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Abstract. The increasing number of Knowledge Graphs (KGs) available today calls for powerful query languages that can strike
a balance between expressiveness and complexity of query evaluation, and that can be easily integrated into existing query
processing infrastructures. We present Extended Property Paths (EPPs), a significant enhancement of Property Paths (PPs), the
navigational core included in the SPARQL query language. We introduce the EPPs syntax, which allows to capture in a succinct
way a larger class of navigational queries than PPs and other navigational extensions of SPARQL, and provide formal semantics.
We describe a translation from non-recursive EPPs (nEPPs) into SPARQL queries and provide novel expressiveness results
about the capability of SPARQL sub-languages to express navigational queries. We prove that the language of EPPs is more
expressive than that of PPs; using EPPs within SPARQL allows to express things that cannot be expressed when only using PPs.
We also study the expressiveness of SPARQL with EPPs in terms of reasoning capabilities. We show that SPARQL with EPPs
is expressive enough to capture the main RDFS reasoning functionalities and describe how a query can be rewritten into another
query enhanced with reasoning capabilities. We complement our contributions with an implementation of EPPs as the SPARQL-
independent iEPPs language and an implementation of the translation of nEPPs into SPARQL queries. What sets our approach
apart from previous research on querying KGs is the possibility to evaluate both nEPPs and SPARQL with nEPPs queries under
the RDFS entailment regime on existing query processors. We report on an experimental evaluation on a variety of real KGs.
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1. Introduction query RDF data, a standard query language, called
SPARQL [10, 11], has been designed. While an early

Knowledge Graphs (KGs) are becoming crucial in version of SPARQL did not provide explicit naviga-
many application scenarios [1]. The Google Knowl- tional capabilities that are crucial for querying graph-
edge Graph [2], Facebook Open Graph [3], DBpe- like data, the most recent version (SPARQL 1.1) incor-
dia [4], Yago [5], and Wikidata [6] are just a few ex- porates Property Paths (PPs). The main goal of PPs is
amples. Devising powerful KG query languages that to allow the writing of navigational queries in a more

can strike a balance between expressiveness and com-
plexity of query evaluation while at the same time
having little impact on existing query processing in-
frastructures is crucial [7]. There is a large number
of KGs encoded in RDF [8], the W3C standard for
the publishing of structured data on the Web [9]. To

succinct way and support basic transitive closure com-
putations. However, it has been widely recognized that
PPs offer very limited expressiveness [12—15]; notably,
PPs lack any form of tests within a path, a feature that
can be very useful when dealing with graph data. For
example, a query like find my Italian exclusive friends,
that is, “my friends that are not friend of any of my
*Corresponding author. E-mail: pirro@icar.cnr.it. friends, and are Italian" requires both path difference
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and tests. Surprisingly, neither are these features avail-
able in PPs nor in any previous navigational extension
of SPARQL (e.g., NRE [16]). In this paper we intro-
duce Extended Property Paths (EPPs), a comprehen-
sive language including a set of navigational features
to extend the current navigational core of SPARQL. In
particular, EPPs integrate features like path conjunc-
tion, difference, and repetitions, as well as powerful
types of tests. A preliminary description of the lan-
guage appeared in the proceedings of the AAAI'15
conference [17].

1.1. EPPs by Example

We introduce the main features of EPPs by describ-
ing a few examples. An excerpt of a KG is given in
Fig. 1. Intuitively, an EPP expression defines a binary
relation on the nodes of the graph upon which it is eval-
uated.

Example 1. (Path Difference). Find pairs of cities lo-
cated in the same country but not in the same region.

Navigational Languages such as Nested Expression
(NRE) and PPs cannot express such requests due to the
lack of path difference (the result has to exclude cities
in the same region). With EPPs, the request can be ex-
pressed as follows (the full syntax will be presented in
Section 3.1):

?x  ((:country/  :country)~(:region/” :region)) <2y

The symbol ™ denotes backward navigation from
the object to the subject of a triple. Path difference ~
enables to discard from the set of cities in the same
country (i.e., :country/ :country) those that
are in the same region (i.e., :region/ :region).
A SPARQL-independent evaluation pattern of the EPP
expression' considers all the bindings of the variable
?x (representing one of the cities that are wanted) and
then evaluates the expression from each binding. The
result is the set of bindings for the variable ?v, repre-
senting the other city. From : Rome, the evaluation of

the expression ((:country/ " :country)~ (:region/  :region))

reaches :Florence and :Carrara. |

Example 2. (Path Conjunction). Find pairs of cities
located in the same country and in the same region.

?x  ((:country/ :country)&(:region/ :region)) <2y

"We provide a detailed algorithm in Section 7.

In this case, path conjunction & enables to keep from
the set of nodes satisfying the first subexpression those
that also satisfy the second one. From :Florence,
the evaluation of the expression ( (:country/" :country) &
(:region/ :region)) reaches the cities :Florence
and :Carrara. <
Example 3. (Tests). Find pairs of cities governed by
the same political party founded before 2010.
?x (:leaderParty&&TP(_o, :formationYear&&

T(_o <2010))/" :leaderParty) <2y

TP denotes a test for the existence of a path
whose parameters specify the position in the triple
from which the test starts (_o denotes the object of
the last traversed triple), and a path (in this case
:formationYear&& T (_o < 2010)). The path is
composed by logical AND (&&) of two tests. The first
checks the existence of an edge : formationYear
and the second, which starts from the object of the last
traversed triple (i.e., :formationYear), checks
that the value is less than 2010. PPs cannot express
the query of Example 3 since do not have the possi-
bility to check for path existence (i.e., nesting). NREs
that have this type of construct cannot check for spe-
cific conditions along the path; in particular, in this
example we want only parties that have been founded
before 2010. Starting from :Rome, the first logical
AND (via &&) of two tests is performed; one checks
for the existence of an edge :leaderParty, which
leads to :Democratic_Party, while the other (i.e.,
TP) starts from the object of the previous navigational
step, that is, the object of (:Rome, :leaderParty,

:Democratic_Party). From :Democratic_Party,

another logical AND (via &&) of two tests is eval-
uated. The first one checks the existence of an edge
:formationYear and enables to reach the node
2007; the second, which starts from the object of the
previous step (i.e., 2007), checks that the value is
< 2010; in this case the test succeeds and the eval-
uation continues from :Democratic_Party by
navigating the edge :leaderParty backward and
reaching the nodes :Florence and : Rome included
in the results. <

Composing all the previous features together, we
can express a more complex query.

Example 4. (Path Conjunction, Difference and
Tests).Find pairs of cities located in the same coun-
try but not in the same region. Such cities must be
governed by the same political party, which has been
founded before 2010.
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Fig. 1. An excerpt of a Knowledge Graph taken from DBpedia.

?x  ((:country/ :country)~(:region/  :region)) &
(:leaderParty&&TP(_o, : formationYear&&T (_o < 2010))

/" :leaderParty 2y

From :Rome, the evaluation of the first subexpres-
sion, including : country and :region, allows to
reach the nodes :Florence and :Carrara. The
evaluation of the second part of the path conjunction
allows to reach the nodes :Rome and :Florence.
From :Rome we reach :Florence. <

Example 4 cannot be expressed by using NRE-based
languages or PPs. These languages lack both path dif-
ference (we want cities in the same country but not in
the same region) and conjunction (additionally, they
must be governed by the same political party). We have
discussed in the previous examples how a SPARQL-
independent algorithm can evaluate EPP expressions.
However, since our primary goal is to allow power-
ful navigation queries on existing KGs query process-
ing infrastructures, we devised a translation of non-
recursive EPPs into SPARQL. Our approach follows
the same reasoning as the translation of non-recursive
PPs into SPARQL used by the current SPARQL stan-
dard [18]. The advantage of using EPPs to write non-
recursive navigational queries instead of writing them
directly into SPARQL is that the same request can be
expressed more succinctly and without the need to deal
with intermediate variables.

Example 5. The SPARQL query corresponding to the
translation of the EPP expression in Example 4 is

shown in Fig. 2, where ?v1, ?v2, ?v3 and ?v4
are variables automatically generated by the transla-
tion algorithm.

SELECT ?x ?y WHERE ({

{?x :country ?vl1.?y :country ?vl.}
MINUS{?x :region ?v2.?y :region ?v2. }
?x :leaderParty ?v3. ?y :leaderParty ?v3.

FILTER EXISTS{?v3 :formationYear ?v4.
FILTER(?v4 < 2010)} 1}
Fig. 2. SPARQL translation of the EPP expression in Example 4.<

Example 6. (Arbitrary Path Length with Tests).
Find cities reachable from :Carrara connected via
a path of arbitrary length composed by edges la-
bels :twinned and considering only those cities
reachable by a chain of intermediate cities having
:population greater than 10000. The EPP expres-
sion capturing this request is:

:Carrara (:twinned &&
TP(_o, :population&&T (_0>10000)) )* 2y

The expression involves arbitrary length paths plus
tests. The evaluation checks from the node : Carrara
the existence of paths of arbitrary length (denoted by
*) where each node reached in the path must satisfy
the test TP. Starting from :Carrara, with a path
:twinned of length one, : Grasse is reached. From
this node the test TP is evaluated to check the exis-
tence of a triple (: Grasse, :population, n) with
n>10000. Since :Grasse passes the TP test, start-
ing from it the path :twinned is evaluated again
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reaching :Murcia, which also passes the TP test and
:Migliarino that does not pass the TP test. The
evaluation continues from :Murcia and stops when
reaching the node :Miami, which passes the TP test.
Overall, we reach :Carrara, :Grasse, :Murcia,
and :Miami. «

The EPP expression in Example 6 cannot be trans-
lated into a basic SPARQL query because it makes
use of the closure operator * (requiring the evalua-
tion of (:twinned &&TP(_o, :population&&T(_0>10000)))
an a-priori unknown number of times). To give seman-
tics to this kind of EPP expression we introduce the
evaluation function EALP (Fig. 7), which extends the
function ALP defined for PPs in the SPARQL stan-
dard [10]. EPPs also support path repetitions (handled
via EALP), that are a concise way of expressing the
union of concatenations of an expression between a
min and max number of times.

Example 7. (Path Repetitions). If restricting the
number of repetitions between 1 and 2, the expression
in Example 6 can be written as follows:

:Carrara (:twinned &&

TP(_o, :population&&T(_0>10000)) ){{1,2}} ?v

<

So far we have presented examples of isolated EPPs
expressions. We now consider their usage in SPARQL.

Example 8. (EPPs within SPARQL). Find pairs of
cities (A,B) and their populations such that: (i) A and
B are in the same country, but not in the same region;
(ii) there exists some transportation from A to B.

SELECT ?cityA ?cityB ?popA ?popB WHERE {
?cityA :population ?popA.

?cityB :population ?popB.

{ /* BEGIN EPPs pattern =/

?cityA ((:country/“country)
~(:region/”:region))

&:transportation ?cityB.

} /+ END EPPs pattern =/

}

Fig. 3. EPPs used inside SPARQL as for Example 8.

The query in Example 3 allows to obtain the popula-
tion of the pairs of cities satisfying the EPP expression
by introducing two additional patterns, where the vari-
ables ?popA and ?popB are bound to population in-
formation. When the query is evaluated on the graph
reported in Fig. 1 it produces no results; for instance

the pair (:Rome, :Florence) is connected by an
rairbus that is a kind of :plane, which is a means
of :transportation, but there is no edge whose
label is :transportation. <

The previous example does not take the KG RDFS
schema into account. When considering transporta-
tion services without specifying the exact type of ser-
vice, one would be able to actually discover the con-
nection between :Rome and :Florence. This can
be achieved by performing sub-property inference ac-
cording to the RDFS entailment regime. One crucial
aspect of EPPs is that they can capture the main RDFS
inference types by encoding each inference rule in a
prototypical EPP expression (see Section 5.2), with the
advantage that the resulting expressions can be trans-
lated into SPARQL and evaluated on existing proces-
sors (via ALP).

Example 9. (EPPs and Reasoning). The EPPs in Ex-
ample 8 can be automatically rewritten into an EPP
supporting RDFS reasoning as follows:

SELECT ?cityA ?cityB ?popA ?popB WHERE ({
?cityA :population ?popA.
?cityB :population ?popB.
{ /+ BEGIN EPPs pattern */
?cityA
((:country/"country)~ (:region/”":region)) &
(TP (_p, (rdfs:spx/rdfs:sp)
&&T (_o=:transportation))
| |IT(_p=:transportation)))))
2cityB.
}} /*+ END EPPs pattern =/

The translation to SPARQL this query is reported
in Fig. 4. When this query is evaluated on the graph
in Fig. 1 it produces (?cityA—:Rome, ?cityB—
:Florence, ?popA—2874034, ?2popB—380226). |

1.2. Contributions and Organization

The contribution of the paper are both theoretical
and practical.

— We introduce two languages EPPs and iEPPs to
query KGs. They have the same syntax but dif-
ferent semantics; one based on multisets (Sec-
tion 3.2) and complying with SPARQL, and the
other based on sets (Section 7.1).

— We provide a translation from non-recursive EPPs
into SPARQL queries (Section 4). The benefit of
our translation is twofold; on one hand, it allows
to evaluate nEPPs (a larger class of queries than
non-recursive PPs) using existing SPARQL pro-
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SELECT ?cityA ?cityB ?popA ?popB WHERE

{ ?cityA: population ?popA. ?cityB : population ?popB.
/+ BEGIN EPPs-\rhoDF to SPARQL TRANSLATION x*/

{ {?cityA ? pN_0_0_0 ? middleN_0_0.

FILTER(?pN_0_0_0 =:country)}

UNION

{?cityA ?pN_0_0_0 ?middleN_0_0.

FILTER( ?endN_0_0_0_0_1_0 = :country)}

{?cityB ?pN_0_0_1 ?middleN_0_0.

FILTER(( ?pN_0_0_1 = :country)}

UNION { ?cityB ?pN_0_0_1 ?middleN_0_0O.

FILTER EXISTS {?pN_0_0_1 sp * ?middleN_0_0_1_0_1_0.

FILTER( ?endN_0_0_1_0_1_0 = :country)
}

MINUS

{?cityA ? pN_0_1_0 ? middleN_0_1.
FILTER( ?pN_0_1_0 = :region)}}

UNION {?cityA ?pN_0_1_0 ?middleN_0_1.

FILTER ( ; ;nEN:o:1:07071,o = : region)}
{ 2cityB ?pN_0_1_1 ?middleN_0_1.
FILTER( ?pN_0_1_1 = :region)}

UNION {?cityB ?pN_0_1_1 ?middleN_0_1.

FILTER( ? endN_0_1_1 0_1_0 = region)}

}

{ ?cityA ?pN_1 ?cityB. FILTER( ? pN_1 = : transportation) }
UNION {?cityA ? pN_1 ? cityB.

FILTER EXISTS { ?pN_1 sp * ?middleN_1_0_1_0.
?middleN_1_0_1_0 sp ?endN_1_0_1_0.

FILTER( ? endN_1_0_1_0 = : transportation)} }}

/* END rhoDF-EPPs to SPARQL TRANSLATION x/
J Fig. 4. SPARQL translation of Example 9.

cessors; on the other hand, the usage of our trans-
lation paves the way toward readily incorporating
EPPs in the current SPARQL standard.

— Building upon our translation, we also show how
a SPARQL query can be rewritten into another
SPARQL query that incorporates reasoning capa-
bilities and can be evaluated on existing SPARQL
processors (Section 5).

— We implement the nEPPs to SPARQL translation
as an extension of the Jena library and an iEPPs
query processor. Both are available on-line?.

— We perform an extensive experimental evaluation
on a variety of real data sets (Section 8).

From a theoretical point of view:

— We introduce iEPPs as a SPARQL-independent
language and discuss its complexity (Section 7.2).

— We report novel expressiveness results about the
capability of SPARQL in expressing navigational
queries. We show that SPARQL is expressive
enough to capture nEPPs (Section 4.2).

— We prove that the language of EPPs is more ex-
pressive than that of PPs and, as a by-product, that
the fragment of SPARQL including EPPs, AND
and UNION is more expressive than the fragment
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of SPARQL including PPs, AND and UNION
(Section 6.1).

— We provide a novel study about the expressive-
ness of SPARQL in terms of the main reason-
ing capabilities of RDFS (defined as pdf [19])
when considering different navigational cores
(Section 6.2). We show that SPARQL is expres-
sive enough to capture pdf.

The remainder of the paper is organized as follows.
We provide some background definitions in Section 2.
Section 3 presents the EPPs syntax and semantics. Sec-
tion 4 formalizes the translation of non-recursive EPPs
into SPARQL queries. Section 5 shows how EPPs sup-
port reasoning. The expressiveness of EPPs is analyzed
in Section 6. The iEPPs language is described in Sec-
tion 7. The implementation and the evaluation of EPPs
and iEPPs are discussed in Section 8. Section 9 dis-
cusses related literature. We conclude in Section 10.

2. Preliminaries

In this section we provide some background about
RDEF, SPARQL and SPARQL property paths. An RDF
triple? is a tuple of the form (s, p,0) € I x I x IUL,
where I and L are countably infinite sets of IRIs and
literals respectively. An RDF graph G is a set of triples.
The set of terms of an RDF graph (i.e., the set of
IRIs and literals appearing in the graph) is denoted
by terms(G) while nodes(G) denotes the set of terms
used as a subject or object of a triple. In what follows
we will focus on the fragment of SPARQL including
the SELECT query form and provide a formalization
of its semantics along the lines of Angles and Gutier-
rez [20] that is faithful to the semantics of the W3C
standard.

2.1. Background on SPARQL

Let V be a countably infinite set of variables, such
that V N (IUL) = @. A (solution) mapping u is a
partial function u: V — 1 U L. The empty mapping,
denoted uy, is the mapping satisfying dom(ug) = .
Two mappings, say pq and uo, are compatible (resp.,
not compatible), denoted by p; ~ us (resp., 1 % pa),
if 11 (?X) = p2(?X) for all variables ?X € (dom(uy)N
dom(uz)) (resp., if u1(?7X) # p2(?X) for some ?7X €

3To simplify the discussion we do not consider blank nodes in
this section; we will address this issue later in Section 2.4.
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(dom(uy) N dom(us))). If uy ~ po then we write
{1 U g for the mapping obtained by extending y; ac-
cording to us on all variables in dom(u2) \ dom(u;y).
Note that two mappings with disjoint domains are al-
ways compatible, and that the empty mapping pg is
compatible with any other mapping. Given a finite
set of variables W C V), the restriction of a map-
ping i to W, denoted py, is a mapping u’ satisfying
dom(y’) = dom (i) N W and p/(?X) = u(?X) for ev-
ery 7X € dom(u) N W.

A selection formula is defined recursively as fol-
lows: (i) If 7X,?Y € V and ¢ € TUL then (?X = ¢),
(?X =7?Y) and bound(?X) are atomic selection for-
mulas; (ii) If F and F’ are selection formulas then
(FAF"), (FVF')and —(F) are boolean selection for-
mulas. The evaluation of a selection formula F under
i, denoted u(F), is defined in a three-valued logic (i.e.
with values t rue, false, and error) as follows:

- If Fis 7X = c and 7X € dom(y), then u(F) =
true when u(?X) = c and u(F) = false oth-
erwise. If 7X ¢ dom(u) then u(F) = error.

