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Abstract
Nonparametric methods have been commonly used to assess the performance of both private and public organizations. Among
them, the most popular ones are envelopment estimators such as Free Disposal Hull (FDH) or Data Envelopment Analysis
(DEA), which estimate the attainable sets and their efficient boundaries by enveloping the cloud of observed units in the
appropriate input-output space. However, these nonparametric envelopment techniques do not provide estimates of marginal
products and other coefficients of economic interest. This paper presents a new approach that provides local estimates of all the
desired partial derivatives and economic coefficients, which complement and complete the analysis based on nonparametric
envelopment estimators. We improve nonparametric estimators by estimating nonparametrically smoothed efficient boundaries
and providing derivatives and other coefficients without having to assume any parametric structure for the frontier and the
inefficiency distribution. Our approach offers several advantages, such as a flexible nonparametric adjustment of the efficient
frontier based on local linear models; a general multivariate efficiency model based on directional distances where one can
choose the desired benchmark direction; the possibility of assessing the impact of external-environmental variables; a bootstrap-
based statistical inference for deriving confidence intervals on the estimated coefficients for nonparametric and robust frontier
approximations; the possibility of including factors aggregating inputs or outputs and recovering the estimated coefficients in the
original units. To demonstrate the usefulness of the proposed approach, we provide an illustration in the field of education, where
economic coefficients are important but the parametric assumptions have been questioned.

Keywords Data envelopment analysis ● Partial frontiers ● Directional distances ● Linear approximations ● Local linear
approximations

JEL classification C1 ● C14 ● C13

1 Introduction and contribution

Efficiency analysis examines how production units trans-
form their inputs into outputs, that may be goods or ser-
vices. Nonparametric envelopment estimators are highly
preferred as they require very few assumptions. These
estimators do not require any particular shape for the

attainable set and its frontier, except for free disposability1

for the Free Disposal Hull (FDH) and free disposability and
convexity of the attainable set for Data Envelopment Ana-
lysis (DEA). Additionally, they do not require any specific
distributional assumption for the distribution of ineffi-
ciencies. The statistical properties of these envelopment
estimators have been established and inference is available
(see Simar and Wilson 2013, 2015, for recent surveys).
Their drawback is that the results are difficult to interpret in
terms of the sensitivity of the production of certain output(s)
to particular inputs, marginal rates of substitution between
inputs, marginal rates of transformation between outputs
and so on.
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1 Free disposability means that for any ~x � x and any ~y � y, if (x,
y)∈Ψ then ð~x;~yÞ 2 Ψ.
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In existing literature, the parametric and nonparametric
approaches to efficiency analysis compete and are applied
separately, each with its own advantages and disadvantages.
The parametric approach offers the possibility of estimating
economic coefficients and substitution rates at the cost of
imposing specific functional forms for the frontier and for
the inefficiency distributions. The nonparametric approach,
on the other hand, is more general because it does not
impose assumptions on the functional forms of the frontier
and the inefficiency distribution, but at the cost of not
providing the user with useful quantitative information such
as relevant coefficients and substitution rates. The method
we propose in this paper allows the nonparametric approach
to be reinforced by giving the possibility of estimating
economic coefficients by flexible approximations of non-
parametric envelopment frontiers.

We introduce now the basic concepts and notations. The
efficient production frontier is defined in the appropriate
input-output space as the locus of the optimal combination
of the inputs and the outputs. Formally, let the attainable set,
i.e. the set of technically feasible combinations of inputs
and outputs, be defined as

Ψ ¼ fðx; yÞ 2 Rpþqj x can produce yg: ð1:1Þ

This set Ψ embodies the fundamental features that are
commonly found in economic theory, as described in
Shephard (1970). The efficient boundary (frontier) of this
set is the set of efficient combinations of inputs and outputs

Ψ∂ ¼ fðx; yÞ 2 Rpþqjðγ�1x; γyÞ =2Ψ; 8γ > 1g: ð1:2Þ

There are several ways for measuring the efficiency of a
production plan (x, y) as the distance from this boundary. In
this paper we mainly focus on the flexible directional
distances measures (see Chambers et al. 1998), defined as

δðx; yÞ ¼ supfδj ðx� δdx; yþ δdyÞ 2 Ψg; ð1:3Þ

where dx 2 Rp
þ and dy ¼ Rq

þ. So the distance is measured
along a path determined by a direction vector d0 ¼
ð�d0x; d

0
yÞ in an additive way. Clearly if (x, y)∈Ψ, δ(x, y) ≥

0 and if (x, y) lies on the efficient frontier (1.2), δ(x, y)= 0.
The Farrell-Debreu oriented radial distances and the radial
hyperbolic distances (Färe et al. 1985) can be recovered as
special cases (see below in Section “Oriented radial
measures”). It will be useful below to denote as
w∂= (x∂, y∂), the projection of w= (x, y) on the efficient
frontier in the direction d, i.e. w∂= w+ δ(w)d. Component
by component

x∂ ¼ x� δðx; yÞdx; and y∂ ¼ yþ δðx; yÞdy: ð1:4Þ

Note that distance functions satisfy the “translation”
property:

δðwþ ηdÞ ¼ δðwÞ � η; for all η 2 R: ð1:5Þ
Similarly, order-m frontiers can also be considered. This

allows to define δm(x, y) which by construction are smaller
than δ(x, y), unless m→∞ (see Simar and Vanhems 2012).
These efficiency measures benchmark a unit (x, y) against
less extreme frontiers, and so share robustness properties,
robustness against outliers or extreme observations. The
“partial frontier” of order-m points are defined as

x∂m ¼ x� δmðx; yÞdx; and y∂m ¼ yþ δmðx; yÞdy: ð1:6Þ

In practice, the objects defined above are unknown and
must be estimated from a random sample of observations
X n ¼ fðXi; YiÞgni¼1.

The popular nonparametric estimators of Ψ are based on
envelopment estimators, like FDH or DEA estimators. From
these estimators, it is easy to define for any ðx; yÞ;bδnðx; yÞ, a
nonparametric estimator of δ(x, y). Estimators of partial
efficiency scores bδm;nðx; yÞ are derived in Simar and Van-
hems (2012) and share very nice and attractive properties
(see below). Practical ways to compute these estimators are
described in Daraio et al. (2020).2

Florens and Simar (2005) (hereafter FS) have suggested
to approximate nonparametric estimators of the frontier by a
linear model, avoiding specification of a parametric family
of densities for the stochastic part of the model and fitting
the cloud of points near the efficient boundary. However,
FS considered the univariate case, analyzed only FDH and
order-m frontiers in the first-stage and proposed only linear
models for the approximation in the second-stage.

The difficulty of the multivariate setup, where r= p+ q,
is that the efficient frontier, in the (x, y)-space, is (r− 1)-
manifold. One way to overcome this difficulty is to express,
in an appropriate coordinates system, the efficient frontier as
a scalar-valued, (r− 1) variate function. In a nutshell, the
needed transformation is a rotation of the (x, y) coordinate
system so that one coordinate is parallel to the chosen
direction vector d, and the others are orthogonal to d. This
transformation has been used to build estimators of Sto-
chastic Frontier Analysis (SFA) in a multivariate setup in
Simar and Wilson (2022) (hereafter SW). SFA relies on a
different paradigm than the one used in our paper, since it
allows the presence of noise. Due to that, SFA mainly
belongs to the family of parametric approaches in efficiency
analysis, within which it is necessary to specify a functional
form for the frontier, a functional form for the distribution
of inefficiency, a functional form for the noise and some

2 Daraio et al. (2020) provide the Matlab codes for the needed
computations.
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relationship between inefficiency and noise to achieve
identification of the models. And even in this case, some
intrinsic issues remain for estimating these models in par-
ticular due to the skewness of the OLS residuals (see e.g.
Hafner et al. 2018).

Semiparametric approaches to SFA have been investi-
gated e.g. by Simar et al. (2017) and extended to multi-
variate cases by SW, but there the Data Generating Process
(DGP) requires also local parametric specification of the
efficiency distribution and noise, to allow identification (see
SW for a detailed discussion and further references). Within
another semiparametric framework, Kuosmanen and John-
son (2017) introduced directional distances in a stochastic
nonparametric envelopment framework, but adding some
assumptions for the efficiency distribution and the noise,
imposing convexity and shape restrictions, and finally
providing only aggregate (average) coefficients.

In the traditional nonparametric envelopment approach
(i.e. the so-called “deterministic” frontier models, to which
DEA and FDH belong), the paradigm is different. Within
this nonparametric envelopment approach, Podinovski
(2019) extended a linear programming approach, applicable
to any polyhedral production technology, incorporating
undesirable outputs to estimate marginal characteristics of
nonparametric production frontiers, including various mar-
ginal rates and elasticity measures. However, this approach
assumes convexity, is not implemented for robust and
nonconvex nonparametric efficiency measures, and does not
provide any inference for the estimated coefficient of eco-
nomic interest. Contrary to the existing literature, we pro-
vide a flexible nonparametric approximation of the
traditional nonparametric envelopment estimators of the
frontier and their robust and nonconvex versions, from
which we can recover the coefficients and partial derivatives
of economic interest, providing confidence intervals on the
estimated coefficients and introducing external environ-
mental variables in the analysis.

