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We study the collective vibrational excitations of crystals under out-of-equilibrium steady con-
ditions that give rise to entropy production. Their excitation spectrum comprises equilibrium-like
phonons of thermal origin and additional collective excitations called entropons because each of
them represents a mode of spectral entropy production. Entropons coexist with phonons and domi-
nate over them when the system is far from equilibrium while they are negligible in near-equilibrium
regimes. The concept of entropons has been recently introduced and verified in a special case of
crystals formed by self-propelled particles. Here, we show that entropons exist in a broader class of
active cyrstals that are intrinsically out of equilibrium and characterized by the lack of detailed bal-
ance. After a general derivation, several explicit examples are discussed, including crystals consisting
of particles with alignment interactions and frictional contact forces.

I. INTRODUCTION

Collective excitations play a fundamental role in the
comprehension of solids and are one of the most fruitful
concepts of solid-state physics [1]: prototypical examples
are phonons, i.e. vibrational excitations of the elementary
constituents of the crystal [2], and magnons, the collec-
tive excitations associated with the electron spins in a
crystal lattice [2]. In particular, in a crystal, the displace-
ments of atoms from their equilibrium positions give rise
to collective modes of vibrations named phonons whose
amplitude is determined by the environmental tempera-
ture. If the system is in equilibrium with its environment,
there is no entropy production. In the framework of soft
matter materials, it is possible to realize experimentally
an equilibrium solid made of mesoscopic particles, in-
stead of atoms, employing high-density colloidal suspen-
sions and inducing its crystallization by decreasing the
temperature and increasing the packing fraction [3, 4].
In equilibrium, the phase diagram of colloidal particles
has been thoroughly investigated in the past for two and
three-dimensional systems and different pairwise interac-
tion potentials [5–8], revealing a stable crystalline phase
at high densities. The dynamics of these colloidal parti-
cles is Brownian overdamped motion as the surrounding
solvent keeps the temperature of the system constant.
Manipulations of solids can involve the use of external

forces [9], such as laser pulses [10], acoustic fields [9, 11],
and light fields [12]. External fields transfer energy to
each particle of the solid and are responsible for entropy
production [13], such that they can be considered one
of the basic instances of out-of-equilibrium crystals [14].
Another important class of solids in non-equilibrium are
active crystals. They consist of self-propelled agents that
locally extract energy from the environment [15–17] and

∗ lorenzo.caprini@gssi.it, lorenzo.caprini@hhu.de

convert it to perform specific tasks, such as directed mo-
tion. For instance, solid structures are common at the
micron scale in the realm of biology. Examples are cell
monolayers in human or animal bodies [18–20], biological
tissues but also bacterial colonies at high density [21, 22].
Non-equilibrium crystals have been also investigated in
active colloids, for instance by considering high-density
active Janus particles that self-propel in space because
of thermo- or electro-phoresis. They may form crystal
structures with almost perfect hexagonal packing [23–25]
that can even collectively travel or rotate [26, 27]. Re-
cently, solids made of out-of-equilibrium particles have
been realised also at the macroscopic scale by using ac-
tive granulars [28], i.e. granular particles dissipating en-
ergy through collisions that self-propel because of some
shape asymmetry.

The investigation of collective excitations of non-
equilibrium solids is now a challenging issue, relevant
both to physics and biology, and requires linking to-
gether solid-state and non-equilibrium statistical physics
concepts. In the case of active crystals formed by self-
propelled (active) particles, a novel kind of collective
wavelike excitations has been discovered in Ref. [29] (see
Fig. 1). These were named entropons because each of
them is determined by the spectral entropy production
of the system. In the case investigated, entropons are sus-
tained by the self-propelled (active) force acting and co-
exist without interfering with the usual thermal phonons.

In this paper, we show that entropons are not lim-
ited to the specific case of active solids considered in
Ref. [29], that are formed by self-propelled particles, but
are present in a broader class of non-equilibrium crystals
that violate the detailed balance and produce entropy.
After considering a general set-up and giving a practi-
cal prescription to calculate the contributions of phonons
and entropons, we discuss a series of specific examples.
These include crystals consisting of particles with align-
ment interactions and frictional contact forces.

The paper is structured as follows: in Sec. II, we intro-
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duce a general model suitable to describe non-equilibrium
solids, while in Sec. III, we discuss the concept of entro-
pons as non-equilibrium collective excitations coexisting
with phonons, and provide a general prescription to cal-
culate their contribution. Section IV contains a deriva-
tion of the main results of the previous section while
Sec. V reports several examples where dynamical correla-
tions and spectral entropy production are calculated an-
alytically. Phonons and entropons are identified and dis-
cussed case by case. Finally, we argue the consequences
of our results and possible future research lines in the
conclusions, Sec. VI.

II. MODEL

We argue that the concept of entropons goes beyond
the specific case of active solids studied in Ref. [29], by
considering crystals formed by particles far from equilib-
rium but not necessarily self-propelled. We require that

i) The particles form a d-dimensional periodic lattice.

ii) Particles can only perform small fluctuations
around their equilibrium positions so that their dy-
namics can be described in terms of displacement
variables, u(t). Due to the smallness of the fluctu-
ations, the spatial Fourier transform of u(t) corre-
sponding to a specific mode q(t) is decoupled from
the remaining modes.

iv) The system reaches a (non-equilibrium) steady
state in the long-time limit.

