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Abstract
In this paper, we design and evaluate the performance of the Multi-resolution Twinned Residual Auto-Encoders (MR-TRAE)
model, a deep learning (DL)-based architecture specifically designed for achieving multi-resolution super-resolved images
from low-resolution (LR) inputs at various scaling factors. For this purpose, we expand on the recently introduced Twinned
Residual Auto-Encoders (TRAE) paradigm for single-image super-resolution (SISR) to extend it to the multi-resolution (MR)
domain. The main contributions of this work include (i) the architecture of the MR-TRAE model, which utilizes cascaded
trainable up-sampling modules for progressively increasing the spatial resolution of low-resolution (LR) input images at
multiple scaling factors; (ii) a novel loss function designed for the joint and semi-blind training of all MR-TRAE model
components; and (iii) a comprehensive analysis of the MR-TRAE trade-off between model complexity and performance.
Furthermore, we thoroughly explore the connections between the MR-TRAE architecture and broader cognitive paradigms,
including knowledge distillation, the teacher-student learning model, and hierarchical cognition. Performance evaluations of
the MR-TRAE benchmarked against state-of-the-art models (such as U-Net, generative adversarial network (GAN)-based,
and single-resolution baselines) were conducted using publicly available datasets. These datasets consist of LR computer
tomography (CT) scans frompatientswithCOVID-19.Our tests,which exploredmulti-resolutions at scaling factors×(2, 4, 8),
showed a significant finding: theMR-TRAEmodel can reduce training times by up to 60% compared to those of the baselines,
without a noticeable impact on achieved performance.

Keywords Image multi-resolution · Semi-blind joint training · Training time vs. performance trade-off · Auxiliary multiple
decoding output branches · Knowledge distillation · Teacher-student learning paradigm · Hierarchical cognition
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Background, Motivations, and Goals

The aim of image super-resolution (SR) is to improve the
visual quality of blurred and potentially noisy low-quality
images. SR achieves this by generating one or more high-
resolution (HR) versions of a given low-resolution (LR)
image. The role of image SR is recognized across vari-
ous domains, including biomedical research, surveillance,
remote sensing, and medical diagnosis. In these fields, the
enhancement from LR to HR images may play a key role,
due to the constraints imposed by existing computational and
communication resources [1].

In principle, image SR can be achieved through meth-
ods in either the hardware (HW) or software (SW) domains
[2]. HW-based SR techniques offer rapid computation due to
less reliance on software processing but often necessitate an
increase in HW chip size or a reduction in pixel/sensor sizes.
However, enlarging the chip size leads to higher costs and
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power consumption, while shrinking pixel or sensor sizes
can decrease light intensity and increase shot noise. More-
over, HW-based SR approaches usually require costly and
complex system redesigns [3]. As an alternative, SW-based
SR techniques present a less expensive option that does not
necessitate changes to the existing HW configuration [3].

Image SR techniques, whether based in HWor SW, can be
categorized into multi-frame image super-resolution (MISR)
or single image super-resolution (SISR) on the basis of the
number of input images processed simultaneously [4].MISR
techniques enhance image resolution by combining various
spatial views of the same scene. Conversely, SISR techniques
generate one or more HR images, at multiple spatial resolu-
tions, from a single LR input image. SISR is particularly
relevant in application scenarios where multiple scene views
are unavailable or when the temporal correlation between
views is low [1]. However, increasing the spatial resolution
of single images, such as de-blurring LR computer tomog-
raphy (CT) scans, poses significant challenges due to the
computing-intensive nature of the process. This complexity
arises because the SR problem is inherently ill-posed; that is,
it is an optimization problem that typically results in multiple
solutions of differing visual quality [4]. Various traditional
optimization techniques have been employed to address the
SISR challenge, including non-linear regularization, filter-
ing, wavelet-based, and statistical-based methods [5].

Finally, deep learning (DL)-based techniques inspired by
biological processes have been gaining momentum in the
SISR field. This is largely attributed to their ability to repli-
cate human brain cognitive processes, which learn complex
mappings from examples without the need for predefined
formal models. This contrasts with traditional optimization-
based approaches; DL-based methods try to emulate the
reasoning processes of the brain. They autonomously learn
the relationships between different datasets, enabling the
extraction of spatial patterns and features that are difficult—
or sometimes impossible—to model analytically [2, 6].

Classification of Current DL-Based Approaches
for SISR

In principle, state-of-the-art DL-based SISR techniques are
categorized into supervised, unsupervised, and domain-
specific approaches [7]. Below, we provide a brief overview
and comparative analysis of their respective pros vs. cons
under the SISR realm.

In the supervised approach to SISR,DLmodels are trained
using datasets containing paired LR and HR versions of
each image. Through per-image comparison of these ver-
sions, the model learns to convert, during the testing phase,
each LR image into one or more super-resolved outputs at
various scaling factors. Although this method often results
in images of high visual quality, its effectiveness depends on

the availability of paired LR/HR images for training. Con-
sequently, supervised SISR techniques are mainly applied
in fields where high-quality HR images can serve as ground
truth, such as in some medical applications [4].

The main feature of unsupervised SISR techniques, also
known as blind SISR methods, is their ability to be trained
without the need for paired LR/HR image datasets [4].
Depending on the implemented training approach, unsuper-
vised SISR methods utilize (i) unpaired datasets of HR and
LR images, so as to give rise to the so-called weakly unsu-
pervised training, or (ii) datasets consisting of a single LR
image, in order to extract intra-image statistics during the
training [4]. Emerging unsupervised SISR methods increas-
ingly incorporate the GANs [8]. While unsupervised SISR
approaches do not require the utilization of training datasets,
the visual quality of the rendered images does not match that
achieved by their supervised counterparts [8].

Finally, domain-specific approaches to SISR are designed
for specific types of images or application areas, such as satel-
lite imagery SISR and facial imagery SISR. These methods
stand out by using specific domain knowledge to fine-tune
the loss functions used during training. By concentrating
on particular domains, these models can deliver high per-
formance within their intended application areas. However,
they usually lack the ability to generalize across unrelated
domains [7].

Each of the methodologies discussed—namely super-
vised, unsupervised, and domain-specific approaches—has
its advantages and disadvantages in SISR. Supervised meth-
ods are known for their stable training processes but require
paired LR and HR image datasets for training. Unsupervised
SISRmethods,while eliminating the need for paired datasets,
may not achieve the same level of image quality as supervised
techniques. That is particularly critical in medical applica-
tions where the accuracy of spatial details is more important.
The training of unsupervised methods is more prone to insta-
bility and can result in super-resolved images damaged by
artifacts in HR outputs. Domain-specific SISR models give
great performance within their designated application areas,
but not in applications outside their specialized domain.

Recent studies, such as those by [1, 7], highlight the poten-
tial of domain-oblivious semi-blind (i.e., hybrid supervised-
unsupervised) training techniques for SISR applications.
Thesemethods aim tominimize the trainingdataset sizewith-
out reducing the generalization performance of the SR mod-
els during testing. This paper takes such a design approach.

Motivations and Contributions

About the multi-resolution (MR) image paradigm, two ques-
tions arise: (i) its potential application fields and (ii) its
advantages and disadvantages compared to other image-
scaling techniques.
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Application Fields Addressing the first question, the need
formultiple spatial resolutions of a single ground-truth image
forms the basis of various Information and Communica-
tion Technology (ICT) applications that depend on adaptable
resources. The optimal selection of image resolution, as dis-
cussed in Chapters 4, 5, and 6 of [9], is important for (i)
adapting image rendering to the computational capabilities
of devices,whichmay vary over time or be initially unknown;
(ii) adjusting variable-bit-rate (VBR) encoding to fit com-
munication link capacities; (iii) adaptive image recording,
to fit the storage capacities; and (iv) multi-spectral analy-
sis of remote-sensing images, for multi-scale enhancement
and feature extraction from low-resolution images [10].More
broadly, having images available at different scaling factors
can [11] (i) reduce computational complexity by enabling
multi-scale algorithmic processing, (ii) improve numerical
robustness throughmulti-scaling transforms as algebraic pre-
conditioners, (iii) simplify algorithms by revealing hidden
features that may be easier to process, and (iv) make cogni-
tive reasoning better bymodeling or analyzing images across
multiple spatial scales to uncover deeper insights into hidden
features. As indicated in [11], such capabilities are critical
in managing the complete life cycle (acquisition, processing,
rendering, and storage) of medical images, including CT, X-
ray, and magnetic resonance scans of considerable size.

