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Verification of the electromagnetic 
deep‑penetration effect in the real 
world
Paolo Baccarelli1,6, Alessandro Calcaterra2,3,6, Fabrizio Frezza2,6, Fabio Mangini4*, 
Nicholas Ricciardella2, Patrizio Simeoni2,5,6 & Nicola Tedeschi2,6

The deep penetration of electromagnetic waves into lossy media can be obtained by properly 
generating inhomogeneous waves. In this work, for the very first time, we demonstrate the physical 
implementation and the practical relevance of this phenomenon. A thorough numerical investigation 
of the deep-penetration effects has been performed by designing and comparing three distinct 
practical radiators, emitting either homogeneous or inhomogeneous waves. As concerns the latter 
kind, a typical Menzel microstrip antenna is first used to radiate improper leaky waves. Then, a 
completely new approach based on an optimized 3-D horn TEM antenna applied to a lossy prism is 
described, which may find applications even at optical frequencies. The effectiveness of the proposed 
radiators is measured using different algorithms to consider distinct aspects of the propagation in 
lossy media. We finally demonstrate that the deep penetration is possible, by extending the ideal 
and theoretical evidence to practical relevance, and discuss both achievements and limits obtained 
through numerical simulations on the designed antennas.

Nowadays, electromagnetic fields are used for many applications: to bring information, as happens in commu-
nications systems, in radar applications, in electronic measurements, and in the imaging and spectroscopy of 
human body tissues, or to simply deliver power, as happens in the heating of foods or in several medical treat-
ments such as radiotherapy.

This is due to the high versatility of the electromagnetic fields, that bring with them raw power as long as 
signals that can trace any discontinuity that the field may find.

Anyway, there are physical constraints that limit the applicability of electromagnetic fields, such as the attenu-
ation offered by media in which they are travelling. Moreover, many of the media we are interested to pass 
through offer high attenuation.

For example, being able to overcome these limits, propagating deeper and deeper in such media, for the 
Ground Penetrating Radar (GPR)1 would mean being able to electrically scan wider areas, thanks to reflections 
that occur from deeper objects2. For tumor ablation, it would mean being able to treat wider cancerous tissues, 
due to the power delivered more in depth and less attenuated3.

In the literature4,5 there are analytical approaches to enhance the propagation in lossy media using plane 
waves: this phenomenon is simply called “deep-penetration effect”. Herein, we propose and demonstrate a non-
trivial way to achieve this fundamental result, by nevertheless considering a real scenario with the use of practical 
radiating elements, numerically modelled with an electromagnetic commercial software, i.e. CST MW Studio 
2019 (www.​cst.​com).

We will consider three different antennas. The first one is a classical horn antenna6 radiating a homogeneous 
wave. The second one belongs to the family of leaky-wave antennas (LWAs)7,8. Eventually, the horn TEM with 
a lossy prism9 (henceforth named HTwLP) will be considered. This structure also produces non-homogeneous 
waves since an attenuation vector is introduced by the losses of the prism medium. After some considerations 
on the characteristics of the inhomogeneous waves produced by the LWA and the HTwLP, we will show how 
these antennas can generate fields that propagate much more than the one produced by the horn, thus making 
deep penetration achievable with real antennas.
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It is well known10 that electromagnetic waves propagating in a medium are composed of time and space-
variant electric ( E ) and magnetic ( H  ) fields, that in order to satisfy the Helmholtz equation (derived from the 
Maxwell equations in a homogeneous region with no sources) must assume the form A = A0exp

[
−j(k · r − ωt)

]
 

where A and A0 represent either E or H  . The constant vector A0 contains the polarization characteristics, while 
the exponential factor determines the propagation features. In the wave equation, we defined with j the imaginary 
unit number 

(
j2 = −1

)
 , with t  the time variable, ω the angular frequency, r the position vector, and k the wave 

vector. The latter is a complex vector connected to both the medium properties (in which the wave is propagating) 
and the frequency. Furthermore, k can be thought as a combination of two real vectors, the phase vector β  , and 
the attenuation vector α through the expression k = β − jα . A wave in a lossy medium is said homogeneous, 
or uniform, when phase and attenuation vectors have the same direction, otherwise is said inhomogeneous10–12. 
In lossless media, the attenuation vector is either zero 

(
k = β

)
 , or it is orthogonal to the phase vector, i.e., α⊥β  . 

In a lossy medium, the attenuation vector must exist and, in this case, α̂β = θ < π/2 rad. In other words, the 
electromagnetic-wave radiation may or may not have an attenuation in a certain direction if the medium is 
lossless, while such an attenuation must always exist if the medium is dissipative, as one would expect.

