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ABSTRACT

As a result of the advent of high-throughput tech-
nologies, there has been rapid progress in our under-
standing of the genetics underlying biological pro-
cesses. However, despite such advances, the genetic
landscape of human diseases has only marginally
been disclosed. Exploiting the present availability of
large amounts of biological and phenotypic data, we
can use our current understanding of disease genet-
ics to train machine learning models to predict novel
genetic factors associated with the disease. To this
end, we developed DGLinker, a webserver for the pre-
diction of novel candidate genes for human diseases
given a set of known disease genes. DGLinker has a
user-friendly interface that allows non-expert users
to exploit biomedical information from a wide range
of biological and phenotypic databases, and/or to
upload their own data, to generate a knowledge-
graph and use machine learning to predict new
disease-associated genes. The webserver includes
tools to explore and interpret the results and gener-
ates publication-ready figures. DGLinker is available
at https://dglinker.rosalind.kcl.ac.uk. The webserver
is free and open to all users without the need for
registration.

GRAPHICAL ABSTRACT

INTRODUCTION

Thanks to the establishment of high-throughput technolo-
gies as a common tool in the biomedical field, vast amounts
of biological and phenotype information are currently avail-
able. Machine learning (ML) is a powerful tool for exploit-
ing this heterogeneous source of knowledge for the predic-
tion of novel associations between biological factors (e.g.
genes) and phenotypes. Such predictions can be used for a
multitude of purposes including the prioritization of dis-
ease genes. Given the large number of targets that high-
throughput experiments provide, their individual valida-
tion, let alone all the possible interactions between them, is
time-consuming and expensive. In some cases, for example
for the hundreds of millions of variants from human whole-
genome sequencing experiments, this can be prohibitive. In
this context, gene prioritization can play an important role
(1,2).
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The use of ML for the prediction of novel disease-gene
associations presents several challenges including the in-
terpretation of the predictions, the selection of appropri-
ate data to generate the model, and an adequate choice of
the known disease genes for the training. These are key for
usable non-trivial predictions and to avoid model bias (3).
Currently available methods generally lack tools for both
the interpretation of the predictions and for the evaluation
of the model. Moreover, they tend to provide limited flexi-
bility over the data that can be used (1,3–8).

We therefore developed DGLinker, a webserver for the
prediction of novel candidate genes for human diseases.
DGLinker has a user-friendly interface that allows non-
expert users to select a customizable set of databases, and
use our in-house ML method (3,9) to predict new candidate
genes on the basis of genes that are known to be associated
with the target disease (method overview in Figure 1).

The webserver includes utilities to explore and inter-
pret the results including a network visualization tool for
a graphical exploration of the interactions between the dis-
ease genes and other biological factors in the knowledge-
graph (KG) that contributed to their classification. It also
performs gene enrichment analysis to test the overrepresen-
tation among the predictions of genes associated with spe-
cific biological processes (10). Via its user-friendly interface,
DGLinker allows users to select a set of databases, includ-
ing protein-protein interaction, disease-gene (DG) associa-
tion, transcriptomics, gene function, text mining of scien-
tific literature, and upload their own data for the generation
of the KG. The control over the data used in the model can
favour the minimization of trivial predictions and hidden
biases, factors that can limit the applicability of this class
of methods. DGLinker produces a number of publication-
ready figures and graphs. The outputs can be downloaded
as csv files for use with spreadsheet programs as well as im-
age files of the graphs and figures. On such basis we believe
DGLinker to be a novel and promising resource for human
disease research in the era of big biological data and preci-
sion medicine.

RESULTS

Webserver overview

DGLinker is a web-based server extension of our previously
published knowledge-based ML method (3,9) for the pre-
diction of candidate disease genes. In order to maximise its
usability, DGLinker has a user-friendly interface that re-
quires no informatics skills and provides a highly flexible
analysis framework that gives the user control over the data
used for the generation of the knowledge-graph and the
training of the predictive model. Moreover, the webserver
provides utilities for the evaluation of the model and the in-
terpretation of the results. These are key aspects that are
often overlooked and limit the use of this class of methods
in the biomedical field. It is freely accessible and there is
no login requirement. The DGLinker pipeline consists of
four main steps: (i) specification of known disease associ-
ated genes, (ii) selection (and/or upload) of the data to gen-
erate the KG, (iii) ML training and DG predictions, (iv) re-
sults visualization and evaluation (Figure 2). More details
are provided in the corresponding sections below.