—If Fis ?7X =?Y and 7X,?Y € dom(u), then
U(F) = true when u(?X) = p(?Y) and u(F) =
false otherwise. If either 7X ¢ dom(u) or
?Y ¢ dom(u) then u(F) = error.

- If F is bound(?X) and 7X € dom(u) then
u(F) = trueelse u(F) = false.

— If F is a complex selection formula then it is eval-
uated following the three-valued logic presented

in Table 1.
Table 1
Three-valued logic for evaluating selection formulas.
P q pAg q
true true true true
true false false true
true error error true
false true false true
false false false false
false error false error
error true error true
error false false error
error error error error
P -p
true false
false true
error error

We use the symbol € to denote a multiset and
card(u, Q) to denote the cardinality of the map-
ping u in the multiset {2. Moreover, it applies that
card(u,2) = 0 when pu ¢ Q. We use Q to de-
note the multiset containing only the mapping ug, that
is card(ug, Qo) > 0 (o is called the join identity).
The domain of a solution mapping €2 is defined as

dom(€2) = (J,cq dom(u). The SPARQL algebra for
multisets of mappings is composed of the operations of
projection, selection, join, difference, left-join, union
and minus. Let €21, Q5 be multisets of mappings, W be
a set of variables and F be a selection formula.

Definition 10. (Operations over multisets of map-
pings). Let 2; and 22 be multiset of mappings, then:

Projection: 7w (1) = {1/ | p € Qupu' = pwh,
card (', 1 (1)) = Yy 5. oy card(it 1)

Selection: op(2;) = {u € Q1 | u(F) = true}
where card(u, o (€1)) = card(u, Q1)

Union: Q; UQs = {u | p € Q1 Vu € Qy} where
card(u, 1 U Q) = card(u, 1) + card(u, Q2)

Join: Q1 x Qo={u = (u1 Upa) | 1 € Q,u2 €
Do,y ~ pa}, card(u, Q1 X Qy)=
=ZH1691 and u2 €9, St p=(u1 Upa) Card(#l’ﬂl)x
card(us, Q2).

Difference: 1 \r Qo = {1 € Q1 | Vs € Qo, (U1 »
Ho)V (1 ~ pa A (1 Upe)(F) = false)} where
card(u1, Q1 \r Q2) = card(u, )

Minus: Q2 — Qy = {/11 e M | Vﬂg € Qg,yl >® U V
dom(uy) Ndom(us) = @} where card(u1, Q1 —
0y) = card(uy, Q).

Left Join: le FQQ = O'F(Ql X Qg) U (Ql \F QQ)
where card(u, Q1 Qo) = card(u, op(21 X
0)) + card(u, 21 \r Q).

2.2. SPARQL Patterns

We now introduce SPARQL graph patterns. A graph
pattern is defined recursively as follows:

— Atuple from TULUV) x IUV) x TULUYV)
is a graph pattern called a triple pattern®.

- If P; and P, are patterns then (P; anpPs),
(P1 uNioN Pa),  (P1 opTIoNAL P2),  (P1 MiNus Psg)
and (P; NoTEXISTs P2) are graph patterns.

— If P; is a pattern and C is a filter constraint (as
defined below) then (P, FILTERC) is a pattern.

A filter constraint is defined recursively as follows:
O If?X,?7Y € Vand c € IUL then (X =¢), (?X =
?Y) and bound(?X) are atomic filter constraints; (ii) If
C1 and Cs are filter constraints then (!Cy), (Cy || C2)
and (C1 && Cq) are complex filter constraints. Given
a filter constraint C, we denote by f(C) the selection
formula obtained from C. Note that there exists a sim-
ple and direct translation from filter constraints to se-
lection formulas and vice-versa.

4We assume that any triple pattern contains at least one variable.
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R1| [(ouB)]o = © = {u|dom(u) = ({@} NV) and (e, u.B)) € G },card (s, @) = 1

[l Jal Bl = 0 =
R2 {ur,...,un} and u({a, u,B)) € G}

{uldom(u) =

and card(y, Q) = |{u lueLud¢ {u,...,unt, u({e,u,B)) € G}|

({e.p} N'V), 3u € Tsuchthatu ¢

ALP(u(?v),elt,G) },
card(u, Q) =1

R3 | [{a,"elt,B)]c :=Q = [{B,elt,a)]c

R4 | [(a.clt/clta.f)]e = Q= Mapoy ([(a, elts, W)]e % [(7v, eth,m}]g)

R5 | [{a,(elti|elta),f)]c :==Q = [{a.elt1,B)]cU[(a, eltaB)]c

R6 | [(x,(e1t)", 7ve)]¢ := Q@ = {u|dom(u) = {?ve} and u(?vr) € ALP(xL,e1t,G)}, card(u, Q) = 1

R7 [(Pve,(e10) 2wr)]e == @ = {uldom(u) = {?v..?ve}andpu(?v) € terms(G) and u(?vg) €

R8 | [(?vi, (e1t)", ®)]c := Q = [{xr, ("e1t)*, 7v)]c

&, otherwise

RI | [(x,(elt)",xr)]c :=Q = {

{to},if Fp € [{xr, (e1t)*, )6 : u(?v) = xg,and card(po, ) = 1

Fig. 5. Standard query semantics of SPARQL Property Paths, where @, € IUL U V); w,u1,...,un € I, x,xg € IUL); v, 7vg € V;

?v € V is a fresh variable.

Function ALP (y, elt, G)

Function ALP (y, elt, Visited, G)

Input: y € (IUL),
elt is a PP expression,
G is an RDF graph.

1: Visited .= @ 5:
2: ALP(y,elt, Visited, G) 6:
3: return Visited 7

Input: y € (IUL), elt isaPP expression,
Visited C (IUL), G is an RDF graph.
4: if y ¢ Visited then
add y to Visited
for all 1 € [(?x,elt,?y)] such that 4(?x) = y and ?x, 7y € V do
ALP (/J(?y), elt, Visited, G)

Fig. 6. Auxiliary functions used for defining the semantics of PP expressions of the form e1t*.

Given a triple pattern ¢ and a mapping u such that
var(t) C dom(u), we denote by u(t) the triple ob-
tained by replacing the variables in ¢ according to u.
Overloading the above definition, we denote by u(P)
the graph pattern obtained by the recursive substitution
of variables in every triple pattern and filter constraint
occurring in the graph pattern P according to u.

2.3. Semantics of SPARQL graph patterns

The evaluation of a SPARQL graph pattern P over
an RDF graph G is defined as a function [P]¢ which
returns a multiset of solution mappings. Let Py, Po, P3
be graph patterns and C be a filter constraint. The eval-
uation of a graph pattern P over a graph G is defined
recursively as follows:

—If P is a triple pattern 7, then [t,]¢={u |
dom(p)=var(t,) and u(t,) € G} where var(t,)
is the set of variables in 7, and the cardinality of
each mapping is 1.

— If P=(P1 anp Ps), then [P]6=[P1]c % [P2]c

— If P=(P; union Ps), then [[P]]G=[[P1HG U [['Pz]](;

— If P=(P; opTionAL P3), then: then

(a) if Py is (P3FILTERC) then [P]¢ =
[P1lem ric)[Ps]c
(b) else [Ple = [Pl (crue)[P2lc
— If P=(P;1 minus P2), then [Ple=[P1]c — [P2]c
— If P=(P; NOT-EXISTS Ps), then
[(PLNOT-EXISTS Py)] = {u [ u € [Prle A
[u(P2)lc = @}

— If P=(P; FtER C), then [Py FITER Cle=0f(c)([P1]c)

2.4. SPARQL Property Paths

Property paths (PPs) have been incorporated into the
SPARQL standard with two main motivations; first, to
provide explicit graph navigational capabilities (thus
allowing the writing of SPARQL navigational queries
in a more succinct way); second, to introduce the tran-
sitive closure operator * previously not available in
SPARQL. The design of PPs was influenced by earlier
proposals (e.g., PSPARQL [21], nSPARQL [11]).

Definition 11. (Property Path Pattern). A property
path pattern (or PP pattern for short) is a tuple P =
(a,elt,B) witha € TULUYV),B € (IULUY),
and elt is a property path expression (PP expres-
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sion) that is defined by the following grammar (where
u,ui, ..., u, €I

elt ==u | Yua|...| un) |
|!(Au1|...|Au,1)’!(u1|...|uj\...|Auq|...\Au,l)}

| elt/elt |(elt|elt) | (elt)” | "elt

The SPARQL standard introduces additional types
of PP expressions [18]; since these are merely syntac-
tic sugar (they are defined in terms of expressions cov-
ered by the grammar given above), we ignore them in
this paper. As another slight deviation from the stan-
dard, we do not permit blank nodes in PP patterns.
PP patterns with blank nodes can be simulated using
fresh variables. The SPARQL standard distinguishes
between two types of property path expressions: con-
nectivity patterns (or recursive PPs) that include clo-
sure (*), and syntactic short forms or non-recursive
PPs (nPPs) that do not include it. As for the evaluation
of PPs, the W3C specification informally mentions the
fact that nPPs can be evaluated via a translation into
equivalent SPARQL basic expressions (see [10], Sec-
tion 9.3). Property path patterns can be combined with
graph patterns inside SPARQL patterns (using PP ex-
pressions in the middle position of a pattern).

2.5. Property Path Semantics

The semantics of Property Paths (PPs) is shown
in Fig. 5. The semantics uses the evaluation function
[{a,elt,B)]c, which takes as input a PP pattern and
a graph and returns a multiset of solution mappings.
In Fig. 5 we do not not report all the combinations of
types of patterns as they can be derived in a similar
way. For connectivity patterns the SPARQL standard
introduces an auxiliary function called ALP that stands
for Arbitrary Length Paths (see Fig. 6); in this case the
evaluation does not admit duplicates (thus solving a
problem in an early version of the semantics that was
based on counting [12, 22]).

3. Extended Property Paths

We now introduce our navigational extension of
SPARQL called Extended Property Paths (EPPs). We
present the syntax in Section 3.1 and the SPARQL-
based formal semantics in Section 3.2.

3.1. Extended Property Paths Syntax

EPPs extend PPs and NRE-like languages with path
conjunction/difference, repetitions and more types of
tests. The importance of the new features considered
by EPPs is witnessed by the fact that some of them
(e.g., conjunction) are present in standards like XPath
2.0 [23]. Nevertheless, to the best of our knowledge no
previous navigational extension of SPARQL has con-
sidered these features. As our goal is to extend the
current SPARQL standard we refer the reader to Sec-
tion 7 for a treatment of EPPs as a language indepen-
dent from SPARQL.

Definition 12. (Extended Property Path Pattern).
An extended property path pattern (or EPP pattern for
short) is a tuple EP = (a, epp, B) witha@ € (IULUY),
B € IULUYV), and an extended property path ex-
pression (EPP expression) that is defined by the gram-
mar reported in Table 2.

EPPs introduce the following features: path con-
junction ( 1& 2), path difference ( 1~ 2),
path repetitions between [ and & times (denoted by

{1, h} for set, and {{l, h}} for bag semantics).
EPPs allow different types of tests (test) within a
path by specifying the starting/ending positions (POS)
of a test; it is possible to test from each of the sub-
ject, predicate and object positions in triples, mapped
in the EPPs syntax to the position symbols _s, _p
and _o, respectively. Positions do not need to be al-
ways specified; by default a test starts from the sub-
ject (_s) and ends on the object (_o) of the triple be-
ing evaluated. A test (test) can be a simple check
for the existence of an IRI in forward/reverse direc-
tion. EPPs allow to express negated property sets by
using the production test with the difference that
the set of negated IRIs use the symbol ‘|| as sepa-
rator instead of ‘|” used by PPs. A test can also be
a nested EPP, i.e., TP(POS, ), which corresponds
to the evaluation of the expression starting from
a position POS (of the last triple evaluated) and re-
turns true if, and only if, there exists at least one
node that can be reached via . In a test of type
T, EExp (not reported here for sake of space) extends
the production [110] in the SPARQL grammar > where
BuiltInCall® is substituted with a new production
called Extended-BuiltInCall, which enables to
use in EPPs tests available in SPARQL as built-in con-

Shttp://www.w3.org/TR/sparql11-query/#rExpression
Shttp://www.w3.org/TR/sparql11-query/#rBuiltInCall
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Table 2
Syntax of EPPs. LIf omitted is _s; 2If omitted is_o.
- crs | y @ | oy " | 4 ‘
‘«C 9 | [pos]* test [pos]? | ‘& \ ‘~ |
CLEY | LR Y
test u= ‘I test | test ‘&& test | test ‘|| test | ‘(’test ‘)’ | base
base = iri | ‘TP(’POS ¢ ‘) | “T( EExp ¢)’
POS = ‘8| ‘p |0

Table 3

EPPs SPARQL-based semantics. The function E7 handles tests. II(POS, r) projects the element in position POS of a triple t € G. Moreover,
u € 1I;?7vr,?vg € Vand ?v, € V is a fresh variable. Evaluate is a function that checks if the triple 7 satisfies EExp.

R1 | [(?ve, L PvR) 6 i= [(Pvr,s v le

R2| [(?ve, cop1/erpe, TvR) ]G 1= Moy 2} ([[<7VL, 1 va)lle X [(?vas Qv?VR>]]G>

R3 | [(?ve, (c0p)*, 2vr)]e == { u|dom(u) = {?v, Pve}, u(?vL) € terms(G) and u(?vr) € EALP(u(?vL), 200, G, 0, ) },card(u, ) = 1
R4 | [(?ve, (c00) T, 2vr) ] := { | dom(u) = {?vL, 2vg}, u(?vL) € terms(G) and u(?vr) € EALP (u(?vL), ,G,1,%) },card(u, ) = 1
RS | [(?ve, ( )7, 7R) 6 = {y | dom(u) = {?vr, Pvr }, u(?vL) = u(?vr) orp € [(?ve, ( ), ?vr)]G}, card(u, Q) =1

R6 | [(?ve, (cor1| evp2).B)]e := [(?vL, epr1, 7ve)]e U [{@: eop2, Tvr)]o

R7| [(?ve, coo1& cppa, TvR) 6 := [(Pve, o1, Pr)]e ™ [(Pve, ooz, TR)]6

R8 | [(?ve, 1~ 2, 7)Y 6 = [(?w, 1, 7)) 6 — [{(?ve, 2, 7vR) 6

RY| [(Pvi, cop{{L 3} )] = Ul [P, eop’, 2) e

RY’ | [(?vL, {L,n}, 7ve)]6 := { p|dom(u) = {?v, ?vr}, u(?vL) € terms(G) and p(?vg) EEALP (u(?vL), ,G,1,h) },card(p, 2)=1
R10 | [(?vy, POSy test POSa, Pvr)]G := Er[?vL POS1 test POSa Pwr]e

R11|E7[?vL POSy uPOS2 PvRr]g := {u|dom(u) = {?ve, ?vr}, p(?vL) = H(POS1,1), u(?vr) = I1(POS2,1),1.p = u,t € G},

card(u, Q)=|{t | t € G,t.p = u,u(?vp) = II(POS1,1), u(?vr) = II(POS2,1)}|
1) PO Tvr] i= {u | dom(p) = {?vL, e}, 3 4/ €[TI(POS,, 1) o ], dom(p’) = {?v,},
u(?vL)=I1(POS1, 1), u(?vr)=I1(POS2,1),t € G}, card(u, Q)=|{t | t € G, I’ €[II(POS,, 1)
dom(p') = {?v,}, () = II(POS1, 1), u(?vr) = II(POS2, 1)}

Er[?ve POS1 T(EExp) POS2 TwR]G = {;1 | dom(u) = {?vr, P7vr }, u(?vL) = II(POS1, 1), u(?vr) = II(POSa,1),t € G,
Evaluate(EExp,f) = true},card(u, Q)=|{r | t € G,Evaluate(EExp,!) = true,
u(?ve) = II(POS1, 1), u(?vg) = II(POS2, 1) }|

Er[?ve (POS1 testy POS2) && (POS1 testa POS2) Pvr]g := Er[?vL (POS1 testy POS2)?wr]eXEr[?vy (POSy testa POS2)?WR]e

R12|Er[?vy POSq TP(POS,,

w Tl

R13

R14

R15
R16

Er[?ve (POS1 testy POS2) || (POS testa POS2) Pl := Er[?vL (POS1 testy POS2)?wR]GUEr[?vL (POSt testa POS2)TwR]G
Er[?vL POSy ltest POSy Pwr]le := {u|dom(u) = {?ve, 2vr}, u(?vL) = I(POS1,1), u(?vr) = II(POS2,1),1 € G} —

Er[?ve POSy test POSs PG

ditions also augmented with positions (POS). Built- 3.1.1. Positions and Tests

in conditions are constructed using elements of the
set I U L and constants, logical connectives (—, A,
V), (in)equality symbol(s) (=,<,>,<,>), unary (e.g.,
isURI,) and binary (e.g., STRSTARTS) functions.
Tests can also be combined by using the logical op-
erators AND (&&), OR (||) and NOT (!). We refer to
non-recursive EPPs (nEPPs) as those expressions that
do not include closure operators (i.e., * and ) and
set-semantics repetitions ({/, 4}). The reader can refer
to the Website of the EPPs project’ for further details
about the implementation.

7http://extendedpps.wordpress.com

To clarify the intuition behind tests and positions,
we introduce the function TI(POS, ), which projects
the element in position POS of a triple ¢. If we have
t=(u1,p1,us2), the test T(_p=p;) is translated to
II(_p, (u1, p1,u2))=p;1 that checks p1=p;, and, in
this case, returns true; however, it returns false for
T(_o=us). Fig. 8 shows the expression from Exam-
ple 4 including default positions and positions to
traverse backward edges. Note that the subexpres-
sion (Lo :leaderParty _s) means that the edge
:leaderParty is traversed from the object to the
subject and, thus, backward.

3.2. Extended Property Paths Semantics

We now introduce the semantics of EPPs in terms of
SPARQL. We use the function [(a, ,B)]c where
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Function EALP (y, ,G, 1, h)

Input: y € 1, is an EPP expression,
G is an RDF graph, [, h are integer s.t. h < [

1: Visited = @

2:i=0

3T ={y}

4: whilei < [do

5: T=o

6 forallu € I" do

7 T =T uU{u?) | ue [(?xerp, )] such that

u(?x) =u,7x,7y € V}
1

11:  BALP(T, epp, Visited, G, h)
12: else
13: BALP(T, epp, Visited, G, h-1)

14: return Visited

Function EALP (F,

, Visited, G, )

In,

1

2
3:
4

ORI

put: ' C I, is an EPP expression, Visited C 1,
G is an RDF graph, & is an integer
: forallu € T's.t. u ¢ Visited do
add u to Visited
if » =" or h > 0 then
L= {u(®) | n e [((?x,
u(?x) =u,?x, 7%y € V}
if ' # o then
if » = * then
EALP (T,
else
EALP (T,

, )]G, such that

, Visited, G, *)

, Visited, G, h-1)

Fig. 7. Auxiliary functions used to define the semantics of EPP expressions.

start end start end start end start end

?x (((,g [:country]| RYAS [country| B~Cs RYAS ))&
start end start end
( & TeaderPartyl: test '0/.0 [ leaderParty| 5)) 7y
start nested EPP start end
test = TP( o, js\:formation‘{eaﬂ&'&i’l"(,0<2010)‘j0 )

Fig. 8. Expression in Example 4 with positions.

instead of a PP expression e1t now appears an EPP
expression . This semantics lays the foundations
for the translation algorithm (see Section 4) that given
a (concise) nEPP expression produces a semantically
equivalent (more verbose) SPARQL query. In the se-
mantics shown in Table 3 we only report the case
a,f € V (and use the symbols ?v. and ?vg to de-
note the left and right variable in the pattern); the other
cases (e.g., @ € I, B € V) are similar. We denote with
t a triple (s, p,0) € G; t.x with x €{s, p,0} is used
to access an element of the triple. Finally, the notation

! is a shorthand for the concatenation (i.e., via the
operator ’/’) of i times. A peculiar construct of
EPPs is the test POS; test POSs, which is handled at
a high level by rule R10. In particular tests make usage
of the semantic function E7, which handles the differ-
ent kinds of tests via rules R11-R16. Moreover, POS;
and POSy denote the positions (i.e., subject _s, pred-
icate _p or object _o) of the elements of a triple that
have to be projected. We now provide some examples
of R11-R13 by using the graph in Figure 1.