With these requirements, the particle-particle interac-
tions can be easily treated and they determine the disper-
sion relation ω2(q) within the harmonic approximation.
By taking advantage of the translational symmetry of

a crystal, we can conveniently describe the system in
Fourier space, in terms of frequency ω and wave vec-
tors q. By assuming a dissipative Brownian dynamics,
subject to noise and dissipative (friction) forces, we can
obtain an evolution equation for the Fourier transform of
the particle displacement û(ω,q) at the frequency ω and
wave vectors q (See Appendix A for definitions). This
dynamics will be rather general and will include a broad
range of equilibrium and non-equilibrium models usually
studied in active matter and beyond. Without loss of
generality (see Sec. V for specific examples), the evolu-
tion equation for û(ω,q) can be expressed as

L(ω,q)û(ω,q) = F̂(ω,q) +
√

2Tγξ̂(ω,q) (1)

where ξ̂(ω,q) is a white noise with zero average and cor-
relation

〈ξ̂(ω,q) · ξ̂(ω,q)〉 = δ(ω + ω′)δ(q+ q′) (2)

and the prefactor Tγ represents the amplitude of the
thermal noise. Here, our nomenclature is inspired by

the analogy with equilibrium solids in contact with a
Brownian bath at temperature T and embedded in a
medium exerting a viscous friction of coefficient γ. The
term L(ω,q) is a complex function of ω and q (indepen-
dent of the state variables, such as displacement, veloc-
ity, etc.) describing the evolution of the displacement
û(ω,q). Note that with this formalism describes both
overdamped and underdamped dynamics. Here, for sim-
plicity, we restrict ourselves to the case where L(ω,q) is a
scalar operator acting equally on all spatial components
and not a tensor, so that magnetic fields coupling dif-
ferent components are not considered. Explicit examples
for L(ω,q) (or its inverse) are provided in Sec. V both
for equilibrium and non-equilibrium systems.
The term F̂(ω,q) is a force that does not depend on

the particle displacement but can be a function of other
dynamical variables involved in the system (see Sec. V for
explicit examples). This force is zero in equilibrium con-
ditions, while this term violates the detailed balanced and
leads to entropy production in out-of-equilibrium condi-
tions. To fix ideas, F̂(ω,q) may represent either the self-
propelled force evolving through the dynamics of active
particles or more complex dynamical stochastic processes
that can even evolve non-linearly.
We remark that L(ω,q) can be conveniently decom-

posed onto its odd and even part under time-reversal
transformation (TRT), ω → −ω, according to:

L(ω,q) = Lo(ω,q) + Le(ω,q) (3)

where the subscripts o and e mean odd and even, respec-
tively, under TRT, so that Lo → −Lo and Le → Le. As
intuition suggests, û(ω,q) is even under TRT and, for
simplicity, we restrict our analysis to a set of dynami-
cal variables F(ω,q) that are even under TRT so that
F → F.

III. THE CONCEPT OF ENTROPONS

In this section, we anticipate our results by introducing
the concept of entropons as collective excitations which
originate from non-equilibrium. Here, the meaning of
entropons is discussed, while the derivation of our results
is reported in Sec. IV.
To characterize collective excitations in non-

equilibrium solids, we study the dynamical correlations
of the Fourier transform of the particle displacements
around their lattice positions, C(ω,q), defined in the
Fourier space of frequency ω and wave vector q, as

C(ω,q) = lim
T →∞

1

T 〈û(ω,q) · û(−ω,−q)〉 . (4)

The dynamical correlations C(ω,q) can be conveniently
decomposed as

C(ω,q) = Ceq(ω,q) + Cout(ω,q) (5)

where Ceq(ω,q) and Cout(ω,q) are the equilibrium and
out-of-equilibrium parts of the dynamical correlation of
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Figure 1. Collective excitations in non-equilibrium
crystals. By analyzing the spectrum of the particles’ dis-
placement around the lattice positions, it is possible to char-
acterize the collective vibrations of crystals. Crystals out of
equilibrium are characterized by phonons and additional novel
collective excitations that we called entropons because they
are generated by entropy production.

the particle displacement û(ω,q), respectively. As clar-
ified later, the first part has a thermal origin, while the
second part originates from the non-equilibrium force
pushing the system out of equilibrium. Ceq(ω,q) can be
expressed in terms of the response function to a small
perturbation while Cout(ω,q) can be related to the spec-
tral entropy production of the system σ(ω,q). As a con-
sequence, the decomposition (4) can be interpreted as
a generalization of the Harada-Sasa relation [30] for the
case of nonequilibrium solids.
As obtained in Sec. IV, Ceq(ω,q) can be written as

Ceq(ω,q) = −2Tγ
Im[Ruu(ω,q)]

Im[L(ω,q)]
(6)

where Im[·] denotes the imaginary part and Ruu(ω,q) is
the Fourier transform of the displacement response func-
tion due to a small perturbation, h, defined as

Rûû(ω,q) = Tr

[

δ〈u(ω,q)〉h
δh

]

. (7)

Here, Tr[·] stands for the trace of the matrix inside the
square brackets. The average 〈·〉h is defined over the
perturbed trajectory, and δ/δh is the functional deriva-
tive with respect to the perturbation h, as usual in lin-
ear response theory [31–34]. As known in the literature,
Rûû(ω,q) can be explicitly calculated and in our linear
model we find

Rûû(ω,q) = L−1(ω,q) . (8)

From Eq. (1) it is clear that Rûû(ω,q) is independent of
the non-equilibrium force F(ω,q) and we may anticipate
that it is associated with the phononic spectrum.
The contribution Cout(ω,q) can be related to the en-

tropy production of the system, that quantifies how the

system is far from equilibrium. As derived in Sec. IV, the
expression for Cout(ω,q) can be explicitly calculated as

Cout(ω,q)
Tγ

=
σ(ω,q)

(Im[L(ω,q)])2
(9)

where σ(ω,q), is the spectral entropy production, i.e.
the spectral component (in frequency and wave vector
domains) of the total entropy production rate, ṡ, such
that

ṡ =

∫

dq

Ω

∫

dω

2π
σ(ω,q) . (10)

Here, Ω represents the volume of the first Brillouin zone,
depending on the lattice properties of the solid. As shown
later, Cout(ω,q) represents additional collective excita-
tions of the system that we identify as entropons.
For the general dynamics (1), σ(ω,q) can be calculated

using a path-integral method, in frequency and wave vec-
tor domains (see Sec. IV), and is given by

σ(ω,q) = lim
t→∞

i

t

Im[L(ω,q)]

2Tγ
〈û(ω,q)F̂(−ω,−q)〉+ c.c

(11)
where c.c. denotes the complex conjugate. As a conse-
quence, σ(ω,q) is real and requires only the knowledge of

L(ω,q) and the cross-correlation 〈û(ω,q) · F̂(−ω,−q)〉.