Input options

DGLinker bases its prediction on a set of genes known to
be associated with the target phenotype(s). Therefore, the
user needs to provide both a list of genes and the pheno-
types they are associated with. To do so the following three
options are available on the webserver. (i) Select pheno-
type(s): this option allows the user to provide one or more
input phenotypes. DGLinker will automatically retrieve all
genes reported to be associated with them in the selected
DG databases. Currently, DGLinker includes all disease
and phenotype terms, and DG associations from DisGeNet
(11), OMIM (12), Clinvar (13) and HPO (14). (ii) Select phe-
notype(s) associated genes: This option allows the user to
provide a set of genes and the phenotypes they are associ-
ated with. If this option is used, DGLinker will replace the
corresponding DG relations in the database with the ones
provided by the user. The definition of which genes are as-
sociated with a target phenotype strongly affects the predic-
tions and varies greatly among DG databases. This is largely
dependent on the evidence used to support their association
(3). For example, for genes whose variants can increase dis-
ease risk, one might consider the results of a genome-wide
association study (GWAS) sufficient while others could re-
quire evidence of segregation with the disease in families.
Neither choices are right or wrong in general and might de-
pend on the study design and aim. As a consequence, it is
very common for a user working in the biomedical field, to
have their own curated list of DG associations optimised
for their specific study. Input option (ii) is designed to facil-
itate this common scenario. (iii) Select genes: This third and
last option allows the user to provide a set of genes without
selecting a specific phenotype. This is suitable for studying
phenotypes that are not present in the DGLinker database.
We recommend the users to search for the target phenotype
using option (i) or (ii) before using this option. Where this
option is used, it is not a requirement that the associated
phenotype is necessarily a disease, for example, a user could
specify genes linked to a specific biological pathway or drug
response.

Available databases

DGLinker has a wide range of databases of biological and
phenotypic relations available to generate the knowledge-
graph (Table 1). These include a selection of 20 databases
grouped in following classes: disease-gene associations,
protein–protein interactions, gene pathways, expression
data, gene function and biological interactions mined from
literature. By default, the latest versions of DisGeNet, Gene
ontology (15) and IntAct (16) are selected. Users can also
upload their own dataset(s). These have to be in comma
delimited csv format and include one ‘Gene’ column. The
HGNC nomenclature (17) must be used. Currently, there is
a limit of 100Mb to upload datasets, however, this limit can
be increased, and new databases can be added on demand.

After submission

After submission, the user is directed onto the waiting page
where the unique job ID is displayed. This can be used in
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Figure 1. Method overview: The method takes as input a graph of known data related to the prediction task, in this case, gene-disease links, gene functions,
and others, and returns a list of predicted edges missing from that graph. (A) Starting from a knowledge graph, an enrichment test is used to identify
predictive features of the genes known to be associated with the target phenotype(s). The total adjacency of every gene with all predictors of each type (the
columns of the matrix) is calculated from the graph. Blue nodes are genes, red nodes are proteins, orange nodes are diseases, green nodes are GO terms.
(B) The features (adjacency matrix from (a)) are scaled and weighted to produce a final score for every gene. The optimum weighting and score threshold
are learned from the set of known associated genes. In other words, to predict new genes linked to a target phenotype, the algorithm compares all genes
known to be linked to the target to all other genes and builds a predictive profile based on a weighted combination of existing relationships in the graph.
Every gene is then scored for its similarity to this profile. Predictions are made by applying a threshold to this similarity score, with all genes above the
threshold predicted as candidate genes. Adapted from Bean et al.(9).

the homepage to retrieve the job results. If a valid email ad-
dress was provided at submission, the job ID and a link to
the results page are also emailed. The waiting page automat-
ically refreshes every 10 seconds until the job is completed.
The user is then redirected to the results page. A standard
job with default data sources takes about 10 minutes to be
completed. However, jobs can take up to a few hours as
the processing time depends on the number of genes and
databases used, as well as whether the cross-validation pro-
tocol is used. If the cross-validation is selected, DGLinker
performs a standard N-fold cross validation protocol (36)
(where N is selected by the user but ≤5) using the input dis-
ease genes, and the results are reported in the subsequent
model evaluation tab of the results page. Although the N-
fold cross validation can be a useful tool to evaluate the
model performance, it does increase the job processing time
by approximately a factor N.