Example 13. Consider the following EPP expression:
_0 :leaderParty _s. This type of test is handled
via rule R11 in Table ?? and considers all triples
teG where :leaderParty appears in the predi-
cate position. In the set of mappins obtained by ap-
plying rule R11 on such triples, the left variable (i.e,

?vp) is bound to the object (since POS1=_0) while
the right variable (i.e, 7vg) is bound to the subject
(since POSy = _s). In particular, the set of map-
pings is: {(?7vp — :Democratic_Party,?vg —
:Rome), (v, — :Democratic_Party,?vg —
:Florence),(?v, — :Socialist_Party, Tvg —
:Carrara)}.

Example 14. Consider the following EPP expression:
_s TP(_o,:1leaderParty) _o, which is handled
via rule RI12 in Table ??. In this case, the triples
t € G considered are those such that from their
object, the EPP :leaderParty has a solution
(3 W €[II(POS,, 1) w va]). In more detail, these
triples have one among :Rome, :Florence or
:Carrara in the object position (in particular, the
two triples (:Rome, :airbus, :Florence) and
(:Florence, :italo, :Carrara)). To obtain the
set of mappings from these triples, the left variable in
rule R12 (i.e, ?vy) will be bound to their subject (since
POS1=_s) and the right variable (i.e, Tvg) to their ob-
Jject (since POSo = _o0). Overall, the set of mappings
is:{(?7v, — :Rome,?vg — :Florence),(?v, —
:Florence,?vg — :Carrara)}.

Example 15. Consider the following EPP expression:
_S T(_o>400000) _p handled via rule RI3 in Ta-
ble ??. The set of triples t € G that are of interest
in this case are those in which the object has a value
greater than 400000 (Evaluate(EExp,t) = true).
These are: (:Rome, : :population,2874034),
(:Murcia, :population,436870) and

(:Miami, :population,419777). In the set of map-
pings obtained applying rule RI3 on these triples,
the left variable (i.e, Tvy) is bound to the subject



Fionda, Pirro, Consens / Querying Knowledge Graphs with Extended Property Paths 11

(since POS1=_s) and the right variable (i.e, Tvg) to
the predicate (since POSy = _p). The set of mappings
is: {(7v. — :Rome,?vg — :population),(?vp —
:Murcia,?vg — :population),

(?vp — :Miami,?vg — :population)}.

=3

Closure and Repetitions. The closure operators
and ‘+’ and set-semantics repetitions ({/,2}) use the
function EALP (Extended Arbitrary Length Paths)
shown in Fig. 7, which extends the ALP function de-
fined in the W3C specification (see Fig. 6). In partic-
ular, EALP handles the set-semantic repetitions of an
EPP expression between a minimum / and a max-
imum & of times. The closure operators ‘*’ and ‘+’
are handled by setting / = 0 (respectively, / = 1) and
h = x. EALP uses the global variable Visited to keep
track of the nodes already checked that belong to the
results. The main task carried out by EALP is to skip
the first / — 1 navigational steps so that the results are
stored in Visited starting from the step / via EALP. We
now further clarify the behavior of EALP and EALP.

Example 16. Consider the expression :Carrara
(:twinned)* ?e evaluated according to EALP on
the graph in Figure 1. As the expression involves the
closure operator, EALP is called with the following
parameters: EALP ( :Carrara, :twinned,G,0,* )
EALP initializes the global variable Visited to the
empty set and the variable T to the set {:Carrara}
(lines 1 and 3). The while cycle is never executed as
I = 0. Since h =" the function EALP is called as:
EALP({:Carrara}, :twinned, @,G,*). At this
point, when the for cycle starts we have that I' =

{:Carrara} and Visited = & (linel). Then, :Carrara

is added to Visited (line 2) and the set T is computed,
which includes all nodes reachable from :Carrara
by traversing a :twinned edge (line 4), that is,
I'={:Grasse}; EALP is called again with the pa-

rameters: EALP ({ : Grasse}, :twinned, {:Carrara},G,")

(line 6); I contains one IRI (i.e., :Grasse) and the
for cycle is executed only once: :Grasse is added to

Visited (line 2) and T = {:Migliarino, :Murcia}

(line 4). EALP is called again with the parameters:

cycle is executed only once: :Miami is added to
Visited, T = @& and EALP is not called anymore. Since
Visited is a global variable, the result of the execution
is: {:Carrara, :Grasse, :Migliarino,

:Murcia, :Miami}. <

Example 17. Consider the EPP expression : Carrara
(:twinned){1,2} % evaluated on the graph in Fig-
ure 1. This time EALP is called with the parame-
ters: EALP ( :Carrara, :twinned,G,1, 2). EALP
initializes the global variable Visited to the empty set
and the variable T' to the set {:Carrara} (lines 1
and 3). The while cycle is executed for one iteration
only since | = 1. The set T is computed starting from
:Carrara; in this case it is [={:Grasse}. EALP
will be called on this set. In particular, since h = 2
the function EALP is called with the following pa-
rameters: EALP ({:Grasse}, :twinned, d,G,1).
The for cycle is executed only once, since I' =
{:Grasse} and Visited = @& (linel). After the
execution I' = {:Migliarino,:Murcia} and
EALP is called again as: EALP({:Migliarino,
:Murcia}, :twinned, {:Grasse},G,0). As h =
0 :Migliarino and :Murcia are added to Vis-
ited; however, the for cycle will not be executed. The
resultis { : Grasse, :Migliarino, :Murcia}. <«

Usage of EPPs in Practice. The overall goal of our
proposal is to use EPP expressions in the predicate po-
sition of a property pattern (Definition 11) in lieu of
PP expressions. This requires to “update” the SPARQL
parser to support the nEPPs syntax. The aim of the
Jena extension we implemented® was to integrate
nEPPs into an already existing (and popular) library.
Clearly, while nEPPs expressions can be evaluated
on current SPARQL processors, the evaluation of full
EPPs expressions requires to also “update" query pro-
cessors by replacing the ALP procedure with EALP.

3.3. Fragments of SPARQL Considered

In the remainder of the paper we will focus on the
SELECT query form and consider the SPARQL frag-

EALP({:Migliarino, :Murcia}, :twinned, {:Carrara, :Grasse},G,* ) ments shown in Table 4. These fragments are built
(line 6). This time I" contains two IRIs (i.e., :Migliarino using combinations of: (i) the operators ™ ( AND), U

and :Murcia)and the for cycle is executed twice one
for each such IRIs. With :Migliarino we have that
I' = @ and EALP is not called anymore.

With :Murcia we have that T = {:Miami} and
EALP is called as: EALP ({:Miami}, : twinned,

{:carrara, :Grasse, :Migliarino, :Murcia},G,* )

Since T' contains one IRI only (i.e., :Miami) the for

(union), — (minus ), FILTER; (ii) the functions ALP
and EALP (introduced in Section 3.2); (iii) PP and EPP
languages.

8http://extendedpps.wordpress.com
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Table 4

Fragments of SPARQL, using the SELECT query form, considered in this paper.

Fragment X (AND) U (UNION ) — (MINUS ) FILTER | PP | EPP | ALP | EALP
st=} X
§{=U.FILTER]} X X X
§{=U.—FILTER} X . . .
S{»«.u.FILTER,ALP} X X X X
g{=U.— FILTEREALP} X X X X X
ST=UPPF X . X
g {=UEPP} X X X
§{=UFILTERPPALP} X < X X X
g {=U.FILTEREPPEALP} X X X X X

4. Translation of nEPPs into SPARQL

The goal of this section is to formalize and describe
a translation algorithm that given a non-recursive
EPPs (nEPP) translates it into a SPARQL query. Our
approach follows the same line of thought as the
SPARQL standard for the translation of non-recursive
property paths (nPPs) into SPARQL queries. As a by-
product, our study formalizes the informal procedure
mentioned in the W3C specification for non-recursive
PPs (see [10], Section 9.3) and does it for a more ex-
pressive language.

4.1. Translation Algorithm: an overview

We now provide an overview of the translation algo-
rithm A’. The algorithm takes as input a nEPP pattern
P=(a, ,B) and produces a semantically equivalent
SPARQL query Q.. The algorithm involves three main
steps: (i) building of the operational tree; (ii) propaga-
tion of variables and terms along the nodes of the op-
erational tree; (iii) application of the translation rules.
Each of the three steps is discussed in detail in the fol-
lowing three subsections.

4.1.1. Operational Tree

Let P=(a, ,B) be a nEPP pattern and 7p be the
parse tree associated to the expression .LetT =
{root, ", &, ~,|,/,iri, TP, T, test, ||, &&,!}° be
the set of node types, 2 = {b,e,m, s,p,0} and A =
{posi,pos,y, pos} be two sets of attributes. The op-
erational tree 7p = (V, E, type, id, w, §) associated to
the pattern P is a binary, ordered, labeled, rooted tree,
where V is the set of nodes, E C V x V the set of
edges, type : V — T is a function that associates to
each node a type, id a function that associates to each
node a unique identifier, w : VxQ — UULUV a func-

9Note that the ? and {{-}} syntactic operators are omitted since
they are only syntactic sugar and can be rewritten by using | and /.

tion that associates to a pair (v, a), such that v € V and
a € ) a URI, a literal or a variable identifier. Finally,
6:V xA —{_s,_p, o} isafunction that associates
to a pair (v,a), such that v € V and a € A, a position
symbol. The nodes of the operational tree can be sub-
divided in two categories: operational nodes that are
labeled with the syntactic symbols ~, &, ~, |, /, and test
nodes that are labeled with u, TP, T(EExp), test, !,
||, &&, . Figure 9 reports, for each type of node, its set
of attributes (i.e., the domain of the functions w and §).
The attributes b (start) and e (end) denote the starting
and ending points of the operation represented by each
operational node. Concatenation nodes (/) have the ad-
ditional attribute m that maintains the join variable.

Node Attributes

id b e m s p o posi pos2 pos
root|[ X x Xx
A X X X
/ X X X X
& X X X
~ X X
| X X
/ X X

TP

iri
&&
[l

—
R S R T - T o T T
P I R
P T o T B
P T R T B

Fig. 9. Node attributes in the operational tree.

Test nodes have attributes s, p, o denoting the sub-
ject, predicate and object of the triple on which the
test is to be checked. Additionally, since the test node
test encodes a triple traversal it has also the at-
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tributes start (POS;) and end (POS») that can be val-
ued with _s, _p or _o, denoting the position of begin-
ning and ending of the traversal. Finally, test nodes TP
have the additional attribute POS (also valued with one
among _s, _p or _o) that indicates the beginning of the
existential test with respect to the last triple.

The root r of mp is a special node of type root hav-
ing id(r) = 0 and attributes b (start) and e (end) val-
ued with the pattern endpoints, that is, w(r,b) = @ and
w(r, e) = B. To build the operational tree, the nodes of
the parse tree 7p are visited according to a pre-order
traversal, that is, the parent first, then left child and fi-
nally the right child, if one exists. In what follows, the
function parent indicates the parent of a node. More-
over, the function corr applied to each node of 7p re-
turns exactly one node of mp. For each node v of 7p
visited, we have:

(1) If v is the root of 7p, then a node ¢ is added as
the only child of r with id(c) = 0_0. If v is a
left child of some node of 7p, a node ¢ is added
as the left child of corr(parent(v)) and id(c) =
id(parent(c)) + “_0”. If v is a right child of some
node of 7p, then a node c is added as the right child
of corr(parent(v)) with id(c) = id(parent(c)) +
“ 1”. Furthermore:

(1.1) If v is an operational node, then ¢ has the
same type as v and all its attributes are
initialized with fresh variables. Moreover,
corr(v)=c.

(1.2) If v is a test node and corr(parent(v))=c” is
an operational node, then ¢ has type test,
its attributes s, p, o are initialized with fresh
variables and pos; and possy are set to be
equal to the position used in the test (or to the
default positions if they are omitted). More-
over, a node ¢’ is added as the only child
of ¢ with the same type of v and id(¢') =
id(c) + “_0”. Moreover, its attributes s, p
and o are initialized with fresh variables. If
type(c’) = TP then the attribute pos is ini-
tialized with the value specified in the exis-
tential test. Note that corr(v) = ¢’

(1.3) If v is a test node, and ¢'=corr(parent(v)) is
a test node, then c has the same type as v and
all its attributes are initialized with fresh vari-
ables. We have that corr(v)=c.

The operational tree for the nEPP pattern of Exam-
ple 2 is shown in Fig. 11 (a). Fresh variables for the
attributes of a node n are generated using the template:

Function Propagate (n)

Input: n, a node of the operational tree.
Result: update n’s children attributes.
1: Let n;=n.child (i)
2: ifnis a test node then

3 if nis TP then

4 if n1 is a test node then

5 nl.POS|=n.POS

6 else n1.b=n.POS

7 else

8 if n.POS; = _sand n.POS,; = _o then

9 ni.X=n.X, i € {1,2},X € {s,p,0}
10: else if n.P0S; = _sand n.POS> = _p then
11: n;.s=n.s, n;.p=n.o, nj.o=n.pi € {1,2}
12: else if n.POS; = _p and n.rPOS, = _s then
13 ni.s=n.p, ni.p=n.o, nj.o=n.s i € {1,2}
14 else if n.P0s; = pand n.POSy = o then
15 ni.s=n.p, n.p=n.s, nj.o=n.oi € {1,2}
16 else if n.POS; = _oand n.POS> = _s then
17 ni.s=n.o, nj.p=n.p, ni.o=n.s i € {1,2}
18: else if n.P0s; = _oand n.POS> = _p then
19: ni.s=n.o, nj.p=n.s, nj.o=n.pi € {1,2}
20: else if n is * then

21: if n1 is a test node then

22: n1.POS1=n.e; n1.POSo=n.b

23: else ny.b=n.e; ny.e=n.b

24: else if n is / then

25: if n1 is a test node then

26: n1.POS1=n.b; n1.POSo=n.m

27: else ny.b=n.b; ny.e=n.m

28: if no is a test node then

29: n9.POS|=n.m; ny.POSo=n.e

30: else ny.b=n.m; no.e=n.e;

31: else

32:  ifnjisatest node, i€ {1,2} then
33: n;.POS|=n.b; n;.POSo=n.e

34: else n;. X=n.X, X € {b,e}

35: ViPropagate (ni)

Fig. 10. Propagation of variables and terms.

?X+_+id (n) , where X€ {b,e,m, s,p, o}, with + de-
noting string concatenation.

4.1.2. Propagation of Variables and Terms

Given an operational tree for a pattern P, each of
its nodes has attributes valued with variables or terms.
The translation algorithm takes care of propagating
these variables and terms during the generation of
the SPARQL query associated to P via the Procedure
Propagate (Fig. 10), which takes as input a node
(the root at the beginning) and propagates values to its
children. As an example, Fig. 11 (b) shows the opera-
tional tree after the propagation on the tree in Fig. 11
(a). An an example, by looking at R2 in the EPPs se-
mantics shown in Table 3, we notice that path con-
catenation (/) makes usage of the join operator; specif-
ically, it requires to introduce a fresh join variable in
the translation. The propagation algorithm guarantees
that both children of the concatenation node use the
same join variable by applying the propagation rules
reported in Fig. 10 (lines 25-30). By looking at Fig 11,
such rules translates to the fact that the attribute b of
node 0_0_0 of Fig. 11 (b) is propagated to the attribute
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Translating nEPPs into SPARQL (code). EBC extends SPARQL BuiltInCall with EPPs tests also augmented with positions (POS). nEPPs

with double-brace path repetitions (

{{Lh}}) are first translated into equivalent nEPPs via unions of concatenations.

Rn | ©%7(root)=*SELECT’ root.b root.e WHERE {"@7 (root.child(1))‘}’
RO | I'(n) =n.s n.p n.o‘.’

Rl | ©7(n) :=07F(n.child(1))

R2 | ©7 () =07 (n.child(1)) O (n.child(2))

R3 | ©7(n) ={"0%(n.child(1))‘} UNION{ O (n.child(2))‘}’
R4 | ©7(n*) :=0F (n.child(1)) OF (n.child(2))

R5 | ©F (™) ={0F (nchild(1))} MINUS{*OF (n.child(2))‘}’
R6 | OF(n*=*"):= ©%(n.child(1))

R7 | ©%(n") :=D'(n) ‘FILTER(n.p‘="u‘)’

R8 | ©f(n®BC):=I'(n) ‘FILTER’ EBC

RY9 | ©%(n'") :=D'(n) ‘FILTER EXISTS {07 (n.child(1))‘}’
R10| ©%(r') :=['(n) ‘MINUS{ ©*(n.child(1))‘}’

R11| ©%(n ) :=0%(n.child(1))

R12| ©%(n®%) :=0(n.child(1)) ©%(n.child(2))

R13| ©t(n) ={"0%(n.child(1))‘} UNION{*O® (n.child(2))‘}’

s of node 0_0_0_0; the attribute e of node 0_0_0 is
propagated to the attribute e of node 0_0_0_1; and the
value of the attribute m (that is a fresh variable) is prop-
agated to the attribute o of node 0_0_0_0 and to the
attribute s of the node 0_0_0_1.

Furthermore, the propagation phase also ensures
that the tests are executed on the correct position of
the triple and that the endpoints are correctly selected
by applying the rules reported in Fig. 10 lines 8-19.
By looking at Fig 11, the rule in lines 16-17 trans-
lates to the fact that the attribute s of node 0_0_0_0
of Fig. 11 (b) is propagated to the attribute o of node
0_0_0_0_0; the attribute p of node 0_0_0_0 is prop-
agated to the attribute p of node 0_0_0_0_0; and the
value of the attribute o is propagated to the attribute s
of node 0_0_0_0_0.

4.1.3. Generating SPARQL code

The last step of the translation algorithm takes as in-
put the result of the previous phases, that is, an opera-
tional tree where all attribute values are filled with the
correct values (i.e., RDF terms, fresh variables and the
variables or terms @ and 3 derived from the nEPP pat-
tern as input). At this point, to generate the SPARQL
code for a given nEPP pattern, the translation algo-
rithm leverages the translation rules shown in Table 5.
The translation uses two functions: ©7(-) that handles
general nEPP expressions and ©(-) that handles tests.

