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Abstract. Chaos detection is the problem of identifying whether a series of

measurements is being sampled from an underlying set of chaotic dynamics. The

unavoidable presence of measurement noise significantly affects the performance of

chaos detectors, as discerning chaotic dynamics from stochastic signals becomes more

challenging. This paper presents a computationally efficient multimodal deep neural

network tailored for chaos detection by combining information coming from the analysis

of time series, recurrence plots and spectrograms. The proposed approach is the first

one suitable for multi-class classification of chaotic systems while being robust with

respect to measurement noise, and is validated on a dataset of 15 different chaotic and

non-chaotic dynamics subject to white, pink or brown coloured noise.

Chaos Detection, Chaotic dynamics, Deep Neural Networks
Submitted to: Meas. Sci. Technol.

1. Introduction

Chaos is a behaviour that affects several deterministic nonlinear dynamical systems

which exhibit complex, random-looking, evolutions due to a significant sensitivity to

small changes in their initial conditions.

When studying a time series of observations, the problem of chaos detection consists

in understanding whether the underlying dynamics is of a chaotic nature or not, and it

is crucial for the correct analysis of the system and to predict its future evolution. In

fact, discerning deterministic, albeit chaotic, dynamics from stochastic processes opens

up several opportunities in fields that can benefit from having a reliable prediction

regarding the future evolution of a complex system, such as is the case for financial

market analysis, weather forecast, epidemiology and neurosciences [1] with significant

impacts on entire industrial fields and markets. Detecting chaos in empirical data is a
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particularly complex task, as the unavoidable presence of noise affecting the observations

may render the discernment of chaotic dynamics from periodic deterministic trajectories

and stochastic signals particularly challenging [2].

In this direction, this paper presents an ad-hoc multimodal deep neural network

(DNN) architecture tailored for detecting and classifying chaotic dynamics in noisy

time series. The proposed DNN employs standard tools for chaos analysis, namely

recurrence plots and spectrograms, to recognize the underlying dynamics from partial

state observations corrupted by stochastic noise. The proposed DNN architecture is

then validated on a dataset derived from the one originally presented in [3] to discern

among 15 different dynamics subject to various levels and types of stochastic noise.

This study improves existing literature in several aspects:

• The proposed DNN treats chaos detection as a multi-class classification problem,

whereas most of the machine learning-based approaches in the literature only focus

on a single set of chaotic dynamics following a binary approach.

• The developed system shows a high level of tolerance against measurement noise.

• The DNN allows for computationally efficient chaos detection, as the computing

burden is limited to its off-line training phase.

The remainder of the paper is organized as follows: Section 2 presents a survey of

the relevant literature; Section 3 introduces some needed preliminaries and definitions;

Section 4 describes and explains the proposed neural network architecture; Section 5

discusses the results of the validation of the designed DNN carried out on a recent public

dataset; Section 6 draws the conclusions and highlights possible future works.

Notation: Ai,j denotes the j-th element of the i-th row of the matrixA; the operator

|| · || denotes the L2-norm.

2. Related Works

Chaos theory is the branch of systems theory that deals with the analysis and

study of chaotic dynamical systems and their trajectories. A chaotic system is

characterized by deterministic dynamics that amplify exponentially small perturbations

of its initial conditions, meaning that small differences in the system’s initial state lead

to significantly different trajectories causing what is commonly known as the butterfly

effect [2].

Over the years, due to the ubiquitous presence of chaos in natural processes, chaos

theory has caused a significant impact in almost all fields of engineering, spacing from

fluid and plasma dynamics [4] to neuroscience [5], optics [6] and medicine [7]. Chaos

detection is the problem of understanding whether or not a set of observations is sampled

from a dynamical system that is characterized by chaotic deterministic dynamics,

allowing for proper system analysis and potentially the design of adequate control laws.

Assuming a priori knowledge on the structure of the system dynamics, a first

approach for chaos detection involves the determination of which regions of the system’s
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parameter space lead to chaotic behaviours. In this setting, a common approach

to determine such regions is based on the analytical determination of the maximal

Lyapunov Characteristic Exponent (LCE) [8] to estimate how fastly neighbouring

trajectories diverge with time.