Let us consider a lossless medium, that we indicate here as “Medium 1” and a lossy medium, indicated here as 
“Medium 2”, separated by an infinite planar interface (see Fig. 1). Let us assume a plane wave (called in the litera-
ture “incident wave”) coming from Medium 1 and incident on the interface with Medium 2. Then, a plane wave 
is transmitted in Medium 2 and reflected in Medium 1; here we are interested in the analysis of the transmitted 
wave. We indicate with k1 = β

1
− jα1 and k2 = β

2
− jα2 the wave vectors of the incident and transmitted waves, 

respectively, where β
1
 and α1 are phase and attenuation vectors for the incident wave and β

2
 and α2 are phase 

and attenuation vectors for the transmitted wave, maintaining the conventions introduced in4,9,13,14.
In5, extending and completing the results found in4, the authors demonstrate that, employing inhomogene-

ous plane waves, the normal component of the attenuation of the transmitted wave can be completely cancelled, 
allowing for infinite penetration: the minimal condition which permits deep penetration is the one that guar-
antees ζ2c = ζ2 = π/2 rad, and it is obtained for a critical value ξc of the incidence angle ξ1 defined either as:

or as:

depending on the characteristics of the media involved in the problem. In11 (1) and (2), we indicated with 
β1 =

∣∣∣β
1

∣∣∣ the amplitude of β
1
 , with α1 =

∣∣α1

∣∣ the amplitude of α1 , and with k1 =
√
k1 · k1 ; analogously, β2 , α2 

represent the amplitudes of the vector quantities β
2
 , α2 , respectively, and k2 =

√
k2 · k2.

The value ξc is found for β1 ≥ βc defined as follows:

In correspondence of βc , we will have an αc equal to:

(1)ξc =
1

2
arcsin

[
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k22
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Figure 1.   Case of incidence of an inhomogeneous wave coming from a lossless to a lossy medium. The interface 
between the media is planar, highlighted in red in the picture.
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The study5 also demonstrates the feasibility of a larger penetration, i.e., ζ2 ≥ ζ2c and it shows how the pen-
etration pattern changes employing different permittivity values for both Medium 1 and Medium 2: all media 
considered in5 are non-magnetic, i.e., µ1 = µ2 = µ0 , where µ0 represents the vacuum permeability. We will also 
consider non-magnetic media in the simulations presented in the following section.

Three categories of realistic-inhomogeneous waves are well known at the present days, and they can poten-
tially be investigated for this objective: the surface wave, the lateral wave, and the leaky wave15,16. Among those, 
the only wave which is not bonded to the separation surface between the media is the leaky wave, and therefore it 
represents the only known mean of achieving deep penetration. Furthermore, in5 it is demonstrated that only the 
leaky wave of the improper type is allowed for deep penetration, while that of the proper type, typically present 
in metamaterial LWA17,18, is shown to be unsuitable.

Another way to generate inhomogeneous waves, that differs significantly from the one cited above, involves 
the presence of losses in the medium. This approach was introduced in9 and foresees a primary source (for 
instance, a horn antenna) radiating a homogeneous wave toward a lossy prism. Once the primary wave has 
impinged on the prism, the transmitted wave, that travels into the prism, must possess an attenuation vector10,12 
due to the losses in the material, and once it reaches the end of the prism, if the surface is not parallel to the first 
one, the tangential component of this attenuation vector will be conserved19,20, generating another transmitted 
inhomogeneous wave, this time in the lossless space.

With these two different approaches, through an LWA generating an improper leaky wave5 and through a horn 
TEM with a lossy prism (HTwLP) to generate an inhomogeneous wave, we will verify the deep-penetration effect.

LWAs generate electromagnetic radiation through the continuous leakage of power along the aperture7,8, 
producing a wave that can be, in the near-field region, approximated by an inhomogeneous plane wave. In par-
ticular, uniform, non-periodic LWAs emit improper leaky waves, which are best suited for our goal. LWAs have 
already been proposed in the literature to improve  electromagnetic penetration in hyperthermia treatment21 
and ultra-high field magnetic resonance imaging3 leading to an improvement of the near-field effects. Here, we 
exploit and widen the theoretical results provided in5 to prove applicability and limits of the deep-penetration 
equations in realistic scenarios, by using electromagnetic full-wave numerical simulations.

The antenna chosen for the first numerical experiment is the well-known Menzel Antenna22–25, a simple 
uniform microstrip antenna.

The microstrip antenna can radiate through its high-order modes26, e.g., the EH1 mode, see Fig. 2, acting as 
an LWA, since its fundamental mode is mainly confined in the substrate. The Menzel antenna represents a good 
candidate for the study of the deep-penetration effect, not only for its simplicity but mainly because it can gener-
ate leaky waves with the desired phase vector β1 and with enough large amplitudes of the attenuation vector α1 , 
as required in Eqs. (3) and (4) by increasing the conductivity of the lossy medium5.

The HTwLP was proposed in9 and further investigated in19,20. The analysis performed in19 shows that α1 of 
the generated inhomogeneous wave can be improved by increasing the σ of the prism, this comes to a cost since 
some of the power emitted by the antenna gets dissipated. Equations (5) and (6) show the relationship between 
the phase and attenuation vectors in the air of the generated inhomogeneous wave depending on the character-
istics of the lossy prism and on the ξair , the angle formed by the phase vector and the normal to the second 
interface between the prism and the air.