The translation algorithm applies the rules starting
from the root and proceeding via a pre-order depth-
first traversal of the operational tree. In a nutshell,
the translation proceeds as follows: rule R,, generates
the outermost part of the final SPARQL query; more-
over, it projects the variables stored in the attributes
root.b and root . e; for sake of presentation we as-
sume that @, 8 € V in the input pattern P=(«, B).
Path concatenation is handled via rule R2 and is se-
mantically dealt with via the join operator (R2 in Ta-
ble 3). Each of the two operands of the join is one
of the children of the node labeled with / in the op-
erational tree. The join operator is also used to han-
dle path conjunction (R4). The difference with path
concatenation resides in the usage of the variables; in-
deed, by looking at Table 3 we note that concatenation
makes usage of a (fresh) join variable stored in the at-
tribute m of the concatenation node of the operational
tree, while path conjunction is evaluated from the same
endpoints for both conjuncts. In the same spirit, we
note that path difference (RS) is translated by using the
— operator in the SPARQL algebra (see Table 3) that
syntactically corresponds to the MINUS operator. Path
union (R3), which uses the union operator from the
SPARQL algebra, is translated using its SPARQL syn-
tactic counterpart, that is, UNION. Reverse path (R1)
is handled by switching, in the propagation phase, n’s
variables when propagated to its child node n.child(1).
Tests are handled by a combination of FILTER and
FILTER EXISTS along with UNION to deal with
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?x  ((:country/":country)~(:region/ :region)) 7y

Before propagation

id=0_0_1
b=?b_0_0_1
m=?m_0_0_1
v|e=?e_0_0_1

id=0-0—-0_1*— 1d=0—0—1-0
s=?s_ 0001 s=7s_0_0_1_0| test 1d=0_0_11]
p=2p—0-0_0_1 p=?p-0-0_1_0| s=75_0_0_1_1
0=20_0-0_0_1 0=?0_0_0_1_0 p=?p—0_0_1_1
pos1= o Pos1=_s 6=20-0-0_1_1|
pos,=_s Pos ;=0 pos;=_o|
pos;=|
(resion)
14
3d=0_0_0_0_0| 1d=0-0_0_10 id=0_0_10_0 id=0-0-1-10
5=25.0.0.0.00 s=?5_0_0_0_10| |s=7s_0_0_1_0_0 s=?5_0_0-1-10
p=?p-0-0-0_0_0 p=?p_0_0_0-1_0| |p=?p—0-0_1_0_0 p=?p—0_0_1_1_0
(a) 0=?0-0_0_0_-0_0 0=20_0_0_0_1_0| | 0=20-0-0-1_0_0 lo=?0_0_0_1_1_0

?x  ((:country/":country)~(:region/ :region)) 7y

1d=0
1d=0_0 m b=2x After propagation
b=2x e=?y
1d=0_0_0 e=7y
b=7x 3d=0_0_1

m=?m_0_0_0 b=?x
e=7y m=?m_0_0_1
vl e=?y

1d=0-0-0-0 1d=0-0-1-0
s=7x |4— s=2x| test 1d=0_0_1_1]
P=?p—0-0_0_0 p=?p—0-0-1_0 s=?m_0_0_1
0=?m_0_0_0 o=?m_0_0-1 p=?p—0_0_1_1|
Pos;=_s posi=_s o=2y|
posz="o posz="o| pos ;= ol
pos;=_s|
(rmion)
1d=0_0_0_0_0 1d=0-0_0_1_0 1d=0_0_100 id=00_11 0
s=7x| s=2y s=2x| =7
p=?p—00_0_0 p=?p—0-0_0_1 p=?p-0-0_10 p=?p—0-0_1_1
(b) 0=?m_0_0_0 o=?m_0_0_0 o=?m_0_0_1] o=?m_0_0_1

Fig. 11. Operational tree for Example 2 before (a) and after (b) the propagation phase.

disjunction of tests, join to deal with conjunction of
tests and MINUS to deal with negated tests. To give a
hint, a nEPP pattern containing a single triple pattern
of the form (?b, u, ?e) where u € I is translated via
rule R7 as SELECT ?b ?e WHERE {?b ?p_0_0
?e.FILTER (?p_0_0=u) } where ?p_0_0 is a vari-
able automatically generated. A nEPP pattern con-
taining an EBC (Extended-BuiltInCall) is translated
via rule R8 by using a FILTER expression applied
to the specified EBC. For example, the nEPP pattern
(?b, s T(isLiteral(_ o)) _o, ?e) is translated as
SELECT 7?b ?e WHERE

{?b ?p_0_0 ?e.FILTER(isLiteral(?e))}
where the parameter of the isLiteral BuiltlnCall
is substituted during the translation with the variable
?e. Nested nEPPs are handled via rule R9 and are ba-
sically existential tests; test whether the nested nEPP
has a solution (see also rule R12 in Table 3).

Example 18. (Translating nEPPs into SPARQL).
Consider the nEPP pattern in Example 2. The corre-
sponding operational tree is reported in Fig. 11 (a).
The operational tree obtained after the application of

the procedure Propagate is shown in Fig. 11 (b).
As an example, by looking at the operational node
with 1d=0_0_0 and labeled with / in Fig. 11 (a) and
(b) we can see that Propagate updated the values
of the attributes s and o of its children 0_0_0 0 and
0_0_0_1 with values in the attributes b and e of 0_0_0.
Applying the translation rules to the operational tree
in Fig. 11 (b) means starting from root (node 0)
and triggering rule Ry, (see Table 5), which generates
the outermost part of the final SPARQL translation:
©%(0)=SELECT 2x 2y WHERE{ 6% (0_0~) }. Then,
the node with 1d=0_0 and labeled with ~ is visited;
this triggers R5: ©7(0_0~)=

L O7(0_0_0")} MINUS ‘{’©%(0_0_1/)¢}". The trans-
lation uses MINUS to reflect the semantics of EPPs
dealing with path difference while test (e.g.,0_0_0_0)
is reflected via the FILTER operator. Visiting the node
0_0_0 triggers R2. The translation continues with:

©P(0_0_0")= ©P(0_0_0_0">")0P (0_0_0_1°°°");
@P(O_O_O_O:est)=®t(0_0_0_0_0:country);
©F(0_0_0_0_0:°°u¥)= 25 2p_0_0_0_0 2m_0_0_0.

FILTER(?p_0_0_0_0 = :country).
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The translation continues until no more nodes of the
operational tree have to be visited and gives:

SELECT ?x ?y WHERE ({

{?x ?p_0_0_0_0 ?m_0_0_0.

?y ?p_0_0_0_1 ?m_0_0_0.
FILTER (?p_0_0_0_O=:country)
FILTER(?p_0_0_0_1=:country) }

MINUS

{?x ?p_0_0_1_0 ?m_0_0_1.

?y ?p_0_0_1_1 ?m_0_0_1.
FILTER(?p_0_0_1_0O=:region)
FILTER(?p_0_0_1_1=:region)} }

Discussion about the Translation

Conciseness. EPPs enable to write navigational queries
in a more succinct way as compared to SPARQL
queries using triple patterns and/or union of graph pat-
terns. Given a nEPPs expression containing a number
of fragments (e.g., concatenation, union, predicates)
it is interesting to note that its corresponding transla-
tion in SPARQL is always more verbose. Consider for
instance the nEPPs pattern ?x (pl&p2) /p3 ?y;
here, conjunction avoids to use two triple patterns and
concatenation avoids to explicitly deal with an inter-
mediate variable besides the expression endpoints. Its
translation in SPARQL, that is, ?x pl ?a. ?x p2
?a. ?a p3 ?y includes three triple patterns and 2
instances of the new variable ?a. Generally, the num-
ber of variables necessary to translate a nEPPs into an
equivalent SPARQL query is a function of the size of
its operational tree. Not only the elimination of inter-
mediate variables increases the succinctness of the ex-
pression, but it also eliminates causes of errors when
writing queries as one has to check the consistency of
variable names.

Benefits. EPPs coupled with the translation proce-
dure bring a significant practical advantage as com-
pared to other navigational extensions of SPARQL
(e.g., nSPARQL, cpSPARQL). On one hand, nEPPs
can be evaluated over existing SPARQL processors.
On the other hand, the machinery presented in this pa-
per could potentially extend the SPARQL standard in
an elegant and non-intrusive way; one would need to
use our translation algorithm instead of that currently
used by the SPARQL standard.

4.2. SPARQL and Navigational Queries

By analyzing the translation algorithm presented
in the previous section and the translation rules re-
ported in Table 5, it is possible to identify the precise
SPARQL fragment that can express nEPPs.

Lemma 19. nEPPs can be expressed in the SPARQL
fragment St=U—FILTER} "which uses AND, UNION,
MINUS, FILTER and SELECT.

In the remainder of this section we analyze for dif-
ferent navigational cores, the SPARQL fragment nec-
essary for its rewriting. The results of the analysis are
reported in Table 6. The table shows in the first col-
umn (Navigational Core) the navigational core, that
is, the type of expression allowed in the predicate po-
sition of triple patterns; it can be a predicate p, a non-
recursive property path (nPP), a property path (PP), a
non-recursive EPP (nEPP), and an EPP. The second
column (Extended Processor) indicates whether the
evaluation requires changes to SPARQL processors.
The third and fourth column represents the SPARQL
fragment needed for the rewriting. The simplest case
(row 1) does not use regular-expression-like exten-
sions and thus no rewriting is needed. The second and
fourth rows consider non-recursive and recursive prop-
erty paths, respectively. These cases are handled, as
per W3C specification, via a rewriting into SPARQL
and the ALP procedure, respectively. The third and last
rows concern nEPPs and full EPPs, respectively. While
the former can be translated into SPARQL queries (as
shown in the previous section) and evaluated on ex-
isting processors, the latter requires the usage of the
EALP procedure shown in Fig. 7, currently not avail-
able in existing processors.

The most interesting result that emerges from the ta-
ble is that the fragment $*UFILTER} ¢ the current
SPARQL standard is already expressive enough to cap-
ture nEPPs. Hence, the current W3C standard could
readily benefit from the more expressive language of
nEPPs without any impact on current SPARQL pro-
cessors. In the following proposition we also mention
an even stronger result that can be derived if we drop
set-semantics path repetitions in EPPs (R9’ in Table 3).

Proposition 20. The full EPPs language can be incor-
porated in SPARQL using the ALP procedure with the
only difference that for the evaluation of the patterns
(see Fig.6) the translation discussed in Section 4 has to
be used instead of the translation currently used by the
standard.

Finally, we observe that the precise complexity of
evaluating queries in each of the fragments, not involv-
ing EALP, reported in Table 6 has been studied for set
and bag semantics by Pérez et al. [11] and Schmidt et
al. [24] for the fragment not including ALP, respec-
tively. The complexity of SPARQL fragments includ-
ing recursive queries (i.e., ALP) have been studied by
Arenas et al. [12] and Loseman et al. [22].
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Table 6
Languages and translations into SPARQL for plain RDF.
Navigational Core | Extended Processor Fragment SPARQL Fragment

pel No R1 in Fig. 5 st

nPP No RI-R5 in Fig. 5 § = U FILTER}
nEPP No R1-R2, R5-R9, R11-R16 in Table 3 §{=U— FILTER}

PP No Fig. 5 g {(=UFILTER 212}

’ EPP Yes ‘ Table 3 G{=U—FILTER EALE } ‘

5. Query-Based Reasoning on Existing SPARQL
Processors

The aim of this section is to study the support that
EPPs can give to querying under entailment regimes
(Section 5.1) with particular emphasis on how to sup-
port the entailment regime on existing SPARQL pro-
cessors (Section 5.2).

5.1. Capturing the Entailment Regime

In this paper we focus our attention on the pdf
fragment [19, 25]. This fragment considers a subset
of RDFS vocabulary consisting of the following ele-
ments: rdfs:domain, rdfs:range, rdfs:type,
rdfs:subClassOf, rdfs:subPropertyOf that
we denote with dom, range, type, sc, and sp, re-
spectively. The authors [19] showed that the pdf se-
mantics is equivalent to that of full RDFS when one
focuses on this fragment. Note that pdf does not con-
sider datatypes that would allow to obtain inconsis-
tent graphs. When considering SPARQL under the pdf
entailment regime, not only the explicit triples in the
RDF graph G have to be taken into account but also
triples that can be derived from G by the inference
rules shown in Table 7. The application of each in-
ference rule enables to obtain a sequence of graphs
G1,Go,Gs, ...G with G,‘+1 \G, 7£ Vi e [1, k= 1]
When Giy1 \ Gy = &, that is, when the graph is un-
changed, the application of the rules stops. The graph
Gy is called the closure of G indicated by cl(G).

Definition 21. (SPARQL and query-based reason-
ing). Given a SPARQL pattern P and an RDF graph
G, the evaluation of P over G under the pdf seman-
tics is denoted by [PJ, while [Pl denotes the

evaluation of P over the closure of G.

The intended meaning of two semantics differs with
respect to the data graph on which the evaluation is
performed. In particular, [P]4" means that P is evalu-
ated on the original data graph G, and the results pro-

vided should include those generated by considering
the pdf rules. On the other hand, [P]. () means that
‘P is evaluated on the materialization of the closure of
G obtained by applying the pdf rules. Of course, we
expect [P]"=[P].(c) to hold.

Most of existing SPARQL processors handle (vari-
ants of) pdf reasoning in the following way: first, com-
pute and materialize the finite polynomial closure of
the graph G and then perform query answering on the
closure via RDF simple entailment regime [26]. It is
interesting to point out that materializing all data by
computing the closure ¢/(G) may cause a waste of
space in case most of c/(G) is never really used for
query answering, apart from the cost of computation
and maintenance after updates. Having a mechanism
to support entailment regimes while avoiding the com-
putation of ¢/(G) beforehand can bring a major advan-
tage. Our goal is to study query-based reasoning, that
is, the possibility to rewrite a query into another query
that captures pdf inferences.

Similarly to nSPARQL [11], cpSPARQL [21] and
others approaches (e.g., [27, 28]), we identified for
each inference rule in the fragment considered, pdf in
our case), an EPP expression encoding it. The transla-
tion rules are shown in Table 8. Whenever one wants to
adopt the pdf entailment regime, it is enough to rewrite
the input pattern according to these translation rules.
The result of the evaluation of the rewritten pattern on
G is the same as the result that would be obtained by
first computing the closure ¢/(G) and then evaluating
the pattern before the rewriting.

Lemma 22. (pdf and SPARQL). Given a triple pat-
tern (@, p,B) with @, € TUV and p € I, then for
every graph G we have that (@, p, 8)]2"=

[((a, ®(p),B))]c=[(a p.B)](c)-

Sketch. The proof follows from the fact that rules in
Table 8 encode the reasoning rules shown in Table 7.
This is immediate to see for rules R1-R4. RS is com-
posed by the union of three expressions, each capturing
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Table 7

The pdf rule system. Capital letters A, B, C, X, and ), stand for meta-variables to be replaced by actual terms in IL.

1. Subclass:
- (Assc,B) (X.typeA) (A,;sc,B) (B.sc,C)
@ <X,type,lg)p (b) (AscC)
2. Subproperty:
(Assp.B) (X.AY) (A,sp,B) (B,sp,C)
@ (XBY) (b) p(.A,sp,C) -
3. Domain:
(AdomB) (X,AY)
(X.type,B)
4. Range:
(A,range,B) (X,A))
(Y.type.,B)
Table 8
Encoding of pdf inference rules via EPPs.
Rule | pdf Translation (®(-))
R1 sc ®(sc)=sc
R2 | sp P(sp)=sp”
R3 | dom ®(dom)= dom
R4 range ®(range)= range
RS type ®(type)=typel/sc” | (T(true)_p/sp” /dom/sc™) | (Lo T(true)_p/ sp” /range/sc” _o)
R6 p ¢ {sc, sp, dom, | ®(p)=(TP(_p,sp”/sp&&T(_o=p)) || T(_p=p))
range, type}

@ Inferred Triple
- — =

Inferred Triple @
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/
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Fig. 12. RDFS inference rules. RS in Table 8 captures rules (a)-(c) while R6 in Table 8 captures rule (d).

one of the three possible ways (shown in Fig. 12 (a)-
(c)) to derive a type in RDFS and corresponding to
rules Subclass (a), Domain and Range in Table 7. The
first sub-expression in RS captures the rule in Fig. 12
(a); a new type can be derived by finding triples of
the form (z, type, x) and possibly (via *) traveling up
(via sc) the super-classes of x, which is the t ype of z.
The second sub-expression captures the rule depicted

in Fig. 12 (b); a new type can be derived by navigat-
ing from the subject x to the predicate p and all its pos-
sible super-properties (via *) and then by finding the
dom (i.e., a class) of such predicates, and all possible
super-classes (via *). A similar reasoning applies for
the third sub-expression in RS, which captures the in-
ference rule shown in Fig. 12 (c). As for rule R6 in Ta-
ble 8, it captures the rule in Fig. 12 (d) corresponding
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to the rule Subproperty (a) in Table 7. We can notice
that the EPP encoding this inference rule includes the
union (via ||) of two tests. The second test just checks
for triples where p is the predicate; the first performs
an existential test (i.e., it uses the nested EPP construct
TP) composed by a conjunction (via &&) of two tests,
the first moves to the predicate position of a triple and
travels up the property hierarchy (via *) while the sec-
ond checks that the object reached is p. O
We observe that our translation rules are indeed
a translation into the language of EPPs of the NRE
expressions that have been shown to capture all the
RDFS inferences in Perez et al. [11] (Lemma 5.2).
Lemma 22 shows that for an arbitrary pattern there
exists a rewriting allowing to capture pdf inferences.
Moreover, it is easy to see that the rewriting can be
constructed by using the translation rules in Table 8
in linear time in the size of the pattern. However, in
this case (and similarly to nSPARQL and PSPARQL)
one would need to use an EPPs processor to capture
the inferred triples. This clearly hinders the usage of
this machinery in existing processors. Therefore, the
research question that we face now is how to support
query-based reasoning on existing processors.

5.2. Query-based Reasoning on Existing Processors

The idea behind our approach, follows from the ob-
servation that closure operators appearing in Table 8
only involve single predicates i.e., sc™, sc*, sp™,
sp”. Such types of expressions are property paths that
(taken alone) can be evaluated via the ALP procedure
defined in the W3C standard, and implemented in ex-
isting processors. Therefore, we need to rewrite the
EPPs in Table 8 into SPARQL queries where recursive
property paths with single predicates are used. We ap-
ply a small variation to the translation algorithm pre-
sented in Section 4; the variation consists in leaving
untouched (single) predicates involving the closure op-
erator (*) used in Table 8. We refer to this variant of
the translation algorithm as AJ(-).

Lemma 23. Given a triple pattern P=(a, p,) with
a,pelUVandp € L, [{a, p, B) ) =[ A} (@, @(p), B)]c

Proof. The result follows from Lemma 22 which
shows that the EPPs rewriting of the pdf inference
rules (via ®(p)) allows to infer the triples in the frag-
ment, and the nEPPs to SPARQL translation (needed
in the A/ (-) part). O

The above result tells us that an algorithm to per-
form query-based reasoning works in three steps: (i)
apply the translation function ®(-); (ii) apply the trans-
lation Aj(-) over the result of step (i); (iii) evalu-
ate the SPARQL query resulting from (ii) on existing
SPARQL processors.