A. Coexistence of phonons and entropons

Here, we present the physical interpretation of the
decomposition (5) together with Eqs. (6) and (9). As
schematically illustrated in Fig. 1, relation (5) states that
the non-equilibrium excitations of a solid, described by
the dynamical correlation of the particle displacement,
can be decomposed in two parts: i) an equilibrium-like
contribution Ceq(ω,q) entirely due to the thermal noise
(phonons), ii) a non-equilibrium contribution Cout(ω,q)
proportional to the spectral entropy production of the
system (entropons).
Phonons. Term i) has the same form as the

displacement-displacement dynamical correlation of an
equilibrium underdamped solid consisting of particles in
contact with a thermal bath. It describes the thermally
excited collective vibrations of crystals, i.e. the familiar
phonons typical of solid-state physics: for a given q, a
peak in the profile of Ceq(ω,q) as a function of ω can
be identified with a phonon of the crystal. Equation (5)
suggests that phonons are present both in equilibrium
and non-equilibrium solids, their spectrum remains unal-
tered and they do not generate entropy production. The
non-equilibrium force does not affect their dispersion.
Entropons. Term ii), Cout(ω,q), describes new vi-

brational collective excitations of the crystal of truly
non-equilibrium origin as Cout(ω,q) is proportional to
the spectral entropy production of the system σ(ω,q).
Indeed, entropons vanish at equilibrium together with
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σ(ω,q). As typical in solid-state physics, the peaks of
Cout(ω,q) as a function of ω (at fixed q) are identified
with these excitations. We term them entropons because
for each value of q there is a component of the spec-
tral entropy production, σ(ω,q). Entropons coexist with
phonons and remain distinct from them. At a fixed q the
frequencies corresponding to their peaks differ from those
of phonons. The amplitude of entropons is negligible with
respect to that of phonons in near-equilibrium conditions,
where the entropy production is small, whereas far from
the equilibrium entropons play the dominant role. En-
tropons will be shown and discussed more specifically
through explicit examples in Sec. V.

IV. DERIVATION OF THE RESULT

We now prove the decomposition (5) and formulas (6)
and (9), and take advantage of the linearity of the sys-
tem to derive analytically the correlation C(ω,q), the re-
sponse function Ruu(ω,q) and the entropy production
σ(ω,q). Finally, Ceq(ω,q) and Cout(ω,q) are identified.

A. Dynamical correlations of the displacements

To derive the analytical expression for the dynamical
correlations of the particle displacements, it is convenient
to introduce the notation G(ω,q) = L−1(ω,q) as the in-
verse of L(ω,q). From the linearity of the model, the
solution for each Cartesian component of the displace-
ment û(ω,q) (for instance the x component) is given by

û(ω,q) = G(ω,q)F̂ (ω,q) +G(ω,q)
√

2Tγξ̂(ω,q) . (12)

By multiplying Eq. (12) by û(−ω,−q) and averaging over
the noise, we get

〈û(ω,q)û(−ω,−q)〉 =
+ (2Tγ)G(ω,q)G(−ω,−q)〈ξ̂(ω,q)ξ̂(−ω,−q)〉
+G(ω,q)G(−ω,−q)〈F̂ (ω,q)F̂ (−ω,−q)〉 ,

(13)

while by accounting for Eq. (4), we obtain

C(ω,q) = (2Tγ)G(ω,q)G(−ω,−q) (14)

+ lim
t→∞

1

t
G(ω,q) · 〈F̂ (ω,q)F̂ (−ω,−q)〉G(−ω,−q) .

Quite intuitively, we identify the equilibrium and non-
equilibrium parts of the dynamical correlations as

Ceq(ω,q) = (2Tγ)G(ω,q)G(−ω,−q) (15)

Cout(ω,q) = lim
t→∞

1

t
G(ω,q)〈F̂ (ω,q)F̂ (−ω,−q)〉G(−ω,−q) .

(16)

The first line corresponds to the effect of the ther-
mal noise while the second line to the one of the non-
equilibrium force. We remark that the above results are

obtained without specifying the dynamics of F̂ (ω,q) and
could be valid under more general conditions, even in the
presence of non-linearities. However, a non-linear evolu-
tion equation for F̂ (ω,q), renders much harder or even
impossible the analytic determination of the correlation
function 〈F̂ (ω,q)F̂ (−ω,−q)〉.

B. Response function

By adding a small perturbative force h(ω,q) to
Eq. (12) the resulting perturbed dynamics reads:

L(ω,q)û(ω,q) = F̂ (ω,q)+
√

2Tγξ̂(ω,q)+h(ω,q) (17)

and applying the definition (7), we derive with respect
to h(ω,q) and obtain the response Rûû(ω,q) = G(ω,q)
which coincides with (8). We remark that in virtue of
the linearity of the system Rûû(ω,q) is not affected by

F̂ (ω,q), i.e. the dynamical variables pushing the system
out of equilibrium. By this identification, the equilibrium
part of the correlation, Ceq(ω,q), defined in Eq. (15), can
be rewritten as

Ceq(ω,q) = 2TγRuu(ω,q)Ruu(−ω,−q) . (18)

Alternatively, by using the properties of the complex
numbers, and, in particular, the general relation

|G(ω,q)|2 = − Im[G(ω,q)]

Im[G−1(ω,q)]
(19)

we can express Ceq(ω,q) in a more familiar form as

Ceq(ω,q)
2Tγ

= − Im[Ruu(ω,q)]

Im[L(ω,q)]
(20)

that corresponds to Eq. (6), i.e. the contribution of
phonons to the correlation function. Note that in the
specific case for which the Harada-Sasa relation has been
proposed, we have Im[L(ω,q)] = ω [30].

