the nu-
merical integration of the Maxwell’s equations in presence of a plasma fluid by
checking how the constraint violations scale with the resolution in two test setups
taken from the simulations presented in Chapter 4.

Specifically, we considered the following quantities

CVGauss = ∂iE
i − enEL − ρ(ions), (H.1)

CVMagnetic = ∂iB
i, (H.2)

CVPlasma =
√

Γ2(1− UiU i)− 1, (H.3)

which, whenever nonzero, represent the violations of the Gauss law (4.23), of the
Gauss law for magnetism (4.24), and of the normalization condition in Eq. (4.30),
respectively.

In order to asses the reliability of our code I show here the convergence in the
two most challenging nonlinear regimes: WB and blowout (although not shown,
the convergence of the linear regime is excellent). Starting from the former, we
repeated the simulation with AE = 1 whose characteristic are described in Sec. 4.5.2,
using a lower resolution ∆x = ∆y = ∆z = 0.4, and increasing the grid size to
[−4, 4]× [−4, 4]× [−1450, 1150] in order to maintain 21 grid points along the x and
y directions. We also doubled the time step to ∆t = 0.2, in order to keep the CFL
factor constant.

Figure H.1 shows the constraint violations CVGauss (left panel) and CVPlasma
(right panel) along the z axis at t = 830, slightly before WB happens (cf. right
panel of Fig. 4.6). In general, while for both the constraint violations there is
a region where they are dominated by noise, in the central region they show an
excellent fourth order scaling, and convergence is lost only for 65 . z . 75, where
the WB phenomenon is taking place. Although not shown, the violation CVMagnetic
is extremely small and dominated by noise, with values . 10−14.
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Figure H.1. Scaling of the violations of the Gauss Law (left panel) and the condition
uµuµ = −1 along the z axis, for the simulation in the nonlinear regime with AE = 1.
CVGauss and CVPlasma are extracted at t = 830, when the WB phenomenon starts taking
place. Overall the code converges extremely well, except in the region around the spike
of nEL, where the constraint violation displays a peak. The insets show a magnification
of the constraint violations around this region.

Let me now move to consider the convergence in the blowout regime. We re-
peated the simulation with AE = 1000 using grid steps ∆x = ∆y = ∆z = 0.4 while
maintaining the CFL factor constant. As in the previous case we extended the grid
to [−4, 4] × [−4, 4] × [−750, 850] in order to have the same number of grid points
along the transverse directions x and y. The scaling of CVGauss and CVPlasma on
the z axis at t = 190 is shown in the left and right panel of Fig. H.2, respectively.
We can see that the code converges extremely well, except in the region just behind
the peak of the plasma density (cf. lowest panel of Fig. 4.4). However, it is worth
noting that the extension of the region where convergence is lost decreases as the
resolution increases, and that fourth-order scaling is restored in the plasma-depleted
region. As for the violation of Eq. (4.24), also in this case CVMagnetic is small and
dominated by noise, assuming values . 10−11.

Given the excellent convergence properties in the nonlinear regime, we concluded
that the code is reliable and produces accurate results at the resolutions used in
Chapter 4
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Figure H.2. Convergence of CVGauss(left panel) and CVPlasma(right panel) along the z axis
for the simulation in the nonlinear regime with AE = 1000. The constraint violation
is computed at t = 190, when the system is in the blowout regime. As we can see it
satisfies fourth-order scaling except in the region close to the “transported” plasma and
behind it, where the constraint violations have a peak. This can be better appreciated
in the inset, that contains a magnification of the constraint violation around this region.
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Appendix I

Simulations of an EM wave
packet scattering off a plasma
barrier: homogeneity along the
transverse directions

Throughout the work described in Chapter 4, we used numerical grids whose ex-
tension along the transverse directions x and y is significantly smaller than in the z
direction. This had the advantage of reducing considerably the computational cost,
and could be done by exploiting the planar geometry of the system under consid-
eration. In this appendix, I would like to show that homogeneity of the variables
along the transverse directions is preserved also at late times during the evolution,
so that this grid structure is compatible with the physical properties of the system
for the entire duration of the simulations.

For this purpose let me consider the simulation in the nonlinear regime with
AE = 1000, and extract the profiles of Ex, Ey, Ez, and nEL along the x and y axes
at z = 240. This operation is performed at t = 180 when the system is already in
a blowout state, and the value of the z coordinate is chosen to be where plasma is
concentrated at this time.

The results are shown in Fig. I.1, where the left and right panels represent the
profiles along the x and y axes, respectively. We can see that all the profiles are
constant along the axes, and that the values are consistent between the two plots,
confirming that the system maintains homogeneity along the transverse directions.
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Figure I.1. Profiles of ~E and nEL along the transverse directions x (left) and y (right)
at z = 240 for the simulation with initial amplitude AE = 1000. These data are
extracted at t = 180, when the system is already in the blowout regime, and in the
spatial region where the plasma density peaks. All the profiles are constant in x and
y, with values consistent between the two plots. This confirms that the homogeneity
property is conserved during the 3 + 1 simulations.
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