In this paper, we use a different DGP compared to
semiparametric frameworks, which avoids identification
and estimation issues. We will then adapt the DGP
described in SW to our setup of nonparametric efficiency
analysis, and we will derive new explicit relations between
the characteristics in both coordinate systems. Then we will
show how the strategy of FS can be extended to our more
general setup. This will allow us to capture the shape of the
cloud of points near its efficient boundary, without speci-
fying any functional form. The main aim of this paper is to
propose a two-stage approach that combines the flexibility
of a first-stage based on nonparametric envelopment
models (like FDH, DEA and partial efficiency measures)
with a flexible second-stage based on a smoothed adjust-
ment of the nonparametric efficient frontier estimated in the
first-stage.

The idea is to “smooth” by some appropriate models
(i.e., local linear models) the usual nonparametric estimators
of the frontier without assuming any arbitrary frontier
function. We will present our approach in a directional
distance setup, and we will show how to adapt the approach
to any other measure of efficiency (hyperbolic, input or
output radial oriented). We will show that flexible local
linear approximations are easy and feasible to handle, pro-
viding approximations of all the coefficients of economic
interest, including derivatives, despite their nonparametric
nature. We will provide guidelines for statistical inference
for both the full and the order-m frontiers3 approximations
in order to derive confidence intervals on the estimated
coefficients of interest. Finally, we will illustrate how the
approach can easily be extended to deal with environmental
factors.

Stock (2010) traces the development of econometric
models from the traditional ones of the eighties, mostly
parametric and characterized by a linear functional form, to
more recently developed nonparametric ones, thanks to the
development of computer power and advancements of
mathematical and statistical research. He identifies one of
the causes of the development of nonparametric models in
dissatisfaction towards traditional parametric models that
were not always a good approximation. In this paper, we
aim to build on the work of Stock (2010) by suggesting a
method that combines nonparametric and robust approaches
which include directional distances, with nonparametric
local linear models. This approach will help us obtain more
reliable coefficients and economic measurements that are
not dependent on arbitrary functional forms.

The paper is organized as follows. Section “The statis-
tical model and the transformation” illustrates the under-
lying statistical model and the transformation necessary to
implement the fully multi-input multi-output case. Section
“Our methodology” presents our methodology: (i) the best
approximation and its estimation in Section “Best approx-
imation and estimation”; (ii) the local linear approximation
in Section “Local linear approximation” (iii) how to derive
coefficients from factors to original units in Section “Deri-
vatives: from factors to original units”; (iv) how to extend
the approach when environmental factors may influence the
frontier in Section “Dealing with environmental factors”,
and the boostrap-based practical inference in Section
“Bootstrap-based practical inference”. Section “Application
on European universities” reports an illustration on real
data, and Section ”Conclusions” concludes the paper.
Supplementary Materials (SM) report introductory

3 We focus the presentation to partial frontiers of order-m to save
space. The extension, mutatis mutandis, to order-α frontiers is
immediate and left to the readers.
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information, simulated examples and additional information
for interested readers.

2 The statistical model and the
transformation

The definition of a clear DGP before introducing the
estimation issues is crucial to understand what is the
model we are analyzing. Moreover, in this section we
describe how the rotation method of SW should be
adapted to our setup, which is different from the one in
SW (based on a different DGP). In particular, we give
explicit equations for the links between the 2 spaces,
which was not provided by SW. This is done in Eq. (2.16)
which is new and useful for the developments of the
methodology proposed in this paper.

2.1 The DGP and the rotation

The statistical model describes the way the observations are
obtained, i.e. the DGP. We adapt the SFA model proposed
in SW (Assumptions 2.2 and 2.3 in SW) to our setup. We
assume that the production process generates efficient but
unobserved production plans. Then we describe how the
observed production plans are generated due to inefficiency.
Formally, the DGP generates random optimal production
plans on the effcient boundary Ψ∂ via some probability
mechanism, providing identically, independently distribted
(iid) values W∂

i ¼ ðX∂
i ; Y

∂
i Þ; i ¼ 1; ¼ ; n.

We then assume that the random deviations from the
efficient frontiers providing the observed production plans
are along the direction vector d. In our approach, d is fixed
and non-stochastic and the same for all organizations. The
observed input-output pairs are denoted by Wi= (Xi, Yi) and
defined by the model Wi ¼ W∂

i � δid, i.e., component by
component,

Xi

Yi

� �
¼ X∂

i

Y∂
i

" #
� δi

�dx
dy

� �
; ð2:1Þ

where the δi are conditionally to W∂
i independent with

δijW∂
i � Dþ ηðW∂

i Þ
� �

and D+( ⋅ ) being some one-sided
distribution on Rþ characterized by finite dimensional
parameters ηðW∂

i Þ. We will come back below to this
distribution, we only assume for now that the corresponding
density is strictly positive at zero (as in Park et al. 2000 for
FDH and Kneip et al. 2008 for DEA) to guarantee the rates
of convergence used below for the envelopment estimators.

These assumptions ensure we have a random sample of
observations X n ¼ fðXi; YiÞgni¼1 that we can use to derive
the envelopment estimators like FDH, DEA and also their
robust versions, including order-m. The resulting estimator

bδðx; yÞ shares the known properties described in the litera-
ture (mainly Simar and Vanhems 2012; Simar et al. 2012).
To summarize, for the full frontiers, we have (under mild
regularity conditions) for a fixed point of interest (x, y), as
n→∞,

nκ bδ�ðx; yÞ � δðx; yÞ
� �

�!L F�ðξx;yÞ; ð2:2Þ

where κ determines the rate of convergence and depends on
the assumptions on Ψ and the chosen estimator with “•”

representing FDH or DEA and F•(ξx,y) is a non-degenerate
distribution depending on some unknown parameters.
Under the free disposability assumption only, the FDH
estimator has to be used and κ= 1/(p+ q). If we add the
convexity assumption then we can also use the DEA
estimator with κ= 2/(p+ q+ 1). Typically the points of
interest are the observations and so we may obtain
estimators bδi. Kneip et al. (2015) derive Central Limit
Theorems (CLTs) for functions of bδi. The achieved rates of
convergence given by nκ illustrate the curse of dimension-
ality, common in nonparametric estimation: if p+ q
increases, we lose precision in the estimation and we may
be far below the usual

ffiffiffi
n

p
rate of convergence usually

reached by parametric estimators.
The partial robust order-m frontiers share two attractive

properties: (i) by construction, they are less extreme than
the full frontier and so their estimators will not envelop all
the data hence they are more robust to extreme data points
and outliers and (ii) they are asymptotically normally dis-
tributed with mean zero around the true values, with the
parametric rate

ffiffiffi
n

p
. We have, as n→∞,ffiffiffi

n
p bδmðx; yÞ � δmðx; yÞ
� �

�!L Nð0; σ2m;x;yÞ; ð2:3Þ

where σ2m;x;y has a known expression depending on the
characteristics of the DGP. So inference with these
estimators is much more easy. We will come back to all
these nonparametric estimators below.

A natural way to transform the coordinates w= (x, y) of
the original space into a new system where the distance to
the frontier (defined in (2.1)) can be expressed by a scalar-
valued equation, is to rotate the coordinates so that in the
new system, one coordinate is parallel to d and the
remaining r− 1 coordinates are orthogonal to d. As
described in SW this is achieved by considering an arbi-
trary, but fixed, orthonormal basis for the direction vector
d.4 Let Sd= [s1… sr−1] be such r × (r− 1) matrix with
s0jsj ¼ 1; s0jsk ¼ 0 for j ≠ k and s0jd ¼ 0 for j= 1,…, r− 1.

4 As noted by SW, an orthonormal basis for d, the matrix Sd, is not
unique, but this does not create any problem provided Sd is fixed after
it is selected. Most statistical packages have a build-in function to
obtain Sd. In any case, an easy to program algorithm is described in
Jeong and Simar (2006).
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Clearly S0dSd ¼ Ir�1 and S0dd ¼ 0r�1.
5 Now we can define

the r × r rotation matrix

Rd ¼
S0d

d0=jjdjj

� �
; and its transpose R0

d ¼ Sd d=jjdjj½ �;

ð2:4Þ

where ∣∣ ⋅ ∣∣ denotes the L2-norm. Clearly Rd is an orthogonal
matrix, implying R�1

d ¼ R0
d. We note that Rdd ¼ ½00r�1jjdjj�0.

We consider now the linear transformation from Rr to
Rr given by

gd : w 7! t ¼ Rdw; ð2:5Þ

which can easily be inverted, i.e. w ¼ R0
d t. To see the

consequence of this transformation, we partition t0 ¼ ðv0 uÞ
where v ¼ S0dw and u ¼ d0w=jjdjj, the rotation puts the
coordinate u in the direction d and the r− 1 remaining
coordinates v are orthogonal to d (and hence to the u-axis).
In the new coordinate system, the attainable set Ψ is
represented by

Γd ¼ ft 2 Rrjt ¼ gdðwÞ;w 2 Ψg: ð2:6Þ

The efficient frontier can now be represented in terms of the
scalar valued function

ϕðvÞ ¼ supfujt ¼ ðv0 uÞ0 2 Γdg; ð2:7Þ

which permits to describe the attainable set in terms of this
function

Γd ¼ ft ¼ ðv0 uÞ0 2 Rrju � ϕ ðvÞg: ð2:8Þ

For illustration, Fig. 1 shows this rotation for a simple case
p= q= 1. Figure 1 displays a particular simulated dataset
and the frontier points both in the original (x, y) space (left
panel) and in the transformed (v, u) space (right panel). In
the right panel of Fig. 1, u is in the direction of d and v is
orthogonal to u.