A different approach to chaos detection can be followed in a data-driven setting

when no information is available on the system dynamics, and one is interested in

determining whether a given time series of observations has been produced by a chaotic

system. In such a scenario, it is still possible to estimate the LCE directly from the

time series [8,9], but the estimation sensitivity to measurement noise and its limitations

in terms of sample and computational requirements has led scientists to design more

robust and efficient solutions [2, 10]. In this direction, over the last few years several

works investigated how machine and deep learning solutions [3,11–16] may contribute to

the chaos detection problem. The authors in [11–13] tested various DNN architectures

as binary classifiers fed directly with the observed time series to detect various different

chaotic dynamics. In [11, 12] it was assumed to have a priori knowledge on the system

dynamics, as each DNN was specialized for a single system, while [13] tests how a DNN

trained for binary chaos detection of the Chirikov standard map performs in recognizing

chaos also on the Logistic map and Lorenz system. In [3] a different approach is followed

and both convolutional and recurrent neural networks are tested to classify a time

series as chaotic or non-chaotic. Works such as [16–18] pursue a LCE-based analysis by

combining DNNs with the typical methods for chaos detection: in [17, 18] an empirical

data-driven solution was developed to provide chaos detection without any information

on the system dynamics; in [16] 2D-bifurcation diagrams were reconstructed with various

DNNs to identify chaos over the parameter space of a given system.

Following a successful chaos detection, a typical case study involves the prediction

of a chaotic system time evolution, as it may be used to plan/optimize the applied

control or the system structure itself. We mention that DNN have found significant

applications also in this direction [19–25], as they offer computationally-efficient tools

with demonstrated high accuracy.

As mentioned, one of the main limitations of most of the chaos detection approaches

available in the literature is due to the natural presence of additive noise in empirical

measurements. To limit the impact of noise on chaos detection, works such as [14, 15]

focused on discerning purely stochastic time series from trajectories of chaotic systems

affected by noise. In [14], several DNN are tested for chaos detection for a total of six

chaotic systems, but interestingly the authors trained all DNN as binary classifiers, hence

assuming a priori knowledge on the system dynamics. We mention that the authors

of [14], similarly to [13], also test whether their better-performing DNN is capable of

discerning different chaotic dynamics with respect to the one it was specifically trained

for, but observed limited accuracy that highlights an overall low generalization. A

different approach is followed by the authors of [15], which consider four different chaotic

systems corrupted by three types of additive coloured noise (white, pink or brown).

Chaos detection is then solved by designing a DNN to classify either the time series
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Figure 1. Phase portrait of one of the trajectories generated by an autonomous

dissipative flow that is showing a Rössler attractor.

as chaotic or stochastic, identifying also the noise affecting the time series. Similarly

to the present paper, in [15] the DNN is fed with recurrence plots and spectrograms,

but differently from our approach, the authors discard the time series and employ a

single DNN channel and provide no further classification regarding the specific chaotic

dynamics that generated the data.

The present paper proposes a specialized DNN capable of first analysing in parallel,

and then combining information coming from recurrence plots, spectrograms and time

series to solve chaos detection in the presence of significant levels of measurement noise.

The DNN has been designed to recognize which specific system dynamics is the most

likely to have generated the sampled data among the five chaotic and ten non-chaotic

systems presented in [3, 26].

The proposed method is the first one capable of multi-class classification of chaotic

systems while also demonstrating robustness against measurement noise, as shown by

the simulations of Section 5.
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Figure 2. (top) Time series of measurements relative to the x1 state for the example

of Figure 1; (bottom) same time series affected by a white gaussian noise with a Signal-

to-Noise Ratio of 5 dB.

3. Preliminaries

This section introduces and provides the definitions of the main tools employed for the

analysis of the time series and the design of the proposed DNN.

3.1. Problem Description: Chaos detection in noisy time serie

For the design of DNNs we will adhere to the following assumptions: i) the time series

available for our analysis will be limited to a single state component, as in the example

in Figures 1 and 2; ii) the system dynamics are sampled from one out of 15 different

sets of dynamics.

The former assumption allows us to feed our system with time series sampled from

a broad class of systems, independently from their state dimension. We mention that

extending the proposed architecture to the multi-dimensional case is almost seamless,

as it would be sufficient to either stack equivalent inputs (e.g., all recurrence plots)

before feeding them to the convolutional layers or to add some additional channels in

the DNN. Also, the number of dynamics is arbitrary and is derived from the dataset
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we employed, [26], which is significantly higher than the typical number of dynamics

considered in similar studies such as [12,15].