Note that the only hypothesis to achieve those relations is χprism = π/2 , which leads to

(4)αc =
k1√
2

√√√√√−1+

√√√√1+

[
2Im

(
k22
)

k21

]2

Figure 2.   (a) Menzel Antenna design principle, cross-section view, the top metal layer (microstrip) has a 
width of W, and a thin dielectric substrate of height h, whose relative permittivity is εr > 1 , separates it from the 
ground plane. (b) Longitudinal view: the antenna has length L, and it is fed at z = 0 and closed to a matched load 
at z = L. In the figure, the radiation due to the first higher-order (EH1) mode is illustrated.
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In20 was shown how the HTwLP can be a good candidate for the deep penetration, even if a simple two-
dimensional model was considered. In this paper, a realistic structure will be investigated.

Results
Description of the setup.  We compare the field produced by the Menzel antenna and the HTwLP with the 
one produced by a customary pyramidal horn antenna6,27 at the frequency f = 12 GHz. All the antennas radiate 
into a vacuum: in close proximity, parallel to the antenna aperture, is placed a lossy parallelepiped invested by 
this radiation. The apertures of the antennas are positioned on the y = 0 plane, and the interface with the lossy 
medium is at y = yif  : the value experimentally chosen for yif  is 1.5� = 37.5 mm, being � = c/f  the vacuum 
wavelength, see Fig. 3. Considering the LWA first, when the source is finite, and therefore realistic, the elec-
tromagnetic field radiated by the LWA decays exponentially along the longitudinal antenna aperture from its 
maximum, at the feeding point, here located on the origin of the axes (0, 0, 0) . In this scenario, we need to find 
a region in which the improper-wave behavior exists at the interface with the lossy medium: in other terms, the 
interface with the lossy medium needs to be outside the shadow cone in which the radiation decays (see Fig. 2).

We designed the Menzel antenna to radiate a leaky wave with a radiation angle θ = π/4 rad: this value of the 
angle θ minimizes the amplitudes of both β1 = β1c and α1 = α1c that give rise to deep penetration and allows 
for a practical disposition of the antenna and lossy medium.

The choice taken simplifies the antenna design because an effective non-periodic LWA becomes more chal-
lenging as α1 increases: in particular, the Menzel antenna tends to become shorter and its field tends to decay 
earlier, thus limiting the region where the inhomogeneous plane wave is present. The objective was to reproduce 
deep-penetration effect, i.e. ζ2 = π/2 , on a lossy medium, LM1, characterized by parameters ε2 = ε0 , µ2 = µ0 , 
i.e. the relative permittivity εr and the relative permeability µr are both equal to one, and having conductivity 
σ2 = 0.05 S/m.

Preliminary results of the analysis of the Menzel antenna in terms of deep penetration were shown in28, in 
which the agreement between the antenna and theoretical model5 was illustrated.

The HTwLP was designed to achieve β = β1c and α = α1c . Once the σprism was chosen according to the desired 
α , the structure was optimized. In this analysis, the upper wedge of the prism χ , according to19, was chosen equal 
to π/2 rad to maximize the conservation of α . The prism was chosen with εr = µr = 1 to limit reflections at the 
prism interfaces, simplifying the numerical analysis. Also, the HTwLP was designed to radiate with an angle of 
π/4 rad, as the Menzel antenna. Eventually, the horn antenna chosen presents broadside radiation. All antennas 
were simulated using the F.I.T. (Finite Integration Method)29,30 module implemented in the CST Microwave 
Studio Software licensed to the DIET Department of “La Sapienza” University of Rome.

Review of the antenna characteristics in terms of deep‑penetration effect.  In this section, we 
will analyze and comment on the behavior of an improper leaky wave impinging at the interface between the air 
and the lossy medium LM1 and of the relevant transmitted field propagating within the latter. In the following, 
most of the results will be shown for the LWA, but they can be naturally extended to the HTwLP. In the numerical 
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Figure 3.   Design of (a) horn antenna, (b) Menzel antenna, and (c) horn TEM with lossy prism in front of the 
lossy medium on CST.
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simulations, we evaluated the electric field on the symmetry plane x = 0 of all the structures along the longitudi-
nal direction and we exported the amplitudes of the electric-field components for further processing.

As concerns the pyramidal horn antenna, we can evaluate the electric-field trend in the lossy medium consid-
ering its normalized value along the y-axis (i.e., the antenna symmetry axis), where the electric-field amplitude 
produced by the antenna is maximum. The field was normalized by its value on the same axis ( x = 0 and z = 0 ) 
at y = yif  , i.e. at the interface between air and the LM1.

It is more difficult to evaluate the penetration on a mono-dimensional curve when the other two antennas 
are considered because of the π/4 incidence angle.