Applying the rotation to the observations Wi ¼
ðXi; YiÞ 2 X n yields the random sample of values
fðVi;UiÞgni¼1. To be explicit

Vi

Ui

� �
¼ RdWi ¼

S0dWi

jjdjj�1d0Wi

" #
; ð2:9Þ

and the inverse relation between the observations is

Wi ¼ R0
d

Vi

Ui

� �
¼ SdVi þ jjdjj�1d Ui

h i
: ð2:10Þ

Hence our model (2.1) is transformed into

Vi

Ui

� �
¼ V∂

i

U∂
i

" #
� δi

0r�1

jjdjj

� �
; ; ð2:11Þ

or component by component

Vi ¼ V∂
i

Ui ¼ U∂
i � jjdjjδi

; ð2:12Þ

or simply due to (2.7)

Ui ¼ ϕðViÞ � jjdjjδi; ð2:13Þ
where the heteroskedastic nature of δ in (2.1) can now be
expressed in terms of Vi, since W∂

i ¼ R0
d½V 0

iϕðViÞ�0. So
(2.13) provides the scalar-valued equation to be
estimated.

2.2 Some relations between the two spaces

We will see in Section “Best approximation and estimation”
that we can provide approximations for the function ϕ(v)
and for the (r− 1)-vector of partial derivatives, ∂ϕðvÞ=∂v0 at
any value v in its range (we assume smoothness of the
frontier to ensure the existence of the partial derivatives
below). So it is important to see if we can recover from
these, the properties of the frontier and of the distance
function in the original units.

Since t ¼ ðv0 uÞ0 ¼ Rdw and w ¼ R0
dt, the frontier sur-

face in the w= (x, y)-space is a (r− 1)-manifold that can be
obtained as

w∂ ¼ x∂

y∂

" #
¼ Sd d=jjdjj½ � v

ϕðvÞ

� �
; ð2:14Þ

i.e. a mapping from Rr�1 to Rr. One of the interests in this
multivariate setup is to characterize the hyperplane tangent
to this surface at some given point w∂

0 and to derive various
parameters of economic interest. This can be done as
follows.

In the t-space, the hyperplane tangent at the frontier ϕ(v)
at a frontier point t∂0 ¼ ðv00 u∂0Þ

0
with u∂0 ¼ ϕðv0Þ is given by

the equation

c0tðt � t∂0Þ ¼ 0; where c0t ¼ ½▿ 0ϕðv0Þ � 1�; ð2:15Þ

with ▿ϕðv0Þ ¼ ∂ϕðvÞ
∂v

h i
v¼v0

being the (r− 1)-vector of the

gradients of ϕ(v) evaluated at v0. Now in the w-space this
5 Ik denotes the identity matrix of order k and 0k a k-dimensional
column vector of zeros.
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hyperplane has equation c0tRdðw� w∂
0Þ, i.e.

c0wðw� w∂
0Þ ¼ 0; where cw ¼ R0

d

▿ϕðv0Þ
�1

� �
and v0 ¼ S0dw

∂
0:

ð2:16Þ
Clearly the vectors ct and cw are given at a multiplicative
constant ( ≠ 0).6

Hence, the partial derivatives of the frontier surface in
the (x, y)-space at the point w∂

0 can be written as

∂w‘

∂wk

				
w¼w∂

0

¼ � ck
c‘
; ð2:17Þ

provided cℓ ≠ 0. This can be used to derive the marginal
products ∂Yℓ/∂Xk, marginal rates of substitution ∂Xℓ/∂Xk and
the marginal rates of transformation ∂Yℓ/∂Yk. If cℓ= 0, then
the derivative in (2.17) is not defined, however, this
indicates that wℓ has no effect on the frontier at this
particular frontier point. So, if ck ≠ 0

∂wk

∂w‘

				
w¼w∂

0

¼ 0: ð2:18Þ

We can also recover the distance function δ(x, y) in the
original units and its partial derivatives. In the transformed
space, we have from (2.13)

δðv; uÞ ¼ jjdjj�1 ϕðvÞ � uð Þ; ð2:19Þ

so in the original w= (x, y)-space we have

δðwÞ ¼ jjdjj�1 ϕðS0d wÞ � d0w=jjdjj� �
: ð2:20Þ

It is easy to check that this distance function satisfies the
translation property (1.5). This confirms that the transfor-
mation has preserved all the desired properties of the
original distance function. The reader can verify that we
would obtain the same relation for δ(w) by writing
w∂= w+ δ(w)d. Since from (2.14) we have w∂= Sdv+
dϕ(v)/∣∣d∣∣ then by plugging in v ¼ S0dw we obtain (2.20).7

Note that we can also obtain the partial derivatives

∂δðwÞ
∂w

¼ jjdjj�1 Sd
∂ϕðvÞ
∂v0

� d

jjdjj

 �

; ð2:21Þ

where v ¼ S0dw. Now we know that the frontier points w∂

are characterized by the equation δ(w∂)= 0. Hence the
(r− 1)-manifold describing the frontier in (2.14) can also be
given by

ϕðS0d w∂Þ � d0 w∂=jjdjj ¼ 0; ð2:22Þ

which is nothing else than rewriting, in terms of w∂, the
equation for frontier points in t-space, δ(v, u)= 0, or
equivalently ϕ(v)− u= 0.

Interested readers can find two simple examples in Sec-
tion A of the SM of this paper.

2.3 Oriented radial measures

To be exhaustive we summarize here the point of SW (see
Section 3.5.1 in SW) showing that the directional model

0 0.5 1 1.5 2

X

0

0.5

1

1.5

2

Y
Sample of (X,Y) observations

Front
Data

direction d

0 0.5 1 1.5 2 2.5

V

-1

-0.5

0

0.5

1

U

Sample of (V,U) observations

Front
Data

Fig. 1 An illustration of rotation in a simulated data set of size n= 100 with p= q= 1

6 Note that we provide by (2.16) an explicit expression for cw. It is
easy to check that cw is a basis of the null space of the Jacobian of the
transformation defined in (2.14), which was the way chosen by SW to
characterize implicitly the vector cw.

7 To see this, we use the fact that Rd is orthogonal, so that
R0
dRd ¼ SdS

0
d þ dd0=jjdjj2 ¼ Ir .
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(2.1) can be used for handling radial distance functions.
Suppose we are interested in the hyperbolic measures of
efficiency (see Färe et al. 1985)

τðx; yÞ ¼ inffτjðτx; τ�1yÞ 2 Ψg: ð2:23Þ

Here the projection of a point (x, y) on the frontier has
coordinates x∂= τ(x, y)x and y∂= τ−1(x, y)y. Provided all of
the inputs and outputs are strictly positive, we can work
with the logs of (Xi, Yi) and we can write, analogous to (2.1)

logXi

log Yi

� �
¼ logX∂

i

log Y∂
i

" #
� δi

�ip

iq

� �
; ð2:24Þ

where ik is a k-vector of ones. Then we obtain τi ¼ expðδiÞ.
Hence, we are back to our model (2.1), in the log-scale and
using the direction vector as in (2.24).

As shown in SW, similar transformations allow us to
consider the radial input efficiency (setting d ¼ ½�i0p 0

0
q�0 in

(2.24)) and the radial output efficiency (setting d ¼ ½00p i0q�0).

3 Our methodology

This section presents the main components of the approach
we propose to approximate the nonparametric frontiers
described above. Section “Best approximation and estima-
tion” describes the estimation of the best approximation in
the proposed two-stage approach; Section “Local linear
approximation” shows how to apply in the second stage the
local linear approximation that allows any continuous and
differentiable function to be approximated; Section “Deri-
vatives: from factors to original units” shows how to derive
the coefficients in original units when input or output fac-
tors are used; Section “Dealing with environmental factors”
shows how to include environmental/external factors in this
framework, and finally, Section “Bootstrap-based practical
inference” describes a bootstrap-based approach to derive
confidence intervals on the estimated coefficients.