6. Expressiveness Analysis

The aim of this section is to provide novel re-
sults about the expressive power of EPPs as compared
to PPs (Section 6.1) and the expressiveness of the
SPARQL standard in terms of pdf reasoning when con-
sidering different navigational cores (Section 6.2).

6.1. Expressive Power of Extended Property Paths vs.
Property Paths

We now investigate the expressiveness of EPPs as
compared to PPs. We use the evaluation function[-]¢
to denote either the evaluation of a PP e 1t (Fig. 5) or
EPP (Table 3). The semantics of the evaluation
will be clear from the context. In the next theorem we
prove that the language of EPPs is strictly more expres-
sive than PPs'?. By using the graph in Fig. 13, we will
show that there exists an EPP pattern, which is able to
distinguish between the node : b and the nodes : ¢ and
:d. The same does not hold for PPs; indeed, any PP
pattern that provides :b as an answer will provide at
least an additional answer (either : c or : d). The ratio-
nale behind this result is that PP patterns are not able
to tell apart the conjunction of two predicates from the
two predicates alone.

Theorem 24. There exists an EPP pattern (e, ,B)
that cannot be expressed as a PP pattern (@, e1t,f).

Fig. 13. Graph used to prove Theorem 24.

10Even if such result could be obtained by adapting standard re-
sults about NREs, we provide, for the sake of completeness, a com-
plete constructive proof.
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Proof. Consider the EPP patternr; = (?b, (:p~:q)T,
?e) and the graph G in Fig. 13. We have that [r;]¢ =
{{?b—:a, ?e—:b}}. It is immediate to see that the
mapping in the result derives from the evaluation of
(:p ~:q) (step 1 of the + operator). Moreover, no
other mappings can be obtained by evaluating further
steps because of the self loops. We claim that for ev-
ery PP pattern mo=(?b, elt, ?e) the following prop-
erty holds: either [72]g=@ or [n2]c contains at least
one mapping not belonging to [r1]lg. The proof of the
theorem relies on the following claim.

Claim 25. Consider the graph G in Fig. 13 and let
e ={{?b—:a,?e—:a},{?b—:b, 2e—:b}}.
For every PP pattern (?b, e1t, ?e) we have that either
[(?b,elt,?e)]¢g=@ or [(?b,elt, 2e)]g I Iy

Proof.
We proceed by induction on the construction of the
PP expression e 1t. We start with the base cases:

cl. If elt is of the form elt = u€l then: (i) if
u=:p or u=:q then [(?b,u, 2e)]¢ I I,y be-
cause of the self-loops at each node ; (ii) other-
wise [(?b,u, 2e)]¢c = 2.

c2. Ifeltiselt=!(uy|...|u,) or e Lt=!("uy|...| "up)
then: () if :p ¢ {u1,...,u por:aé¢ {uy,...,u,}
then [(?b,elt,?e)]¢ I Il because of the
self-loops present at each node; (ii) otherwise
[(?b,elt, ?e)]c = @.

c3. Ifeltisofthe form el t=!(uq|...[u;| " ujy1]...| "un)
then [[<?b, !(u1|...|uj\Auj+1|...|Aun)?e>]]G= [[<?b,
'(M1||Mj), ?e>]]GU|I<?b, !(Auj+1|...|Aun), ?e)]](;.
Hence, the claim holds because of point c2 above.

Let elt;, elty be PP expressions; assume that
it holds that either: (i) [(?b,elt;, ?e)]g=2 or (ii)
[(?b,elt;,?e)]¢ 2 Iy for i € {1,2}. We now
proceed with the inductive step and consider the other
types of PP expressions.

c4. If elt is of the form elt = elt; | elts then
[{(?b,elty |elta, ?e)]c=[(?b,elty, ?e)]cU
[{?b,eltsy, ?e)]¢ and the claim follows from
the properties of the algebra.

c5. If elt is of the form elt = elt /elty then
[[<?b, elti/elto, ?e>ﬂG=[[<?b, eltq, ?m>ﬂG X
[{(?m,elts, ?e)]¢ and the claim follows from
the properties of the algebra.

c6. Ifelt isof the formelt = (elt)* then
[(?b,(eltq)*, ?e)]¢ 3 I,y as a consequence
of the evaluation of the base step of the Kleene
operator.

c7. Ifelt isof the form elt = "(elty) then
[(?b, " (elty),2e)]c=[(?e,elty, ?b)]c and the
claim follows from the properties of the algebra.q

By relying on Claim 25, the result follows since all
the mappings in II,,;; do not belong to [71]¢. O

To continue our expressiveness analysis, we now
show that using EPPs as navigational core in SPARQL
increases the expressive power of the language.

Theorem 26. There exists a SPUEPP} query that can-
not be expressed as a STUPP} query.

Proof. Consider the following S=UEPP:} query:
0.=SELECT ?b ?e WHERE {?b (:p ~:q)" 2e.}
and the graph G in Figure 13. Let us indicate by
7= {(2b,(:p~:q7T, ?e) the EPP pattern in Q.. By
evaluating Q, over G we obtain the set of mappings
{{?b—:a,7e—:b}} We will show that the query
Q. cannot be expressed by any ST"UPP} query O of
the form SELECT ?b ?e WHERE{P}, where P is a
pattern as defined in Section 2. We claim that for ev-
ery pattern P (in the fragment S{UPP}) the follow-
ing property holds: either [P]¢=2 or [P]s contains
at least a mapping not belonging to []s. The proof of
the theorem relies on the following claim.

Claim 27. Consider the graph G in Fig. 13 and let
I, p={{?b—:a,?e—:a},{?b—:b,2e—:b}}.
For every S™UPP} query Q of the form SELECT ?b
?e WHERE{P}, where P is a pattern as defined in
Section 2, we have that either [P]g=2 or [P]g 3
Hself~

Proof. We prove the theorem by structural induc-
tion on the construction of the pattern P built by using
the constructs in the fragment S{UFPP}

Base case: If P = (?b,elt, ?e) is a single property
path pattern then by virtue of Theorem 24 and
Claim 25 we have that either [(?b, elt, ?e)]c =
@ or [(?b,elt,?e)]¢ I Il and thus, the
property holds.

Indictive step: Consider now the case of P containing
two patterns P; and P» such that either [P =
@ or [P]¢ 2 My holds for i € {1,2}. If
P = P1anD Py then [Py ano Pollg = [Pi]c X
[P2]G. If at least one of the two evaluations is
empty then we can conclude [Py aND Pz = @.
Otherwise, by combining the inductive hypothe-
sis and the properties of the algebra we can con-
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Languages and their translation into SPARQL for reasoning.

Navigational Core | Extended Processor Reference in the Semantics SPARQL Fragment
pel No Rl in Fig. 5 g {=~UFILTER.PP,ALP}

nPP No R1-R5 in Fig. 5 g {(=UFILTER PP.ALP}
nEPP No R1-R2, R5-R9, R11-R16 in Table 3 | S{<UFILTERFPALP}

PP Yes Fig. 5 G{=UFILTER EPPEALE}

EPP Yes Table 3 g {=UFILTER EPPEALP}

clude that [Py anD Pa]lg 3 11,5 holds. A similar
reasoning also apply if P = P; union P by con-
sidering that [Py unioN Pa]l¢ = [Pile U [Pzl
and we can conclude that [Py unioN Pollg=9 if,
and only if, both evaluations are empty. 4
By relying on Claim 27, the result follows since all the
mappings in I, do not belong to [n]. O

6.2. Expressiveness for Query-Based Reasoning

We now study the expressiveness of SPARQL in
terms of pdf reasoning when considering various nav-
igational cores. Table 9 mimics the expressiveness
study in Table 6 where the second column describes
the language produced to support query-based reason-
ing as described in Section 5. We can notice that, in
general, supporting reasoning requires a more expres-
sive language in the rewriting. For the basic case p € 1,
the query must be rewritten by applying rule R6 in Ta-
ble 8; this requires the usage of EPP constructs such
as nesting (TP), (conjunction of) tests (T), and closure
(sp®). Note that the closure operator is only applied to
a single predicate, i.e., sp. Therefore, the p-enhanced
EPP can be rewritten into SPARQL by using only PPs
and thus evaluated using the ALP procedure, which
was not involved in the evaluation under simple entail-
ment.

yd
rdfs:sp rdfs:isp  rdfs:sp rdfs:sp

( :c1 }:train»( :c2 ):flight*( :c3 >m':bus”< cn }—:Ship‘

Fig. 14. A graph about transportations.

Interestingly, when considering more expressive
forms of navigational patterns such as non-recursive
property paths (nPP), and non-recursive EPPs (nEPP),
the fragment needed to capture pdf in the translation
remains the same. The situation changes when mov-

ing to navigational patterns with recursion, that is, PPs
and EPPs. In this case, the current SPARQL standard
is not enough expressive to capture query-based pdf
reasoning. To give an intuition for such a limitation,
consider the EPP expression n=?s (TP(_p,(rdfs:
sp&&T(_o=:tr))))" ?e, where ?s, ?e € V. The eval-
uation of 7 on the graph in Figure 14 gives, among
the others, the solution y={?s —:cl,?e —:cf}.
This solution is obtained since in the graph there ex-
ists a path (rectangle in Fig. 14) between :c1 and
: cf of length n where each edge is a subproperty of
:tr. If one were to write a SPARQL query for an ar-
bitrary n to capture the same solution u, the only con-
struct that capture this kind of queries are PPs; in par-
ticular an expressions of the form (:predicate)x
since no other SPARQL 1.1 syntactic expression can
be used to traverse an arbitrary number of edges. How-
ever, the current SPARQL standard does not allow to
check that each edge belonging to the sought path is a
subproperty of :tr. This result follows from Bischof
et al. [28] where authors used a similar argument to
show the impossibility of SPARQL with PPs to capture
owl:symmetricProperty. Note that this limi-
tation can be dealt with by using EPPs (and EALP)
and previous navigational extensions of SPARQL like
NREs [16]. We leave the study of how EPPs can be
coupled with the approach proposed by Bischof et
al. [28] as future work.

The interesting conclusion that can be drawn by ob-
serving Table 9 is that ST<UFILTEREPPEALP} ¢ the
only closed language with respect to pdf reasoning for
the rewriting shown in Table 8. We point out that our
rewritings into SPARQL for plain RDF and pdf require
the same expressiveness. Practically speaking substi-
tuting the current ALP procedure with the EALP proce-
dure for EPPs would allow full EPPs support for both
the plain and pdf entailment regimes. An account for
the precise complexity of evaluating queries in each
of the fragments, not involving EALP, reported in Ta-
ble 9 is available in Arenas et al. [12] and Loseman et
al. [22].
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Fig. 15. Set-basd semantics for EPPs.

R1 E| le = {(uv,v):(v,u) €E[=pr]c}

R2 E[ 1/ 2l = {(u w s.t. (u.w) € E[ e A (w,v) € E[ 2l¢}
R3 E[( *le = {(u,u):u € nodes(G)} UUZE, E[=ppile where 1= and = i1/
R4 E[( e = UZ,E[-ppilc where 1= and = i—1/
RS E[( 1?7l = {{u,u):u € nodes(G)} UE[ le

R6 E[( 1 e = {(u,v):(u,v)€E[ 1le Vv (u,v) € E| alle}

R7 E[( 1& 2)le = {(u,v):(uv)€E] e A (u,v) € E| 2]G}

RS E[( 1~ 2l = {(w,v):(u,v) €E[cpoa]e A (u,v) € E[cppa]c}

R9 E[cop{th}le = U~ E[-rii]c where 1= and - i1/
R10 E[ros, posalle = {(II(Pos;.t),MI(POS2,t))) : t € GAEf| e}

RI11 Er[u]; = trueifll{_p,t)=u, false otherwise

RI12 Er[T(EExp)]; = Evaluate(EExp,t)

R13 Er[Te(Po J g = trueif3dv:(II(ros,t),v) € E[ lG. false otherwise
R4 | Ef| 1&& 20z = Erf 1 G AEr| 2 g

RIS Er| 1| 20 = Erf 16 VER] 2 &

R16 Ef[! le = -Erff |13

7. iEPPs: a SPARQL-independent Language

The aim of this section is to study EPPs as an in-
dependent language. The advantage of defining EPPs
as a navigational language independent from SPARQL
stems from the fact that the SPARQL-based semantics
and translation discussed in Section 3.2 and Section 4
only apply to KGs based on RDF while the proposed
language can be used to query arbitrary KGs. To this
end, we give a set-based semantics in Section 7.1 and
present an evaluation algorithm along with a complex-
ity analysis in Section 7.2.

7.1. Formal Semantics of EPPs based on sets

The semantics of EPPs based on sets for both re-
cursive and non-recursive EPPs is shown in Fig. 15. It
leverages two evaluation functions. The first, E[cpp]¢
given an expression and a graph G returns the
pairs of nodes that are linked by paths conforming to

. The second Er[test]g, given a test test, a
graph G and a triple t€ G, returns true if the triple
satisfies the test and false otherwise. The seman-
tics follows the same spirit of other navigational lan-
guages like NREs [16] although EPPs offer more fea-
tures (e.g., path conjunction and path difference).

7.2. Evaluation Algorithm

The aim of this section is to study whether the se-
mantics in Fig. 15 can be implemented in an efficient
way. In what follows we show an efficient evalua-
tion algorithm, that has been implemented in a custom
query evaluator, and discuss its complexity. The pre-

sented evaluation algorithm for iEPPs expressions is
similar to those of other navigational languages such
as nested regular expressions [16] and NautiLOD [14].
The algorithm starts by invoking EVALUATE, which
receives as input a graph G, an expression and a
node n. If is non recursive (i.e., it does not con-
tain the closure operators * and *') then it is given
as input to the function BASE, which considers the var-
ious forms of syntactic expressions. For recursive ex-
pressions the algorithm uses the function CLOSURE.
Finally, the boolean function EVALTEST handles the
different types of test.

Function EVALUATE (n, ,G)

, graph G; Output: node set Res.

Input: node n, expression

1:if = (epp1)* then

2: return CLOSURE(n, 1,G, {},0, %)
3: elseif = (cpp1) 7 then

4: return CLOSURE(n, 1,G. {},1,%)
5: elseif = (epp1){l, h} then

6: return CLOSURE(n, 1.G.{}.Lh)
7: else

8: return BASE(n, ,G))

Function CLOSURE (n, =10, G, Res, I, )

Input: node n, EPPs expression , graph G, node set Res, lower bound /,
upper bound /; Output: node set Res.

1: § = {n}

2: foralli € {1,..,1} do

3: S" = U,es EVALUATE(n, ,G)

4. s=5'

5:i=14+1

6: while S # & AND (h = % OR i <= /) do
7. S =0

8: while S # @ do

9: n = extractNode(S) /* delete the node n from S */
10: if n ¢ Res then

11: Res = Res U {n}

12: S’ = S’ U EVALUATE(n, cpp, G)
13: i=i+1

14: s=¢5'

15: return Res
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Function BASE (n, c0p, G)

Input: node n, EPPs expression , graph G; Output: node set Res.
1: if =" 1 then
2:  return EVALUATE(n, reverse(=pr1),G)
3: if = 1 | 5 then
4. return EVALUATE(n, 1,G) U EVALUATE(n, 2,G)
5:if = 1/epp2 then
6:  Res’ := EVALUATE(n, 1,G)
7: Res = &
8:  forall nodes n’ € Res’ do
9: Res = Res U EVALUATE(n’, 2,G)
10: return Res
11: if = 1& o then
12: return EVALUATE(n, 1,G) N EVALUATE(n, 2,G)
13: if = 1~ > then
14: return EVALUATE(n, 1,G) \ EVALUATE(n, 2,G)
15: if = 17 then
16:  return {n} U EVALUATE(n, 1,G)
17: if = POS1 test POSo then

18: Res = @

19: for all triple 7 € G do

20: if EVALTEST(n, POS1, POS2, 1, test,G) then

21: Res=Res U {I1(r0s1,1), I1(POSa, 1)} /* II(POS1, 1) = n*/
22: return Res

Function EVALTEST (n, POS1,POS2, 1, test,G)
Input: node n, position POS1, position POS2, triple ¢, test, t est,graph G;
Output: t rue if ¢ satisfy test.
1: iftest = test1&&testo then
2: return EVALTEST(n, POS1, POSa, 1, testy, G) A
/\EVALTEST(n, POS1, POS2, 1, tP,StQ,G)
3: iftest = testq||testy then

4. return EVALTEST(n, POS1, POSa, f, testy,G) V
\/EVALTEST(n, POS1, POSa, 1, testa, G)

5: iftest =ltest, then

6: return ~EVALTEST (n, POS1,POS2,t, test 1,G)

7. if test = u then

8: return I1(POSy,7) = n ATI(_p,f) =u

9: if test = TP(POS, ) then

10:  return II(POS1,7) = n A EVALUATE(II(POS, 1), ,G) £ @
11: if test = T(EExp) then
12: return I1(POSq,7) = n A EvalSPARQLBuilt-in(EExp,?)

The result of the evaluation of an iEPP expression

from a node 7 is a set of nodes n, where nodes n,

are reachable from # via paths satisfying . To study

the complexity of the evaluation algorithm we intro-

duce the decision problem EVALEPPS, which takes as

input an EPP expression e, a pair of nodes (s, r) and a
graph G and asks whether (s, 7) € [¢]c.

Theorem 28. The EVALEPPS problem can be solved
in time O(|G| - | |) 4+ Cerxp, Where czrxyp is the cost
of evaluating built-in conditions.

Proof. We assume G to be stored by its adjacency list.
In particular, for each g € terms(G), a Hashtable is
maintained where the set of keys is the set of predi-
cates p such that there exists a triple in G having as
subject g and as predicate p, and the set of values are
lists of objects o reachable by traversing p-predicates
from g. We assume that given g and a predicate p the
set of nodes reachable can be accessed in time O(1).