Competing Approaches and Their Advantages and Dis-
advantages To the best of the authors’ knowledge, mainly
two strategies exist for generating multiple scaled ver-
sions of an image: the multiple-single resolution (M-SR)
approach and the multi-resolution (MR) approach [11].
M-SR sequentially applies a single-resolution network mul-
tiple times to the same input for different scales. Con-
versely, MR uses a singular network to simultaneously
produce in parallel all scaled versions in a one-shot way.
This design choice enables MR to utilize computational
resources and share parameters across different scales. As
mentioned by [12], two advantages favor the MR approach
over M-SR. First, our analysis in “Complexity Analysis
and Implementation Aspects” section demonstrates that
DL-based MR models are generally less complex and
quicker to train than training single-resolution models mul-
tiple times. Secondly, the perceived quality of images
by humans does not always align with numerical perfor-
mancemetrics, such as classification accuracy or peak signal-
to-noise ratio, assessed by automated systems. This requires
that multiple resolutions of a single LR image must be com-
pared by considering different performance metrics [12].

Domain-Oriented Classification of General Image MR
MethodsMRmethods can be categorized into twomain types
based on the domain and multi-resolution strategy used [11]:

(i) Wavelet-based methods employ wavelet transforms in
spatial or frequency domains to break down an image into

various scales, mainly for image de-noising or segmen-
tation.

(ii) Hierarchical methods progressively divide a ground-
truth image into components of different resolutions.
These methods use the concept of hierarchical cogni-
tion, creating simpler models at various scales that may
be combined to make the comprehension of a complex
model easier.

Inspired by the aforementioned considerations, the main
goal of this paper is to design and evaluate the MR-TRAE
model, a neural network for multi-resolution image pro-
cessing influenced by the hierarchical MR paradigm. The
MR-TRAE model uses semi-blind training to SISR and
extends the TRAE concept, previously introduced by the
authors of [13] for single-resolutionSISR, tomulti-resolution
applications.

Therefore, motivated by these considerations, the main
goal of this paper is to design and test the performance of the
MR-TRAE model. This is a neural networking architecture
“ad hoc” designed for imagemulti-resolution and inspired by
the (above mentioned) hierarchical MR paradigm. Specifi-
cally, the MR-TRAE model relies on semi-blind training for
attaining SISR and generalizes to the multi-resolution realm
of the TRAE paradigm recently proposed by the authors in
[13] for the more specific case of single-resolution SISR.

This paper presents several contributions towards the
development of the MR-TRAE model:

(i) We have developed the MR-TRAE model to extend
the TRAE model [13] by (i) integrating cascading up-
samplingmodules for scalingoutput images and (ii) using
auxiliary Auto-Encoder (AE) output branches—which
act as implicit teachers—for model training.

(ii) A novel loss function has been introduced for simulta-
neously training all components of the MR-TRAE. This
semi-blind training approach does not require ground-
truth images at the intermediate resolutions, making it
unique compared to our earlier single-resolution model
[13]. Training with only the lowest and highest reso-
lution image pairs is a distinctive aspect of the MR-
TRAE model.

(iii) The performance ofMR-TRAE is evaluated against lead-
ingmodels such asU-Net [14],multiple single-resolution
TRAE (M-SR-TRAE) [13], and super-resolution GAN
(SRGAN) [15], using open-access datasets of variable-
size CT scans for COVID-19 [16]. This ensures a fair
comparison of its effectiveness.

(iv) Our findings show that the MR-TRAE model reduces
training times by up to 60% relative to baseline models
without affecting test performance. This demonstrates an
effective balance between model simplicity and efficacy.
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(v) Additionally, we highlight the MR-TRAE model’s con-
tributions to cognitive-inspired areas such as knowledge
distillation, the teacher-student learning paradigm, and
hierarchical cognition that present its broader relevance
to these fields.

The structure of this paper is as follows: “Related
Work” section reviews relevant literature related to our
contributions. “Problem Statement and Pursued Solving
Method” section details the MR-TRAE model, including
its architecture, specially designed training functions, semi-
blind training approach, and a complexity analysis alongside
implementation insights. “MR-TRAENovelties and Related
Cognitive Aspects” section explores the innovations of MR-
TRAE and its relations to cognitive paradigms. “Experi-
mental Setup” section outlines the experimental framework,
including the simulation of DL models and the datasets
used for training and testing. “Performance Results and
Comparisons” section presents a performance evaluation of
MR-TRAEandcompares itwith establishedbaselines. “Con-
clusion and Hints for Future Research” section summarizes
the key findings and suggests directions for future research.

RelatedWork

The field of SISR embraces diverse (often heterogeneous)
methodologies with extensive research from various aspects.
Our MR-TRAE model mainly utilizes convolutional neu-
ral networks (CNNs) as its core components. Therefore,
this review concentrates on the latest CNN-based models
developed for SISR. For a more comprehensive exploration
of SISR, readers may consult recent surveys such as those
in [2, 4, 7].

The literature on SISR can be broadly categorized into
two interconnected research areas, as discussed in [4]: CNN-
based model architectures for SISR and domain-specific
applications of CNN-based SISR architectures.

CNN-based architectures for SISR Applications of SISR
often depend on complex DL models designed for intensive
image processing tasks. A central question that logically con-
nects much of the research on DL architectures for SISR is
how to minimize model complexity while maintaining high
quality of rendered image.

Early research in the field of SISR is directed towards
assessing the effectiveness of basic CNN models. The work
in [17] introduces the single-resolution CNN (SR-CNN) for
SISR and sets a foundational benchmark despite its moderate
image quality improvements [7]. Building on the SR-CNN,
the authors of [18] develop the multi-scale SR (MDSR) net-
work and improve the original architecture by simplifying
some non-linear components. This adjustment aims to stabi-
lize the training process and to improve visual quality across

various spatial resolutions. A limitation of these models is
their relatively shallow architecture that limits their effective
multi-resolution scaling capabilities to a maximum of ×4.

Caused ed by these limitations, a second line of research
emerged, focusing on the development of residual and, poten-
tially, dense CNN-based models [19] for SISR. The aim
is to make the network architecture deeper, while prevent-
ing training instability. The success of DenseNet [20] in
achieving high classification accuracy inspired the creation
of several SR algorithms using densely connected CNNs to
enhance feature extraction [19, 20]. Liu et al. [21] explored
this by using the hierarchical structure of residual branches
to incorporate multiple convolutional layers with strategic
skip connections to ease better information flow. However, it
has been observed that the performance of such architectures
becomes worse rapidly with scaling factors above ×4.

In response to these problems, [22] introduced theMASA
network for integrating a module that enables coarse-to-fine
spatial feature mapping and a spatial adaptive module for
aligning feature distribution with that of LR input images.
Similarly, [23] developed the DeFiAN model, a CNN-based
architecture that employs a Hessian filter to identify high-
frequency features for refinement through an SR encoder-
decoder process. Then, [24] introduced a degradation-aware
SR (DASR) capable of identifying various degradation pat-
terns to improve SR performance by learning distinct feature
representations. Despite the fact that these models gained
state-of-the-art results, they still struggle to find an optimal
balance between model complexity and test performance,
particularly at higher scaling factors such as ×8 [4].