3.2. Chaotic Dynamics

The five chaotic dynamics considered for our design are derived from [3] and detailed in

the following:

(i) Ueda oscillator {
ẋ1 = x2

ẋ2 = −x3
1 − bx2 + Asin(Ωt),

(1)

with Ω = 1, A = 7.5, b = 0.05.

(ii) Lorenz attractor 
ẋ1 = −σx1 + σx2

ẋ2 = ρx1 − x2 − x1x3

ẋ3 = −βx3 + x1x2

(2)

with σ = 10, β = 8/3, ρ = 28.

(iii) Rossler attractor 
ẋ1 = −x2 − x3

ẋ2 = x1 + ax2

ẋ3 = b+ x3(x1 − c)

(3)

with a = 0.2, b = 0.2, c = 5.7.

(iv) Halvorsen attractor 
ẋ1 = −ax1 − 4x2 − 4x3 − x2

2

ẋ2 = −4x1 − ax2 − 4x3 − x3
2

ẋ3 = −4x1 − 4x2 − ax3 − x1
2

(4)

with a = 1.27.

(v) Rucklidge attractor 
ẋ1 = −kx1 + λx2 − x2x3

ẋ2 = x1

ẋ3 = −x3 + x2
2

(5)

with k = 2, λ = 6.7.

Regarding the non-chaotic dynamics considered, [3] includes a broad range of dynamical

systems with periodic, quasi-periodic and non-periodic behaviours.
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Figure 3. Unthresholded recurrence plot of the time series of Figure 2 (top) and of

the same time series affected by pink noise with a SNR of 1 dB (bottom).

3.3. Recurrence Plots

Recurrence plots [27] were originally presented in the 80’s to provide a clear visualization

of how a system trajectory evolves in its phase space in terms of how often it recurs in

a neighbourhood of a state it previously visited. Let x(t) be the state of a dynamical

system at time t; a trajectory of state measures x(1), x(2), ..., x(N) is used to define the

so-called recurrence matrix R, whose elements are defined as [27]:
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Ri,j =

{
1 if x(i) ≈ x(j)

0 otherwise
, (6)

where the operator ≈ is used to represents equality up to a threshold ϵ > 0 in the sense

that ||x(i)− x(j)|| < ϵ.

A recurrence plot is then a way to visualize graphically, encoding each pixel in black

or white, the entries of the matrix (6) and can be used to identify periodic, quasi-periodic

and recurrence towards attractor behaviours, depending on the particular structures that

appear (e.g., diagonal lines, isolated points, patterns).

Several variations of recurrence plots have been proposed to capture different

characteristics of the system dynamics by considering different norms, definitions of

the distance among two states x(i), x(j) and/or thresholds [27], impacting on the very

definition of the concept of recurrence used in their analysis. This study employs the so-

called unthresholded recurrence plots [28] (e.g., Figure 3), also know as distance plots,

which enriches the information visualized by (6) by removing the threshold ϵ and instead

encoding in a range of colours the distance ||x(i)− x(j)||, i.e.:

Ri,j = ||x(i)− x(j)||. (7)

The rationale behind our choice is to provide the DNN with as much information

as possible, as the threshold introduced in (6) discards any insight on the distance

magnitude and relies on the arbitrarily set ϵ. In fact, providing the DNN with the

unthresholded recurrence plot allows it to identify autonomously the most effective

features to consider to define recurrence.

From Figure 3 we see how noise affects recurrence plots by apparently blurring

them with random vertical and horizontal lines. However, we note how the general

location of peaks and valleys is preserved, suggesting that information about recurrence

is preserved.

3.4. Spectrograms

Spectrograms are among the most broadly used visualization tools to analyse time series

as they show how the spectrum of frequencies of the given signal varies with time.

The typical way of representing a spectrogram is as a heatmap S, as the ones

depicted in Figure 4, in which for a given time j the elements/pixels Si,j encode the

power spectral density (in dB) for the various frequencies i.

From Figure 4 it is clear that noise re-distributes power over the various frequencies.

Having considered three different coloured noises (white, pink and brown), the effect

they cause on the original signal spectrum follows their power distribution, which is

uniform for white noise, inversely proportional to frequency for pink noise and inversely

proportional to the square of the frequency for brown noise.



Identifying Chaotic Dynamics in Noisy Time Series through Multimodal DNN 9

Figure 4. (top) Spectrogram of the trajectory of Figure 2; (bottom) spectrogram of

the same time series affected by pink noise with a SNR of 1 dB .