An additional Hashtable is used for inverse navigation,
that is, for navigation starting on the object and ending
on the subject. Both structures use space O(|G|). Let
| | be the size of the iEPP expression

The function EVALUATE is recursively called on
each sub-expression of the in input; if such sub-
expressions are not recursive (i.e., do not contain *’,
‘"), EVALUATE is invoked at most O(|eppl|) times.
The base cases (lines 17-21 of function BASE) require
to consider at most all the edges for all the nodes; this
can be done in time O(|G|). If is recursive, the
function CLOSURE is executed at most O(nodes(G))
times; the procedure EVALUATE is invoked for each
node in the worst case. When evaluating a subexpres-
sion from a node we use memoization to store its result
(i.e., the set of reachable nodes) thus avoiding to re-
compute the same expression from the same node mul-
tiple times. Memoization guarantees that the total time
required by CLOSURE is O(| | - |G|). As for nested
expressions, memoization enables to mark nodes of the
graph satisfying a given subexpression. Path conjunc-
tion and difference, corresponding to intersection and
difference of sets of nodes respectively (line 12 and 14
of BASE), can be computed in time O(|G|) by using a
(prefect) hash function as the graph is known before-
hand. As for tests, their cost is constant for logical op-
erators and simple URI checking. The complexity is
parametric with respect to the cost of other SPARQL-
based built-in conditions EExp (cggxp). Finally, ob-
serve that with memoization the space complexity is
O(|cvp| - nodes(G)?). O

8. Experimental Evaluation

This section reports on an experimental evaluation
meant to investigate different aspects of the EPP lan-
guage discussed in the previous sections. Section 8.1
investigates the performance of our translation algo-
rithm (see Section 4) in terms of running time, and
compares it with that of translations routinely per-
formed by existing SPARQL processors. We focused
on running time since it offers a reasonable summary
of the overall performance of a query processing sys-
tem being it based on the iEPPs evaluation algorithm
or SPARQL evaluation algorithm. In Section 8.2 we
compare the running time of a custom processor im-
plementing the evaluation algorithm for iEPPs (see
Section 7) with the running time of the Jena ARQ
SPARQL processor. Finally, in Section 8.3 we discuss
the impact of using query-based reasoning (see Sec-
tion 5) both in terms of running time and number of
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Fig. 16. Time of the translation of Jena ARQ (SPARQL2AIlgebra) and nEPPs (nEPPS2SPARQL) vs query length (number of path steps).

results. All the experiments have been performed on
an Intel 15 machine with 8GBs RAM. Results are the
average of 30 runs (queries were run in a random order
each time) after removing the top and bottom outliers.

8.1. Translation Running Time

Our primary objective is to make practical the im-
mediate adoption of EPPs as a query language for
KGs. This objective is fulfilled by using our translation
from nEPPs to SPARQL as front end to any existing
SPARQL processor. To investigate the performance of
the translation algorithm presented in Section 4, we
show that our nEPPs to SPARQL translation performs
comparably to the existing translations routinely per-
formed by SPARQL processors.

We compared our translation algorithm with the
SPARQL syntax to SPARQL algebra (referred to as
SPARQLt oAlgebra) translation performed by ARQ'!.
We used 28 queries generated in two steps starting
from four expressions; three base expressions (QI-
Q3) plus a fourth one combining them (Q4). Q4 in-
cludes all the nEPP constructs; concatenation, path
conjunction, path difference, path test, and logical
tests with all the logical operators. Second, we gen-
erate increasingly longer expressions Qf by concate-
nating Ql(k*l)/Qi(k*l), up to k =6. The resulting
Q¢ fragments involve the concatenation of 64 path
steps. The running times of the nEPPt 0oSPARQL and
SPARQLtoAlgebra translations, for each query, are
shown in Figure 16. Our translation performs similarly
(slightly faster) than ARQ’s existing initial phase, and
this behavior shows a consistent trend in two dimen-
sions (Qf-‘ expressions use more EPP constructs for in-

http://jena.apache.org/documentation/query/algebra.html

creasing i, and become exponentially longer for in-
creasing k). To give a sense of the length of the ex-
pressions, we observe that Q$ is a 19K character long
nEPPs expression (with an operational tree contain-
ing over one thousand nodes), while the Qg SPARQL
translation is 133K characters long after filter elimina-
tion (the original translation is ~239K characters).

While this suggests that the cost of our approach
could be up to twice the cost of a direct nEPPs to al-
gebra translation, keep in mind that we are comparing
initial phases of query processing and these are typi-
cally much faster than subsequent phases. As an exam-
ple, in Jena ARQ the SPARQLtoAlgebra transla-
tion is followed by an algebra to algebra optimization
phase [29]. The remaining pre-processing phases (par-
ticularly those using dataset statistics) can be far more
expensive than this initial phase. To give another ex-
ample, if we consider Virtuoso, we observe that the ini-
tial SPARQL to SQL translation phase is followed by
a more expensive cost based SQL optimization phase.
Hence, the impact of our translation on the running
time is negligible as compared to the total running time
and other kinds of translations routinely performed by
SPARQL processors.

8.2. Running time of iEPPs vs. Jena ARQ

We now compare the running time of the cus-
tom EPP processor implementing the iEPPs evalua-
tion algorithm discussed in Section 7.2 against the
translation-based approach described in Section 4 us-
ing Jena ARQ as underlying SPARQL query proces-
sor. This experiment gives insights about the pros and
cons of evaluating EPPs into existing SPARQL pro-
cessors as compared to the usage of the iEPPs custom
query processor. In the experiments, we used a por-
tion of the FOAF dataset extracted from the BTC2012
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Fig. 17. Query time for simple and pdf-entailment comparing iEPPs and Jena ARQ.

dataset'? as follows: we started from the URI of T.
Berners-Lee (TBL) an traversed foaf :knows links
up to distance 4. Starting from a seed URI allowed
to obtain a connected graph. On one hand, this graph
comprising ~4M triples is suitable for loading into
main memory as the iEPPs processor adopts an in-
memory algorithm. On the other hand, having a graph
with a few edge types (mainly foaf :knows) allows
to write intuitive expressions having different levels of
complexity and using all the features of our language
(i.e., nesting, path conjunction and path difference).
We created 4 groups Q;,i € {1,...,4} of nEPP ex-
pressions each with 3 queries for a total of 12 queries
(Q1-Q12) that are reported in Appendix B. The first
group makes use of concatenation (‘/’) and path al-
ternatives (‘I); the second group also includes nest-
ing (‘TP’); the third group includes path difference
(‘~’) and concatenation (‘/’); finally, the fourth group
leverages path conjunction (‘&’) and concatenation
(“/’). These groups of queries allow to investigate the
trade-off between expressiveness and running time. In-
deed, one expects that queries in Q; are less expen-
sive than queries in Q3. For each eppeQ we gener-
ated the corresponding SPARQL query S.,, via the
translation algorithm. To investigate the performance
also when including the query-based reasoning ca-
pabilities discussed in Section 5, we translated each
epp into another query epp” and each S into an-
other query S . At this point, the original query epp
and its reasoning-aware variant epp” are evaluated via
the iEPPs custom processor while the translated S,y
query and its reasoning-aware variant S£_ are evalu-
ated via Jena ARQ. Fig. 17 (left) shows the comparison
when executing the queries without considering rea-

2http://km.aifb.kit.edu/projects/btc-2012

soning capabilities (i.e., under the simple entailment).
Fig. 17 (right) shows results using pdf.

For Q;, which contains queries asking for friends of
TBL at distance 1, 2 and 3, the iEPPs processor per-
forms better than Jena at distance 1 and 2; at distance
3 times are comparable. Q> additionally considers a
test based on nesting. Again, the custom processor per-
forms better at distance 1 and 2; at distance 3 it shows
a higher running time. In Qs, which considers path
difference (i.e., exclusive friends at various distances)
the iEPPs processor performs consistently better. Fi-
nally, in Q4 that includes conjunction (to ask for mu-
tual friends at various distances) the iEPPs processor
performs better at distance 1 and 2 and obtains a higher
running time at distance 3. These experiments suggest
that for real-world data and natural queries (e.g., mu-
tual friends) working with SPARQL-translated nEPPs
and using existing processors (Jena in this case) is a bit
less efficient than using the a custom processor. Note
that the iEPPs processor works in memory similarly
to nSPARQL and other SPARQL navigational exten-
sions. This clearly limits the applicability of these ap-
proaches on real-world graphs that typically do not fit
into main memory; it also underlines the advantage
to adopt our rewriting approach into SPARQL queries
that can be evaluated on existing SPARQL processors
capable of handling large graphs. The number of re-
sults ranges from ~50 to ~8000 for the simple entail-
ment and from ~150 to ~ 14500 for the pdf entailment,
respectively.

The huge advantage of using nEPPs is that naviga-
tional queries can be written in a succinct way. Anec-
dotally, while the nEPPs asking for mutual friends
(simple entailment) at distance 3 contains ~200 char-
acters, the SPARQL query (obtained from the transla-
tion) contains ~700 characters; moreover, writing nav-
igational queries directly in SPARQL requires to deal
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with a large number of variables that need to be consis-
tently joined. We want to point out that the translated
SPARQL queries have been automatically generated.
It may be the case that manually written equivalent
queries can be shorter. Nevertheless, there are cases
in which the EPPs syntax always introduces benefits
(beyond those already introduce by PPs). As an exam-
ple, path repetitions (used e.g., in Q5-Q12) available
in EPPs (and not in PPs) always allow a significant
reduction in the expression size. Indeed, the conver-
sion of path repetitions into PPs requires to use alterna-
tive paths having an increasing number of concatena-
tion operators. As an example, p1{1, 3}, requires three
path alternatives for a total of three concatenations.

8.3. Running Time of Query-Based Reasoning

We now move to a larger scale evaluation of the
query-based reasoning approach described in Sec-
tion 5. The goal is to compare the running time of
queries with and without reasoning support. Even in
this case we considered running time since it offers a
reasonable summary of the overall performance of a
query processing system. We also investigate the num-
ber of results returned. Among the pdf inference rules
(see Table 8) we considered the two most interesting,
that is, R5 that allows to derive new rdf:type in-
formation and R6 that allows the derivation of generic
(sub)properties. Deriving new rdf:type informa-
tion is particularly useful in efficient query processing
via type-aware graph transformations [30]. The other
rules in Table 8 either derive schema information (e.g.,
R3-R4) or can be captured via PPs (e.g., R1). For sim-
ple RDF, each query was executed as it is. Under the
pdf entailment, each query was first rewritten as de-
scribed in Section 5.2. The prototypical EPP expres-
sion used in this experiments has the form:

seed_entity prop ?y

where prop€ {rdf:type,dbo:genre,
dbo:location,yago:hasLocation}. To give
an example, the EPP dbp: Tracy_Mann rdf:type
?y retrieves asserted RDF types for the entity Tracy
Mann. When rewriting this query we could also get in-
ferred RDF types. We tested the performance of the
query-based reasoning approach featured by EPPs on a
variety of datasets and SPARQL processors (both local
and remote) as shown in Table 10.

Table 10

Datasets used for the evaluation of query-based reasoning.

Dataset Triples
LinkedMDB 13 | 6M
Yago'* 400M

DBpedia 412M | remote SPARQL endpoint!®
LDCache 22B | remote SPARQL endpoint!®

Availability
local SPARQL endpoint
local SPARQL endpoint

DBpedia is a large dataset with limited RDFS usage,
Yago/LDCache makes extensive usage of RDFS pred-
icates while LinkedMDB does not use RDFS. Linked-
MDB and Yago have been loaded into a BlazeGraph!”
instance while DBpedia and LDCache have been ac-
cessed via their Virtuoso'® SPARQL endpoints.

Figs. 18 (a), (c), (f) report the running times on
the RDFS rule R5 on 50 different queries that count
the number of results by randomly picking 50 entities
in Yago, DBpedia, and LinkedMDB, respectively. De-
tailed results are available in Appendix A. We observe
that the additional time introduced by the query-based
reasoning approach is reasonable and there are a few
exceptions (in DBpedia) where plain RDF query ex-
ecution takes more time. As expected, there is some
variation in DBpedia while the additional time is much
larger in Yago. Note that query answering under the
entailment regime in some cases takes less time; this
can be explained by the fact that it requires the usage
of the ALP procedure that may perform better than the
standard evaluation technique in some cases. To show
that even without additional inference the additional
cost of the query-based reasoning translation is mini-
mal, we tested RS also on LinkedMDB (that does not
have schema). The advantage of using the entailment
regime is evident when looking at the average num-
ber of results, reported in Table 11. As an example, on
DBpedia it increases from 13 to 27. The average ra-
tio in terms of time for all queries is 1.7, 11.3, and 1.7
for DBpedia, Yago and LinkedMDB, respectively. As
expected, the larger the ratio the larger the number of
results.

Figs. 18 (b), (d), and (e) further investigate the ben-
efit of query-based reasoning. We created 150 ad-
ditional queries for R6; 100 for DBpedia by con-
sidering two properties, that is, dbpo:genre and

Bhttp://linkedmdb.org
14www.mpi-inf.mpg.de/yago
Shttp://dbpedia.org/snorql
16http://lod.openlinksw.com/sparql
https://www.blazegraph.com/download
8http://virtuoso.openlinksw.com
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Fig. 18. Query time (y-axis) for simple and pdf entailment over different datasets. The x-axis shows query IDs. Average number of results

reported in the inner boxes.

Table 11
Average number of results for plain RDF and p-df.
Dataset Plain RDF | p-df
Fig. 18 (a) 5.08 22.88
Fig. 18 (b) 0 1.43
Fig. 18 (c) 13.53 27.04
Fig. 18 (d) 0 2.18
Fig. 18 (e) 0 2.12
Fig. 18 () 14 14

dbpo:location, and 50 for LDCache by pick-
ing the property yago:hasLocation (note that we
used a property from Yago schema since it is con-
tained in LDCache). By looking at RS in Table 8 it
can be noted that the translation of an EPP under the
entailment regime requires the union of three queries;
hence, the resulting EPP is translated into a SPARQL
query using (three) UNION operators. On the other
hand, the translation of an EPP to capture R6 requires
a single query that will be translated in SPARQL using
FILTER (to capture tests).

In other words, queries using RS are more involved
than those using R6. R6’s impact in terms of running

time is lower than RS5; this also reflects on the aver-
age speed-up now is 1.18 for dbpo:genre, 1.46 for
dbpo:locationandl.15foryago:hasLocation.
By looking at the average number of results (Ta-
ble 11) it can be observed that plain RDF did not
provide any result while our query-based reasoning
approach allowed to get results. To be more spe-
cific, in DBpedia results have been obtained not via
the property dbpo:genre, but via the more gen-
eral property dbpo: literaryGenre. This allowed
to discover, for instance, that Night Surf (one
seed entity) is a post-apocalyptic short story. In LD-
Cache, while the query returned zero results when us-
ing yago:hasLocation, it returned results via the
more general property yago:placedIn (via R6).
Comparison with Closure Computation. An additional
advantage of the query-based approach is that it can
benefit from space optimization if one would work
with the transitive reduction'® of a graph [31] that re-
moves edges derivable from pdf-reasoning. In contrast,
if one wants to precompute the closure (the currently

19Tools like S1ib?° can compute the reduction of RDF graphs.
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used approach) one would need to materialize the full
closure of the RDF graph under consideration, which
would require cubic space in the worst case [26]. This
become prohibitive for large KGs like DBPedia, Yago
and many other. Indeed, we did measure in a local copy
of (a subset of) Yago the space and the time of the clo-
sure. Starting from 400M triples the closure doubled
the number of triples (giving 853M triples) and took
3.5h of computation.

9. Related Work

The idea of graph query languages is to use (variants
of) regular expressions to express (in a compact way)
navigational patterns (e.g., [13, 32-34]). Angles and
Gutierrez [35], and Wood [36] provide surveys on the
topic while Barcel6 provides a detailed overview of re-
search in the field [37] while Angles et al. [7] describe
a recent proposal. Our goal with EPPs is to extend the
navigational core of SPARQL (i.e., PPs) and make the
extension readily available for existing SPARQL pro-
cessors.

9.1. SPARQL Navigational Extensions

Proposals to extend SPARQL with navigational fea-
tures have been around for some time. Notable ex-
amples are PSPARQL [21] and nSPARQL [16] that
tackled this problem even before the standardization
of property paths (PPs) as SPARQL navigational core.
From the practical point of view, the need for RDF
navigational languages is witnessed by projects like
Apache Marmotta?' that incorporates a simple nav-
igational language that borrows ideas from XPath.
Since our main goal is to extend the navigational core
of SPARQL we focus on the comparison between
EPPs and other SPARQL navigational extensions.
We compare EPPs with PPs, cpSPARQL [21], rec-
SPARQL [15], RDFPath [38], nSPARQL-NREs [16],
and star-free Nested Regular Expressions (sfNREs)
that extends NREs with negation [39]. Table 12 sum-
marizes the results of the comparison; we considered
the following language features: path conjunction (&),
path difference (~), negation of tests (!), nesting (TP),
tests over nodes (T), usage of positions (POS), path
repetitions ({Lh}), entailment regime, and closure op-
erator (*). Additionally, we consider how expressions
in each of the languages are evaluated, the support for

reasoning (we focus on RDFS and in particular the pdf
fragment [19]) and the support for query-based rea-
soning (QBR); finally, we also report whether the lan-
guage is implemented.

RDFPath is more focused on specific types of
queries (i.e., shortest paths) and their efficient imple-
mentation in MapReduce and it has fewer features
than all the other languages considered. Path conjunc-
tion/difference are natively supported only by EPPs
and sfNREs while nSPARQL, cpSPARQL and rec-
SPARQL require the usage of the SPARQL algebra
(i.e., . for conjunction). Nevertheless, this does not al-
low to use path conjunction inside the closure opera-
tor where the number path conjunction evaluations is
apriori not bound. As a side note, we also mention that
queries that resort to the SPARQL algebra for conjunc-
tion are more verbose. Finally, nSPARQL, cpSPARQL
and rec-SPARQL do not support path difference. Test
negation (!) is only supported by PPs (e.g., via negated
property sets) and EPPs; nesting is supported by all
languages except PPs and rec-SPARQL. However,
only EPPs allow to test node values in a nested ex-
pression (see Example 6). Node tests are supported in
limited form by cpSPARQL; EPPs allow logical com-
bination of tests representing nesting and tests repre-
senting (in)equalities of node values. As a matter of
fact, none of these extensions can express the [talian
exclusive friends query mentioned in the Introduction.
EPPs support path repetitions; this feature (called curly
brace form) is in the agenda of the SPARQL work-
ing group??. rec-SPARQL also supports repetitions of
more verbose queries since the motivation behind rec-
SPARQL is not to provide a concise syntax. Neverthe-
less, rec-SPARQL requires an ad-hoc query processor.

A crucial difference between EPPs and related re-
search is that we tackle the problem of extending the
SPARQL language in the least intrusive way. We show
that there exists a precise fragment of SPARQL that
is expressive enough to capture non recursive EPPs
(nEPPs), that is, EPPs that do not use closure oper-
ators (i.e., * and ). Therefore, following the same
line of the SPARQL standard where non-recursive
PPs are translated into SPARQL queries, we devised
a translation from (concise) nEPPs into (more ver-
bose) SPARQL queries. The advantage of this ap-
proach with respect to previous navigational exten-
sions of SPARQL (e.g., [16, 21, 40]) that require the

21 http://marmotta.apache.org

2http://www.w3.0rg/2009/sparql/wiki/Future_Work_Items
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Table 12
Comparison of EPPs with other navigational extensions of SPARQL.
Features (Native Support)

Lang &| ~ |TP ! T | POS | {Lh} Eval Reasoning | QBR | Impl
EPPs X| X | X X X| X X X SPARQL + EALP X X X
PPs limited limited | SPARQL +ALP X
cpSPARQL X| X Ad-hoc X X
rec-SPARQL Ad-hoc X
RDFPath limited Ad-hoc X

NREs X X Ad-hoc X
sfNREs X X | X X X SPARQL

usage of ad-hoc query processors is that nEPPs can be
evaluated on existing SPARQL processors.