Relating to balance betweenmodel complexity andperfor-
mance, a third research direction focused on the application
of attention mechanisms to enhance the efficacy of baseline
Res/DenseNet architectures [2]. Notable examples include
RCAN [25], SAN [26], HAN [27], and RFANet [21]. The
design of these models was based on using attention mecha-
nisms to make the network deeper and to increase image fea-
tures through strategic cross-channel and cross-layer interac-
tions. In linewith this, [28] proposes a series of scalable archi-
tectures that integrate densely connectednetworkswith atten-
tionmechanisms to reduce overfitting. At the same time, [29]
developed an adaptive attention module aimed at improving
the reconstruction of high-frequency details. Additionally,
[30] introduces IDSRN, which achieves multi-scale fea-
ture extraction via carefully designed attention mechanisms.
Despite the top-tier performance of these attention-enhanced
models, the balance between model complexity and perfor-
mance efficiency remains less than ideal [4].

Recent advancements in the literature [31] have led to
the development of the multi-scale fractal residual atten-
tion networks (MS-FR-ANs). This approach joins fractal
residual blocks and advanced channel attention mechanisms
together to enable adaptivemulti-scale feature extraction and
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improve the efficiency of inter-layer information transfer.
An important implementation of the MS-FR-AN concept
is the multi-scale information distillation network (MIDN)
detailed in [32].MIDNcombines a fractalmulti-scale feature
distillation block with a variable-size kernel attention block,
aiming for superior performance in handlingmulti-resolution
images. But, the incorporation of fractal blocks makes chal-
lenges in achieving stable training, as stated in [33].

SISR Architectures for Domain-Specific Applications In
the domain of SR for natural images, the architecture
presented in [34] is designed to increase inference effi-
ciency by identifying primary and secondary spatial features
via trainable spatial masks to optimize the equilibrium in
model complexity-performance. The CFSRCNN framework
[35, 36] and the ESRT model [37] use cascaded CNN-
based structures to ease image upscaling through transformer
mechanisms. Then, [38] employs a learning-based approach
for 3D EPI restoration, and [39] focuses on edge detection
by integrating multi-resolution feature extraction and fusion.
Additionally, [40] uses auxiliary semantic segmentation net-
works to guide SR learning processes and to improve texture
details and color accuracy.

In the field of SR for biomedical images, [10] introduces
a dual-branch network that effectively combines residual
blocks via information distillation to improve image quality.
Kong et al. [41] presents a supervised multi-stage train-
ing strategy and incorporates a loss function to enhance the
visual quality of super-resolvedmedical images. The work in
[42] proposes a non-linear perceptual multi-scale network to
optimize the model complexity-performance balance. This
network shows a multi-cascade residual nested-group mod-
ule designed for extracting diverse image features across
multiple spatial scales. This configuration enables dynamic
selection and fusion of spatial features and improves the
visual quality of the reconstructed images.

A novel line of research such as [8], [43], and [44] have
focused on using DL models to classify CT and X-ray scans
of patients with COVID-19. The aim is to identify and extract
hidden features within the images that may not be read-
ily observable or identifiable by medical professionals. This
approach is formed based on the concept that multi-layered
DL models simulate the human brain’s hierarchical and lay-
ered processing of input data and give insights that are not
immediately apparent through traditional medical analysis.

The study in [43] offers a review of DL-based approaches
for detecting COVID-19 using chest X-rays and CT scans.
It includes a detailed performance comparison of four DL
models: VGG16, VGG19, ResNet50, andDenseNet by using
publicly available COVID-19 CT and chest X-ray datasets.
Based on their experimental findings, [43] states that the

VGG19 model performs better than the others in detection
accuracy. Sarv Ahrabi et al. [8] and Goel et al. [44] explore
a different way by focusing on the application of GANs for
classifying COVID-19 diseases from CT scans and chest X-
ray images, marking a shift towards more innovative use of
DL models.

Relating to the issues of limited datasets, [44] introduces
a GAN-based architecture capable of generating HR syn-
thetic CT images. To increase the performance of the GAN
generator, the whale optimization algorithm (WOA) is used
for hyper-parameter optimization. The performance metrics
of the optimized GAN model indicate its superiority over
various state-of-the-art meta-heuristic approaches, including
genetic algorithms, pattern search, particle swarm opti-
mization, simulated annealing, and Grey-Wolf optimization.
Furthermore, [8] aims to evaluate the effectiveness of hidden
features produced by the encoders of two advanced GAN
architectures: Bidirectional GANs (BiGANs) and Cycle-
GANs, in classifying COVID-19 diseases from CT scans.
The findings show that, while CycleGAN-basedmodels have
the highest classification accuracy among the tested frame-
works, they increase training duration andmodel complexity.

Overall, Table 1 offers a concise overview of the research
discussed to summarize the key aspects, methodologies, and
findings of the studies reviewed.

MR-TRAE Positioning in the Current SISR Research
Realm Based on our review, the MR-TRAE model, as
depicted in Fig. 2, introduces three novelties. First, it takes
the innovative concept of “twinned” auto-encoders (AEs)
from [13] to achieve MR image processing. Second, based
on knowledge distillation and hierarchical cognition prin-
ciples, MR-TRAE employs hierarchically structured output
branches from the intermediate layers of theAEs as “teacher”
(reference) signals, as sketched in the lower part of Fig. 2.
This approach allows the semi-blind training of the over-
all MR-TRAE network. Lastly, the designed MR-TRAE’s
training methodology allows to bypass the need for multi-
ple datasets or training stages at different resolution scales.
Instead, a single training session using just twopairedHRand
LR datasets is sufficient, as remarked by the HR-LR “paired”
input configuration in Fig. 2. This makes the training process
less cumbersome, while maintaining effective learning and
adaptation across various resolution scales. Overall, to the
best of the authors’ knowledge, the use of the outputs of the
intermediate hidden layers of an AE’s decoder as reference
signals is the main architectural novelty of the proposedMR-
TRAE model.

This review shows that the MR-TRAE model is unique
in terms of possessing the aforementioned architectural
features.
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Table 1 A synoptic view of the reviewed CNN-based SISR research

Work Acronym Pursued approach to SISR

[17] SR-CNN Three-layer CNN with pre up-sampling

[18] MDSR Optimized multi-scale deep residual CNN without using batch normalization

[19] RDN Residual CNN equipped with dense skip connections

[29] AMSRN Attention-based multi-resolution residual network

[26] SAN Second-order attention-based residual CNN

[21] RFA Residual feature aggregation model

[30] IDSRN Dual-scale residual CNN network

[45] WMRN Weighted multi-resolution residual CNN-based network

[36] ACNet Asymmetric deep CNN

[38] 3DVSR Dual stage image up-sampling

[39] Cross-SRN Cross CNN blocks plus multi-resolution feature extractor

[40] SSG-RWSR Residual dense blocks plus segmentation network

[41] RLFN Residual deep CNN based on feature distillation blocks

[31] MFRAN Multi-scale fractal residual attention-based network

[46] MEM Deep CNN equipped with multi-resolution enhancement modules

[32] MSID Deep CNN based on multi-resolution receptive field and variable-size kernel attention

This work MR-TRAE Joint twinned AEs equipped with multi-scale CNN-based up-samplers

Problem Statement and Pursued
SolvingMethod

This section aims to achieve four objectives. Initially, we
introduce the MR-TRAE model and clarify how it is dif-
ferent from the single-resolution version introduced in [13].
Next, we elaborate on the loss functions and outline the pri-
mary steps of the semi-blind training methodology devised
for the MR-TRAE model. Then, we explore the complexity
of the MR-TRAE model and cover key aspects of its imple-
mentation. Lastly, we identify various potential applications
for the MR-TRAE model during the test phase.

At this point, we briefly revisit the fundamental ele-
ments of the previously developed single-resolution TRAE
architecture to be able to describe the improvements in the
MR-TRAE model.

An Overview of the Foundational TRAE Architecture

The SISR paradigm establishes a mapping between pairs of
LR andHR images of the same scene. A conventional AE has
only one input image at a time to learn a compressed yet infor-
mative representation of it (known as hidden features) and to
recreate a nearly perfect output from this compressed form.
Thus, a standard AE is not designed to map between pairs of
LR/HR images. To overcome this limitation and apply theAE
concept to SISR, [13] introduced an advanced version of the
AE architecture, termed the “twinned” AE. Figure1 presents
a simplified diagram of the TRAE architecture developed in
[13] for single-resolution image processing at the training

phase (refer to [13] for a comprehensive discussion on the
TRAE architecture during both training and testing phases).