For instance, let us start with the LWA case. As shown in Fig. 4, we take N samples on the longitudinal direc-
tion of the antenna aperture, i.e. along the z-axis, at a sample rate of 1 mm equal to �/25 , so that zk represents a 
plane passing by the kth point on the longitudinal direction, distant k millimeters from the plane z = 0 (where the 
field source is located) and parallel to such a plane. Possible values for zk are 0, . . . , L, L+ 1, . . . ,N − 1,N where 
z = 0 is the plane passing through the feeder and z = L corresponds to the plane passing through the termina-
tion, where we place an appropriate matched load to absorb the residual radiation, thus preventing reflections 
from the termination. As a consequence of the radiation angle of π/4 , N had to be chosen reasonably larger than 
L , and in particular N = L+ 5� , to ensure that the radiation fully impinged on the LM1.

In28, we evaluated a dimensionless quantity obtained by normalizing the amplitude of the electric field 
E
(
0, y, zk

)
 ( E

(
0, y, zk

)
=

∣∣E
(
0, y, zk

)∣∣ ) on the longitudinal symmetry plane to the amplitude of the electric field 
evaluated at 

(
0, yif , zk

)
, obtaining a family of mono-dimensional curves, one for each value of zk considered:

Curves describing E
(
y
)∣∣

zk
 , for few particular z = zk values are illustrated in Fig. 5a: it is possible to verify that 

the generated electromagnetic wave starts presenting improper behavior for zk ≥ 80 mm.
By reducing the distance yif  , the leaky-wave behavior would have been experienced for zk < 80 mm, but, at 

the same time, having the medium too close to the antenna could bring it in the reactive region, where the lossy 
medium becomes part of the antenna itself, changing completely the nature of the electromagnetic radiation: 
yif = 1.5� was demonstrated to be a good compromise between the two, opposite, requirements (see “Methods”).

The antenna was designed to achieve ζ2 = π/2 on LM1: from5 it is expected that the inhomogeneous wave 
amplitude value remains constant propagating into LM1 and that, maintaining constant permittivity ǫ2 and per-
meability µ2 , the inhomogeneous wave attenuates ( ζ2 < π/2 ) when σ ′′

2 > 0.05 S/m and its amplitude increases 
( ζ2 > π/2 ) if σ ′′

2 < 0.05 S/m. The behavior demonstrated for plane waves was confirmed here through the 
numerical simulations: the amplitude of the normalized E-field indicator as a function of the height y is shown for 
zk = 125 mm = 5� , confirming the preliminary results illustrated in28, reported here for completeness in Fig. 5b.

This representation gives a good intuitive description of the electric field produced by the LWA, but such a 
description, according to Eq. (8) becomes critical when zk approaches values larger than L , because the amplitude 
of the electric field at yif  becomes negligible and therefore E

(
y
)∣∣

zk
 tends to diverge: this is apparent in Fig. 6a 

(green curve), where the amplitude of the electric field at the interface with LM1 is illustrated.
Here, we see a quickly growing field, which remains almost constant first, and then decreases with a large 

slope: this behavior is a direct effect of the finiteness of the antenna. The contributions to the field due to the 
electric field leaked in the initial sections of the antenna aperture start summing up to a maximum, reached at 
zmax . Then, those contributions become exponentially weaker with the distance from the source, since the power 
is radiated at a constant rate along the aperture until the remained field is totally absorbed by the load placed 

(7)E
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Figure 4.   Menzel antenna with (a) the transverse planes cutting the antenna orthogonally and (b) the radiated 
field.
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at z = L . This is also visible in Fig. 4, where the trend of the field at the interface, i.e. for y = yif  , is qualitatively 
shown in a solid purple line.

In Fig. 6a, zmax also represents the border of the shadow cone. For y > yif  and z > zmax , the radiated field 
behaves as an improper leaky wave.

Comparison between horn antenna, LWA, and HTwLP in terms of electric‑field penetra‑
tion.  To numerically validate the deep-penetration effect, we considered a field amplitude normalization able 
to take into account the different angles of power propagation in the three scenarios (horn, Menzel, and HTwLP 
antenna):

At the denominator, all the amplitudes of the electric field for zj < zk are averaged because they are assumed 
to contribute to the electric-field amplitude observed at the point P

(
0, y, zk

)
 , where y > yif  . The curve describ-

ing the average electric-field amplitude at the interface between lossy medium and vacuum, as a function of zk , 
which is the denominator of Eq. (9), is displayed in black in Fig. 6a for the Menzel antenna and in Fig. 6b for 
the HTwLP. Note that for the pyramidal horn, the result is trivial: due to the symmetry of the structure and the 

(9)E
(
y
)∣∣∣

zk
=

∣∣E
(
0, y, zk

)∣∣
∑j=k

j=0

∣∣E
(
0, yif , zj

)∣∣/(k + 1)

Figure 5.   (a) Amplitude of the electric field E(y) produced by an LWA in a vacuum and sampled at a point 
p0 = p(0, yj, zk) normalised to the value of the electric-field amplitude calculated at pif = p

(
0, yif , zk

)
 ; being 

zk > 0 and yj > yif = 1.5� . (b) Amplitude of the electric field E for z = 5� in three different media with 
growing conductivity. The LWA was designed such that the attenuation vector would have been parallel to the 
separation surface for σ = 0.05 S/m, µ = µ0 , and ε = ε0.