Reasoning is not supported by PPs, stNREs, RDF-
Path, and rec-SPARQL. Along the same line of NREs
(and nSPARQL) and cpSPARQL, we focus on how
EPPs can support SPARQL queries with embedded
reasoning capabilities [29]. We focus on the pdf frag-
ment [19], which captures the main semantic func-
tionalities of RDFS. We show that certain classes of
SPARQL queries can be rewritten into queries that
capture pdf semantic functionalities, and thus can be
evaluated on existing SPARQL processors. This is
again a significant advantage as compared to previ-
ous attempts (e.g., nSPARQL [16]) that require ad-hoc
processors.

Another difference with related proposals concerns
the implementation of the language. To foster the
adoption of EPPs and show its feasibility, we make
EPPs available to users and developers in different
forms: (i) as an implementation independent from
SPARQL; (ii) as a front-end to SPARQL endpoints (for
nEPPs) and (iii) as an extension to the Jena library.
Further information along with pointers to the source
code is available on the EPPs’s website?>.

Finally, our study includes two novel expressive-
ness aspects. The first concerns the expressive power
of the current SPARQL standard in terms of naviga-
tional features (see Section 6). We show that the lan-
guage of EPPs is more expressive than SPARQL PPs;
as a by-product we show that using EPPs as naviga-
tional core in SPARQL increases the expressive power
of the whole SPARQL language. The second aspect
concerns the expressiveness of SPARQL also in terms
of query-based reasoning capabilities when consider-
ing the pdf entailment regime (see Section 5). We show
that our translation allows to evaluate queries enhanced

Zhttp://extendedpps.wordpress.com

with reasoning capabilities on existing SPARQL pro-
cessors. We also show that EPPs is the only closed lan-
guage in this respect and that in general, rewriting a
query to capture the entailment regime requires a more
expressive language in the rewriting.

9.2. Other Navigational Languages

Besides SPARQL navigational extensions there ex-
ist other graph languages like GraphQL [41] the Face-
book query language. However, this language departs
from the SPARQL standard and it is not clear how
reasoning is supported. We also mention logic-based
languages like TriAL [42], TriQ [43], GXPath [44],
and NEMODEQ [45]. Even if some of these languages
(e.g., GXPath) are enough expressive to encode EPP
expressions, they depart from the SPARQL standard
meaning that query evaluation cannot be done on exist-
ing SPARQL processors. On the contrary, our primary
focus is on extending the current navigational core of
the SPARQL standard by keeping compatibility and
allowing query evaluation on existing SPARQL pro-
cessors also under the pdf entailment regime. Indeed,
none of the above proposals has focused on the ex-
pressiveness of the current SPARQL standard in terms
of navigational features. Ditto for the support of the
pdf entailment regime on existing SPARQL processors.
We also mention work on graphs with data (e.g., [46]).
This line of research: (i) does not adopt the RDF
standard data model; (ii) does not consider SPARQL,
which is the focus of this paper; (iii) does not deal with
entailment regimes. Our work is also related to: (i) On-
tology Based Data Access [27], where a (conjunctive)
query is rewritten into a (set of) queries that fully incor-
porate the schema information. In this case the schema
is treated separately and is needed in the rewriting; (ii)
approaches that rewrite queries to capture entailment
regimes like Bischof et al. [28]; (iii) approaches inde-
pendent from SPARQL such as Stefanoni et al. [47]
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that study conjunctive and navigational queries over
OWL 2 EL. Another recent line of research studied the
problem of introducing recursion into SPARQL [15].
Our approach has different objectives. We focus on
EPPs, a more expressive language than PPs; we pro-
vide a precise account of those fragments that can be
executed on existing SPARQL processors and those
that cannot, with or without considering the (odf) en-
tailment regime. Hence, our study is more focused on
expressiveness with respect to SPARQL. Moreover,
our approach is readily available and has been experi-
mentally evaluated. The comparison with navigational
languages for the Web of data (e.g., [14, 48-51]) is
orthogonal to our goal. We also want to mention re-
cent research that studied problems related to SPARQL
property paths, including containment and subsump-
tion [52]. We performed a similar study for EPPs. Re-
sults range from undecidability for the full EPPs to 2-
EXPTIME-hard for the positive queries [53].

9.3. CONSTRUCT Query Forms

Reutter et. al [15] proposed to enhance the expres-
sive power of SPARQL via the introduction of re-
cursions in a similar way to SQL. The idea is to al-
ternate CONSTRUCT queries (that materialize in a
graph the portion of data needed in each recursive call)
and SELECT queries to project only parts of inter-
est. This approach, which is currently not available
in standard SPARQL implementations could be used
to materialize the portion of the graph needed to cap-
ture RDFS inferences. Both data materialization and
changes required to SPARQL processors (to support
recursion) go against the idea of EPPs that provide ex-
pressive SPARQL navigational queries (also under the
pdf entailment regime) with no materialization and no
changes to existing SPARQL processors.

10. Concluding Remarks

We introduced EPPs, a significant extension of

property paths, the current navigational core of SPARQL,

the standard query language for querying KGs based
on RDF. We underlined several practical advantages
of adopting such an extension. Our study also of-
fers interesting theoretical observations, among which:
(i) we identified a precise fragment of SPARQL that
can capture non-recursive EPPs thus providing an in-
direct analysis of the navigational expressiveness of
SPARQL,; (iii) we have studied the expressiveness of

EPPs as compared to PPs; (iii) we have also studied
the expressiveness of SPARQL with respect to the pdf
entailment regime when considering different navi-
gational cores, and identified those that can be sup-
ported on existing processors and those that require
changes. Overall, we think that the practical and theo-
retical contributions of our work can help pave the way
toward extending the navigational core of SPARQL
and incorporate query-based reasoning capabilities. A
promising direction of future work is to study how op-
timization techniques devised for SPARQL property
paths [54] can be applied to extended property paths.
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Table 13
DBpedia results for RS (rdf: type)
[ [ [ Result Count [ Time(ms) |
| Seed Entity | QId | Noreasoning [ podf | Noreasoning | odf |
| dbp:Egypt | Q1 | 0 | 2 | 9449 | 139.86 |
| dbp:Texas_(Lasse_Stefanz_album) | Q2 |9 | 45 | 93.00 | 753.59 |
| dbp:Abul_Qasim_ibn_Mohammed_al-Ghassani | Q3 | 35 | 46 | 96.78 | 564.69 |
| dbp:Emiko_Tsukada | Q4 | 9 | 16 | 94.01 | 125.06 |
| dbp:Airbus_Military_S.A.S. | Q5 |1 | 1 | 108.48 | 137.90 |
| dbp:Variazh | Q6 | 26 | 60 | 86.40 | 601.35 |
| dbp:Ralph_Golen__2 | Q7 | 10 | 24 | 98.80 | 167.67 |
| dbp:Thomas_Richardson_(Middlesbrough) | Q8 | 9 | 20 | 96.60 | 114.81 |
| dbp:Lex_Richardson | Q9 | 41 | 59 | 101.96 | 141.48 |
| dbp:Tracy_Mann | Q10 | 25 | 36 | 11445 | 279.06 |
| dbp:Montaigut,_Puy-de-D%C3%B4me | QI1 | 18 | 38 | 96.44 | 152.07 |
| dbp:(18651)_1998_FP11 | Q12 | 0 | 2 | 9147 | 138.83 |
| dbp:Sumida_River | QI3 | 18 | 38 | 118.06 | 126.19 |
| dbp:Contact,_Nevada | Q14 | 22 | 40 | 1088.83 | 143.84 |
| dbp:1962aA$63_West_Ham_United_F.C._season | Q15 | 0 | 1 | 107.04 | 67539 |
| dbp:Vecherniy_Bishkek | Q16 | 20 | 37 | 115.70 | 503.37 |
| dbp:Basilides,_Cyrinus,_Nabor_and_Nazarius | Q17 | 14 | 25 | 96.56 | 196.22 |
| dbp:Cyrtolepis | Q18 | 0 | 2 | 100.98 | 125.59 |
| dbp:Yoxford | Q19 | 19 | 40 | 107.16 | 11621 |
| dbp:Mass_Destruction_(video_game) | Q20 | 25 | 65 | 89.51 | 120.56 |
| dbp:Marian_Kozovy | Q21 | 3 | 3 | 90.89 | 12217 |
| dbp:Aghuzbon,_Savadkuh | Q22 | 9 | 36 | 91.52 | 129.77 |
| dbp:Eero_Saari | Q23 | 2 | 2 | 88.03 | 125.85 |
| dbp:The_Reason_Why_I'm_Talking_S—t | Q24 | 9 | 47 | 106.74 | 11140 |
| dbp:Geelong_West_Football_Club | Q25 | 11 | 14 | 115.21 | 11245 |
| dbp:V1_500m_at_the_2011_Pacific_Games | Q26 | 0 | 3 | 41586 | 128.65 |
| dbp:Little_Negro_Bu-ci-bu | Q27 | 16 | 34 | 9324 | 128.80 |
| dbp:NTV-NBC | Q28 | 0 | 2 | 987.82 | 165.57 |
| dbp:Maridi_Airport | Q29 | 12 | 18 | 111.60 | 133.00 |
| dbp:Korokchi | Q30 | 10 | 36 | 102.60 | 12821 |
| dbp:Haki_St%C3%ABrmilli | Q31 | 26 | 39 | 9345 | 131.86 |
| dbp:G%C3%B6rel_Crona | Q32 | 9 | 23 | 108.51 | 13823 |
| dbp:Lord_Lisle | Q33 | 2 | 2 | 9892 | 118.08 |
| dbp:Category:1841_in_Portugal | Q34 | 1 | 3 | 11279 | 120.38 |
| dbp:Nhill | Q35 | 25 | 46 | 93.90 | 111.88 |
| dbp:Koeberliniaceae | Q36 | 10 | 12 | 876.83 | 126.33 |
| dbp:Probulov | Q37 | 24 | 48 | 92.92 | 151.19 |
| dbp:Pauline_Pepinsky | Q38 | 9 | 16 | 1045.73 | 134.89 |
| dbp:Acorda_Therapeutics | Q39 | 23 | 40 | 881.17 | 126.98 |
| dbp:Armagetron_Advanced | Q40 | 31 | 65 | 490.44 | 126.16 |
| dbp:Didihat | Q41 | 29 | 57 | 369.74 | 131.00 |
| dbp:Brook_Glacier | Q42 | 13 | 20 | 103.44 | 131.48 |
| dbp:Western_Union_(schooner) | Q43 | 23 | 44 | 99.31 | 112.81 |
| dbp:Fearon | Q44 | 0 | 2 | 96.09 | 118.60 |
| dbp:Scaphella_neptunia | Q45 | 8 | 11 | 97.79 | 133.18 |
| dbp:Sebadani_Dam__2 | Q46 | 8 | 33 | 8888 | 163.02 |
| dbp:Derek_Gaudet__5 | Q47 | 10 | 24 | 109.89 | 124.83 |
| dbp:John_Orsino | Q48 | 50 | 68 | 105.22 | 141.40 |
| dbp:Holy_orders | Q49 | 1 | 6 | 38445 | 12448 |
| dbp:Our_Lady_of_Lourdes_School | Q50 | 1 | 1T | 521.05 | 521.98 |
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Table 14
Yago results for RS (rdf : type)
[ [ [ Result Count [ Time(ms) |
[_Seed Entity | QId | Noreasoning | podi | No reasoning [ odf |
| yago:A_Hard_Road | Q1 |9 | 18 | 34857 | 433.92 |
\ yago:A_Pizza_Tweety_Pie \ Q2 \ 3 \ 19 \ 18.14 \ 225.56 \
| yago:A_Word_in_Your_Ear | Q3 | 3 | 25 | 19.13 | 202.38 |
| yago:Aap_Ke_Deewane | Q4 | 4 | 19 | 22.68 | 161.53 |
| yago:Abbo_II_of_Metz | Q5 | 6 | 31 | 1944 | 301.72 |
| yago:Abdul_Ilah_Khatib | Q6 | 11 | 57 | 19.13 | 28298 |
| yago:About_Face_(film) | Q7 | 3 | 18 | 19.04 | 158.15 |
| yago:Aerolysin | Q8 |1 | 12 | 2043 | 139.39 |
| yago:Affair_in_Trinidad | Q |9 | 25 | 2270 | 22222 |
| yago:Agni_Yudham | Q10 | 4 | 19 | 19.70 | 160.17 |
| yago:Agricola_(book) | Q11 | 3 | 17 | 18.56 | 193.74 |
| yago:Ahmed_Hadid_AI_Mukhaini | Q12 | 7 | 23 | 24.05 | 171.99 |
| yago:AIDS_Action_Committee_of_Massachusetts | Q13 | 3 | 13 | 2044 | 11642 |
| yago:AIDS_Sutra | Q14 | 1 | 13 | 1846 | 189.66 |
| yago:Aigen | Q15 | 1 | 12 | 21.30 | 143.11 |
| yago:AAfgue_Longue | Q16 | 3 | 12 | 2732 | 196.86 |
| yago:Aisha_Dee | Q17 | 5 | 26 | 18.09 | 27594 |
| yago:Al_Jalahma | Q18 | 2 |9 | 2383 | 14331 |
| yago:Alan_Dowding | Q19 | 12 | 36 | 2251 | 258.51 |
| yago:Alan_Smith_(Welsh_footballer) | Q20 | 5 | 27 | 17.12 | 283.05 |
| yago:Alarilla | Q21 | 3 | 19 | 17.69 | 201.13 |
| yago:Albert_Dubois-Pillet | Q22 | 8 | 35 | 18.88 | 25499 |
| yago:Albert_Glover | Q23 | 1 | 22 | 1894 | 252.86 |
| yago:Alec_Soth | Q24 | 8 | 42 | 26.70 | 284.70 |
| yago:Aleksandr_Rymanov | Q25 | 7 | 29 | 17.11 | 267.92 |
| yago:AlAine | Q26 | 3 | 12 | 1832 | 20082 |
| yago:Alexandra_Feodorovna_(Charlotte_of_Prussia) | Q27 | 14 | 51 | 17.96 | 293.96 |
| yago:All_About_Anna | Q28 | 9 | 25 | 18.84 | 207.69 |
| yago:All_That_I_Am_(Santana_album) | Q29 | 8 | 16 | 21.82 | 175.54 |
| yago:All_the_Way..._A_Decade_of_Song | Q30 | 18 | 26 | 19.28 | 169.36 |
| yago:Almost_a_Gentleman | Q31 | 6 | 21 | 17.95 | 140.71 |
| yago:Along_the_Way_(TV_series) | Q32 | 3 | 25 | 1874 | 169.05 |
| yago:Ambush_Bay | Q33 | 7 | 22 | 16.83 | 15395 |
| yago:Aminabad,_Sindh | Q34 | 1 | 14 | 2590 | 22478 |
| yago:Ampang_Park_LRT_station | Q35 ] 0 | 0 | 21.37 | 20.67 |
| yago:And_Hell_Will_Follow_Me | Q36 | 6 | 15 | 16.04 | 162.43 |
| yago:Andalusian_horse | Q37 | 3 | 12 | 16.60 | 154.25 |
| yago:Andre_Norton_Award | Q38 | 5 | 12 | 15.28 | 147.73 |
| yago:Andy_Jones_(producer) | Q39 | 2 | 23 | 1549 | 274.16 |
| yago:Andy_Valmorbida | Q40 | 2 | 25 | 1821 | 290.66 |
| yago:Anema_(lichen) | Q41 | 1 | 15 | 16.40 | 223.09 |
| yago:Aneta_Pospisilové | Q42 | 3 | 29 | 2150 | 266.67 |
| yago:Angela_Chalmers | Q43 | 11 | 40 | 20.77 | 26597 |
| yago:Angola_Fire_Department_(Louisiana) | Q44 | 1 | 18 | 17.16 | 204.51 |
| yago:Anna_Catharina_von_Barfelt | Q45 | 3 | 28 | 17.09 | 280.21 |
| yago:Annapurna_High_School | Q46 | 5 | 21 | 15.19 | 196.13 |
| yago:Annet,_Isles_of_Scilly | Q47 | 8 | 22 | 1529 | 21545 |
| yago:Annette_Sikveland | Q48 | 7 | 41 | 17.02 | 274.62 |
| yago:Aonghas_Og_of_Islay | Q49 | 4 | 32 | 895 | 297.68 |
| yago:Aqualillies | Q50 | 2 | 21 | 21.04 | 256.74 |
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Table 15
LinkedMDB results for R5 (rdf : type)

[ [ [ Result Count [ Time(ms) |
| Seed Entity | QId | Noreasoning [ podf | Noreasoning [ odf |

Imdb-actor: 1 | Q1 | 1 | 1 ] 29.09 | 4194 |
| Imdb-actor:10 | Q2 |1 | 1 | 3045 | 41.19 |
| Imdb-actor:10000 | Q3 |1 | 1 | 2575 | 44.56 |
| Imdb-actor:10001 | Q4 | 1 | 1 ] 2571 | 4327 |
| Imdb-actor:10009 | Q5 |1 | 1 | 3883 | 46.84 |
| Imdb-actor:1001 | Q6 | 1 | 1 | 3176 | 42.70 |
| Imdb-actor:10010 | Q7 | 1 | 1 | 2670 | 4512 |
| Imdb-actor:10013 | Q8 | 1 | 1 | 2310 | 4429 |
| Imdb-actor:10014 | QO | 1 | 1 | 3213 | 46.84 |
| Imdb-actor:10016 | Q10 | 1 | 1| 3275 | 47.82 |
| Imdb-actor:10017 | Q11 | 1 | 1 | 2697 | 47.30 |
| Imdb-actor:10018 | Q12 | 1 | 1 | 40.68 | 44.68 |
| Imdb-actor:10023 | QI3 | 1 | 1 | 4100 | 46.80 |
| Imdb-actor:10027 | Q14 | 1 | 1 | 3825 | 47.14 |
| Imdb-actor:10029 | Q15 | 1 | 1 | 2651 | 5041 |
| Imdb-actor:10030 | Q16 | 1 | 1| 2971 | 4507 |
| Imdb-actor:10034 | Q17 | 1 | 1 | 2695 | 49.03 |
| Imdb-actor:10035 | QI8 | 1 | 1 | 2620 | 50.18 |
| Imdb-actor:10038 | Q19 | 1 | 1 | 2361 | 48.40 |
| Imdb-actor:10039 | Q20 | 1 | 1 | 5621 | 49.49 |
| Imdb-film:10504 | Q21 | 1 [ 1] 2439 | 48.63 |
| Imdb-film:10508 | Q22 | 1 [ 1 ] 2222 | 47.89 |
| Imdb-film:10510 | Q23 | 1 | 1 | 4178 | 52.07 |
| Imdb-film:10894 | Q24 | 2 | 2 | 3131 | 5391 |
| Imdb-film:10895 | Q25 | 1 | 1| 29.05 | 50.44 |
| Imdb-film:10896 | Q26 | 1 | 1 | 40.76 | 52.10 |
| Imdb-film:10897 | Q27 | 1 | 1 | 2754 | 52.09 |
| Imdb-performance:108172 | Q28 | 2 | 2 | 3114 | 55.08 |
| Imdb-performance:108173 | Q29 | 2 | 2 | 27.90 | 5144 |
| Imdb-performance:108174 | Q30 | 2 | 2 | 2619 | 5217 |
| Imdb-performance:108175 | Q31 | 2 | 2 | 4252 | 5729 |
| Imdb-performance:108176 | Q32 | 1 | 1 | 3844 | 5852 |
| Imdb-performance:108177 | Q33 | 1 | 1 | 43.63 | 57.51 |
| Imdb-performance:108178 | Q34 | 1 | 1 | 40.79 | 5424 |
| Imdb-music_contributor:1810 | Q35 | 2 | 2 | 37.87 | 5972 |
| Imdb-music_contributor:1811 | Q36 | 2 | 2 | 2697 | 63.88 |
| Imdb-music_contributor:1812 | Q37 | 2 | 2| 3555 | 6236 |
| Imdb-music_contributor:1817 | Q38 | 2 | 2 | 2643 | 67.40 |
| Imdb-music_contributor:1819 | Q39 | 2 | 2 | 29.64 | 66.51 |
| Imdb-music_contributor:1820 | Q40 | 2 | 2| 29.88 | 6623 |
| Imdb-music_contributor:1822 | Q41 | 2 | 2 | 2943 | 71.07 |
| Imdb-music_contributor:1823 | Q42 | 2 | 2 | 32.93 | 67.55 |
| Imdb-music_contributor:1826 | Q43 | 2 | 2 | 4327 | 73.04 |
| Imdb-music_contributor:1828 | Q44 | 2 | 2 | 29.62 | 67.43 |
| Imdb-music_contributor:1830 | Q45 | 2 | 2 | 2949 | 8376 |
| Imdb-music_contributor: 1838 | Q46 | 1 | T | 3777 | 7791 |
| Imdb-producer:10111 | Q47 | 2 | 2 | 4955 | 82.86 |
| Imdb-producer:10112 | Q48 | 2 | 2 | 4130 | 101.11 |
| Imdb-producer:10113 | Q49 | 2 | 2 | 100.42 | 106.81 |
| Imdb-producer:10114 | Q50 | 2 | 2 | 4570 | 137.08 |
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Table 16
DBpedia results for R6 on the predicate dbo: genre