C. Calculation of the spectral entropy production

The spectral entropy production σ(ω,q) can be oper-
atively calculated by using path-integral methods in fre-
quency ω and wave vector q domains. In the framework
of stochastic thermodynamics [35–37], the entropy pro-
duction ṡ measures the degree of irreversibility of the tra-
jectory of a stochastic system [38] and is defined through
path-integral methods as [35, 39–42]

ṡ = lim
t→∞

1

t

〈

log

[

P ({û}|û0)

Pr({û}|û0)

]〉

(21)

where P ({û}|û0) and Pr({û}|û0) are the probability of
forward and backward trajectories, respectively. The
path probabilities depend on the whole time history of
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the dynamical variables (denoted by curly brackets {·})
and are conditioned to the initial value û0. From now, we
denote variables or observables of the reverse dynamics
with the subscript r. The easier way to derive P and Pr is
starting from the probability distribution of the Gaussian

noise vector ŵ (forward) and ξ̂r (backward), conditioned

to the initial value ξ̂0, and given by

p({ξ̂}|ξ̂0) ∼ eA (22a)

pr({ξ̂}|ξ̂0) ∼ eAr . (22b)

where A and Ar read

A = −1

2

∫

dω

2π

∑

q

ξ̂(ω,q)ξ̂(−ω,−q) , (23a)

Ar = −1

2

∫

dω

2π

∑

q

ξ̂r(ω,q)ξ̂r(−ω,−q) . (23b)

From here, we identify p ∼ P and pr ∼ Pr, by perform-

ing a change of variables ξ̂(ω,q) → û(ω,q), using the
equation of motion (12). To carry out this program, one
should estimate the determinant of the transformation
but, as known, in the additive-noise case, the determi-
nant does not affect the expression for the entropy pro-
duction and can be safely ignored [39, 43]. In practice,
A and Ar are identified as the forward and backward
actions associated with the dynamics by replacing

ξ̂(ω,q) =
(Le(ω,q) + Lo(ω,q))û(ω,q)− F̂ (ω,q)√

2Tγ
(24)

and

ξ̂r(ω,q) =
(Le(ω,q)− Lo(ω,q))û(ω,q)− F̂ (ω,q)√

2Tγ
(25)

where the expression of ξ̂r is obtained by applying the
time-reversal transformation to the dynamics (12), i.e.

using that ωr = −ω, ûr = û and F̂r = F̂ because ac-
cording to our choice, also F is even under time-reversal
transformation.
By using the definition (10), one can identify the spec-

tral entropy production as

σ(ω,q) = lim
t→∞

1

t

〈ξ̂r(ω,q)ξ̂r(−ω,−q)〉
2

− lim
t→∞

1

t

〈ξ̂(ω,q)ξ̂(−ω,−q)〉
2

.

(26)

After standard algebraic manipulations, obtained by us-
ing Eq. (24) and Eq. (25), σ(ω,q) reads

σ(ω,q) = lim
t→∞

1

t

Lo(ω,q)〈û(ω,q)F̂ (−ω,−q)〉
2Tγ

+ c.c.

(27)
Recalling that Lo(ω,q) = iIm[L(ω,q)], we immediately
obtain the explicit expression for σ(ω,q), Eq. (11).

Plugging Eq.(19) into the expression for σ(ω,q) and

using 〈ξ̂〉 = 0, we obtain

σ(ω,q) = lim
t→∞

1

t

Re[Lo(ω,q)〈û(ω,q)F̂ (−ω,−q)〉]
Tγ

(28)

= lim
t→∞

1

t

〈F̂ (ω,q)F̂ (−ω,−q)〉Re[Lo(ω,q)G(ω,q)]

Tγ

= − lim
t→∞

1

t

Im[L(ω,q)]Im[G(ω,q)]〈F̂ (ω,q)F̂ (−ω,−q)〉
Tγ

where Re[·] means real part and, in the last equality, we
have used the properties Lo(ω,q) = i Im[L(ω,q)] due to
the linearity of L. Finally, by using Eq. (19) to replace
Im[G(ω,q)] and the expression for Cout(ω,q) (Eq. (16)),
we have

σ(ω,q) =
Cout(ω,q)[ImL(ω,q)]2

Tγ
(29)

that coincides with Eq. (9) and concludes the derivation
of our results for the general dynamics (12).

V. EXAMPLES

In this section, we report several explicit examples of
solids, formed by particles in contact with a thermal bath
and described by underdamped equations of motion, for
their positions, xi, and the velocities, vi. They interact
through the total pairwise potential, Utot, given by

Utot =

N
∑

i<j

U(|xj − xi|) (30)

where U(r) is a generic interaction potential that only
depends on the distance r between a pair of particles.
The present theory holds for general dimensionality and
general potentials, which can be attractive or repulsive,
short- or long-range. In all cases, interactions must be
such that particles arrange in solid-like configurations in
a typical lattice structure where defects are not statisti-
cally relevant and can be neglected. The system should
be characterized by large values of the density close to
the packing regime and/or values of equilibrium and non-
equilibrium fluctuations so that the crystalline phase is
maintained.
For the sake of simplicity, here, we restrict our dis-

cussion to the case of short-range forces so that a par-
ticle interacts only with its first neighbors. Under this
assumption, we Taylor expand the potential around its
minimum and obtain

Utot ≈
mω2

E

2

∗
∑

i<j

(ui − uj)
2

(31)

where uj is the displacement of the particle j from its

lattice position and the sum
∗
∑

is restricted only to first



6

neighbors. The quantity ωE represents the Einstein fre-
quency of the solid and depends on the spatial second
derivatives of U(r) evaluated at the lattice constant. Its
functional form is determined by the dimensions and the
structure of the lattice. Explicit expressions of ωE are
reported in Appendix B.
In virtue of the approximations performed, the force

acting on each particle of the solid, Flattice
i , can be ap-

proximated as

Flattice
i ≈ −mω2

E

∗
∑

j

(ui − uj) . (32)

Its Fourier transform in the domains of frequency, ω, and
wave vectors, q, reads

F̂lattice(ω,q) = −mω2(q)û(ω,q) , (33)

where ω2(q) ∝ ω2
E/m, is the dispersion relation deter-

mined by the geometry of the lattice structure and the
interaction. Explicit examples for ω2(q) are reported in
Appendix B. In this description, the interaction force is
accounted for in the term L(ω,q)û(ω,q) of Eq. (1).