Results page

The results page consists of the following five tabs: Job de-
scription, Model Performance, Results Table, Enrichment
Analysis and Gene Networks. The Job description tab re-
ports all job details including the job ID, the complete list
of the input genes and phenotypes, the number of input and

predicted genes and the databases used. In the Model Per-
formance tab (Figure 2A) the user can find a set of metrics
useful for the assessment of its quality. These include the re-
sults of the cross validation, standard metrics accuracy, F1
and area under the ROC curve (37), and a pie chart repre-
sentation of the overall contribution of each data source to
the model. The Results Table (Figure 2B) displays all the
genes, both known and predicted, that the model classified
as disease associated, ranked by their score. The score for
each gene is its similarity to the learned profile of the known
disease-associated genes. The absolute value of the score is
not meaningful per se, only the relative values between genes
of the same model are. Links to external resources, such as
Gene cards (38), Clinvar (39), KEGG (40), GTEx (20) and
STRING (35) are provided for each gene together with a pie
chart representation of the contribution of each data source
to the gene score.

The following two tabs, Enrichment Analysis and Gene
Networks, are dedicated to tools for the interpretation of
the results. The Enrichment Analysis tab (Figure 2c) dis-
plays and allows the download of the gene enrichment
analysis results that DGLinker generates automatically.
This tests the overrepresentation of gene sets from nine
databases among the input known disease genes, the pre-
dicted genes and their union (10). These databases are the
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Figure 2. Results visualization and evaluation tabs example. The four panels of this figure display the (A) Model Performance tab, (B) Results Table, (C)
Enrichment Analysis and (D) Gene Networks for the results of the job example available on the DGLinker website.

Table 1. Current set of databases available on DGLinker

Database version Type of data Source website citation
Gene Ontology v2021-02 Gene function (GOterms) www.current.geneontology.org Gene Ontology Consortium, 2021 (18)

ArrayExpress Atlas (experiment E-MTAB-513 
Illumina body map)

v2021-02 Expression www.ebi.ac.uk R. Petryszak et al., 2013 (19)

GTex, Tissue specific gene expression and eQTLs v8 Expression www.gtexportal.org J. Lonsdale et al., 2013 (20)
Human Protein Atlas (HPA) v20.1 Expression www.proteinatlas.org M. Uhlen et al., 2017 (21)

KEGG v2021-03 Gene pathways www.genome.jp M. Kanehisa, et al., 2020 (22)
Reactome v76 Gene pathways www.reactome.org B. Jassal et al., 2020 (23)
ClinVar v2021-04 Gene-Disease Association www.ncbi.nlm.nih.gov M. J. Landrum et al., 2018 (13)

DisGeNet v7.0 Gene-Disease Association www.disgenet.or J. Piñero et al., 20 (24)
HPO v2021-04 Gene-Disease Association www.hpo.jax.org S. Köhler et al., 2021 (25)

OMIM v2021-04 Gene-Disease Association www.omim.org J. S. Amberger, et al., 2015 (12)
BioGrid v4.3.196 Protein-Protein Interaction www.thebiogrid.org A. Chatr-Aryamontri et al., 2017 (26)
IMEx v2021-02 Protein-Protein Interaction www.ebi.ac.uk S. Orchard et al., 2012 (27)

InnateDB v2021-02 Protein-Protein Interaction www.ebi.ac.uk B. Karin et al., 2013 (28)
IntAct v2021-04 Protein-Protein Interaction www.ebi.ac.uk S. Orchard et al., 2014 (29)

MatrixDB v2021-02 Protein-Protein Interaction www.ebi.ac.uk C. Olivier et al., 2019 (30)
Mentha v2021-02 Protein-Protein Interaction www.ebi.ac.uk A. Calderone, et al., 2013 (31)
MINT v2021-02 Protein-Protein Interaction www.ebi.ac.uk A. Chatr-Aryamontri et al., 2011 (32)

UniProt v2021-02 Protein-Protein Interaction www.ebi.ac.uk T. U. Consortium, 2021 (33)
NCBI PubMed v2021-04 Publications www.ncbi.nih.gov NCBI Resource Coordinators, 2018 (34)

String v11.0 Publications www.string-db.org D. Szklarczyk et al., 2016 (35)