Figure 6.   Amplitude of the electric field at the separation interface placed at the distance 1.5� from the antenna 
aperture, the actual field value ( Ex ) is shown in green, while the averaged value is shown in black: (a) for the 
LWA and (b) for the HTwLP. In blue, the zmax at which the maximum value of the actual field is indicated in 
both figures.
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fact that the antenna is radiating at the boresight, the zmax for the horn (that is the z value at which we have the 
maximum of the electric field when x = 0, y = yif  ) occurs at z = 0 mm.

In Fig. 7, E
(
y
)∣∣∣

zk
 curves for few zk values compared with the amplitude of the electric field produced by the 

horn antenna, normalized as described in Eq. (9) (blue line), are shown. The horizontal cyan line represents the 
penetration factor δ = 1/e.

It is visible how these averaged curves depend on z. For this reason, to simplify the comparison between the 
three antennas, we decided to refer to the curves by the distance from the zmax , that is the value of z at which the 
maximum value of the | E

(
0, yif , z

)
| occurs for any antenna (see Fig. 6). It is clearly visible how impinging with 

an inhomogeneous wave allows us to reach a much deeper relative penetration, with respect to the case of the 
standard horn antenna (i.e., homogeneous case). Also, the HTwLP shows a similar behavior with respect to the 
LWA: the trend is the same, but the obtained penetration, with respect to the field at the interface, is deeper, thus 
numerically confirming the effectiveness of the selected inhomogeneous waves in obtaining deep penetration.

An alternative choice for comparing the penetration achieved in the chosen lossy medium through the electric 
field produced by the antennas, is to normalize the amplitude of the electric field at any point P(0, y, z) inside 
the medium by the maximum amplitude of the electric field at the interface between lossy and lossless medium:

The results for all the antennas are shown in Fig. 8.
The comparison between the fields in the lossy medium shows how antennas providing non-homogeneous 

waves allow deeper penetration than the pyramidal-horn antenna, this is verified for larger values of zk , as 
expected.

The penetration evaluated as described above gives us certainly an encouraging result, and this is logically 
the most suitable way to evaluate the penetration in many applications, in which the maximum power at the 
interface is given as a requirement. All the formulas employed up to now describe the trend of the electric field 
as a function of the observation point, but it is also important to provide a comparison between the average 
fields obtained inside the lossy medium: this kind of estimate gives us a broader indication on the penetration 
produced by the structures as a global effect.

It is easy to compute an electric-field average for the pyramidal-horn antenna, i.e. it is sufficient to compute 
the average of all samples in a direction parallel to the antenna aperture ( z ∈ [0; 140] mm) for every value of yj 
on the y direction, with yj > yif  , i.e.:

having considered N  samples {z0, z1, . . . , zN−1} on the z-axis parallel to the antenna aperture. However, we 
note that for the other two antennas the evaluation of this average field is not so immediate, because the field is 
propagating at an angle of π/4 rad. Therefore, was developed an algorithm which can be applied to any radiating 
angle to select the appropriate sample distribution. Let us describe the produced algorithm, looking at the LWA 
first. We preliminarily verified the field at the termination of the LWA aperture, obtaining:

Equation (12) shows us that about 24% of the electric field is absorbed by the matched load at the LWA ter-
mination, corresponding to an absorbed power PLP0  of about 6%.

At this point, NLWA samples with a sampling rate of 1 mm are selected between (0, 0, 0) and (0, 0, 125) on the 
overall radiating aperture. For the pyramidal horn antenna, NHORN samples, at a sampling rate of 1 mm, are 
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∣∣E
(
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)∣∣
maxj

∣∣E
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)∣∣

(11)E
(
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(12)
|E(0, 0, L)|
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∼= 0.24

Figure 7.   Comparison between horn antenna, LWA, and HTwLP penetration according to Eq. (9). The 
horizontal line represents the value 1e . For each antenna, zmax is the value of z at which the maximum absolute 
value of the field when y = yif occurs. Note that for the horn zmax , due to the symmetry, is simply placed at 
z = 0.
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chosen on the z-axis on the aperture in a symmetrical position from the center of the pyramidal-horn antenna 
aperture (posed at z = 0 ). Those samples were chosen such that the minimal electric field was inside the 24% of 
the maximum electric field obtained at z = 0 , i.e. ( EHORNMAX =

∣∣EHORN (0, 0, 0)
∣∣ ) analogously to the field radiated 

by the LWA, in which the field at the termination is 0.24 times the one at the excitation port (see Eq. 12). The 
same was done for NHTwLP : samples were chosen at a sampling rate of 1 mm inside the 24% of the maximum 
electric field.