A. Equilibrium crystals

In the framework of soft materials, equilibrium crystals
are periodic structures consisting of particles in equilib-
rium with the environment. Examples are passive col-
loidal systems at high density, for which inertia is really
small and usually neglected, and complex plasma, de-
scribed by an underdamped equation of motion where
the degree of damping can be even steered [7].
A crystal formed by particles in equilibrium with a

thermal bath at temperature T is described by the fol-
lowing underdamped dynamics:

ẋi = vi (34a)

mv̇i = −γvi + Flattice
i +

√

2Tγξi (34b)

where ξi are vectors of white noise with zero average
and such that 〈ξi(t)ξi(0)〉 = δijδ(t). The energy injected
by the thermal noise,

√
2Tγξi, is dissipated in the en-

vironment through the viscous force −γvi, proportional
to the friction coefficient γ. The force between particles
that guarantees the solid structure (large density regime)
Flattice

i is given by Eq. (32). In this system, we can iden-
tify the ratio τI = m/γ as the inertial time of the system,
i.e. the time necessary for the velocity to relax under the
influence of the linear friction force.
The dynamics in Fourier space reads:

(

−mω2 + iωγ +mω2(q)
)

û(ω,q) =
√

2Tγξ̂(ω,q) (35)

where the hat-symbol denotes the double ω,q Fourier
transform. We also recall that the Fourier transform of
the velocity is related to the displacement by iωû(ω,q) =

v̂(ω,q) and that the Fourier transform of a white noise

with zero average, i.e. ξ̂(ω,q), has zero average and cor-

relation 〈ξ̂(ω,q)ξ̂(ω′,q′)〉 = δ(ω + ω′)δ(q + q′).
Applying the general methods, described in Sec. III,

the dynamical correlations in Fourier space can be
analytically calculated after identifying the operator
G(ω,q) = L−1(ω,q) as

G(ω,q) =
1

mω2(q)−mω2 + iωγ
(36)

and consequently, L(ω,q) as its inverse. By applying
Eq. (6), the equilibrium dynamical correlation Ceq(ω,q)
yields

γ
Ceq(ω,q)

T
=

2

τ2I (ω
2(q) − ω2)2 + ω2

(37)

while Eq. (11) implies that

σ(ω,q) = 0 . (38)

The system does not produce entropy, and, as a conse-
quence, entropons disappear. This is the expected result
in the case of equilibrium-like solids, for which the dy-
namical correlations are pure phonons. The frequency
spectrum is, of course, affected by τI , which has to be
compared with the Einstein frequency ωE : for τIωE ≫ 1
(small damping regime) converges to a Dirac δ-function
displaying a peak at ω ∼ ω(q), while for τIωE → 0 its
shape flattens. Phonons are excited by thermal fluctua-
tions and, indeed, disappear in the limit T → 0 in the
absence of Brownian fluctuations.

B. Self-propelled solids

Active systems are characterized by an internal mech-
anism, often represented as an additional degree of free-
dom, that converts energy from the environment to pro-
duce directed (self-propelled) motion [16, 44]. Coarse-
grained non-equilibrium stochastic models are widely em-
ployed in the theoretical descriptions of active parti-
cles both in overdamped and underdamped regimes: a
popular approach consists in adding a time-dependent
stochastic force, fai , to the velocity dynamics Eq. (34).
This force is a convenient representation of the self-
propulsion mechanism, which is a chemical reaction in
the case of Janus particles or the movement of flagella in
the case of bacteria, for instance. The self-propulsion fai
is, in general, responsible for the persistent trajectories
experimentally observed in these systems. The resulting
equation of motion reads

ẋi = vi (39a)

mv̇i = −γvi + Flattice
i +

√

2Tγξi + fai . (39b)

The self-propelled (or active) force fai endows the particle
with a swim velocity, v0, and takes the form

fai = γv0ni (40)
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where ni is a stochastic process whose dynamics depends
of the specific model under consideration.
Within the active Brownian particle (ABP) model [45–

52], ni is represented as a unit vector, ni = (cos θi, sin θi),
where θi represents the orientational angle of the active
particle, evolving as

θ̇i =
√

2Drηi . (41)

Here, ηi is a white noise vector with unit variance and
zero average and the prefactor sets the value of the ro-
tational diffusion coefficient Dr. It also determines the
persistence time of the particle trajectory, τ = 1/Dr (in
two dimensions), i.e. the time after which the orientation
of the active force is randomized [53, 54].
Recently, the active Ornstein-Uhlenbeck particle

(AOUP) model [55–60] has been proposed as an alterna-
tive to ABP. AOUP was originally introduced to describe
the behavior of a passive tracer in a non-equilibrium
bath of active particles (bacteria, precisely) [61, 62], and
later has been used as a theoretical simplification of the
ABP [45, 63]. According to the AOUP, ni evolves as an
Ornstein-Uhlenbeck process with typical time τ and unit
variance

τ ṅi = −n+
√
2τηi , (42)

where ηi is a vector of white noises with zero average
and unit variance. AOUPs show similar phenomena com-
pared to ABPs, displaying accumulation near walls [64–
66] and collective phenomena, such as motility induced
phase separation [67, 68], and non-equilibrium spatial
velocity correlations [48, 69–72] in dense active systems
where the AOUP theory has been employed to interpret
the results from ABP simulations, for instance predict-
ing the value of the kinetic temperature [73]. Further
details concerning the relation between the two models
are provided in Ref. [54].
This energy exchange induced by the active force

pushes a self-propelled particle out-of-equilibrium and
leads to entropy production [41, 67, 74–80], even in
the absence of external forces [81]. Except for special
cases [82–84], such as potential-free particles [81, 85] and
harmonic confinement [86], entropy production in active
systems can be investigated only numerically, for instance
in active field theories [87–89] and in particle-based nu-
merical studies, in particular, in external non-linear po-
tentials [76] and interacting systems showing phase sep-
aration [90, 91]. Only, recently, we have derived analyti-
cal results for an interacting case, reporting the analyti-
cal expression for the entropy production of active solids
formed by self-propelled particles [29], where simulations
based on ABPs have been compared with theoretical re-
sults obtained through AOUPs.
The force between the particles is chosen as Eq. (32),

i.e. the system is assumed to be in solid-like configu-
rations. In two dimensions, particles are arranged in a
hexagonal lattice, as usual for systems of pure repulsive
particles at high density, while a more complex scenario

can occur in three dimensions. To achieve active solid
configurations, for instance with purely repulsive par-
ticles, one has to consider large packing fractions and
small equilibrium fluctuations (small thermal tempera-
ture, for instance), but also small non-equilibrium fluctu-
ations, controlled by the active temperature Ta = v20γτ .
Indeed, in two dimensions the increase of Ta shifts the
melting transition to larger densities [69, 92–98], induc-
ing a fluidization of the system, and broadens the hex-
atic region [94, 99, 100]. Active solids were explored
mostly in one [101–105] and two-dimensions [94, 106–
109] where they exhibit fascinating phenomena without
a passive counterpart, displaying traveling crystals [110–
112], spatial velocity correlations [19, 63, 69], collective
rotations [113, 114] as well as an intriguing scenario in
the formation of topological defects [115]. However, be-
fore Ref. [29], collective excitations in active solids were
poorly investigated and understood.
In Fourier space, the dynamics of crystal formed by

self-propelled particles following the AOUP model reads

(

−mω2 + iωγ +mω2(q)
)