3.1 Best approximation and estimation

The problem is to estimate the function ϕ( ⋅ ) in (2.13) from
the sample of iid observations fðVi;UiÞgni¼1, where δi has
some density, D+( ⋅ ), on Rþ with characteristics that may
depend on Vi. We repeat here (2.13) for convenience

Ui ¼ ϕðViÞ � jjdjjδi:

This is exactly the paradigm described in FS but in the
transformed space. We might be tempted to use classical
regression techniques to estimate ϕ( ⋅ ), Let
μδðvÞ ¼ EðδðVÞjV ¼ vÞ, we could then use traditional

regression techniques for estimating the function r1(v)= ϕ(
v)− ∣∣d∣∣μδ(v) since we have the equation

Ui ¼ r1ðViÞ � εi; ð3:1Þ
where εi= ∣∣d∣∣(δi− μδ(Vi)) so that now EðεijViÞ ¼ 0.
Therefore, least squares techniques may be used (parametric
or nonparametric) to provide consistent estimates br1ðvÞ.
Then if we fix the particular density D+( ⋅ ) for δi, we can
derive, in most of the cases, the equation of μδ(v) as a
function of its higher moments. For the one parameter scale
family (like Exponential or Half Normal), knowledge of the
variance is enough. This variance may be estimated by
regressing in a second stage the squared residuals from the
regression in (3.1) on v. Then we can derive bμδðvÞ and shift
back br1ðvÞ to get the estimator bϕðvÞ. Simar et al. (2017)
have used this technique in the stochastic frontier frame-
work, and it is easy to adapt the method to the
deterministic case.

This traditional approach is well known, however, as
noted in FS, it suffers from two drawbacks. First, the first
stage regression (parametric or nonparametric) to get br1ðvÞ
captures the shape of the cloud of points fðVi;UiÞgni¼1 near
its center (EðUijViÞ), whereas we want to fit the shape of
points near its efficient boundary (U∂

i ). Secondly, we need a
parametric family to be able to identify μδ(v), and the
chosen density heavily preconditions the characteristic of
the final estimate of ϕ. In particular a wrong choice provides
unreliable estimates.

The method suggested by FS avoids these two draw-
backs and can be summarized as follows. First project the
observations on a nonparametric frontier and in a second
stage, approximate the cloud of estimated frontier points by
some suitable parametric model, by using least-squares
approximations. FS analyze mainly linear parametric mod-
els and show that when using a fully nonparametric frontier
estimation (like FDH) in the first stage, the obtained esti-
mates converge to the pseudo-true values (the best chosen
parametric model to approximate the true frontier). To get
inference on the resulting parameters, they use the partial
order-m frontiers because they have better rates of con-
vergence and asymptotic normality.

The extension of FS’s approach to our framework goes
along the following lines. Since the frontier function ϕ(v)
is unknown, we consider as a starting point a class of
parametric functions that can be written as fϕθjθ 2 Rkg,
where the functions ϕθ are defined on Rr�1 and depend on
a finite number of parameters θ. The best parametric
approximation of the true frontier function ϕ in the
parametric family fϕθjθ 2 Rkg is defined through the
pseudo-true value of θ:

θ0 ¼ argminθ2Rk

Z
ϕðvÞ � ϕθðvÞð Þ2 f V ðvÞdv: ð3:2Þ
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If the parametric model is true, this coincides with the true
value of θ. As pointed out in FS, the existence and
uniqueness of the pseudo-true values are based on technical
conditions (integrability and identification structure of the
functional space fϕθjθ 2 Rkg). As FS, we consider that this
set is squared integrable with respect to fV(v), then if the set
fϕθjθ 2 Rkg is closed and convex, the pseudo-true value
exists and is unique (see FS for details).

The density fV is unknown but we can define the “sam-
ple” or the “empirical” version of the pseudo-true value by
using the empirical discrete density f̂ n;V , putting a mass 1/n
at each observed value Vi, i= 1,…, n. So we define

θ0;n ¼ argminθ2Rk

Pn
i¼1 ϕðViÞ � ϕθðViÞ½ �2;

¼ argminθ2Rk

Pn
i¼1 U∂

i � ϕθðViÞ
� 2

;
ð3:3Þ

since U∂
i ¼ ϕðViÞ. In practice, U∂

i is not observed but we
can replace these frontier points by their nonparametric
estimators bU∂

i .
So, in our setup, the steps of the method can be described

as follows:

[1] From the sample X n ¼ fðXi; YiÞgni¼1 compute the
nonparametric estimators bδi; i ¼ 1; ¼ ; n of the direc-
tional distances, and transform the data by the rotation8

Vi

Ui

� �
¼ Rd

Xi

Yi

� �
; ð3:4Þ

where Rd is the fixed nonrandom matrix defined in (2.4).
[2] Project the observed Ui on the nonparametric frontier,
providing

bU∂

i ¼ Ui þ jjdjjbδi; ð3:5Þ

which are the nonparametric estimates of the unobserved
true values

U∂
i ¼ Ui þ jjdjjδi: ð3:6Þ

[3] Use the sample fðVi; bU∂

i Þg
n

i¼1 to find the best
parametric approximate of the function ϕ( ⋅ ), by least
squares approximation:

bθn ¼ argminθ2Rk

Xn

i¼1
bU∂

i � ϕθðViÞ
h i2

; ð3:7Þ

where ϕθ( ⋅ ) is a given class of parametric functions.
The last step provides, for any v, an estimate of the best
parametric approximation of the frontier bϕðvÞ ¼ ϕbθnðvÞ and
also gives estimates of its derivatives d▿ϕðvÞ ¼ d∂ϕðvÞ=∂v

and we know from Section “Some relations between the
two spaces” how to recover, from these estimates, the
objects of interest in the original w= (x, y)-space.

For interested readers, Appendix B in the SM presents
the extension of the linear approximation of FS to the
multivariate case and with directional distances.

3.2 Local linear approximation

When it is difficult to specify a priori a global parametric
model for the frontier function ϕ, using more flexible local
parametric approximation would allow us a richer inter-
pretation of its shape providing also its local derivatives.
This is why we propose to smooth the frontier by flexible
local linear models.

In place of looking for the best linear approximation, as
done in FS, we might indeed search for more flexible
approximations for functions ϕ(v) which admit for all
values of v a local linear approximation. If the true function
ϕ(v) is smooth enough (differentiable through order 2), we
can use the first-order terms of a Taylor expansion of the
function around v

ϕð~vÞ ¼ ϕðvÞ þ ∂ϕð~vÞ
∂v


 �0

~v¼v

ð~v� vÞ þ oðjj~v� vjjÞ; ð3:8Þ

and the leading terms can be written, for ~v in a
neighborhood of v as

ϕð~vÞ ¼ αðvÞ þ β0ðvÞð~v� vÞ: ð3:9Þ

Here, in the spirit of (3.2), the pseudo-true values are
defined as the best local linear approximation of ϕ(v), so
we can define the local pseudo-true value at any point
v as

ðα0ðvÞ; β0ðvÞÞ ¼ argminα;β

Z
ϕð~vÞ � ½αþ β0ð~v� vÞ�ð Þ2

Khð~v� vÞf V ð~vÞd~v;
ð3:10Þ

where Khð~v� vÞ is a weighting function localizing the
values ~v in a neighborhood of v. We can use any standard
multivariate kernel function and h is a bandwidth vector
tuning the weights. In practice we will use a product kernel,
so that

Khð~v� vÞ ¼
Yr�1

j¼1

1
hj
K

~vj � vj
hj


 �
; ð3:11Þ

and K( ⋅ ) is a simple univariate kernel function. We will use
below kernels with compact support, i.e K(u)= 0 when ∣u∣ > 1,
like e.g. Epanechnikov kernels. The empirical version of the

8 We drop the index “•” or “m” in bδi to indicate which estimator is
used (FDH, DEA or order-m frontiers).
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pseudo-true values are defined similarly to (3.3) as

ðα0;nðvÞ; β0;nðvÞÞ ¼ argminα;β
Xn
i¼1

U∂
i � ½αþ β0ðVi � vÞ�� �2

KhðVi � vÞ;
ð3:12Þ

where as above U∂
i ¼ ϕðViÞ are the true (unobserved)

frontier points. The nice thing of local linear approxima-
tions, is that a closed form is available for the solution in
(3.12). It is known (see e.g. Fan and Gijbels 1996) that

θ0;nðvÞ ¼
α0;nðvÞ
β0;nðvÞ

 !
¼ ðV0WðvÞVÞ�1V0WðvÞU∂;

ð3:13Þ

where the n × (p+ q) matrix V has its ith row given by
½1 ðVi � vÞ0� and the n × n weights matrix W(v) is diagonal
with ith element given by Kh(Vi− v) and U∂ is the n-vector
of true values on the frontier, i.e. ϕ(Vi).

For the order-m frontier, we have

θðmÞ0;n ðvÞ ¼
αðmÞ0;n ðvÞ
βðmÞ0;n ðvÞ

0@ 1A ¼ ðV0WðvÞVÞ�1V0WðvÞU∂
m;

ð3:14Þ

where now U∂
m is the n-vector of true values of order-m

frontier points, i.e. ϕm(Vi).
If the frontier functions are sufficiently smooth (differ-

entiable through order 2) we know by (3.8) that α0,n(v)→

ϕ(v) and β0;nðvÞ ! ∂ϕð~vÞ=∂v and that αðmÞ0;n ðvÞ ! ϕmðvÞ and
βðmÞ0;n ðvÞ ! ∂ϕmð~vÞ=∂v as h→ 0.