Hence, for every yi , being yi > yif  , the electric-field amplitude was then mediated by taking N samples in the 
z direction, where N = NLWA for the LWA microstrip antenna, N = NHTwLP for the horn-TEM with the lossy 
prism, and N = NHORN for the pyramidal horn antenna. For every yi ≥ yif  , the employed algorithm searches 
the maximum amplitude of the electric field on the z direction, i.e. it looks for a value zM such that:

After zM is found, we look for N samples with steps equal to 1 mm around zM . For LWA it means taking 
the NLWA = 125 samples around the maximum where the absolute value of the electric field is bigger. For the 
pyramidal horn and the HTwLP it means taking the biggest values of the absolute value of the electric field 
around zM as far as the condition 

∣∣E
(
0, y∗, z

)∣∣ ≥ 0.24
∣∣E
(
0, y∗, zM

)∣∣ is verified ( y∗ stands for the particular value 
of y we are considering).

The implemented algorithm, clearly, does not assume any field symmetry around the maximum value of the 
amplitude of the electric field resulting in a more accurate estimation than the one that could be achieved just 
assuming the field symmetric around zM.

Also, for the pyramidal horn, one could think to assume zM to be always 0, which is on the symmetry axis 
of the structure where the horn is prevalently radiating, or, for the LWA and the HTwLP, that zM moves with 
an angle of π/4 with the normal to the separation surface. We rejected these approximations to achieve results 
free from hypotheses on the field shape. In particular, the samples on the z-axis are not in general aligned 
for yi  = yj , i.e., zn(i)  = zn(j).The process is repeated for every yi+1 = yi + 1 mm in the simulation domain. The 
described algorithm was implemented, and the samples chosen for the three antennas are shown in Fig. 9. The 
computed averaged value is then normalized by the relevant sum calculated at the first step, i.e. at the separation 
surface yif :

(13)|Eyi
(
0, yi , zM

)
| ≥ |Eyi

(
0, yi , zi

)
|∀zi ∈ [0;N]

Figure 8.   Electric field in the lossy medium produced by the (a) horn, (b) LWA and (c) HTwLP. The field was 
computed in dB from the highest amplitude of the field at the interface. The lossy medium is positioned at 
y = 37.5 mm. Dimensions are in mm.
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Differently from the case seen in Eq. (9) where a family of curves was found, a single curve is obtained. The 
normalized fields calculated are shown in Fig. 10, where samples are fitted by using a procedure based on the 
ordinary least square algorithm. 

This last comparison gives a very clear indication in terms of the effective electric-field penetration achieved 
by employing these three different antennas. Again, coherently with the results shown in the previous diagrams, 
Fig. 10 illustrates that the penetration obtained by means of the horn antenna is higher than that from the LWA 
and the HTwLP, for low y values. Then, for greater y values, the effect of the leaky-wave improper behavior 
starts appearing, reducing the slope of the attenuation curve for the LWA, which finally results constantly above 
the one described by the horn radiation. The field radiated by the HTwLP shows quite a linear slow decay that 
propagates deeper with respect to both the horn and the LWA inside the lossy medium. These results on the 
penetrating fields within the lossy medium, averaged on an appropriate number of samples, give a clear and 
solid indication of the potentiality of the selected (improper) inhomogeneous waves, properly generated by the 
proposed LWA and HTwLP, in obtaining deep penetration, greatly outperforming homogeneous waves emitted 
by standard horn antennas.

Discussion
For the very first time, a possible implementation of the deep-penetration effect is presented by designing two 
radiators: a low-cost and low-profile Menzel antenna and a 3-D horn TEM antenna applied to a lossy prism.

Through careful design and engineering of the proposed radiators, it is possible to obtain a penetration deeper 
than that performed by more traditional antennas, such as a standard horn antenna. We compared the fields 
radiated from the selected structures by using different effective and fair approaches: all these methods confirmed 
the fundamental finding that impinging with an improper inhomogeneous wave results in the generation of a 
transmitted wave that is less attenuated with respect to that of a homogeneous one. This work, although veri-
fies the deep-penetration effect for a specific value of the frequency and of the conductivity, being the involved 
structures typically narrow band, opens avenues to the practical achievement of the deep propagation of elec-
tromagnetic waves in lossy media. It paves the way for promising applications in imaging and spectroscopy as 
well as in radar systems and medical treatments.

(14)E
(
yi
)
=

∑k=N+n(i)

k=n(i)

∣∣E
(
0, yi , zk

)∣∣
∑j=m+N

j=m

∣∣E
(
0, yif , zj

)∣∣ ∀yi ≥ yif

Figure 9.   Chosen samples for (a) horn, (b) LWA microstrip, and (c) HTwLP to compute the average 
penetration for antenna structures. Samples were chosen according to the radiation diagram in a vacuum.