[ [ [ Result Count [ Time(ms) |
| Seed Entity | QId | Noreasoning [ podf | Noreasoning [ odf |

dbp:Night_Surf | QL | 0 | 1 | 106.38 | 96.57 |
| dbp:The_Last_Man | Q2 | 0 | 3 | 93.82 | 109.60 |
| dbp:Metro_2035 | Q3 | 0 | 3 | 11511 | 109.64 |
| dbp:The_Last_Ship_(novel) | Q4 | 0 | 1| 12737 | 99.68 |
| dbp:Taronga | Q5 | 0 | 1 ] 103.32 | 112.68 |
| dbp:The_Third_World_War_(novel) | Q6 | 0 | 4 | 94.91 | 105.47 |
| dbp:The_Sending | Q7 | 0 | 3 | 105.65 | 105.20 |
| dbp:Desecration_(novel) | Q8 | O | 3 | 9450 | 112.45 |
| dbp:The_Girl_Who_Owned_a_City | Q9 | 0 | 2 | 136.87 | 112.59 |
| dbp:The_Sword_of_the_Lady | Q10 | 0 | 3 | 12846 | 11373 |
| dbp:Shikari_in_Galveston | Qi1 | 0 | 3 | 103.62 | 11148 |
| dbp:Fitzpatrick’s_War | Q12 | 0 | 3 | 10416 | 113.30 |
| dbp:Sykom | QI3 | 0 | 4 | 123.19 | 109.22 |
| dbp:So_This_Is_How_It_Ends | Q4 | 0 | 3 | 108.67 | 106.78 |
| dbp:On_the_Beach_(novel) | Q15 | 0 | 1 | 11551 | 108.32 |
| dbp:The_Postman | Q16 | 0 | 1 ] 10239 | 110.03 |
| dbp:Swan_Song_(novel) | Q17 | 0 | 4 | 102.11 | 119.23 |
| dbp:The_Children’s_Hospital | QI8 | 0 | 3 | 110.40 | 11537 |
| dbp:Piter_(novel) | Q19 | 0 | 1 | 15545 | 115.60 |
| dbp:Mutants_in_Orbit | Q20 | O | 3 | 93.77 | 112.89 |
| dbp:Zone_One | Q21 | 0 | 1 | 103.60 | 123.78 |
| dbp:Apollyon_(novel) | Q22 | 0 | 1 | 104.62 | 115.19 |
| dbp:Armageddon_(novel) | Q23 | 0 | 1 | 112.93 | 113.46 |
| dbp:Assassins_(LaHaye_novel) | Q24 | 0 | 1T ] 149.54 | 118.05 |
| dbp:Glorious_Appearing | Q25 | 0 | 3 | 101.50 | 126.08 |
| dbp:Left_Behind_(novel) | Q26 | 0 | 3 | 115.87 | 128.76 |
| dbp:Nicolae_(novel) | Q27 | 0 | 3 | 9827 | 118.52 |
| dbp:The_Indwelling | Q28 | 0 | 3 | 11691 | 127.66 |
| dbp:The_Mark_(novel) | Q29 | 0 | 1 | 106.04 | 12395 |
| dbp:The_Rapture_(novel) | Q30 | 0 | 2 ] 90.52 | 124.58 |
| dbp:The_Remnant_(novel) | Q31 | 0 | 1 | 107.91 | 117.70 |
| dbp:The_100_(novel) | Q32 | 0 | 1 | 9681 | 120.54 |
| dbp:Caesar’s_Column | Q33 | 0 | 2 | 109.57 | 12493 |
| dbp:Pandemia_(book) | Q34 | 0 | 3 | 9223 | 121.32 |
| dbp:The_Maze_Runner | Q35 | 0 | 3 | 104.06 | 131.89 |
| dbp:The_Road | Q36 | 0 | 3 | 103.38 | 136.64 |
| dbp:Warm_Bodies | Q37 | 0 | 1T ] 104.62 | 136.87 |
| dbp:Blood_Red_Road | Q38 | 0 | 3 | 12574 | 133.83 |
| dbp:The_Twelve_(novel) | Q39 | 0 | 0 | 99.86 | 14498 |
| dbp:Dies_the_Fire | Q40 | O | 1 | 101.32 | 131.93 |
| dbp:The_Walking_Dead | Q41 | O | 2 | 9701 | 130.05 |
| dbp:The_Passage_(novel) | Q42 | 0 | 1 | 105.09 | 129.34 |
| dbp:Metro_2033_(novel) | Q43 | 0 | 1 | 13057 | 13558 |
| dbp:Metro_2034 | Q4 | 0 | 1 | 129.50 | 13175 |
| dbp:Fever_Crumb_Series | Q45 | O | 6 | 115.70 | 14533 |
| dbp:Mutants_of_the_Yucatan | Q46 | 0 | 1] 9276 | 158.48 |
| dbp:Road_Hogs | Q47 | O | 6 | 105.69 | 164.99 |
| dbp:Brother_in_the_Land | Q48 | 0 | 2 | 99.90 | 159.90 |
| dbp:_Rise_of_the_Governor | Q49 | 0 | 1| 11633 | 181.05 |
| dbp:Cannibal_Reign | Q50 | 0 | 1 | 554.57 | 91342 |
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Table 17
DBpedia results for R6 on the predicate dbo:location

[ [ Result Count T Time(ms) |
| Seed Entity | QId | Noreasoning | odf | Noreasoning [ odf |

dbp:Bayou_Corne_sinkhole | Q1 | 0 | 3 | 9043 | 102.28 |
| dbp:Lake_Ophelia_National_Wildlife_Refuge | Q2 | 0 | 2 | 100.77 | 111.35 |
| dbp:Calcasieu_Lake | Q3 | 0 | 3 | 104.58 | 99.13 |
| dbp:Lacassine_National_Wildlife_Refuge | Q4 | 0O | 1 | 98.94 | 104.69 |
| dbp:Sabine_Pass_Lighthouse | Q5 | 0 | 2 | 94.26 | 109.20 |
| dbp:Sabine_National _Wildlife_Refuge | Q6 | 0 | 3 | 9227 | 94.34 |
| dbp:Grand_Lake_(Louisiana) | Q7 | 0 | 3 | 8555 | 114.14 |
| dbp:East_Cove_National_Wildlife_Refuge | Q8 | 0O | 1 | 114.63 | 103.22 |
| dbp:Cameron_Prairie_National_Wildlife_Refuge | Q9 | 0 | 2 | 103.95 | 109.31 |
| dbp:Catahoula_National_Wildlife_Refuge | Q10 | 0 | 2 | 98.12 | 104.90 |
| dbp:Sandy_Lake, Louisiana | QI1 | 0 | 4 ] 9771 | 118.43 |
| dbp:Chicot_State_Park | Q12 | 0 | 1T | 9829 | 112.55 |
| dbp:Louisiana_State_Arboretum | Q13 | 0 | 2 | 111.30 | 109.53 |
| dbp:Bogue_Chitto_State_Park | Q14 | 0 | 1 | 105.54 | 11430 |
| dbp:Great_Salt_Plains_State_Park | Q15 | 0 | 2 | 9375 | 122.07 |
| dbp:Salt_Plains_National_Wildlife_Refuge | Q16 | 0 | 0 | 103.58 | 123.18 |
| dbp:Great_Salt_Plains_Lake | Q17 | 0 | 3 | 99.52 | 118.19 |
| dbp:Tilicho_Lake | QI8 | 0 | 2 | 107.44 | 134.31 |
| dbp:Berney_Ar_railway_station | Q19 | 0 | 1 ] 126.49 | 129.10 |
| dbp:St_Nicholas,_Blakeney | Q20 | O | 1 | 87.66 | 124.96 |
| dbp:Blakeney_Windmill | Q21 | 0 [ 1 | 11001 | 122.64 |
| dbp:Bracknell_railway_station | Q22 | 0 | 1] 105.70 | 128.04 |
| dbp:Crowthorne_railway_station | Q23 | 0 | 1 | 96.96 | 13115 |
| dbp:Martins_Heron_railway_station | Q24 | 0 | 3 | 97.06 | 14221 |
| dbp:Fort_Cobb_State_Park | Q25 | O | 4 | 9507 | 13552 |
| dbp:Lake_Ellsworth_(Oklahoma) | Q26 | 0 | 0 | 99.52 | 137.98 |
| dbp:Red_Rock_Canyon_State_Park_(Oklahoma) | Q27 | 0 | 1 ] 109.06 | 137.44 |
| dbp:Fort_Cobb_Reservoir | Q28 | O | 1 | 109.06 | 136.03 |
| dbp:Caister-on-Sea_railway_station | Q29 | O | 3 | 105.58 | 143.26 |
| dbp:Caister_Camp_Halt_railway_station | Q30 | 0 | 3 | 96.04 | 14573 |
| dbp:Chalk_Farm_tube_station | Q31 | 0 | 3 | 119.21 | 139.20 |
| dbp:Roundhouse_(venue) | Q32 | 0 | 2 | 10498 | 138.19 |
| dbp:Cockfosters_tube_station | Q33 | 0 | 4 | 9897 | 146.05 |
| dbp:Trent_Park | Q34 | 0 | 2 ] 9522 | 146.16 |
| dbp:Pelion_Gap | Q35 | O | 3 | 8995 | 156.90 |
| dbp:Rio_Cinema_(Dalston) | Q36 | 0 | 4 | 94.06 | 156.12 |
| dbp:Dalston_Kingsland_railway_station | Q37 | 0 | 2 | 126.06 | 148.68 |
| dbp:Dalston_Junction_railway_station | Q38 | 0 | 2 | 97.65 | 168.03 |
| dbp:Eltead_Woods_railway_station | Q39 | 0 | 3 | 15737 | 179.18 |
| dbp:Fort_Arbuckle_(Oklahoma) | Q40 | O | 3 | 11538 | 17577 |
| dbp:Perry_Island_(Queensland) | Q41 | O | 2 | 107.78 | 205.90 |
| dbp:Turtle_Head_Island | Q42 | 0 [ 1 ] 90.70 | 19133 |
| dbp:Gunnersbury_station | Q43 | O | 3 | 88.96 | 194.80 |
| dbp:Kew_Bridge_railway_station | Q44 | 0 | 1] 99.57 | 200.07 |
| dbp:Harold_Wood_railway_station | Q45 | O | 3 | 92.76 | 189.61 |
| dbp:Hatch_End_railway_station | Q46 | O | 1 ] 100.72 | 19391 |
| dbp:Green-Works | Q47 | O | 2 | 105.87 | 236.36 |
| dbp:St_John_the_Baptist,_Hoxton | Q48 | O | 4 | 97.58 | 239.71 |
| dbp:Hoxton_railway_station | Q49 | O | 2 | 100.49 | 247.22 |
| dbp:Great_Plains_State_Park | Q50 | O | 2 | 54478 | 786.94 |
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Table 18
LDCache results for R6 on the predicate yago:hasLocation
[ [ Result Count [ Time(ms)

[ Seed Entity | QId | Noreasoning [ odf | Noreasoning [ podf

yago:A_Home_at_the_End_of_the_World_(film) | Q1 | 0 [ 1T | 109.48 | 108.65
| yago:A_Sharp_Intake_of_Breath | Q2 | 0 | 1| 12493 | 100.34
| yago:A._Reyrolle_&_Company | Q3 | 0 [ 1 ] 53499 | 123.90
| yago:Aabach_(Afte) | Q4 | O | 1 ] 101.02 | 12512
| yago:Aacay_Organization | Q5 | 0 | 1] 9535 | 118.41
| yago:Aach,_Baden-WAijrttemberg | Q@6 | 0 | 1 ] 11005 | 98.61
| yago:Aachen_Central_Station | Q7 | 0 | 1 ] 10419 | 104.53
| yago:Aaniiih_Nakoda_College | Q8 | 0 | 3 | 98.15 | 123.99
| yago:Aaronsburg_Historic_District | Q9 | 0 [ 1 | 102.81 | 120.86
| yago:Aavahelukka_Airfield | Q10 | 0 | 1 | 101.33 | 108.54
| yago:Abandoned_Pennsylvania_Turnpike | Q11 | 0 | 1| 114.08 | 96.26
| yago:Abashiri_Quasi-National_Park | Q12 | 0 | 1 | 113.44 | 108.30
| yago:Abbeville_Historic_District_(Abbeville,_South_Carolina) | QI3 | 0 | 1 ] 100.56 | 100.36
| yago:Abel_I._Smith_Burial_Ground | Q14 | 0 | 1| 115.05 | 109.88
| yago:Abel_Iturralde_Province | Q15 | 0 | 1| 121.68 | 140.66
| yago:Abenteuermuseum_(SaarbrAijcken) | Q16 | 0 | 1 | 91.53 | 104.42
| yago:Aberdeen_Historic_District_(Aberdeen,_South_Dakota) | Q17 | 0 | 1 | 101.68 | 106.91
| yago:Aberdeen | QI8 | 0 | 1 | 437.57 | 430.98
| yago:Aberfan_disaster | Q19 | 0 | 3 | 109.93 | 12623
| yago:AbukumaExpress | Q20 | 0 | 1 | 110.18 | 112.66
| yago:Academy_of_Korean_Studies | Q21 | 0 | 1 | 104.49 | 119.35
| yago:Academy_of_the_Canyons | Q22 | 0 | 1 ] 9515 | 107.16
| yago:Accra_Sports_Stadium | Q23 | 0 | 1 ] 9167 | 107.15
| yago:Acheron_Boys_Home | Q24 | 0 | 1 | 106.18 | 110.22
| yago:Acheron,_Victoria | Q25 | 0 | 5 | 96.06 | 115.61
| yago:Achimota_School | Q26 | 0 | 2 ] 120.28 | 128.43
| yago:Acme,_ Washington | Q27 | 0 | 2 | 106.37 | 121.53
| yago:Acquaviva_Picena | Q28 | 0 | 1| 10237 | 115.10
| yago:AD_Torreforta | Q29 | 0 | 1 | 108.07 | 123.47
| yago:Ada,_Croatia | Q30 | 0 | 3 | 91.96 | 113.06
| yago:Adabay_River | Q31 | 0 | 1 ] 112.62 | 120.61
| yago:Adaganahalli | Q32 | 0 | 1 | 9123 | 118.95
| yago:Adair,_Idaho | Q33 | 0 | 3 | 11164 | 114.51
| yago:Adak_Airport | Q34 | 0 | 1| 11193 | 122.05
| yago:Adak,_Alaska | Q35 | 0 | 3 | 91.31 | 116.07
| yago:Adakanahalli | Q36 | 0 | 1T | 10541 | 121.67
| yago:Adakatahalli | Q37 | 0 | 1 | 108.14 | 99.44
| yago:Adalin_River | Q38 | 0 | 2 ] 10234 | 107.79
| yago:Adam_&_Steve | Q39 | 0 | 1 | 100.46 | 111.54
| yago:Adam_Airport | Q40 | O | 1] 9771 | 102.69
| yago:Adam_Orris_House | Q41 | O | 1 ] 108.72 | 104.87
| yago:Adam’s_Green | Q42 | 0 | 2 | 93.65 | 111.36
| yago:AdOn_Network | Q43 | 0 | 1 | 11473 | 128.12
| yago:AFI_Conservatory | Q44 | 0 | 2 | 110.62 | 123.65
| yago:ALZ_(steelworks) | Q45 | 0 | 1 | 98.44 | 110.07
| yago:APSA_Colombia | Q46 | 0 [ 1| 9299 | 121.10
| yago:ASFA_Soccer_League | Q47 | O | 1T ] 106.14 | 128.73
| yago:ASTM_International | Q48 | O | 2 | 103.31 | 125.01
| yago:ATP_Challenger_Guangzhou | Q49 | O | 1 | 108.21 | 111.38
| yago:ATP_Challenger_La_Serena | Q50 | 0 | 1| 12251 | 113.77
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Appendix B. Queries of Experiments in
Section 8.2
Table 19
Queries used in Section 8.2
Query ID
QI <http://xmlns.com/foaf/0.1/knows>
Q2 <http://xmlns.com/foaf/0.1/knows>{1,2}
Q3 <http://xmlns.com/foaf/0.1/knows>{1,3}
Q4 <http://xmlns.com/foaf/0.1/knows>&&TP (_o,<http://xmlns.com/foaf/0.1/homepage>)
Q5 (<http://xmlns.com/foaf/0.1/knows>&&TP (_o, <http://xmlns.com/foaf/0.1/homepage>)){1,2}
Q6 (<http://xmlns.com/foaf/0.1/knows>&&TP (_o, <http://xmlns.com/foaf/0.1/homepage>)){1,3}
Q7 <http://xmlns.com/foaf/0.1/knows>~(<http://xmlns.com/foaf/0.1/knows>{2,2})
Q8 (<http://xmlns.com/foaf/0.1/knows>{22})~(<http://xmlns.com/foaf/0.1/knows>{3,3})
Q9 <http://xmlns.com/foaf/0.1/knows>~(<http://xmlns.com/foaf/0.1/knows>{4,4})
Q10 <http://xmlns.com/foaf/0.1/knows>&(<http://xmlns.com/foaf/0.1/knows>{2.2})
Q11 (<http://xmlns.com/foaf/0.1/knows>{22})&(<http://xmlns.com/foaf/0.1/knows>{3,3})
Q12 <http://xmlns.com/foaf/0.1/knows>&(<http://xmlns.com/foaf/0.1/knows>{4,4})
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