The characteristic of the basic single-resolution TRAE is
its “twinned” structure. This setup shows a “Follower AE”
and a “Master AE” that operate together on the LR and HR
versions of the same input image, respectively. Each AE in
this architecture is tasked with encoding its respective input
image into a compressed format to reconstruct the original
image from this compact representation.

In [13], the authors highlight that the unique feature of the
TRAE model is its training methodology, which develops
a cooperative interaction between the Master and Follower
AEs. This collaboration enables the Master AE to share
insights learned from its HR input with the Follower AE.
The aim is to improve the quality of the SR image produced
by the Follower AE using the information received from
the Master AE. Through this process, both AEs engage in
a form of transfer learning, exchanging important informa-
tion to gradually minimize the differences in their generated
hidden features. This collaborative training strategy, as sup-
ported by theoretical analysis and empirical evidence in [13],
improves the TRAE’s ability to accurately map between LR
and HR images.

The foundational components of the TRAE model depic-
ted in Fig. 1 include the following:

(i) Master AE: This serves dual purposes. It extracts hidden
features from the HR input image and, in addition, aims
to output a version very similar to its input. The Master
AE functions like a classical AE, trained on a dataset of
HR images.
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Fig. 1 A (simplified) sketch of
the TRAE model architecture in
[13], referring to the training
phase. During the test, only the
trained Follower AE, skip
connection, and up-sampler
module are retained. HR, high
resolution; LR, low resolution;
F, Follower; M, Master; Dis,
distance; R, residual; E/D,
encoder/decoder; HF-F, hidden
features from the Follower AE;
HF-M, hidden features from the
Master AE

(ii) Follower AE: This has two functions. It extracts hidden
features from the LR input image and produces a residual
output version of its LR input.

(iii) Up-sampling Module: This is located at the output of
the Follower AE. Its role is to up-sample the LR image
output from the summation node depicted in Fig. 1 and to
produce the super-resolved version of the corresponding
LR input image.

(iv) Residual module: This calculates the element-wise dif-
ference between the images of the same size produced
by the up-sampling module and the Master AE. The
resultant residual image serves as the objective to min-
imize throughout the training process of the entire
TRAE model.

(v) Distance module: This calculates the distance between
the feature vectors of identical size produced by the
Follower and Master AEs. The computed inter-feature
distance, denoted as Dis, serves as a metric for guiding
the training of the TRAE model. The choice of distance
metric can vary based on the application domain. For an
exploration of how the TRAE sensitivity is influenced by
the selected inter-feature distance metric, refer to [13].

(vi) Global skip connection: This features an adjustable gain
parameter, δ, and is designed to enable the Follower
AE to learn a residual version of the LR input image
rather than the full LR input itself. The gain parameter
δ, which ranges from 0 ≤ δ ≤ 1, is optimized during
training to achieve an optimal balance between the rela-
tive contributions of the Follower AE’s feedforward and
residual branches.

The ProposedMR-TRAEModel: Architecture, Loss
Functions, and Training Procedure

Architecturally, the MR-TRAE model improves the TRAE
framework by incorporating auxiliary output brancheswithin
the Master AE. This modification allows for the simultane-

ous production of multiple super-resolved images in a single
inference operation.

To describe theMR-TRAE, we begin by defining a spatial
image with M rows, N columns, and C color channels as a
tensor I of dimensions M × N ×C , meaning I ∈ R

M×N×C .
For the sake of simplicity, we will use a vector representation
of an image I in subsequent discussions. Therefore, �I denotes
a real-valued, column-wise vector of the image, having a
dimension of (MNC × 1).

In conventional SISR methods, a network takes an LR
input image, denoted as �ILR ∈ R

ML NLC×1, and aims to
produce an SR output image, �ISR ∈ R

MSNSC×1, an SR ver-
sion of a ground-truth HR image—represented by �IH R ∈
R

MH NHC×1—where the dimensions satisfy ML ≤ MS

≤ MH and NL ≤ NS ≤ NH .
Typically, the LR and HR versions of the same image are

linked by a transformation that is often “a priori” unknown
or stochastic, as discussed in [1]:

�ILR = F( �IH R), (1)

where F(·) represents the HR-to-LR mapping function.
Figure 2 shows the architecture of the MR-TRAE during

its training phase. Next, we will explain the collections of LR
and HR images used for training, along with the functions
and significance of the various components within the MR-
TRAE architecture.

Paired HR and LR Training Sets The set SHR =
{ �IH R,n

∈ R
MH NHC×1 n = 1, 2, · · · , T

}
of size T gathers the

(MHNHC)-dimensional HR image vectors used for the
training. The paired set of LR training image vectors is

denotedby SLR =
{ �ILR,n ∈ R

ML NLC×1 n = 1, 2, · · · , T
}
.

As depicted in Fig. 2, pairedHRandLR images act as parallel
inputs to the Master and Follower AEs, respectively.

Master AE TheMaster AE consists of encoding (EM ) and
decoding (DM ) deep neural networks, with their trainable
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Fig. 2 The MR-TRAE
architecture in the training
phase. In the test phase, the skip
connection with the trained gain
δ, the trained Follower AE, and
one or more trained up-samplers
are retained, so as to generate in
parallel one or more output
images at the desired
multi-resolution scaling factors
in correspondence of each LR
test image given in input to the
Follower AE. EM/DM , Master
Encoder/Decoder; EF/DF ,
Follower Encoder/Decoder; f ,
feature; R, residual; Dis,
inter-feature distance

123



Cognitive Computation

parameters represented by the vectors �θEM and �θDM , respec-

tively. Therefore, the HR output vector �̂I H R,n , produced by
the Master AE in response to the HR training input vector
�IH R,n , is formulated as follows:

�̂I H R,n = DM

(
EM

( �IH R,n; �θEM

)
; �θDM

)
. (2)

A distinction between the TRAE and MR-TRAE models is
that in the MR-TRAE framework, the hidden layers of the
Master Decoder are designed to offer auxiliary parallel out-

puts. As shown in Fig. 2, the vector �̂I
(k)

SR,n produced by the k-
th hidden layer of theMasterDecoder is expressed as follows:

�̂I
(k)

SR,n = D(1:k)
M

(
EM

( �IH R,n; �θEM

)
; �θDM

)
, k ≥ 1, (3)

where D(1:k)
M (.; .) denotes the transformation induced by the

cascade of the first k hidden layers of the Master Decoder.
In our configuration, the hidden layers of the decoder are
sequentially numbered from left to right in Fig. 2, with the
innermost layer of the decoder designated as k = 1.

In theMR-TRAEmodel, the auxiliary output vector �̂I
(k)

SR,n
is designed to have a size that lies between those of the
HR and LR input vectors. Its size progressively increases as
one moves from the innermost to the outermost layer of the
Master Decoder. Consequently, the spatial resolution of the

image vector �̂I
(k)

SR,n , produced by the k-th output branch of the

Master Decoder, exceeds that of the image vector �̂I
(k−1)

SR,n gen-
erated by the preceding (k−1)-th output branch, as depicted
in Fig. 2.