Figure 10.   Comparison between horn, LWA, and HTwLP penetrations averaged according to Eq. (14) in a lossy 
medium for which σ = 0.05 S

m ,µr = 1andεr = 1.
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Even though the potential for deep penetration is fully demonstrated, the simulations performed also high-
lighted that reaching large penetrations is subject to some challenges, which might call on more theoretical and 
experimental efforts in the near future.

In particular, as concerns uniform LWAs, when the conductivity of the lossy medium is increased, then the 
required values for βc and αc will be greater, as can be seen in Eqs. (3) and (4). Consequently, the antenna lon-
gitudinal dimension has to decrease (see Eq. 6) and the propagated field starts decaying earlier. The numerical 
experiment performed in this paper employed an antenna length of 5� , for larger values of the conductivity an 
antenna even shorter would be required, thus reducing the area in which the propagated field behaves as an 
inhomogeneous wave, and consequently reducing the penetration. The possibility of implementing 2-D LWAs 
or linear arrays of LWAs7,8,31 could be investigated in future studies to emit inhomogeneous waves over a wider 
area and illuminate bigger volumes of lossy medium.

Furthermore, the HTwLP to penetrate in a more conductive medium needs a more lossy prism: setting the 
prism parameters as we did, i.e. χ = π/2 , εprism = 1,µprism = 1 , it can be shown that the σprism must be the same 
as the medium, i.e., σLM1 . This can be easily obtained by explicating Eq. (6) for σprism , using the angle of incidence 
ξ = π/2 rad and the attenuation αc described in Eq. (4). The drawback here is a reduced efficiency, due to higher 
prism losses. Designing a longer or bigger feeder horn TEM, thus increasing the directivity8,32, this effect can be 
compensated, since the field is more focused: the loss-efficiency remains the same, but the beam efficiency is 
increased. Otherwise, to keep the same dimensions, it is possible to reduce the path that the wave has to go 
through into the lossy prism, by reducing χ and then the component of α

_
 that is conserved.

If one would take the amount of power radiated at the aperture as a reference, he could see that more power 
is delivered within the LM1 by the horn antenna, as it is apparent in Fig. 11. Anyway, it is also clear that the 
power decreases much faster within the medium when the horn is considered. When practical applications 
suitable for the deep-penetration effects are considered, such as hyperthermia, this does not represent the best 
outcome, as the amount of maximum power delivered at the interface with LM1 has to be considered, instead, 
for obvious reasons (e.g., in order to fix a desired temperature or avoid to burn the surface). In those cases, a 
constant power/field at the interface must be imposed and it makes sense to consider the power/field within 
LM1 normalized by such a power/field. Doing so, we can see a clear advantage of the behavior exposed by the 
inhomogeneous radiators proposed.

Methods
Design of the horn antenna.  Horns are medium-directive traveling-wave antennas6,27 widely used in 
many fields, and their low Voltage Standing Wave Ratio (VSWR), wideband and easy manufacturing make them 
very successful, especially at the microwave band.

A pyramidal horn antenna was designed and simulated, taking into account some aspects.
Firstly, we performed our simulations inside the radiating near-field (Fresnel) region and not inside the reac-

tive near-field region: for a horn antenna, the reactive field is usually considered negligible already at a distance 
r0 = � from the aperture7, where the Fresnel region starts. The Fresnel region conventionally extends beyond 
the aperture up to a distance r1 ≤ 2D2/� , being D the maximum diameter of the antenna aperture. For larger 
distances, the antenna is usually considered as radiating in the far field. The upper boundary of the Fresnel region 
illustrated is based on a criterion which establishes the maximum phase error to φe = π/8 rad. In our case it is 
D = 140 mm at the operating frequency of 12 GHz, therefore the near-field radiating region extends from 25 mm 
to 1.6 m from the antenna aperture. Even though the near field extends for approximately 64� we performed the 
simulation putting the lossy medium at the very short distance of r = 3/2� = 37.5 mm.

This distance was chosen to comply with the LWA requirements illustrated in the next paragraph. The base 
of the lossy parallelepiped LM1 was chosen as large as the antenna aperture, in order to better approximate the 
infinite planar separation condition requested by the theoretical approach. However, the assumption of a lossy 
medium larger than the antenna aperture is relevant in many practical near-field applications, e.g. hyperthermia3 

Figure 11.   Percentage of power radiated and loss in the three cases.
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or Ground Penetrating Radar (GPR)1: in both such examples the lossy medium to be heated and explored, can 
be many times wider than the antenna used for the task.

Design of the Menzel leaky‑wave antenna.  We modelled a planar, mono-dimensional, and non-peri-
odic structure, derived from the Menzel33 antenna, which consists of a simple uniform microstrip line etched on 
a dielectric slab. This structure was selected because it is highly efficient, with only the EH1 leaky mode excited 
and the unwanted higher-order modes under cut-off condition.