GO gene sets for Biological processes (15), Cellular com-
ponents and Molecular functions (15), the GWAS catalog
(41), the OMIM database (gene–disease associations) (42),
KEGG (biological pathways) (40), DSigDB (drug signa-
tures) (43), the Encode and Chea consensus database (tran-
scription) (44,45), and the Human Gene Atlas (46)). The
enrichment analysis can help researchers gain insight into
the phenotype and biological processes underlying the re-
sults. The tab is designed to also allow for a direct compari-
son between the input known genes and the predictions. In
the Gene Networks tab (Figure 2D) the user can visualize
the interaction network of each individual gene. The visual-
ization of the individual interaction networks allows for the

inspection of the biological and phenotypical factors that
contributed to the prediction of a given gene, and of which
known disease genes such factors are linked to. Finally, all
results, including graphs and figures, gene lists and raw data,
can be downloaded as a zip archive from the Download but-
ton.

Comparison to other available DG prediction webservers

By reviewing the available tools for the prediction of novel
candidate DG associations given a target phenotype and
a set of known associated genes, that (i) have a user-
friendly web interface, (ii) are publicly available and (iii)
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are currently functioning, we have identified two such tools,
Phen2Gene (7) and Phenolyzer (4). Additionally, three
tools, GeneMANIA (6), MaxLink (47) and ToppGenet
(48), despite not allowing the direct input of a target phe-
notype, can be used to predict DG associations by manu-
ally providing a set of disease genes selected autonomously
by the user, for example by using an external database of
DG associations like OMIM, DisGeNet, or ClinVar (39).
In comparison to these tools, DGLinker offers a number of
advantages in terms of flexibility and availability of the data
to build the model, evaluation of the model and interpreta-
tion of the predictions (Table 2).

Although GeneMANIA, MaxLink and ToppGenet can
make predictions of DG associations, they require the user
to perform an extra manual step that is not trivial. Further-
more, GeneMANIA and ToppGenet make use of databases
of DG associations for their prediction, as a result, the user-
defined input disease genes are likely to largely overlap with
DG sets in their databases, leading to trivial and poten-
tially misleading predictions. MaxLink does not use DG
databases to build the model, and GeneMANIA is flexible
in regard to the databases used so that DG databases can
be excluded. However, considering that many human dis-
eases have genetic causes that overlap to some extent or un-
derlie common biological mechanisms, DG databases are a
powerful source of information for the prediction of novel
DG associations. Therefore, excluding them from the model
could impact their performance.

Performance evaluation

We used the DisGeNet data to simulate prospective predic-
tion performance using a temporal hold-out as an external
validation set. We trained the model on DG associations
up to and including 2018 and evaluated on all subsequent
data as of DisGeNet v7.0 (Table 3). The KG contained
DG associations from DisGeNet (v7 2018), protein-protein
interactions from IntAct (2020-11-06) and gene function
from Gene Ontology (2020-11-17). These three databases
are the default setting in DGLinker. Assessing the perfor-
mance of DG predictions presents several challenges. Due
to our limited knowledge of the genetic landscape of most
human diseases, complete sets of true positives and true
negatives are generally not available. As a consequence, clas-
sic metrics such as precision and recall, might not be ade-
quate in this context. Instead, we assessed the model per-
formance using a hypergeometric test for enrichment of
newly associated genes in the set of predictions from the
model vs the background of all genes in the knowledge
graph. Enrichment was considered significant if P < 0.05
for hypergeometric test for enrichment following 5% false
discovery rate correction. 1131 diseases had at least one
new associated gene by 2020 in DisGeNet. For 91% (1024)
of these, at least one of the new associated genes was in
the KG. For 804 diseases, the model could be trained and
made predictions of new disease associated genes. The pre-
dictions were significantly enriched for new genes for 184
diseases (22.9%). During training, the model is optimis-
ing the J statistic defined as sensitivity + specificity – 1.
The top-scoring models (training achieved J ≥ 0.9, Sup-

plementary Figure S1) were significant in 42.2% of cases
(146/346).

Given the low number of new associated genes for many
phenotypes (median = 2), in some cases even predicting all
of them could not result in a significant test. This might re-
sult in the underestimation of the model performance. We
therefore also reported the overall performance consider-
ing only those models that could be significantly enriched
given the number of predicted and predictable genes (Ta-
ble 3, ‘validation has sufficient power’). In these cases, the
predictions were enriched for new disease genes in 39.1%
(200/512) of all models and 45.2% (146/323) of the models
whose training achieved J ≥ 0.9. For an overview of how the
performance varies with J please see Supplementary Figure
S1 and Table S1.