Follower AE and Skip Connection The Follower AE
consists of the encoding (EF ) and decoding (DF ) neural net-
works, with trainable parameters gathered in �θEF and �θDF ,
respectively. The output of the FollowerAE is the residual LR

image vector �̂I LR,n , which is connected to the corresponding
LR input image vector �ILR,n as follows:

�̂I LR,n = DF

(
EF

( �ILR,n; �θEF

)
; �θDF

)
. (4)

Therefore, the reconstructed LR image vector �̃I LR,n , found
at the output of the skip connection, is defined as follows:

�̃I LR,n = (1 − δ) �ILR,n + δ
�̂I LR,n . (5)

Distance Module The function of the distance module
d(·, ·) is to compute the scalar distance Disn between the
matching-sized hidden feature vectors �fM,n and �fF,n , pro-
duced respectively by the Master and Follower AEs in
response to the paired LR/HR input vectors �ILR,n and �IH R,n

as follows:

Disn = d
( �fM,n, �fF,n

)
, (6)

with

�fM,n = EM

( �IH R,n; �θEM

)
,

and

�fF,n = EF

( �ILR,n; �θEF

)
. (7)

Up-sampling and Differential Modules A series of p ≥
2 up-sampling modules is positioned at the output of the
Follower AE, with the task of incrementally increasing the

size of the LR image vector �̃I LR,n that emerges from the skip
connection. Their purpose is to produce, at the same time, a
set { �I (k)

SR,n, k = 1, ..., p} of SR output image vectors. The SR

image vector �I (k)
SR,n , created by the k-th up-sampling module,

is defined as follows:

�I (k)
SR,n = [Uk] �I (k−1)

SR,n , k = 1, 2, · · · , p,

�I (0)
SR,n ≡ �̃I LR,n,

(8)

where [Uk] denotes the up-samplingmatrix for the k-th mod-
ule. The role of the k-th differential module is to compute
the residual image vector �R(k)

n by calculating the difference
between the vectors of the same size that are produced by the
k-th output branch of theMasterDecoder and the correspond-
ing k-th up-sampling module, as illustrated in (3) and (8)

�R(k)
n = �̂I

(k)

SR,n − �I (k)
SR,n, k = 1, 2, · · · , p. (9)

We note that the aforementioned residual vectors facilitate
the semi-blind training of the MR-TRAE.

Semi-blindMR-TRAE Training—Loss Functions
and Training Procedure

The training sets SHR and SLR are paired; therefore, each
LR image input �ILR,n at the Follower AE corresponds to the
HR version �IH R,n at the Master AE. The logic—that sup-
ports the devised training loss functions and the associated
semi-blind training procedure—is based on the following
considerations.

On training convergence, the Master AE’s output �̂I H R,n

should closely match its corresponding input �IH R,n . This
outcome lays the groundwork for the expectation that the
auxiliary outputs of the Master Decoder will produce good

quality SR versions {�̂I
(k)

SR,n, k = 1, ..p} of the input HR

image �IH R,n , with spatial dimensions intermediate to those
of the HR and LR images used in training. This suggests the
possibility of using theMaster Decoder’s auxiliary outputs as

123



Cognitive Computation

reference signals for a training process similar to supervised
learning for the corresponding Follower AE and the series of
up-samplers.

Master AE Training Loss Function Given these consider-
ations, the goal of the Master AE is to output a recovered

HR image �̂I H R,n that closely resembles the corresponding
input �IH R,n . Therefore, the loss function LM for training the
Master AE should rely only on the HR input image vectors
and the trainable parameters of theMaster Encoder/Decoder.
Thus, it can be formulated as the distance between the input
�IH R and the recovered �̂I H R image vectors produced by the
Master AE, i.e.,

LM ≡ LM

(�θEM , �θDM

)
= 1

MHNHC

∥∥∥ �IH R − �̂I H R

∥∥∥ , (10)

We emphasize that the formulation in (10) enables theMaster
AE to undergo training independently, without any reliance
on the Follower AE, thereby justifying the designation
“Master.”

Follower AE Training Loss Function The concept driving
the design of the loss function for the Follower AE’s training
is based on three considerations.

First, given that the Master AE’s inputs are HR and of
high quality, the information decoded by theMaster Decoder
potentially improve the quality of what the Follower AE
can independently derive from its LR inputs, which are of
lower quality.

Second, theMaster AE can pass two kinds of information:
(i) perceptual information, through hidden feature vectors
�fM,n , and (ii) content information, via intermediate SR out-

put image vectors {�̂I
(k)

SR,n, k = 1, ..., p}, as outlined in [15]
for the terminology used.

Third, the loss function in (10) exclusively considers the
trainable parameters of the Master AE; therefore, the loss
function for the Follower AE’s training should accordingly
incorporate the Follower AE’s trainable parameters �θEF and
�θDF , the adjustable gain δ of the skip connection, and the
set of trainable parameters {[Uk], k = 1, ..., p} of the up-
sampling modules.

Based on these insights, we intend to construct the training
loss function for the Follower AE,LF , as a convex combina-
tion of a perceptual training loss LP and a content training
loss LC . This can be expressed as follows:

LF = γLC + (1 − γ )LP , (11)

where γ ∈ (0, 1) represents a trade-off hyper-parameter, the
optimal value of which is determined through experimental
trials. Further details on this parameter and its tuning will
be discussed in “Complexity Analysis and Implementation
Aspects” section.

Since the goal of the perceptual loss, LP , is to align the
hidden features produced by the Follower AE with those
extracted by the Master AE, we define LP as follows:

LP ≡ LP

(�θEF

)
= d

( �fM , �fF
)

≡ d
( �fM , EF

( �ILR, �θEF

))
.

(12)

The role of the distance module depicted in Fig. 2 is to
implement the inter-feature distance function d, as specified
in (12).

The content loss, LC , functions within the spatial domain
and aims to minimize the overall difference between the SR
images { �I (k)

SR }producedby the up-samplers and the respective

images {�̂I
(k)

SR } generated by the auxiliary output branches of
the Master Decoder:

LC ≡ LC

(�θEF , �θDF , δ, {[Uk], k = 1, ..., p}
)

=
p∑

k=1

1

MkNkC

∥∥∥ �R(k)
∥∥∥,

(13)

where �R(k) represents the k-th residual image vector as
defined in (9), and MkNkC denotes its column size.

Ultimately, the equations presented in (11), (12), and (13)
show that the training phase is designed to ensure the Fol-
lower AE closely “mirrors” the Master AE’s behavior, and
this validates the use of the term “Follower.”

Overall Loss Function and Related Semi-blind Train-
ing Procedure By definition, the total training loss function
LMR−T RAE for MR-TRAE is the sum of the training loss
functions for the Master and Follower AEs. Therefore, it can
be expressed as follows, by referring to (10) and (11):

LMR−T RAE (�T R) = LM + LF , (14)

where

�T R = {�θEM , �θDM , �θEF , �θDF , δ, {[Uk], k = 1, ..., p}},
(15)

is the overall set of trainable MR-TRAE parameters.
For the training of the model, we have developed an iter-

ative semi-blind procedure, based on two considerations.
Firstly, the training of the Master and Follower loss func-
tions, LM and LF as specified in (10) and (11) respectively,
requires only the first two elements for the Master AE, and
all elements for the Follower AE, from the set in Eq. (15).
Secondly, training the Master loss function exclusively uti-
lizes the HR training set SHR . In contrast, the training of the
Follower AE uses not only the LR training set SLR but also
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incorporates the sets of perceptual { �fM } and content {�̂I
(k)

SR}
information vectors produced by the Master AE.

Based on these considerations, for each paired HR and
LR training input image vectors { �IH R, �ILR}, the established
training procedure follows these sequential steps:

Step 1: Beginning with the current parameter values,
the Master AE updates its Encoder/Decoder parameters
{�θ ∗

EM
, �θ ∗

DM
} by training its loss function as described in

(10) over several iterations. This optimization can be per-
formed using any optimizer, such as stochastic gradient
descent (SGD) or Adam.
Step 2: Utilizing the newly updated parameters {�θ ∗

EM
,

�θ ∗
DM

} and the currentHR input training image vector �IH R ,

the Master AE refreshes its hidden feature vector �f ∗
M

and the set of intermediate super-resolved output image

vectors {�̂I
(k)∗
SR , k = 1, . . . , p}. These updated vectors are

then passed to the Follower AE for further processing.
Step 3: The Follower AE refines its loss function as
detailed in (11) through several iterations. The aim
is to update its Encoder/Decoder parameters, the gain
of the skip connection, and the up-sampling matrices:
{�θ∗

EF
, �θ∗

DF
, δ∗, {[U∗

k ], k = 1, ..., p}}. For this task, the

Follower AE uses the current LR input image vector �ILR
in conjunction with the most recently updated percep-

tual �f ∗
M , and content {�̂I

(k)∗
SR } informationvectors provided

by the Master AE. These vectors serve as constant ref-
erence signals throughout the Follower AE’s iterative
training process.