Now the true values U∂ are unavailable, but as above we
will in practice use their appropriate (FDH/DEA or robust)
estimators bU∂

. So the (local) values of θðvÞ ¼ ½αðvÞ β0ðvÞ�0
will be estimated from the sample fVi; bU∂

i g
n

i¼1 by the
weighted constrained least squares problem

ðbαnðvÞ;bβnðvÞÞ ¼ argminα;β
Xn
i¼1

bU∂

i � ðαþ β0ðVi � vÞÞ
� �2

KhðVi � vÞ
" #

:

ð3:15Þ

From the Taylor expansion (3.8), it is clear that bαnðvÞ is the
estimated smoothed value of ϕ(v) and that bβnðvÞ provides
an estimator of the first derivatives▽ ϕ(v). They are
computed by

bθnðvÞ ¼ bαnðvÞbβnðvÞ
 !

¼ ðV0WðvÞVÞ�1V0WðvÞbU∂
: ð3:16Þ

Clearly we have for all v,

bθnðvÞ � θ0;nðvÞ ¼ ðV0WðvÞVÞ�1V0WðvÞ bU∂ � U∂
� �

¼ kdkðV0WðvÞVÞ�1V0WðvÞ bδ∂ � δ∂
� �

;

ð3:17Þ
which is a locally weighted version of what we have for the
simple linear approximations (see Appendix B in SM). In
practice the bandwidths h are determined by least-squares
cross validation (LSCV) and this provides bandwidths with
an optimal order hj ¼ O n�1=ðrþ3Þ� �

since v 2 Rr�1. Since
for a given v, (3.17) is a simple linear transformation of the
estimation errors bδ∂ � δ∂, we keep the same properties as
described in FS, i.e. only consistency for full frontier
approximations, i.e. for all v we have bθnðvÞ � θ0;nðvÞ!p 0 as
n→∞.

For the order-m frontiers, we have

bθðmÞn ðvÞ ¼ bαðmÞn ðvÞbβðmÞn ðvÞ

 !
¼ ðV0WðvÞVÞ�1V0WðvÞbU∂

m:

ð3:18Þ
Clearly we have for all v, as n→∞

bθðmÞn ðvÞ � θðmÞ0;n ðvÞ ¼ ðV0WðvÞVÞ�1V0WðvÞ bU∂

m � U∂
m

� �
¼ jjdjjðV0WðvÞVÞ�1V0WðvÞ bδ∂m � δ∂m

� �
;

ð3:19Þ
where here again the bandwidths can be selected by LSCV.
So for a given v we keep the properties established in
Theorem 3.1 of FS, specifically, for any v,ffiffiffi
n

p bθðmÞn ðvÞ � θðmÞðvÞ0;n

� �
�!L Nð0;ΣðvÞÞ; ð3:20Þ

where Σ(v) is a matrix depending on several characteristics
of the DGP.

3.3 Derivatives: from factors to original units

The “curse of dimensionality” problem is well known in the
field of nonparametric efficiency analysis and consists of the
need to use large datasets in order to have estimates with an
acceptable level of precision (see e.g., Daraio and Simar
2007). Therefore, it is important in this area to reduce the
dimensionality of the analysis by aggregating inputs or outputs
into factors if they are highly correlated (Wilson 2018). For
this reason, we remind below how to build input or output
factors and we describe how to recover the derivatives in
original units from those obtained from the factors.

Consider an output factor Fy defined as Fy ¼ a0�y for
some �y 2 RL

þ where L ≤ q is the number of outputs
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aggregated in Fy. We denote the eventual outputs in y not
aggregated by °y 2 RK

þ, where K= q− L, so y ¼ ð�y0 °y
0Þ0.

We know that a 2 RL, with a0a ¼ 1 is the eigenvector of
the 2nd moments matrix of the L outputs �y, corresponding
to its largest eigenvalue.

Similarly we may have an input factor Fx defined as
Fx ¼ b0�x for some �x 2 RJ where J ≤ p is the number of
inputs aggregated in Fx and b 2 RJ is the eigenvector, with
b0b ¼ 1, of the second moment matrix of these J inputs �x,
corresponding to its largest eigenvalue. Again we denote by
°x 2 RI

þ, where I= p− J, the inputs not aggregated by Fx so
that x ¼ ð�x0 °x

0Þ01.
Suppose we have a procedure to evaluate (or to estimate)

the derivatives of Fy w.r.t. some variables (another output in
°y or some inputs in °x or to an input factor Fx) at the cor-
responding frontier point, say Fy. We know that this frontier
point Fy has coordinates in the �y-space given by

�y ¼ Fya 2 RL
þ: ð3:21Þ

Consider now a differential ∂Fy relative to some other
variables. This differential shifts the frontier point along the
direction a at the point Fy+ ∂Fy, which has coordinates in
the �y-space given by ðFy þ ∂FyÞa ¼ �yþ ∂Fya, so that we
may define the corresponding differential in the �y-space as

∂�y ¼ ∂Fya 2 RL: ð3:22Þ

We would obtain a similar result in the �x-space when
considering a differential of Fx relative to some variables
and define

∂�x ¼ ∂Fxb 2 RJ : ð3:23Þ

Now it is easy to consider various derivatives involving
the factors Fy or Fx or both. For instance, by simple algebra
we may have the derivatives of the component of an output
factor Fy relative to °x

∂�y

∂ °x
0 ¼

∂Fya

∂°x
0 ¼ a

∂Fy

∂°x
0 ; ð3:24Þ

i.e. a (L × I) matrix with element (ℓ, i) given by a‘ð∂Fy=∂°xiÞ.
Another case is to consider the derivatives of °y with

respect to the components of an input factor Fx. Here we
have

∂°y

∂�x0
¼ ∂ °y

∂Fxb
0 ¼

∂ °y

∂Fx
ðiJ � bÞ0; ð3:25Þ

where iL is a L-vector of ones and⊘ stands for the
Hadamard division of vectors (element-wise). So we have
a (K × J) matrix with (k, j) element ð∂°yk=∂FxÞð1=bjÞ.

If we want to recover the derivatives of �y with respect to
the elements of �x, they are given by

∂�y

∂�x0
¼ ∂Fya

∂Fxb
0 ¼

∂Fy

∂Fx
aðiJ � bÞ0: ð3:26Þ

This is a (L × J) matrix with (ℓ, j) element (∂Fy/∂Fx)aℓ/bj.
Note that we have another useful consequence. The

elasticities in terms of the factors are recovered in terms of
their components. This is due to the fact that
∂�y� �y ¼ ða∂FyÞ � ðaFyÞ ¼ ∂Fy=Fy. This is because we
distribute the differential ∂Fy in the �y-space in the direction
of a, i.e. in the direction of �y, i.e. in a radial proportional
way. So it is easy to check that for instance

Eð�y‘;�xjÞ ¼ EðFy;FxÞ; ð3:27Þ

or, for another instance

Eð�y‘; °xiÞ ¼ EðFy;
°xiÞ; ð3:28Þ

and many other possibilities.
We are also able to find the marginal rate of substitutions

on the frontier, between inputs in �x and inputs in °x or the
rate of transformation on the frontier between outputs in �y
and inputs in °y. For instance

∂�y

∂ °y
0 ¼

∂Fya

∂°y
0 ¼ a

∂Fy

∂°y
0 ; ð3:29Þ

i.e. a (L × K) matrix with element (ℓ, k) given by
a‘ð∂Fy=∂ °ykÞ.9

3.4 Dealing with environmental factors

In the presence of environmental factors Z, which are nei-
ther inputs nor outputs, but are factors that might influence
the production process, Cazals et al. (2002) and Daraio and
Simar (2005, 2007) have introduced the concepts of con-
ditional frontiers and conditional efficiency measures. This
leads to define a conditional attainable set

Ψz ¼ fðx; yÞjx can produce y when Z ¼ zg: ð3:30Þ

Clearly Ψz⊂Ψ which includes as a particular case Ψz=Ψ
for all z. The latter is known as the “separability” condition,
which may be quite restrictive in many applications (see
Simar and Wilson 2007). A formal test of separability has

9 Note that this approach does not allow to recover from the factors
the marginal rates of substitution between the elements �x composing
the factor Fx, or the marginal rates of transformation between the
outputs �y composing the factor Fy. For instance the information about
∂�y‘1=∂�y‘2 on the frontier is lost if we only have the factor Fy. Using the
ideas above would provide the trivial value a‘1=a‘2 , which corresponds
to the radial ratio considered above and has no economic interest.
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been derived in Daraio et al. (2018) and Simar and Wilson
(2020). If the model is non-separable, the unconditional
efficiency measures have no real economic meaning since
they describe the distance for the unit (x, y) to the boundary
of Ψ instead of Ψz if the unit faces the condition z for Z. So,
in this case it is more appropriate to define conditional
efficiency measures as

δðx; yjzÞ ¼ supfδj ðx� δdx; yþ δdyÞ 2 Ψzg: ð3:31Þ
Nonparametric estimators have been proposed by Cazals
et al. (2002) and Daraio and Simar (2005) and most of their
statistical properties are derived in Jeong et al. (2010). CLTs
have been obtained for averages of these measures in
Daraio et al. (2018) and practical Matlab programs for
computation are reported in Daraio et al. (2020).