We also performed a cross validation study on these dis-
eases. For diseases with at least five known genes in the
2018 data we performed 5-fold cross validation. 599 diseases
met this condition, with median 17 known genes (interquar-
tile range = 38.5). For 537 (∼90%) of diseases the cross-
validation model was significantly enriched for the held-out
genes in at least 3 folds. Although informative, it is impor-
tant to remark that cross validation is likely to over-estimate
the external performance as highly similar genes can be sep-
arated across validation folds.

Software documentation and data availability

The DGLinker website (http://DGLinker.rosalind.kcl.ac.
uk) provides an extensive tutorial section in which step
by step instructions with figures guide the user through
the steps necessary to perform DG predictions and uti-
lize the tools for model evaluation and results interpreta-
tion. The Downloads sub-section of the tutorial provides
links to all external resources and software used, as well as
the links to the GitHub repositories (49) where the KG-
ML method code is available under the GPLv3 licence.
The ML method is well documented and also available as
an open-source python package (https://pypi.org/project/
edgeprediction/). The data used and generated in the eval-
uation of the tool performance are publicly available on
GitHub (https://github.com/KHP-Informatics/DGLinker-
validation).

Usage example: Amyotrophic Lateral Sclerosis

The example section presents the results of an applica-
tion derived from our recent publication (3) in which our
method was used for the prediction of novel candidate genes
in Amyotrophic Lateral Sclerosis (ALS) using data from
early 2019. ALS is a rare (lifetime risk ∼1 in 400 in Eu-
ropeans), late-onset, fatal disease whose genetic causes are
highly heterogenic among patients and largely unknown.
Moreover, there is not a complete consensus among ALS
experts regarding which genes are implicated with the dis-
ease, and as a result, the ALS genes reported in public
DG databases vary greatly, ranging from 20 to over 130
(50,51). In this landscape, we have used the DGLinker
method to predict candidate ALS genes using four gene
sets from as many sources, DisGeNet (101 genes), AL-
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https://github.com/KHP-Informatics/DGLinker-validation
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Table 2. Comparison of available tools for DG predictions. The webservers are compared in terms of characteristics related to their general design, allowed
input, data sources used and results section. A traffic light colour system was used for a rapid visual evaluation. 1Predictions are not necessarily disease
specific, but DG data are used in the model. 2Only Human Phenotype Ontology terms (HPOs) are allowed, and they have to be retrieved externally by the
user. GG stands for gene–gene (interactions among biological factors), DG stands for disease-gene, and TM stands for text mining (associations mined
from scientific literature)

General Input Data sources Predictive 
Model

Results

Tool name
DG specific 

non-
human 

organisms

non-
disease 

predictions

open-
source
method

API phenotypes genes DG
links

custom types user 
selection

user 
upload

model 
evaluation

rank interpretation 
tools

figures/graphs 
generation

Phen2Gene(7) yes no no yes yes yes (HPO)2 no no no GG,DG no no no yes no no
Phenolyzer(4) yes no no yes no yes no yes yes GG,DG no no no yes limited limited

GeneMANIA (6) no yes yes no no no yes no no GG,DG yes yes no yes limited no
MaxLink(47) no yes yes yes no no yes no no GG,DG no no no Yes no no

ToppGenet(48) no no yes1 no yes no yes no no GG yes no no yes no no
DGLinker yes no yes1 yes no yes yes yes yes GG,DG,TM yes yes yes yes yes yes

Table 3. Temporal external validation of predictive performance using DisGeNet. All disease-gene associations in DisGeNet up to 2018 were used to
predict associations added by 2020. Significance is determined at threshold P < 0.05 after 5% false discovery rate correction for multiple comparisons.
‘Overall’ = values for all models, ‘Significant’ = values for all models that were significant in validation, ‘Not significant’ = values for all models that were
not significant in validation. ‘IQR’ = Interquartile range

 Overall Significant Not Significant 
Criteria Number 

of 
diseases 

Significant 
(N, %) 

Median 
(IQR) 

valida�on 
genes in 

KG 

Median 
(IQR) 

predic�ons 
validated 

Median 
(IQR) 

training 
genes 

Median 
(IQR) 

valida�on 
genes in 

KG 

Median 
(IQR) 

predic�ons 
validated 

Median 
(IQR) 

training 
genes 

Median 
(IQR) 

valida�on 
genes in 

KG 

Median 
(IQR) 

predic�ons 
validated 

Median 
(IQR) 

training 
genes 

At least 1 new gene by 2020 
At least 1 new gene is in KG 

1024 170 
(16.6%) 