These steps are cyclically repeated for each pair of HR
and LR training input images until the convergence of the
total MR-TRAE training loss function, as specified in (14),
is achieved.

Before moving forward, it is important to provide two
clarifications relating to the MR-TRAE training procedure.

First, the semi-blind characteristic of the training pro-
cedure is established in step 2. This step carries out the

on-the-fly creation of auxiliary SR image vectors {�̂I
(k)∗
SR , k

= 1, ..., p}, which are intentionally not included in the ini-
tial HR/LR training image sets (as showed by the auxiliary
output branches of the Master Decoder in Fig. 2). These gen-
erated auxiliary vectors are subsequently used in step 3 to
guide the supervised training of the Follower AE.

Second, the training procedure facilitates the simultane-
ous training of theMaster and FollowerAEs in an alternating
manner, which may remind the training dynamics seen in
GANs. In GANs, the generator and discriminator networks
are trained through a competitive interaction. However,
within the MR-TRAE, the relationship between the Master
and Follower AEs is cooperative, where theMaster AE helps
in training the Follower AE.

Complexity Analysis and Implementation Aspects

Theoretically, the goal of the MR-TRAE model depicted
in Fig. 2 can also be achieved by independently training
p single-resolution TRAE models, similar to that shown
in Fig. 1, each operating at a distinct scaling factor. This
alternative strategy is hereafter termed as multiple single-
resolution TRAE (M-SR-TRAE). However, there are at least
two reasons why the MR-TRAE method is favored over the
M-SR-TRAE approach.

Firstly, it is expected that multi-resolved versions of the
same image at different sizes will display significant statisti-
cal correlation. TheMR-TRAEmodel is designed to use this
cross-correlation by (i) utilizing a single twinned AE block
across multiple resolution scales and (ii) conducting joint
training of the entire sequence of final up-sampling mod-
ules. The experimental findings presented in “Performance
Results and Comparisons” section validate that using inter-
image cross-correlation during the training phase effectively
reduces overall training duration.

Secondly, the number of trainable parameters in the MR-
TRAE, denoted as N (MR−T RAE), is calculated as follows:

N (MR−T RAE) = N (M)
AE + N (F)

AE +
(
p × N (U )

)
. (16)

In the given equation, N (M)
AE (respectively, N (F)

AE ) repre-
sents the number of trainable parameters within the Mas-
ter AE (respectively, the Follower AE), whereas N (U )

denotes the number of trainable parameters for each up-
sampling module.

Under the M-SR-TRAE approach, the single-resolution
TRAE model shown in Fig. 1 is trained from scratch p
times, each under a different scaling factor. As a result, the
total number of parameters N (M−SR−T RAE) that need to be
learned in the M-SR-TRAE approach is p times the num-
ber of trainable parameters of a single TRAE. This can be
expressed as follows:

N (M−SR−T RAE) = p ×
(
N (M)
AE + N (F)

AE

)

+
(
p × N (U )

)
.

(17)

The complexities of the stated models are mainly determined
by the complexities of their respective AEs (as further dis-
cussed in the sections on implementation aspects and the
setup of implemented models in “Experimental Setup” sec-
tion), a direct comparison between the formulas in (16) and
(17) leads to the conclusion that the training complexity of
the proposed MR-TRAE model is nearly p times lower than
that of the M-SR-TRAE approach.

This conclusion is more supported by insights into imple-
mentation aspects of the MR-TRAE, as detailed in the
following discussion.
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On the Implemented AE Architectures Inspired by lead-
ing models for high-quality SISR as recently analyzed, for
instance, in [11], Fig. 3 shows the architecture of the Master
and Follower AEs as implemented.

Fundamentally, it consists of a pair of convolutional deep
Encoder and Decoder networks, featuring a symmetrical
architecture with mirrored hidden layers interconnected by
several local shortcuts. In the context of the MR-TRAE, the
auxiliary output branches shown in Fig. 3 are specifically uti-
lized within the Master AE’s implementation. On reviewing
Fig. 3, the AE architecture represents four characteristics.

1. Symmetry and hourglass shape: This design ensures that
the input image is systematically compressed (encoded)
and subsequently expanded (decoded) as it traverses
from the input to the output of the AE. Each Encoder
layer’s downscaling factor matches the upscaling factor
of its mirrored decoder layer to maintain the architectural
balance.

2. Residual-type architecture: Implemented through short-
cuts between mirrored encoder-decoder layers, this as-
pect follows two goals: (i) facilitating direct information
back-propagation to lower layers to avoid vanishing gra-
dients during training and (ii) ensuring that input/output
feature vectors of mirrored layers are of equal size to
enable element-wise operations at summation nodes.

3. Pre-activation principle: Decoder layer outputs are linked
to non-linear activation blocks (e.g., parametric ReLU
or P-ReLU), positioned before summation nodes. This
choice excludes other non-linearities (like batch normal-
ization, pooling, or dropout) from the architecture, based

on findings that they can reduce the visual quality of the
resultant images.

4. Shared architecture for master and follower AEs: To jus-
tify the “twinned AEs” terminology, both Master and
Follower AEs utilize the same architecture, despite pro-
cessing LR/HR images of varying sizes. This can result
in different sizes for their corresponding hidden layers.

Additionally, a series of convolutional layers of uniform
size may be integrated between the core hidden layers of
the Encoder and Decoder to improve the fidelity of informa-
tion mapping from Encoder to Decoder feature spaces, using
small (5 × 5) convolutional kernels as suggested by works
like [42]. This is an optional adjustment that can refine the
AE’s functionality.

On the Implemented Up-sampling Modules In the MR-
TRAE, each up-sampling module is implemented by using a
deconvolutional layer, also known as a transposed convolu-
tional layer. Within this model, all convolutional layers are
designed to have the same spatial up-sampling factor, typ-
ically set to us = 2. Consequently, the total scaling factor
s(k)
U achieved by the series of the first k deconvolutional lay-
ers equals k × us, for k = 1, ..., p. To minimize de-blurring
effects often associated with extensive zero-padding, each
deconvolutional layer is fitted with small-sized (e.g., 3 × 3)
convolutional kernels. This configuration enables each up-
sampling module to scale the processed image by a factor of
×2, using kernel-based convolution with a stride of one and
minimal zero-padding, as detailed in “Experimental Setup”
section relating to the simulation setup. The output of these

Fig. 3 The general residual-type architecture of the implemented Master and Follower convolutional AEs. The summation nodes act on a per-pixel
basis. The auxiliary output branches are present only in the Master AE. Hidden layers of the same color are mirrored layers. NL, non-linearity
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up-sampling modules represents the series of SR image vec-
tors at scaling factors of us, 2 × us, 4 × us, ..., p × us.

On the Implemented Inter-feature Distance Metric The
distancemodule in Fig. 2 calculates the distance between fea-
ture vectors of the Master and Follower AEs for each pair of
LR andHR input images. These feature vectors are structured
to be of the same size. Any metric for measuring inter-vector
distance, such as Euclidean, absolute, or cosine distances,
can be applied in (12). However, a review of the works by
[11], [15], and [42] suggests that the most appropriate dis-
tancemetric is dependent on the specific task and application.
From our numerical experiments, we have found that the
Euclidean distance between inter-feature vectors generally
offers satisfactory results, both in terms of the visual quality
and in the accuracy of COVID vs. non-COVID classification.

On the Setting of the Trade-off Parameter γ The per-
ceptual and content loss functions, as specified in (11), are
designed to measure the image gaps under cross-related,
different domains. The perceptual loss operates within the
hidden feature domain for minimization that is particu-
larly relevant when the SR images are used by non-human
systems for task-oriented applications, such as image clas-
sification, as noted in [15]. Conversely, the content loss
functions in the spatial or pixel domain to making its reduc-
tion beneficial for human users focused on achieving high
visual quality in SR images, as highlighted in [2]. Gener-
ally, a decrease in perceptual (respectively, content) loss is
associated with an improvement in classification accuracy
(respectively, peak signal-to-noise ratio (PSNR) and/or struc-
tural similarity index (SSIM)) [11].