It is useful to point out that none of these previous works
have proposed approximations of the nonparametric effi-
cient frontiers and related coefficients.

If Z is separable, it has no effect on the frontier of the
attainable set, so z has no influence on the shape of the frontier
and on the quantities of interest developed in this paper. So the
analysis for the full frontier models above can be completed
without reference to Z, by using the unconditional measures.

If Z is non-separable or if we are interested in partial
frontiers (because, in any case, Z may influence the partial
frontier levels), then the measures δ(x, y) above should be
replaced by the conditional measures δ(x, y∣z) and their
estimators. The transformation of w to t in (2.5) remains the
same providing, by (2.9), the transformed data. Then in the
approximation in the (v, u) space developed above, we
could introduce the additional variables z to approximate the
frontiers. Hence we would have in place of (3.5)

bU∂ðZiÞ ¼ Ui þ jjdjjbδðWijZiÞ; ð3:32Þ

and the approximating Eq. (3.7) becomes

bϕð	; 	Þ ¼ argminϕð	;	Þ
Xn

i¼1
bU∂ðZiÞ � ϕðVi; ZiÞ
h i2

;

ð3:33Þ
where ϕ( ⋅ , ⋅ ) belongs to the class of linear or local linear
models, as above. Note that here, even with partial frontiers,
the dimension of Z introduces some curse of dimensionality,
because the estimators of the conditional measures have
convergence rates deteriorated by the dimension of Z, for
the order-m;

ffiffiffi
n

p
becomes n2=ðrzþ4Þ, where rz is the

dimension of Z.

3.4.1 Recovering derivatives in full space including z
variables

Although this is rather obvious, it is better to clarify how the
relations between the two spaces described above from

(2.14) to (2.18), have to be adapted to the full space,
including the variables z, where the values ~w ¼ ðw; zÞ are
transformed in ~t ¼ ðt; zÞ. We have now

~t ¼ eRd ~w ¼ Rd 0

0 Irz

� �
w

z


 �
; ð3:34Þ

since the rotation is only done on the w variables. The
inverse transformation can be written as

~w ¼ eR0
d
~t ¼ R0

d 0

0 Irz

� �
t

z


 �
: ð3:35Þ

By following the same argument as in Section “Some
relations between the two spaces”, in the ~t space, the
hyperplane tangent at the frontier ϕ(v, z) at the frontier point

~t∂0 ¼ ðv00 ϕðv0; z0Þ z00Þ0 is given by the equation c0~tð~t �~t∂0Þ
where now

c~t ¼
▿vϕðv0; z0Þ

�1

▿zϕðv0; z0Þ

264
375; ð3:36Þ

where ▿vϕðv0; z0Þ ¼ ∂ϕðv;zÞ
∂v

h i
v¼v0;z¼z0

is the (r− 1)-vector of

the partial derivatives of ϕ(v, z) wrt v, evaluated at (v0, z0)

and similarly, ▿zϕðv0; z0Þ ¼ ∂ϕðv;zÞ
∂z

h i
v¼v0;z¼z0

represents the

rz-vector of the partial derivatives of ϕ(v, z) wrt z, evaluated
at the same point.

In the ~w space, this hyperplane has the equation
c0~teRdð~w� ~w∂

0Þ ¼ 0 or

c0~wð~w� ~w∂
0Þ ¼ 0; where c~w ¼ eR0

dc~t ¼
R0
d

▿vϕðv0; z0Þ
�1

� �
▿zϕðv0; z0Þ

264
375:

ð3:37Þ

The last equation gives an explicit expression for any partial
derivatives at frontier points ~w∂

0 in the original units. For
instance we have, as Eq. (2.17) above in Section “ Some
relations between the two spaces”

∂~w‘

∂~wk

				
~w¼~w∂

0

¼ � c~w;k
c~w;‘

; ð3:38Þ

provided c~w;‘≠0. This allows us to recover all the
characteristics of the frontier at any frontier points by
selecting the appropriate elements of ~w. This includes the
(conditional to z) marginal rates of substitution and the
(conditional to z) marginal rates of transformation. This is a
useful tool for the practitioner to investigate the effect of z
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on these rates and on the shape of the frontier. This will be
illustrated in the real data example below.

3.5 Bootstrap-based practical inference

Practical inference in this setting will be obtained with the
bootstrap.

The bootstrap is done in the original units, i.e. generating
the bootstrap sample X


n ¼ fW

i ¼ ðX


i ; Y


i Þ; i ¼ 1; ¼ ; ng

to provide the values ðV

i ;U



i Þ in the (v, u)-space and the

bootstrap analog bδ
m;n of the distances bδm;n. We can use the
basic model in (2.1) that describes how the data are gen-
erated. So the bootstrap values are defined as W


i ¼ bW∂

i �
δ
i d where bW∂

i are the projected data points on the non-
parametric frontier (DEA or FDH), and δ
i are randomly
drawn from some smooth consistent nonparametric esti-
mator of the density of δ, taking into account the boundary
condition (see e.g. the details in Section 4.3.5 of Simar and
Wilson 2008 or in Section 3.1.2 of Simar and Wilson 2013).
The reader can verify that since the W


i are generated along
the direction d, we have V


i ¼ Vi and U

i ¼ bUi � jjdjjδ
i , for

i= 1,…, n.
For the order-m case, by using the sample X


n as refer-
ence sample, we can compute the estimator of the order-m
distances for all the original data points bδ
m;n ¼
fbδ
m;nðXi; YiÞg

n

i¼1
providing the bootstrap versionbU∂;


m ¼ U þ jjdjjbδ
m;n. Finally, applying (3.18) in the boot-
strap world, keeping the same matrices V and W(v), we
obtain the value bθ
;ðmÞn ðvÞ, the bootstrap analog of bθðmÞn ðvÞ
which in turn can provide, by Monte-Carlo simulations, the
bootstrap approximation to (3.20).

The bootstrap also provides the bootstrap values of the
quantities of interest described in Section “Some relations
between the two spaces”, since they are known (non-ran-
dom) linear or continuous transformation of θ. From the
bootstrap distribution, we can, e.g., evaluate confidence
intervals for these objects. For all these quantities the basic
bootstrap method is recommended (rather than the per-
centile method) due to the possible bias in finite samples for
these quantities.

The bootstrap method for the order-m case has to be
slightly modified to handle the possible dependence on Z.
We generate the bootstrap sample on the “pairs”, i.e. here
on (Wi, Zi) to keep the dependence between (X, Y) and Z in
the bootstrap sample, providing the bootstrap sample
fðW


i ;Z


i Þgni¼1. The latter sample gives the bootstrap analogbδ
mðWijZiÞ of bδmðWijZiÞ, evaluated at the original data

points (Wi, Zi). Note that here the bootstrap analog ofbU∂

mðZiÞ will be defined as

bU∂;

m ðZiÞ ¼ Ui þ jjdjjbδ
mðWijZiÞ: ð3:39Þ

We apply this bootstrap-based approach to simulated
data in Appendices B.4 and C of Supplementary Materials.
The next section reports an illustration of our approach with
a real dataset.

4 Application on European universities

To show the usefulness of our approach we report an
illustration in the field of higher education where the
assumptions underlying parametric models have longed
been challenged. According to Hanushek (1979) who has
questioned parametric models in education, the measure-
ment of educational performance and its determinants is
affected by a lack of conceptual clarity and severe analytical
problems, including the consideration of multiple output in
isolation without taking into account the interactions among
them in the production, and the choice of the functional
form. Subsequently, Figlio (1999), Dewey et al. (2000) and
Baker (2001) expanded the investigation of the results
obtained from education production functions (based on
parametric approaches), showing that the imposition of
restrictive assumptions leads to different results.

Efficiency analysis in education has a long tradition (see
e.g., Ruggiero 2004 and Johnes 2006). The analysis of
European universities is more recent and has been devel-
oped from the pioneering project AQUAMETH described
in Bonaccorsi and Daraio (2007), in which the first
empirical evidence at the European comparative level is
reported. A number of recent surveys have shown a steady
increase in the quantity and variety of contributions pro-
posed to assess the efficiency of education in general and
higher education in particular (see, e.g., Grosskopf et al.
2014, and De Witte et al. 2017).

It is important to note that before the introduction of our
method, none of the tables of results presented in this sec-
tion and none of the figures would have been possible. Prior
to our method, in the nonparametric approach (DEA, FDH,
order-m) it was only possible to estimate efficiency scores
with their respective confidence intervals. With our method,
it is now possible to complement the results provided by the
nonparametric approach with the estimation of local coef-
ficients of economic interest, including partial derivatives of
outputs concerning specific inputs or external variables or
marginal products, and by providing confidence intervals on
these coefficients that were not available before.

We illustrate our methodology by analyzing a sample of
337 observations from European universities that was
recently analysed in Daraio et al. (2021) to which readers
are referred for more details and information. In particular,
we will show that with our approach we are able to obtain
results that were not available before which are useful
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information to complement those usually obtained within
the nonparametric frontier framework.