û =
√

2Tγξ̂ + γv0n̂ (43a)

(iωτ + 1) n̂ =
√
2τ η̂ (43b)

which compared with Eqs, (35) contains an extra active
force term n̂ = n̂(ω,q). To identify phonons and entro-
pons, we first recognize that G(ω,q), the response func-
tion, coincides with the equilibrium expression (36). As
a consequence, the phonons of the active solids and those
of the equilibrium crystal have the same correlation func-
tion given by Eq.(37). The non-equilibrium force, γv0n,
produces an additional contribution to the displacement
correlation, the entropons, and generates entropy pro-
duction as shown by the relation

Cout(ω,q)
T

=
σ(ω,q)

ω2γ
. (44)

Here, the spectral entropy production is given by

σ(ω,q) =
Ta

T

K(ω)

τ2I

τ2I ω
2

τ2I (ω
2 − ω2(q))2 + ω2

. (45)

with K(ω) representing a Lorentzian shape function

K(ω) =
1

1 + ω2τ2
, (46)

with an explicit dependence on ω but not on q. To cal-
culate expression (45), we use Eq. (28), which requires
the knowledge of G(ω,q)) as well as the dynamical cor-
relations of the active force 〈n(ω,q) ·n(−ω,−q)〉 derived
in Appendix C.
Entropons coexist with phonons [29], as independent

collective excitations with strength proportional to the
active temperature Ta = v20γτ and have the property of
vanishing at equilibrium when the active force also van-
ishes in the limits v0 → 0 and/or τ → 0. By comparing
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the amplitudes of phonons and entropons, we realize that
entropons play a negligible role, when the thermal tem-
perature is larger than the active temperature, T ≫ Ta,
while entropons dominate over phonons in the opposite
limit T ≪ Ta.

Cout(ω,q) as a function of frequency changes its shape
according to the values of q, the inertial time and the
persistence time through K(ω). At fixed τIω(q), K(ω)
kills the high frequency tails of Cout(ω,q) when τ is large
and shifts the peaks of Cout(ω,q) for frequency smaller
than the dispersion relation ω(q). We remark that for
τIω(q) → ∞ at fixed τ , also Cout(ω,q) becomes a δ-
function peaked at ω ∼ ω(q).

Finally, we comment that the theory based on the
AOUP model, originally developed in Ref. [29], has been
successfully compared with simulations of ABP solid-like
phases, revealing a good agreement.

C. Self-propelled solids with alignment interactions

Several active matter systems display collective behav-
iors: at the macroscopic scale, birds flock in the sky [116],
fish display schooling [117], while insects swarm in large
clouds [118]. Additionally, at the mesoscopic scale, cell
monolayers [18, 119] and bacteria [120] exhibit similar
phenomena, and flocking behavior has been observed in
active colloids, such as Quinke rollers [121, 122]. These
phenomena are usually reproduced through particle-
based models involving the introduction of explicit forces
responsible for the local alignment of the particles’ ori-
entations [123]. The first example of this approach dates
back to the pioneering work of Vicsek [124] and succes-
sively to variants of his model [125], such as the inertial
spin model [126] introduced to account for experiments
showing the bird flocking. Recently, the interplay be-
tween repulsive inter-particles forces and alignment in-
teractions has been investigated [127–129] and shows a
rich phenomenology displaying phase-separation, flock-
ing clusters [127, 130, 131] and traveling bands [129].

Here, we include alignment between the orientations
of the particles in the perhaps simplest way, i.e. through
linear interactions between the orientational vectors of
neighboring particles. This is a sensible assumption be-
cause particles are in a solid-like configuration. Again,
by using the AOUP dynamics ni evolves according to:

τ ṅi = −n+
√
2τηi + τα

∗
∑

j

(nj − ni) (47)

where α is a parameter determining the strength of the

alignment and the sum,
∗
∑

, runs over first neighbors.
We have restricted the alignment interactions to nearest
neighbors but the method could easily include alignment
interactions of next nearest neighbors.

Applying the double FT, the dynamics takes the form

(

−mω2 + iωγ +mω2(q)
)

û =
√

2Tγξ̂ + γv0n̂ (48a)
(

iωτ + 1 + ατω2(q)
)

n̂ =
√
2τ η̂ (48b)

which resembles Eq. (43), except for the mapping 1 →
1 + ατω2(q) in the dynamics of n̂(ω,q), Eq. (48b). As
a consequence, we expect solutions formally similar to
those obtained in the absence of alignment interactions,
with a renormalization of the persistence time. Upon
identifying G(ω,q) with Eq. (36), immediately we ob-
tain the solution for Ceq(ω,q) that coincides with that
obtained for equilibrium and non-aligning active solids
(Eq. (37)). As in the previous cases, the contribution of
phonons is not affected by the active force and by the
presence of alignment interactions.
Now, the expression of Cout(ω,q) formally coincides

with the one obtained for non-aligning active solids, i.e.
Eq. (44) with the difference entirely contained in the
spectral entropy production, which can be calculated by
using Eq. (28) and, then, by estimating the dynamical
correlation of the active force γ2v20〈n(ω,q) · n(−ω,−q)〉
(see Appendix C). In this way, we obtain

σ(ω,q) =
Ta

T

Ka(ω,q)
(

1 + ταω2(q)
ω2

E

)2

ω2

τ2I (ω
2 − ω2(q))2 + ω2

.