There is no guarantee of a consistent correlation between
perceptual and content losses; therefore, the introduction of
the γ hyper-parameter in (11) aims to balance these two
foundational losses. An optimal adjustment of γ is important
for achieving a desirable balance among perceptual-related
and content-related performance metrics to find an optimal
accuracy-vs.-PSNR-vs.-SSIM trade-off. Through a com-
prehensive grid search within the experimental framework
described in “Experimental Setup” section, it has been deter-
mined that optimal values for the γ hyper-parameter tend to
be around 0.9.

MR-TRAE Testing

In MR-TRAE, the Master AE guides the Follower AE
through the training process. Therefore, once the training
phase is concluded, there is no further need for either the
Master AE or the HR input images. During the test phase,
the MR-TRAE simplifies to include (i) the trained Fol-
lower AE; (ii) the skip connection surrounding the Follower
AE, adjusted by the trained gain parameter δ; and (iii) the
sequence of trained up-sampling modules. These compo-
nents produce various SR versions of each LR test input

image at distinct scaling factors. It enables users to choose
the most fitting SR image from the generated set. In the test
phase, the MR-TRAE operates on LR test images, meaning
HR images are not used for testing or inference.

The trained MR-TRAE can be deployed in at least two
distinct application contexts. In the first scenario, the array
of multi-resolution images generated by the model can be
directly examined by human observers, such as medical pro-
fessionals. In the second scenario, the SR images are fed into
an automated system capable of executing image classifica-
tion tasks. We mention that the efficacy of the MR-TRAE
across both these application scenarios is evaluated through
numerical analysis in “Performance Results and Compari-
sons” section.

MR-TRAE Novelties and Related
Cognitive Aspects

A distinctive and, to the authors’ knowledge, novel aspect
of the MR-TRAE is its use of multiple auxiliary outputs
from the Master AE’s Decoder. These outputs, which are
generated at incrementally higher spatial resolutions by the
inner layers, serve as reference signals for simultaneously
training the Follower AE and the sequence of up-samplers.
This feature eliminates the need for input images at every
multi-resolution scaling factor, making the training process
semi-blind. Moreover, the training is domain-oblivious, as it
does not presuppose any specific knowledge about the con-
tent of the training images.

This innovation fundamentally differs from the single-
resolution TRAE model illustrated in Fig. 1 and makes an
advancement in theMR-TRAE.Additionally, these advance-
ments are closely related to broader cognitive paradigms
such as teacher-student (TS) learning, transfer learning
(TL), knowledge distillation (KD), and hierarchical cogni-
tion (HC).

MR-TRAE Connection to the KD and TS Paradigms The
knowledge distillation (KD) paradigm primarily focuses
on transferring knowledge during the training phase from
one model to another, typically from a more complex or
resource-intensive “teacher” model to a simpler or resource-
constrained “student” model, as outlined in [47]. The con-
ventional use of KD involves teaching a student model using
softer information labels distilled by a teacher model, which
is usually more complex [48].

Within the MR-TRAE, we can identify that (i) the Master
and Follower AEs assume the roles of teacher and student
respectively and (ii) the distilled knowledge consists of the
hidden features and SR images produced by theMaster AE’s
encoder and its auxiliary output branches. From this per-
spective, the training steps outlined in “Semi-blind MR-
TRAE Training-Loss Functions and Training Procedure”
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section—namely, step 1, step 2, and step 3—play the roles
of teaching, knowledge distillation, and transfer learning,
respectively.

The Master and Follower AEs in Fig. 2 are designed
as “twinned,” which implies similar model complexities
(as discussed in “Complexity Analysis and Implementation
Aspects” section). Consequently, the application of the
teacher-student (TS) learning model within the MR-TRAE
does not address the typical goal of bridging a complexity gap
between the teacher and student networks. Instead, it uses the
TS paradigm to bridge the informational divide arising from
usingLR andHR training images of differing qualities for the
Follower andMaster AEs, respectively. This approach repre-
sents an unconventional application of the TS paradigm that
makes the challenges associated with the quality disparity of
LR/HR training images less severe.

MR-TRAE Connection to the Hierarchical Cognitive
Paradigm The human cognitive system processes objects in a
sequential and hierarchicalmanner, initially concentrating on
broad features before shifting focus to more complex details
[49]. Traditional single-resolution SISRmodels do not repli-
cate this layered processing approach of the human brain,
as they analyze input images uniformly, using convolutional
layers with a singular kernel size [11]. In response to this
limitation and to better align with the hierarchical process-
ing characteristic of human cognition:

(i) The MR-TRAE uses a multi-branch architecture to
present the spatial features of eachHR input image across
various scales. This approach enables themodel to simul-
taneously address local details and overarching semantic
aspects.

(ii) The MR-TRAE employs a hierarchically structured
sequence of up-samplers to decompose the complex chal-
lenge of achieving a high up-scaling factor into a series
of simpler, incremental sub-tasks, where each one targets
a smaller up-scaling factor.

Within this framework, the hourglass shape of the Mas-
ter AE, as shown in Fig. 3, ensures that the outputs from the
Master decoder’s multiple branches are organized in a hierar-
chical manner. Each subsequent output includes more spatial
detail than its predecessor to ease a progressively refined rep-
resentation of the image.

The concept of multiple auxiliary outputs, which also fea-
tures in neural networks with early exits as discussed in [50],
diverges in purpose and cognitive alignment from those used
in the MR-TRAE model. Firstly, models with multiple early
exits aim to balance the conflicting goals of achieving reli-
able and swift inference [50]. Unlike the auxiliary outputs in
the MR-TRAE model, early exits usually incorporate local
classifiers to enable quicker and potentially sufficiently accu-
rate, local decisions. Secondly, the study in [50] associates
early-exitmodelsmore closelywith the cognitive principle of
biological plausibility in network training, in contrast to the
MR-TRAE’s emphasis on teacher-student learning models
and hierarchical cognition principles. However, integrating
multiple auxiliary outputs within a neural network draws
from a solid foundation inspired by cognitive processes in
both contexts.

Experimental Setup

The numerical experiments were conducted on a PC run-
ning Windows, equipped with (i) an AMD Ryzen 9 5900X
12-Core processor at 3.7 GHz, (ii) two GeForce RTX 3070
graphics cards, and (iii) 128 GB of RAM. The Adam opti-
mizer [47] was chosen for training purposes. The learning
rate ρ during training was set to 10−4, with other Adam
parameters remaining at their default settings (β1 = 0.9,
β2 = 0.999, and ε = 10−7). The size of the mini-batches
used was |MB| = 16, and the training extended over 200
epochs. The up-scaling factors for the images were set at
×2, ×4, and ×8. Detailed hyper-parameter configurations
are provided in Table 2. The development of the source code

Table 2 Setting of the main
simulated hyper-parameters

Parameter Meaning/role Setting

|MB| Mini-batch size 16

γ Trade-off hyper-parameter 0.9

E Number of performed training epochs 200

ρ Adam learning rate 10−4

β1 Adam first-moment parameter 0.9

β2 Adam second-moment parameter 0.999

ε Adam ε parameter 10−7

HH × VH × C HR training image size (512 × 512 × 1)

HL × VL × C LR test/training image size (64 × 64 × 1)

sU Scaling factor ×2, ×4, ×8
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was carried out in Python 3.10, with TensorFlow 2.10.1 uti-
lized for additional features.