We use as input an input factor (FX) that aggregates three
inputs (total number of academic staff, total number of non-
academic staff and and total expenditures), two outputs
Y= (TDEG, FY) the first one being the teaching activity
(total number of degrees) and the second an output factor
summarizing the research activity, being the aggregation of
number of PhD students and total publications. As descri-
bed in detail in Daraio et al. (2021), due to the high cor-
relations among the 3 inputs, higher than 90%, we do not
lose much information by aggregating them into one input
factor.10Wilson (2018) has shown the advantage of such
dimension reduction methods for nonparametric models of
production. Moreover, in case partial derivatives involving
each original input are wanted, in Section “Derivatives:
from factors to original units” we described the way to
recover these from the derivatives on the factor. As envir-
onmental variables we consider the latent factor quality
(QUAL) identified in Daraio et al. (2021) and the specia-
lization index (SPEC) varying between 0 and 1 and indi-
cating, respectively, generalist versus specialist universities.

In the analysis, all the variables are scaled by their
empirical standard deviation. This improves the numerical
stability when selecting the optimal bandwidths. So, all the
derivatives have to be rescaled by scX= 1.6471, scY=
(3196.67, 0.001369) and scZ= (0.2903, 0.1249).

As often chosen in this literature (see e.g. Bonaccorsi and
Daraio 2007), we select as directional vector the vector
determined by the median of the input factor (with negative
sign) and the median of the outputs. This gives
d ¼ ð�0:87691:19850:6679Þ0, hence all three variables are
active in the estimation of the optimal frontier.

We test the separability condition according to Daraio
et al. (2018) and Simar and Wilson (2020) obtaining a p-
value near zero, hence we reject the separability condition
and work with conditional frontiers. The sensitivity analysis
carried out for selecting the value of m to compute order-m
measures showed an elbow effect around a value of
m= 550, for which 31% of observations lies above the
(marginal) order-m frontier, showing negative values ofbδmðXi; YiÞ. For the conditional order-m frontiers, that
include also the external factors QUAL and SPEC, the
elbow effect is also present around m= 550 but with only
10% of the points located above the frontier, with negative
values of bδmðXi; YijZiÞ. Additional details on how to select
the value of m are available in Daraio and Simar (2007).

The optimal bandwidths hz for conditional FDH and
conditional order-m frontiers, estimated by LSCV are
respectively hz= (0.9099, 0.7591). The optimal bandwidths
for the local linear approximation of bU∂

i by (Vi, Zi) are given
by (2.6416, 5.6873, 1.2370, 5.4950) and for the order-m
frontier approximation of bU∂

m;i by (Vi, Zi) we have
(2.6444, 5.6683, 1.2427, 2.7212).

To illustrate the results obtained with our methodology,
we show some pictures of the obtained estimates and some
tables with the estimated confidence intervals obtained by
applying a basic bootstrap with B= 1000 replications.

Figure 2 in the left panel, shows the distribution of the
estimated marginal products reporting the FDH case in
boxplots 1 and 2 and the order-m case with m= 550 in
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Fig. 2 HEI data: distribution of the estimated marginal and transfor-
mation rates at frontier points. Left panel, marginal rates: FDH case
∂y1/∂x (boxplot 1) and ∂y2/∂x (boxplot 2), order-m case with m= 550:

∂y1/∂x (boxplot 3) and ∂y2/∂x (boxplot 4). Right panel transformation
rates ∂y1/∂y2: FDH case (boxplot 1) and order-m case with m= 550
(boxplot 2)

10 Daraio et al. (2021) provide the first eigenvector of the moment
matrix of the 3 original inputs: b ¼ ð0:5723; 0:6218; 0:5346Þ0, indi-
cating that the input factor is roughly the average of the scaled inputs.
This first factor explains 96% of the total inertia and it as a correlation
with the 3 original inputs respectively equal to 0.9777, 0.9474 and
0.9325.
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boxplots 3 and 4. We observe that the distributions of the
marginal products ∂y1/∂x and ∂y2/∂x estimated with FDH
and order-m are globally the same. The marginal product
∂y1/∂x measures the rate of change in the teaching activity
of the analyzed universities (y1 is TDEG) as the input
changes (x is the input factor FX). ∂y2/∂x measures the
change in research activity (y2 is FY) as input changes.
Figure 2 shows that teaching activity has greater sensitivity
to varying input than research activity (the distribution of
∂y1/∂x is greater than that of ∂y2/∂x).

Figure 2, right panel, illustrates the boxplots of the
transformation rates (∂y1/∂y2) estimated with FDH (boxplot
1) and order-m with m= 550 (boxplot 2). Again, the two
distributions look the same. We note that the transformation
rates between the two outputs (y1 the teaching output and y2
the research output) globally are negative and thus have the
expected sign. This means that universities must strategi-
cally address a trade-off between teaching and research in
their allocation of resources.

Using our directional distance frontier approximation
approach, we can calculate the sensitivity of directional
conditional distances to changes in the input (x) and outputs
of teaching (y1) and research (y2). Figure 3 shows the
boxplots of the estimated derivatives of the conditional
distance functions with respect to x, y1 and y2 estimated with
FDH (boxplots 1, 2 and 3) and with order-m (boxplots 4, 5
and 6). We observe again that the derivatives have the
expected signs in that inefficiency increases as inputs
increase (the derivative with respect to x1 is positive) while
inefficiency decreases when y1 and y2 increase. We also

note that increasing research output (y2) has a greater impact
on reducing inefficiency than teaching output (y1) because
the distribution of derivatives with respect to y2 (boxplots 3
and 6 of Fig. 3) has a median around −0.35 while the
distribution of derivatives with respect to y1 (boxplots 2 and
5 of Fig. 3) has a median around -0.2.

Figure 4 shows the plots of the estimated derivatives of
the conditional distance functions δm(x, y∣z) (i) w.r.t. x ver-
sus the observed values of x (left panel), (ii) w.r.t. y1 versus
the observed values of y1 (middle panel) and (iii) w.r.t. y2
versus the observed values of y2 (right panel). The plots
shown in Fig. 4 show that there is great heterogeneity
among the units analyzed. While the plot on the left side of
the figure shows some decreasing trend in the variation of
inefficiency with respect to x (it would seem that uni-
versities with higher inputs increase inefficiency less than
those with lower inputs); the middle and right plots show
more heterogeneity in the trend of inefficiency with respect
to y1 and y2 outputs.

All the figures displayed so far show a great variability.
This is not a surprise since we have estimates at each data
points and our flexible procedure allows for hetero-
skedasticity. Hence, the figures and various boxplots show
the full distribution of the estimates over the whole data set
where the environmental factors changes from one point to
another. In a final set of figures we will investigate the effect
of the z-variables on the input and the outputs and on the
shape of the frontier. To save space we only display the
figures for the full frontier estimates (we have similar pic-
tures for the order-m frontier case).

First we can compute, by Eq. (3.38) the partial deriva-
tives of the input and the outputs with respect to the two
variables z (latent quality QUAL and specialization SPEC).
Figure 5 displays the full distribution of these 337 partial
derivatives. From Fig. 5 we see that the two variables z act
as an “output”: they show mainly positive derivatives with
respect to x and negative derivatives with respect to both
outputs. In addition, we observe that the impact of specia-
lization (SPEC) on x is smaller in magnitude (showing a
median close to zero) than the impact of quality (QUAL)
(with a median of about 0.1), see the left plot in Fig. 5. The
impact of SPEC is also smaller than the impact of QUAL on
teaching (y1) and research (y2) outputs as shown in the
middle and right plots of Fig. 5. To better investigate the
dependence of the shape of the frontier, described by the
partial derivatives of the outputs with respect to the input, as
a function of z we show Fig. 6. Again these partial deri-
vatives are computed by (3.38) at each data point having its
own value of z. Figure 6 displays a local linear fit of the
resulting cloud of points. We see as expected that the
variable SPEC has less effect than the variable QUAL. The
latter decreases the curvature in the direction of y1 (teaching
activity) when it increases showing that universities do not
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Fig. 3 HEI data: distribution of the estimated derivatives of the dis-
tance functions with respect to x, y1 and y2. On the left, FDH case:
estimated derivatives of δ(x, y∣z) with respect to x (boxplot 1), w.r.t. y1
(boxplot 2) and w.r.t. y2 (boxplot 3). On the right, order-m case:
estimated derivatives of δm(x, y∣z) w.r.t. x (boxplot 4), w.r.t. y1 (boxplot
5) and w.r.t. y2 (boxplot 6)
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have to produce a lot of teaching if they have a high level of
quality in that QUAL acts as a kind of compensatory
“output". Interestingly, the effect of z on the curvature of the
frontier in the direction of the research output y2 (Fig. 6

right panel) looks like an inverted U-shaped. The impact of
quality on research output (y2) is more complex and not as
monotone decreasing as that on teaching (y1). As Fig. 6 in
the right panel shows, for research activity, the
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“substitution" or compensatory effect of quality (allowing
for a reduction in output y2) begins only after a certain level
of quality is reached, the one where the decreasing part of
the inverted U-shaped curve begins. This shows us that the
effect of the QUAL (z2) variable is neither uniform nor
constant, but changes depending on the observations.
Finally, note also that the left panel of Fig. 6 does not
indicate interaction effects between the two variables z. On
the contrary, in the right panel of Fig. 6 a small interaction
between the z appears: here specialization (SPEC) seems to

enhance the impact of x on research (y2) when quality
(QUAL) increases.