3.5. Multimodal deep neural networks

One of the most significant breakthroughs of deep learning that enabled DNN to reach

unprecedented performance in solving complex tasks is the capability of DNNs to

conduct their analysis directly on raw, un-processed, data. This peculiarity of DNNs is

caused by their ability to learn through the learning process hierarchical representations

of their training data, hence conducting an automatic feature extraction process [29].

Despite the well-established results of DNN in terms of automated feature

extraction, a significant effort was spent on designing specialized DNN architectures

able to capture more easily certain features and patterns in different data structures

(e.g., convolutional DNN to recognize geometrically-close patterns in images). In

this direction, multimodal DNN [30] are a class of DNN specialized to deal with

heterogeneous input data, that is, data of various structures/modalities (e.g., the

combination of images, signal readings and text). In multimodal DNNs, the first layers

of the DNN are replaced by multiple separate channels that analyse individually and in

parallel the various inputs. This separate processing allows the employment of different
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Figure 5. Multimodal deep neural network architecture for chaos detection.

specialized architectures on the various channels, hence carrying out a more effective

feature extraction on each modality.

The extracted features are then combined in the deeper layers of the DNN, allowing

for a more comprehensive, yet less complex, analysis of the heterogeneous data in its

entirety.

4. Proposed multimodal deep neural network

In this section we detail the multimodal DNN architecture and its training process.

4.1. DNN Architecture

The proposed multimodal architecture is depicted in Figure 5 and consists of three

separate convolutional channels that converge into a common set of fully connected

(FC) layers, which ends with a 15-neuron layer which implement a softmax function to

perform the classification among the 15 different dynamics assumed in section 3.1.

Fully connected layers [31] are the simplest element of DNN architectures and

are formed by a set of neurons, each connected to every neuron of the previous layer.

Having all possible connections, FC layers have a very high capacity (i.e., the degree

of complexity of the function they can approximate). Hence, in complex architectures,

FC are typically used as final layers to produce the DNN output based on the results

obtained by some more specialized layers.

Convolutional layers [31] are the constituting elements of convolutional neural

networks and exploit the local connectivity of their neurons, which share the same

weights, to implement a sliding-window/convolutional analysis of their input. Due

to the geometric nature of the convolution process, convolutional layers have found
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vast applications in vision-related tasks and signal processing, serving the purpose of

extracting information (or features) from an image/signal-like input while preserving the

geometric/spatial nature of the data. Convolutional layers are hence typically used as

the first layers of a DNN as feature extractors for the deeper layers, which are commonly

FC.

In our architecture, we employ three different convolutional channels to analyse

separately the three different inputs (i.e., a time series, its recurrence plot and its

spectrogram). For the recurrence plot and spectrogram channels, since their input

consists of images, we used 2D-convolutional layers, whereas 1D-convolutions were used

for the time series channel. The output of the three convolutional channels is then

flattened and concatenated before being fed to the final, common, FC portion of the

DNN. For the sake of completeness, we mention that pooling layers [31], which are the

third element commonly found in standard Convolutional DNNs such as LeNets [32] and

VGG networks [33], were not included in our architecture. In fact, the main advantage

of using max/average pooling layers is to reduce the dimension of the feature maps

internally processed by the convolutional neural network by compressing information

and, in turn, lower the number of trainable parameters used. Given the reasonably

limited number of parameters involved in the training phase of our DNN, which is kept

low also thanks to the multi-step training procedure detailed in section 4.2, we did

not observe any significant benefit from their inclusion but, in principle, they may be

seamlessly included in deeper networks for chaos detection derived from ours.

We remark that, since both the recurrence plots and spectrograms are derived from

the measurement time series, the transformations needed to obtain them can be seen

as initial feature extractors for the time series, that are further refined by the CNN

channels.

For our tests, we set all neuron activation functions to be Rectified Linear Units

(ReLU), save for the final layer that used the Softmax activation function as customary

in classification tasks.

4.2. Training process

To better capture the characteristics of each data representation, the three channels

were trained separately and then combined in a multi-step training procedure. This

approach reduces the resources needed for the training, as only a portion of the DNN is

trained at a given time, but its main advantage is that it ensures that each convolutional

channel produces informative feature maps to be fed to the final FC layers. In fact, since

such feature maps were originally used individually to solve the same classification task,

their usage allows for a simpler training and reduces the tendency of multimodal DNNs

to rely mostly on a single modality [34].