The antenna was designed to radiate in a vacuum ( k1 = k0 ) at the frequency of 12 GHz to allow deep penetra-
tion with an incident angle ξ1 = π/4 rad on the lossy medium, positioned parallel to the antenna aperture and 
previously named LM1. Given those requirements, β1c in Eq. (2) assumes the value:

and consequently, α1c/k1 assumes the value:

It has to be noted that, when an LWA is considered, the value of α1 does not follow directly from the value 
of β1 as it happens for the plane wave, this is because an LWA always produces a field which can be expressed as 
the sum of multiple plane waves: antenna parameters have to be tuned to match the specific β1 and α1 values8. 
Uniform LWAs are usually designed to meet certain requirements, not in terms of amplitudes of phase and attenu-
ation vectors as illustrated in Eqs. (15) and (16) but in terms of their longitudinal components, i.e. βz/k1 and 
αz/k1 , respectively, those values can easily be obtained once the radiation angle is known:

Here, we employed a well-established full-wave numerical approach first presented in34 and based on a mixed-
potential integral equation in a unit-cell environment and solved by the Method of Moments (MoM)35 in the 
spatial domain through a triangular Delaunay mesh22,36: the proposed technique was designed for periodic struc-
tures but it applies also to uniform structures such as the one considered here. The implemented code assumes 
an infinite transverse section (i.e., along the x-axis) of the background grounded dielectric structure, therefore 
the provided results are affected by a certain degree of approximation when the structure is laterally truncated.

The obtained values for both βz/k1 and αz/k1 of the EH1 leaky mode well approximated the ones requested 
by Eqs. (17) and (18), and specifically the following values were found:

The antenna was then designed in a simulator to radiate at least 94% of the power injected in input, i.e., 
P(L)
P(0) = 0.06 , and furtherly optimized. The remaining power was absorbed by a matched load placed at the 
termination. The relevant antenna length L, along the z-axis, obtained by employing the theoretical equations 
in7,8, is reported here:

Further numerical optimizations led the longitudinal size on the zaxis to approximately L = 5� = 125 mm: 
this value resulted about �/2 longer than the approximated value in Eq. (20), thus leading to a ratio between 
radiated and injected power slightly higher than 94%. In our simulations, only the mode of interest was excited: 
a possible prototype would require the suppression of undesired modes. In the case of the considered LWA, the 
dominant EH0 bound mode can be suppressed feeding the structure with two symmetric stubs coming from 
below and soldered to the microstrip line. To excite the mode of interest, such two stubs must be excited with a 
phase difference of π at the frequency of interest7. Otherwise one could think to use an asymmetric feed arrange-
ment and cutting the currents on the microstrip with some transverse slits on the centerline33. Eventually, the 
suppression of the fundamental mode can be obtained through a vertical via connecting the central axis of the 
microstrip with the ground plane7: such a design is equivalent to considering just half of the Menzel antenna 
whose LWA radiation pattern is very well approximated by the one of the full antenna.

Design of the horn TEM with lossy prism.  The design of the horn TEM with lossy prism has to deal 
with several drawbacks. In19, an extensive study of the structure has been performed, and in20 we proposed a 2D 

(15)β1c

k1
=

1
√
2

√√√√
1+

√

1+
[

2× 0.05

2π × 12× 109 × 8.85× 10−12

]2
≈ 1.0027879

(16)α1c

k1
=

√[
β1c

k1

]2
− 1 ≈

√
1.00278792 − 1 ≈ 0.0747234

(17)
βz

k1
≈ 1.0027879

√
2

2
≈ 0.711

(18)
αz

k1
≈ 0.0747234

√
2

2
≈ 0.0528

(19)

{
βz
k1
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]
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model where the lossy prism began exactly where the horn TEM terminated. Here we inserted the horn TEM 
inside the prism as we noticed that in this way the surface waves at the interface air-lossy prism were limited.

We began the design by setting the σprism using Eqs. (5) and (6), imposing α = α1c , β = β1c , f = 12 GHz, 
ξ = π

4  and the refractive index nprism = 1 . Here Eq. (6) written for σprism is reported:

The unitary values for relative permittivity εr and permeability µr can, in practice, be accomplished by using 
foams carefully loaded with carbons or other dissipative materials. In this analysis, those values resulted useful 
to limit reflections at the interfaces between air and the lossy prism.

Therefore, the relative permittivity, relative permeability, and conductivity of the lossy prism are:

With this choice of εprism and µprism , the incidence angle of the horn TEM with the prism must be equal to 
ξinc = ξ = π

4  rad, and this is the angle at which the horn TEM is positioned with respect to the prism.
The horn TEM was designed considering some aspects: first, it has to be long enough to show a wave that can 

be locally approximated with a plane wave when impinging on the prism. Also, to prevent the scatter contribution 
of the prism wedges, the horn TEM was optimized to limit the portion of the field reaching them. The prism was 
designed much larger than the horn TEM to maintain the hypothesis of infinite prism to hold. The efficiency is 
reduced due to prism losses: this effect is more evident as the path that the wave has to pass through the prism 
is longer. Eventually, all the side lobes are due to the field scattered by the prism wedges.
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