Another important contribution of our approach is the
possibility of estimating the statistical significance of
coefficients approximating nonparametric frontiers. As we
described in Section “Bootstrap-based practical inference”,
by applying bootstrapping in our framework we can obtain
confidence intervals on each estimated parameter. Table 1
shows the 95% bootstrap confidence intervals for the rates
∂y1/∂x1 (second and third columns), ∂y2/∂x1 (fourth and fifth

Fig. 6 HEI data: Local linear fit of the estimated derivatives of ∂y/∂x, as a function of z, left panel y1 and right panel y2

Table 1 HEI data: 95%
bootstrap confidence intervals
(lower and upper bounds) for the
rates ∂y1/∂x1 (second and third
columns), ∂y2/∂x1 (fourth and
fifth columns) and ∂y1/∂y2 (sixth
and seventh columns) evaluated
at conditional order-m frontier
points, with m= 550

∂y1/∂x1 ∂y2/∂x1 ∂y1/∂y2

lower bound upper bound lower bound upper bound lower bound upper bound

1 0.4923 2.9147 1.2657 2.3184 −1.9174 1.3169

2 2.9255 4.2403 2.1341 3.2376 −1.7754 −0.6607

3 2.2144 3.3965 1.8728 2.4902 −1.6576 −0.5779

4 1.2743 2.8987 1.4926 2.3841 −1.7618 0.2435

5 1.7150 3.3900 1.7738 2.3769 −1.7260 −0.1620

6 1.5881 3.3130 1.6131 2.2146 −1.8981 −0.1620

7 1.5249 3.2928 1.5517 2.1992 −1.9720 −0.1238

8 2.7499 3.6280 2.1313 3.0884 −1.5334 −0.5831

9 1.3585 3.1614 1.5194 2.2331 −1.9087 0.1000

10 1.7500 3.3344 1.6385 2.2320 −1.8971 −0.3550

11 3.8307 4.9358 2.2365 3.1665 −2.0822 −0.7821

12 2.9885 4.2796 2.1723 3.6854 −1.7294 −0.4020

13 1.0276 2.9885 1.5033 2.4155 −1.7418 0.4673

14 3.7620 4.8902 2.2816 3.2678 −2.0211 −0.6914

15 1.2028 3.2295 1.5200 2.1238 −1.9903 0.0808

16 −1.4520 2.8425 1.4608 2.5791 −1.6573 3.8764

17 2.8942 3.8955 2.2305 3.3608 −1.5809 −0.5416

18 −0.7522 2.9323 1.2525 2.4006 −1.8790 3.0719

19 −5.4514 3.0516 1.0189 2.4379 −2.0092 8.3581

20 2.7563 3.8669 2.1203 3.3175 −1.6175 −0.5227
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columns) and ∂y1/∂y2 (sixth and seventh columns) evaluated
at conditional order-m frontier points, with m= 550. The
table shows the results of 20 observations to save space. We
observe that for most observations the estimated results are
statistically significant at 95% level except for units #9, 15,
16, 18 and 19 which include zero in their confidence
intervals.

Table 2 shows the results of the bootstrap confidence
intervals for ∂δm(x, y∣z)/∂(x) (second and third columns),
∂δm(x, y∣z)/∂(y1) (fourth and fifth columns) and ∂δm(x, y∣z)/
∂(y2) (sixth and seventh columns), with m= 550. The table,
again, reports 20 institutions to save space. We observe that
all institutions except unit # 19 (that includes zero in one of
its estimated confidence intervals) show results statistically
significant at 95% level. Overall, we observe that the esti-
mated quantities showed in Tables 1 and 2 have the
expected signs.

Note that the derivatives and the particular rates are in
the units of the factors X= FX and Y2= FY. In Section
“Derivatives: from factors to original units”, we described
how these derivatives in “factor units” can provide the
derivatives in the original units.11

In practice more detailed analysis could be done, how-
ever, the illustrative example reported in this section clearly
shows the usefulness and the flexibility of our approach in
complementing the analysis available within a complete
nonparametric framework.

5 Conclusions

Nonparametric methods that provide envelopment estima-
tors, such as FDH or DEA, are very attractive as they do not
rely on restrictive parametric assumptions on the DGP,
specifically on the shape of the boundary and on the dis-
tribution of inefficiency. However, these nonparametric
techniques do not allow us to make sensitivity analyses of
the estimated frontiers, for example, to estimate derivatives
of the optimal production outputs concerning specific inputs
or infer marginal products and other coefficients of the
frontier of economic interest.

In this paper, we propose an approach that complements
and completes existing nonparametric efficiency methods
by providing approximations of the economic coefficients
of interest by “smoothing" the nonparametric estimators of
the frontiers. It is an extension and generalization of the
ideas initiated by Florens and Simar (2005), who propose
linear models to approximate univariate FDH or order-m
frontier functions.

Table 2 HEI data: 95%
bootstrap confidence intervals
(lower and upper bounds) for
∂δm(x, y∣z)/∂(x) (second and third
columns), ∂δm(x, y∣z)/∂(y1)
(fourth and fifth columns) and
∂δm(x, y∣z)/∂(y2) (sixth and
seventh columns), with m= 550

∂δm(x, y∣z)/∂x ∂δm(x, y∣z)/∂y1 ∂δm(x, y∣z)/∂y2

lower bound upper bound lower bound upper bound lower bound upper bound

1 0.4923 0.6628 −0.3707 −0.1481 −0.4237 −0.0722

2 0.6472 0.7515 −0.2232 −0.1481 −0.3102 −0.1654

3 0.5917 0.6776 −0.2549 −0.1843 −0.3264 −0.2127

4 0.5259 0.6477 −0.3293 −0.1715 −0.3842 −0.1324

5 0.5786 0.6682 −0.2770 −0.1825 −0.3382 −0.2041

6 0.5574 0.6580 −0.2879 −0.1677 −0.3697 −0.2118

7 0.5461 0.6641 −0.2962 −0.1537 −0.3854 −0.2040

8 0.6289 0.7139 −0.2389 −0.1784 −0.3008 −0.1690

9 0.5348 0.6596 −0.3114 −0.1606 −0.3883 −0.1821

10 0.5628 0.6604 −0.2782 −0.1674 −0.3662 −0.2206

11 0.6898 0.7621 −0.1847 −0.1412 −0.3120 −0.1842

12 0.6603 0.7680 −0.2302 −0.1396 −0.3074 −0.1271

13 0.5234 0.6609 −0.3453 −0.1623 −0.3802 −0.1338

14 0.6908 0.7698 −0.1876 −0.1425 −0.3065 −0.1721

15 0.5313 0.6583 −0.3119 −0.1505 −0.3924 −0.1946

16 0.4777 0.6696 −0.4508 −0.1621 −0.3830 0.0055

17 0.6453 0.7375 −0.2328 −0.1660 −0.2949 −0.1499

18 0.4713 0.6738 −0.4217 −0.1460 −0.4243 −0.0165

19 0.4264 0.7143 −0.4859 −0.1229 −0.4437 0.0769

20 0.6370 0.7376 −0.2389 −0.1579 −0.3054 −0.1491

11 Just to illustrate this, we could recover, e.g., the partial derivatives
of any output, say y1 at the frontier points wrt to the original inputs by
multiplying the derivative wrt the the input factor by the eigenvector b
given in Footnote 10. This is obtained by applying equation (3.25) in
Section “Derivatives: from factors to original units”.
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This work represents an important step forward in the
field of nonparametric efficiency analysis. To the best of our
knowledge, it provides a unique approach that has not been
proposed so far in the literature. It offers the possibility of
nonparametrically approximating all desired coefficients
and partial derivatives, with their bootstrap-estimated con-
fidence intervals, in a fully multivariate directional distance
model that includes environmental factors. In detail, the
novelty of our approach is manifold. It allows us to handle
fully multivariate cases in a flexible directional distance
model. It provides flexible approximations based on local
linear tools offering local estimates of all the desired
coefficients and partial derivatives without assuming any
parametric structure. It proposes simple bootstrap algo-
rithms to estimate confidence intervals on all the coeffi-
cients of interest. It extends the method for including
environmental factors and estimating their impact in this
framework. Illustrations with some simulated data sets and
with real data show the usefulness and flexibility of the
proposed approach. In particular, the application on Eur-
opean universities shows the wealth of economic coeffi-
cients and derivatives estimated nonparametrically, made
available by this approach.

This approach has a high potential for applicability in
many different contexts. One of these is the field of regu-
lated sectors in which policymakers need coefficients for
their economic interpretation, for setting their price-cap, and
to monitor the efficiency of regulated industries. Thanks to
our approach, they are not forced to rely on very strict and
unrealistic production function specifications for estimating
the efficient frontier from which they derive the economic
coefficients. In this sense, our approach avoids the empirical
choice between a parametric and nonparametric approach
because it offers to those that use the nonparametric
approach the availability of coefficients estimated non-
parametrically that do not rely on restrictive assumptions
and are available for each firm, institution, or observation in
the sample.
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