To train the convolutional layers of the three channels represented in Figure 5,

we first trained three separate DNNs, each constituted by such convolutional layers

followed by three additional FC layers with 64, 32 and 15 neurons. This individualized
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training requires the three DNNs to recognize the chaotic dynamics relying only on the

single data modality provided (e.g., only on the recurrence plot), meaning that the three

convolutional layer stacks become feature extractors specialized for their respective data.

The FC layers are then discarded, and the trained convolutional layers are placed

in the multimodal architecture depicted in Figure 5. The multimodal network is then

further trained, this time using all data modalities at the same time, keeping frozen the

previously obtained weights of the convolutional layers and allowing the update of only

the layers following the concatenation, as it is done in a transfer learning procedure.

The presented training process is one of the possible approaches to train a

multimodal model designed following the late fusion paradigm [35–37], as is the case

for our DNN. Compared to the others (e.g., ensembling multiple single-modal DNNs)

it provides a solution that correlates/fuses the various modalities through an ad-hoc

learning process (that is, the training of the final FC layers), while avoiding the more

complex task of training directly the multimodal DNN in its entirety, which may be

affected by a so-called greedy learner behaviour (that is a tendency to rely on a single

modality) and may require significantly more hyperparameters tuning. The proposed

multi-step training procedure hence allows for better information fusion regarding the

analysis of the three data modalities, leading to an overall better performance when

compared to single-channel DNNs, as the one used in [15], or multi-model architectures

trained directly on multiple input types (as it will be shown in Section 5).Furthermore,

we stress that the proposed procedure requires significantly less memory and computing

power when compared to the direct training of the entire multimodal DNN, making the

system more scalable and allowing to easily expand the DNN with additional channels

if needed.

5. Simulations

5.1. Dataset description

As mentioned, the dataset used for our testing has been derived from the one presented

in [3] and made available by the authors in [26]. The starting dataset included time

series sampled from a total of 15 different dynamical systems, including 5 chaotic systems

and 10 systems generating periodic, quasi-periodic and non-periodic signals. For our

tests, we considered 1000 trajectories for each of the 15 systems, generating additional

ones when needed using the original code from the authors made available in [26], and

reserved 25% of data for validation.

As mentioned, we extracted from the dataset only the trajectories reporting the

first component of the various systems, from which we extracted time series of 256

samples. Such trajectories were then corrupted by additive random noise so that the

resulting Signal-to-Noise-Ratio (SNR) of each trajectory was respectively equal to 5 dB

and 1 dB for our first and second tests. Regarding the noise nature, each trajectory

was subject with a uniform probability to either white, pink or brown noise, generated
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using the Coloured Noise python library [38]. Spectrograms were constructed using the

specgram() function from the matplotlib library using 32 points for the fast Fourier

transform blocks with 16 points of overlap.

All training was conducted on a machine equipped with an RTX 3090 GPU. All of

the three convolutional networks were trained for 15 epochs, which required about 30

seconds each, with an additional 15 epochs reserved for the fine-tuning of the last layers

of the multimodal DNN, in line with the procedure of section 4.2.

To identify our classes, we will follow the naming scheme of [3] that uses the

following suffixes: CHA = chaotic; QPS = quasi-periodic; OSC/DOSC/IOSC =

undamped/damped/rising oscillators; DS = damped systems. Classes were then

numbered according to the naming in [3] as: 0 = OSC 1; 1 = DS 1; 2 = OSC 2; 3

= CHA 4 (an autonomous dissipative flow showing a Halvorsen attractor); 4=QPS 2;

5 = CHA 5 (an autonomous dissipative flow showing a Rucklidge attractor); 6=QPS 1;

7 = CHA 3 (an autonomous dissipative flow showing a Rössler attractor); 8=DOSC 1;

9 = DOSC 2; 10=CHA 2 (the Lorenz system); 11 = QPS 3; 12=IOSC; 13=CHA 1 (a

driven dissipative flow showing a Ueda oscillator); 14 = DS 2.