(49)
As in the non-aligning active crystal, σ(ω,q) ∝ Ta/T and
contains the same term as the one featuring in Eq. (45)
and involving the difference ω2 − ω2(q). However, the
presence of alignment interactions induce an additional
dependence on the dispersion relation ω2(q) and a renor-
malized shape function Ka(ω,q) given by

Ka(ω,q) =

(

1 + ταω2(q)
ω2

E

)2

(

1 + ταω2(q)
ω2

E

)2

+ ω2τ2
. (50)

We remark that, in this case, also Ka(ω,q) depends ex-
plicitly on q through the dispersion relation ω2(q). De-
pending on the value of τα, the shape function can sig-
nificantly shift the typical frequency ω at which Ka(ω,q)
assumes values smaller than 1. Its effect is conceptually
similar to that of K(ω), since also Ka(ω,q) cuts the high
frequencies as α increases. As a consequence, the increase
of α changes the position of the main peak of σ(ω,q) in-
ducing a shift for smaller ω that significantly depends
on q, at variance with active solids without alignment
interactions where the shift is q-independent.

D. Self-propelled solids with contact friction

In systems of cell monolayers [18, 20, 132, 133] as well
as in granulars and active granulars [134, 135], particles
exhibit contact friction forces that usually slow down the
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motion and give rise to local alignment of the particle
velocity. In this case, the particle dynamics reads

ẋi = vi (51a)

mv̇i = −γvi + Flattice
i +

√

2Tγξi + fai + Fc , (51b)

where the additional force Fc is given by

Fc = mγc

∗
∑

j

(vj − vi) . (52)

Here, γc represents the friction coefficient due to contact
friction between particles, and the sum

∑∗

j is restricted
to the first neighbors of the particle i. This force induces
the alignment between the particle velocities pushing vi

towards the average velocities of the neighboring parti-
cles.
The dynamics (51) can be easily expressed in Fourier

space as
(

−mω2 + iωγ +mω2(q) [1 + iωγc]
)

û

=
√

2Tγη̂ + γv0n̂
(53)

where n̂ evolves as Eq. (43b). After identifying the ex-
pression for G(ω,q) = Ruu(ω,q)

G(ω,q) =
1

(

−mω2 + iωγ +mω2(q)
[

1 + iωγc

ω2

E

]) (54)

and, consequently, L(ω,q) as its inverse, one determines
the phonon contribution, i.e. the equilibrium part, to the
dynamical correlation Ceq(ω,q)

γ
Ceq(ω,q)

T
=

1

τ2I [ω
2(q) − ω2]2 + [1 + γcτI

ω2(q)
ω2

E

]2
. (55)

At variance with all cases above, contact friction inter-
actions produce a shift in the spectrum of the thermally
excited phonons. Such a shift depends on q since the ve-
locity coupling term becomes larger as ω2(q) is increased
and has an amplitude determined by the contact friction
coefficient γc.
We identify the contribution of entropons, due the

presence of the active force fai , as the non-equilibrium
part of the dynamical correlations of the displacement
Cout(ω,q):

γ
Cout(ω,q)

T
=

σ(ω,q)

ω2
(

1 + γcτI
ω2(q)
ω2

E

)2 (56)

where the spectral entropy production σ(ω,q) has the
same expression as the one obtained in the case of ac-
tive solids without alignment interactions, i.e. Eq. (45).
However, the contribution of entropons to the correla-
tion function is shifted by contact frictions: the system
behaves as if was subject to an effective friction coeffi-
cient γ + γcmω2(q)/ω2

E that depends on the dispersion
relation ω2(q) and becomes larger as γc increases.

VI. CONCLUSIONS

A. Summary

In this paper, we have generalized the concept of en-
tropons originally introduced for active crystals formed
by self-propelled particles in the absence of alignment
interactions [29]. Here, we have shown that the pic-
ture of entropons is much more general and apply to a
variety of out-of-equilibrium crystals where each parti-
cle of the solid is driven intrinsically. This generality is
demonstrated for a broad class of crystals reaching a non-
equilibrium steady state and it is discussed explicitly for
several examples, such as active solids formed by parti-
cles with alignment interactions or contact friction forces.
In these cases, the spectral entropy production, the dy-
namical correlations of the particle displacement, and its
response function have been analytically calculated as a
function of the model parameters. This corroborates the
distinction between thermal phonons, excited by Brow-
nian translational noise, and entropons originating from
the intrinsic non-equilibrium nature of the dynamics and
associated with the entropy production and, thus, viola-
tion of detailed balance.

B. Discussion

Entropons provide a link between solid-state physics
and stochastic thermodynamics, showing how non-
equilibrium observables such as entropy production are
related to the formation of novel collective excitations.
The concept we are proposing is rather general: entro-
pons characterize any non-equilibrium crystals and not
only solids formed by self-propelled particles. While we
have explored in this paper the existence of entropons
for diagonal systems, where different spatial components
of the dynamics are not coupled in Fourier space, a the-
oretical challenge could be represented by the extension
of our results to non-diagonal cases, where, for example,
a magnetic field [136, 137] induces spontaneous rotations
in the particle trajectories. Even more challenging is the
case of non-equilibrium forces, which are odd under time-
reversal [39], that in principle could lead to collective ex-
citations with a different nature.
The fact that entropons occur in different non-

equilibrium systems will facilitate their verification in fu-
ture experiments, both at the micron and macroscopic
scales. At the micron scale, these experiments can in
principle involve cell monolayers at high density [18] that
include contact friction forces. Moreover, entropons are
observable in two-dimensional crystals formed by active
colloidal particles. Explicit examples are Janus particles,
in the denser phase of a motility-induced phase-separated
system [23–25] also known as “living crystals” [26, 27], or
high-density suspensions of Quinke rollers [121, 122]. The
anisotropic and alignment interactions studied in this pa-
per are often relevant in these systems. Another promis-
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ing example involves complex plasma crystals [7] which
can be enriched by light-induced activity [138]. Finally,
at the macroscopic scale, entropons are observable in
solids formed by active granular particles that have been
recently experimentally realized by connecting neighbor-
ing particles by springs [28]. Active granulars are often
modeled by means of alignment torques [139] which falls
into the generalization reported in this paper.
Finally, we point out that entropons are qualitatively

different from bosons peaks, for instance occurring in
glasses or supercooled liquids. These soft modes origi-
nate from the absence of long-range translational order
in the system, at variance with entropons that are pre-
dicted through an ideal theory based on elastic solids.
Understanding how entropons interfere with those boson
peaks represents a promising future research line to shed
light on novel aspects of non-equilibrium physics.