1 (2) 1 (1) 6 (19.25) 4 (5) 2 (4) 9 (20) 1 (1) 0 (1) 6 (19) 

At least 1 new gene by 2020 
At least 1 new gene is in KG 

Model made at least 1 predic�on 

804 184 
(22.9%) 

1 (2) 1 (2) 9 (31) 3 (5) 2 (3.25) 10 
(19.25) 

1 (1) 1 (1) 8 (32.5) 

At least 1 new gene by 2020 
At least 1 new gene is in KG 

Model made at least 1 predic�on 
Training J >= 0.9 

346 146 
(42.2%) 

2 (2) 1 (1) 10 
(15.75) 

3 (4.75) 2 (2) 7 (13) 1 (1) 0 (0) 12 (20.5) 

At least 1 new gene by 2020 
At least 1 new gene is in KG 

Model made at least 1 predic�on 
Valida�on has sufficient power  

512 200 
(39.1%) 

2 (3) 1 (2) 13 (34) 3 (5) 2 (3) 10.5 
(20.25) 

2 (2) 0 (1) 16 
(38.25) 

At least 1 new gene by 2020 
At least 1 new gene is in KG 

Model made at least 1 predic�on 
Valida�on has sufficient power 

Training J >= 0.9 

323 146 
(45.2%) 

2 (3) 1 (1) 9 (14) 3 (4.75) 2 (2) 7 (13) 1 (1) 0 (0) 11 (14) 

SoD (126 genes) (52), ClinVar (44 genes), a manually-
curated list (40 genes) (51) and the union of all these sets
(199 genes). In total, 651 genes were predicted. The en-
richment analysis highlighted that the predictions were en-
riched for genes associated with biological processes known
to be affected by the ALS pathogenesis, such as angio-
genesis (53), lipid metabolism (54), mitochondria activity
(55), protein kinase activity (56), superoxide metabolism
(57,58), vesicle-trafficking (59), neurotransmitter regulation
(60), and with other neurodegenerative diseases for which
evidence of phenotypic and genetic overlap with ALS exist,
such as Charcot-Marie-Tooth disease, Parkinson′s disease,
Frontotemporal dementia, Schizophrenia and Alzheimer’s
Disease. Moreover, the predicted genes were significantly
enriched (P = 0.012) for genes that were identified to be as-
sociated with ALS in subsequent genetic studies, i.e. they
were not yet present in the DG databases used in the ex-
periment. These were ATXN1 (61), ATXN3 (62), SCFD1
(62), CAV1 (63) and SPTLC1 (64). Only ACSL5 (62) and
GLT8D1 (65) were not present among the predicted genes.
An extensive discussion and in depth analysis of the pre-
dictions can be found in our recent publication (3). The ex-
ample on the DGLinker website shows the results obtained
using the ALS associated genes from DisGeNet as input
known disease genes, and the most recent versions of Dis-
GeNet, IntAct and Gene Ontology.

DISCUSSION

As our understanding of disease grows, it becomes possible
to predict missing DG links with increasing accuracy. The
DGLinker webserver aims to make this predictive capability
widely available by automating data pre-processing, provid-
ing a range of data and allowing the results to be analysed
directly. Although there have been a number of studies to
date predicting DG association, DGLinker is the only cur-
rent webserver tool to automate this increasingly powerful
process while providing the necessary flexibility and making
the results available for downstream validation.

In some cases, DGLinker does not make new predictions.
The primary reasons are a lack of sufficient training data or
limited overlap of the selected datasets. In these cases, we
recommend adjusting the selection of databases and input
genes accordingly.

At present DGLinker includes a number of datasets and
analysis tools. We will continue to develop the platform
making additional databases and methods for the analysis
of the results available. To this end, we would welcome re-
quests of specific databases and tools by the users. Consid-
ering the heterogeneity of the genetic architecture and of
the underlying biology of human diseases, we recognise the
importance of in-depth testing of the method for specific
diseases. Following our work on ALS (3), we will perform
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studies on single or subgroups of diseases, to explore the
performance of DGLinker and provide guidance and cus-
tom protocols for such cases via new tutorials on the website
or open-access publications.
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