5.2. Results

Figure 6 reports the validation confusion matrix, normalized by rows between 0 and 1, of

our first test in which we set the SNR to 5 dB. The resulting total accuracy (number of

successful predictions made by the model over all the classes divided by the total number

of predictions) is about 94%, with most miss-classifications occurring for class 1 that

is mistaken for class 14. These mistakes can be explained by considering that classes

1 and 14 both represent damped linear systems that differ mostly by the magnitude of

their damping. Figure 7 confirms the good quality of the classification by reporting the

F1-score archived by our DNN: on the right side of the figure, every class is given its own

class F1-score computed as the harmonic mean of the class precision and recall; on the

left portion of the figure, we report the macro-F1 score (that is the arithmetic average

of the class F1-scores), the micro-F1 score (that is the harmonic mean of the overall

precision and recall of the model) and the weighted-F1 score (that is the arithmetic

average of the class scores weighted by their sample number).

For the sake of comparison and to validate the effectiveness of our multi-step

training procedure described in section 4.2, we mention that the best-performing single-

modal DNN was the one trained on RPs which had an overall accuracy of about 85%,

whereas training directly the entire multimodal architecture of Figure 5 led to an overall

accuracy of about 90%.

For our second test, we significantly increase the noise power, reaching an SNR

of 1 db. Figure 8 highlights how the DNN accuracy drops for all classes, reaching

an average accuracy of about 76% (65% for single channels), with the most affected

classes being once again 1 and 14. Class 9 is also commonly mistaken for class 8 (both

are oscillating dynamics with decreasing amplitude), whereas class 4 (a quasi-periodic
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Figure 6. Confusion matrix for the first test (SNR= 5 dB)

Figure 7. F1-Scores for the first test (SNR = 5 dB)

nonlinear system) is mistaken mostly for the oscillating dynamics of class 8 or for class

6 (that is another quasi-periodic nonlinear system). Overall, we can conclude that as

expected the higher level of noise makes the distinction between similar sets of dynamics

more complex; however, chaos detection still reaches satisfactory results with the chaos-

related classes (3, 5, 7, 10, 13) maintaining an adequate level of performance, as also
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Figure 8. Confusion matrix for the second test (SNR= 1 dB)

Figure 9. F1-Scores for the second test (SNR = 1 dB)

supported by the F1-scores of Figure 9.

As a final test, we task our DNN with classifying trajectories sampled from new,

unseen, dynamics that were not included in the training set. To do so, we generated a

new dataset of 1000 trajectories for each of the five dynamics of our chaotic systems.

Each of such trajectories was generated by randomly perturbing each of the parameters
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Figure 10. Confusion matrix for the third test (only chaotic systems with different

parameters)

of the original dynamics of a factor equal to±5% of its original values. Figure 10 displays

the confusion matrix of such a classification with a snr equal to 1 dB: from the diagonal

entries of the matrix it is clear that the perturbed dynamics are harder to recognize,

however overall the DNN maintains an accuracy of 82.2%, with a micro-F1 score of

0.90 and macro-F1 score of 0.86, suggesting that the DNN is capable of identifying to a

reasonable extend which known dynamics is the most similar to the one observed.

6. Conclusions and Future Works

This work has presented the design of multimodal deep neural network (DNN) for

the problem of chas detection in measurements affected by noise. The proposed DNN

was designed to solve a multi-class classification problem, with the goal of not only

detecting chaotic behaviour but also identifying the specific attractor that characterizes

the underlying system dynamics. The ad-hoc architecture of the multimodal DNN

we designed involves three parallel input channels, each respectively specialized for

the analysis of recurrence plots, spectrograms and time series. The overall DNN was

trained following a custom multi-step procedure that consists in first training each

channel separately and then training the common portion of the DNN to correctly fuse

the information extracted from the various input modalities. Our system was able to
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discern among 15 different dynamics from the measurement of a single state component,

demonstrating high accuracy in discerning chaotic dynamics from non-chaotic ones even

in the presence of significant levels of noise.

Future works are related to increasing the number of dynamics considered by

extending the dataset with some other relevant chaotic systems and in extending the

capabilities of the proposed DNN. Regarding the multimodal input, we aim at adding

more complex and informative inputs/channels into the DNN, whereas regarding the

output we are designing a DNN that employs multiple output channels to provide

different analysis: a first relevant output to include would be a neural operator capable

of estimating the Lyapunov exponent [8], while a more challenging and innovative

study would integrate an output channel consisting of a Kolmogorov-Arnold Network

(KAN) [39] to provide a symbolic guess of the observed dynamics.
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