Appendix A: Definition of the Fourier transforms

In this appendix, we provide the definitions of the
Fourier transforms of the dynamical variable of the sys-
tem (displacement, velocity, non-equilibrium force, active
force, and so on) in the domains of frequency ω and wave
vector q. For the sake of notational convenience, we de-
note the Fourier transform of a variable by a tilde. They
are obtained by applying the operator

lim
tw→∞

∫ tw/2

−tw/2

dt

N
∑

i=1

e−iq·x0

i e−iωt (A1)

to a dynamical variable. In particular, the Fourier trans-
form of the particle displacement with respect to its un-
perturbed position in the lattice, i.e. ui = xi − x0

i , and
that of the general non-equilibrium force Fi(t) are given
by

û(ω,q) = lim
tw→∞

∫ tw/2

−tw/2

dt

N
∑

i=1

uie
−iq·x0

i e−iωt (A2a)

F̂(ω,q) = lim
tw→∞

∫ tw/2

−tw/2

dt

N
∑

i=1

Fie
−iq·x0

i e−iωt . (A2b)

where the time used to define the Fourier transform, tw,
in practice, corresponds to the time window of the simu-
lations.

Appendix B: Expressions for the Einstein frequency
of the solid

The dispersion relation of a solid ω(q) and the Einstein
frequency ωE depend on the dimension of the system and
on the type of lattice where the particles organize. To fix
ideas, here, we report the expressions for ω(q) in several
cases of interest, defining r̄ as the lattice constant, i.e.
the average distance between neighboring particles.

• For a d-dimensional solid, characterized by a
square/cubic lattice the dispersion relation is given
by

ω2(q) = 2dω2
E (1− cos (qr̄)) (B1)

while the Einstein frequency reads

ω2
E =

1

2m
U ′′(r̄) . (B2)

Here, each prime denotes a derivative with respect
to the argument of the potential calculated at r̄.

• In the two-dimensional case, where particles typi-
cally arrange on a triangular lattice, the dispersion
relation is

ω2(q) = 2ω2
E

[

3− cos (qxr̄)− 2 cos
(qx
2
r̄
)

cos

(√
3

2
qy r̄

)]

(B3)
while the Einstein frequency of the solid reads

ω2
E =

1

2m

(

U ′′(r̄) +
U ′(r̄)

r̄

)

. (B4)

Appendix C: Explicit calculation of the entropy
production for active solids with and without

alignment interactions

In this appendix, we report the explicit calculation for
spectral entropy production σ(ω,q) in the case of self-
propelled (active) solids with and without alignment in-
teractions between the active forces. As shown in the
Sec.III (Eq. (11)), σ(ω,q) can be expressed as

σ(ω,q) = lim
t→∞

i

t

Im[L(ω,q)]

2Tγ
〈û(ω,q)F̂(−ω,−q)〉+ c.c

(C1)
for the class of models that we have studied in this paper.
In the case of active solids, since L(ω,q) is given by

L(ω,q) = mω2(q) −mω2 + iωγ (C2)

we have

Im[L(ω,q)] = ωγ . (C3)

The Fourier transform of the general force F(ω,q) can be
identified with the Fourier transform of the active force
γv0n̂(ω,q).
By using the equation of motion for û(ω,q), i.e.

Eq. (43a), and that 〈ξ(ω,q) ·F(ω,q)〉 = 0, we obtain

σ(ω,q) = lim
t→∞

1

t

γ2v20
2T

iω〈n̂(ω,q)n̂(−ω,−q)〉
mω2(q)−mω2 + iωγ

+ c.c .

(C4)
The dynamical correlation 〈n̂(ω,q)n̂(−ω,−q)〉 is calcu-
lated by using the dynamics of the active force in the
AOUP model ( Eq. (48b)) to obtain

n̂(ω,q) =

√
2τ η̂(ω,q)

(iωτ + 1 + ατω2(q))
. (C5)
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and by multiplying the result by n̂(−ω,−q) and taking
the average over the noise:

〈n̂(ω,q)n̂(−ω,−q)〉 = 2τ〈η̂(ω,q)η̂(−ω,−q)〉
(

ω2τ2 + (1 + ατ ω2(q))2

ω2

E

) ,

= 2τ〈η̂(ω,q)η̂(−ω,−q)〉 Ka(ω,q)
(

1 + ταω2(q)
ω2

E

)2

(C6)

Using the property 〈η(ω,q) · η(ω′,q′)〉 = δ(ω +ω′)δ(q+
q′) that cancels out the term limt→∞ 1/t, we get

σ(ω,q) =
Ta

T

Ka(ω,q)
(

1 + ταω2(q)
ω2

E

)2

iωγ

mω2(q) −mω2 + iωγ
+ c.c

=
Ta

T

Ka(ω,q)
(

1 + ταω2(q)
ω2

E

)2

ω2

τ2I (ω
2
q − ω2)2 + ω2

(C7)

that concides with the final expression for σ(ω,q), i.e.
Eq. (45) for α = 0 (such that Ka → K) or Eq. (49) with
α 6= 0.
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N. Vogel, Advanced Materials 35, 2206593 (2022).

[12] S. Das, M. Lee Bowers, C. Bakker, and A. Cacciuto, J.
Chem. Phys. 150, 134505 (2019).
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dini, J. Tailleur, and F. van Wijland, Phys. Rev. E 103,
032607 (2021).

[60] Y.-E. Keta, R. L. Jack, and L. Berthier,
Phys. Rev. Lett. 129, 048002 (2022).

[61] X.-L. Wu and A. Libchaber, Phys. Rev. Lett. 84, 3017
(2000).

[62] C. Maggi, M. Paoluzzi, N. Pellicciotta, A. Lepore,
L. Angelani, and R. Di Leonardo, Phys. Rev. Lett.
113, 238303 (2014).

[63] L. Caprini and U. M. B. Marconi, Soft Matter 17, 4109
(2021).

[64] L. Caprini and U. M. B. Marconi, Soft Matter 14, 9044
(2018).

[65] S. Das, G. Gompper, and R. G. Winkler, New J. Phys.

20, 015001 (2018).
[66] L. Caprini and U. M. B. Marconi, Soft Matter 15, 2627

(2019).
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