Utilized Datasets The HR images used in this study
are from the publicly accessible COVIDx CT-2 A dataset
[16], which includes more than 194,000 grayscale CT slices
(C = 1) from 3700 anonymized patients. This dataset clas-
sifies the scans into three categories: COVID-19, common
pneumonia, and normal controls. From this dataset, 3000
HR images were selected on a per-class basis, and their cor-
responding LR counterparts were created by down-sampling
using a bicubic kernel, as described in (1). This process
resulted in training, validation, and test sets for each class,
containing 2000, 500, and 500 images, respectively. These
images were pre-processed by normalizing the pixel values
to a floating point range of [0, 1] and uniformly cropping
the images to ensure HR and LR inputs were of the correct
dimensions, as detailed in Table 2.

Implemented MR-TRAE Model The MR-TRAE operates
at×2,×4, and×8 scaling factors, byusing three up-sampling
modules of identical architecture, each providing a ×2 scale
increase. The SR image output by the three up-samplers
measures (128 × 128), (256 × 256), and (512 × 512). The
uniform design of these up-samplers was specifically opti-
mized for this multi-resolution setting, with details in Table
3. The Master and Follower AEs follow the configurations
optimized and listed in Table 5 of [13], in a combined
total of 20, 733, 953 + 8, 031, 746 = 28, 765, 699 trainable
parameters of Master-plus-Follower AEs. Before the entire
MR-TRAE was fine-tuned, the Follower AE is pre-trained
on 20% of the LR training images to speed up the whole
training process.

In our study, the primary metrics employed to assess
and compare the visual quality of the generated SR images
include the peak signal-to-noise ratio (PSNR) and the struc-
tural similarity index (SSIM) [4]. Briefly:

Table 3 Common architecture of the implemented convolutional up-
sampling modules. Each module provides a scaling factor of ×2.
Conv2D(F, K ) indicates a convolutional layer with F filters and a
kernel size of (K ×K ). D2S(B) denotes a depth-to-space layer that re-
arranges data from the depth dimension into blocks of size (B × B), so
as to increase the resulting spatial resolution. #T P , number of trainable
parameters

Layer Up-sampler (×2)

Layer #1 Conv2D(128, 5)

Layer #2 Conv2D(64, 3)

Layer #3 D2S(2)

Layer #4 Conv2D(64, 3)

Layer #5 Conv2D(1, 3)

#T P 86, 977

(i) The PSNR indexmeasures the rendered pixel-level accu-
racy compared to the reference image. It is defined
as follows:

PSNR (dB) = 10 × log10

(
MAX2

I

MSE

)
, (18)

where MAXI is the pixel peak-value (i.e., it equates to
255 when 8 bits per pixel are used), while MSE is the
mean square error between the reference image and its
recovered super-resolved version.

(ii) The SSIM index measures the perceived change in struc-
tural information and texture between the reference and
recovered images. It provides a more perceptually rel-
evant measure of image quality by comparing local
patterns of pixel intensities, which have been normalized
with respect to luminance and contrast. Hence, the evalu-
ation of the SSIM index over two equal-size spatial win-
dows x and y extracted from two corresponding locations
of the reference and recovered images is as follows [4]:

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
, (19)

where (a) μx and μy are the average pixel values of the
images x and y, while σ 2

x and σ 2
y are the correspond-

ing variances; (b) σxy is the cross-covariance between x
and y; and (c) C1 and C2 are small positive constants
that are introduced to avoid divisions by zero. Typically,
we have [4] C1 = (k1L)2 and C2 = (k2L)2, where L
is the pixel range (255 for 8-bit coded images), with
k1 = 0.01 and k2 = 0.03. The SSIM index assumes val-
ues over the interval: [−1, 1], with SSIM = 1 denoting a
perfect similarity.

Before proceeding, we point out that, in our frame-
work, ground-truth super-resolved images are not available
by design. Hence, as typically done in the literature (see,
for example, [51]), we generated super-resolved reference
images of sizes: (128 × 128) and (256 × 256) by down-
sampling the available (512 × 512) HR images through
bicubic kernel.

Performance Results and Comparisons

This section aims to evaluate the performance of the MR-
TRAE during training and testing phases in comparison to
two baseline models: the U-Net in [14] and theM-SR-TRAE
benchmark described in “Complexity Analysis and Imple-
mentation Aspects” section.

The rationale behind choosing these models for compar-
ison begins with the U-Net architecture’s original devel-
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opment for biomedical image segmentation, where it has
shown remarkable performance robustness across various
applications [4]. Its inclusion as a primary benchmark stems
from two key points. Firstly, the U-Net model is specifi-
cally designed for handling medical imagery, such as CT
scans, making it an appropriate reference for our purposes.
Secondly, the layered CNN-based structure of U-Net shares
similarities with the architecture of our MR-TRAE model,
providing a basis for meaningful performance comparison.

The M-SR-TRAE model is considered a secondary base-
line primarily because the outcomes achieved by individual
single-resolution models could serve as an upper-bound per-
formance benchmark for their multi-resolution counterparts.
The idea is that training a single up-sampler at a time is likely
to be more effective than simultaneously training multiple
up-samplers, as it can be noticed by comparing the struc-
tures in Figs. 1 and 2. Consequently, a trade-off between the
M-SR-TRAE and MR-TRAE models is expected to involve
a balance between training duration and test performance.
The empirical findings shared in “Performance Results and
Comparisons” section will confirm this hypothesis and pro-
vide valuable insights into the practical trade-offs involved.

Table 4 provides a basis for comparing the U-Net and
MR-TRAE performance in terms of PSNR and SSIM. The
companion Fig. 4 allows a visual comparison of the SR
images produced by these models. For comparison purposes,
the reference ground-truth HR image and the corresponding
LR one are reported in the first row of Fig. 4.

Table 4 U-Net vs. MR-TRAE vs. super-resolution GAN (SRGAN )
comparative performance. Test accuracy (ACC) is evaluated by using
three pre-trained GoogLeNets as benchmark binary classifiers. Each
classifier works on SR input images that are, in turn, generated by the
implementedTRAE,MR-TRAE,U-Net, and SRGANmodels at scaling
factors×2,×4, and×8. The ideal baseline (I B), in the last row, refers to
themodel in which the (512×512) ground-truth HR images are directly
used as inputs to the corresponding benchmark GoogLeNet classifier

Model ACC (%) PSNR (dB) SSIM

TRAE @×2 95.52 29.30 0.8910

TRAE @×4 91.28 25.48 0.8716

TRAE @×8 88.63 22.25 0.7110

MR-TRAE @×2 95.47 28.50 0.8898

MR-TRAE @×4 91.24 25.18 0.8714

MR-TRAE @×8 88.61 22.10 0.7100

U-Net @×2 94.01 27.74 0.8678

U-Net @×4 89.61 24.94 0.8525

U-Net @×8 88.60 22.51 0.7159

SRGAN @×2 94.50 27.82 0.8838

SRGAN @×4 90.50 24.55 0.8702

SRGAN @×8 86.50 20.32 0.7054

IB 95.90 ∞ 1.0000

A column-wise comparison of the entries in the first
nine rows of Table 4 shows that the U-Net underperforms
compared to the MR-TRAE, particularly at smaller SR
image dimensions, i.e., at image sizes of (128 × 128) and
(256× 256). Furthermore, even at the maximum considered
image size of (512 × 512), the performance gap between
the MR-TRAE and the U-Net remains quite limited (see the
sixth and ninth rows of Table 4).

A visual comparison of the SR and ground-truth HR
images inFig. 4 further corroborates these insights and allows
us to conclude that

1. The U-Net model tends to introduce checkerboard arti-
facts in the rendered SR images, especially at higher
up-scaling factors. Such artifacts are absent (or, at least,
not noticeable) in the corresponding SR images gener-
ated by the MR-TRAE model.

2. A column-wise comparison of the reported images indi-
cates that the visual quality of the images rendered by
the MR-TRAE model improves as the scaling factors
increase,while this performance trend is not present in the
corresponding SR images generated by the U-Net model.

3. The MR-TRAE capability to capture and reproduce fine
spatial details is seen when comparing the ground-truth
HR image in Fig. 4 against the corresponding SR ones
in the last row of Fig. 4. In this regard, we note that the
inset of the ground-truth HR image in the first row of
Fig. 4 exhibits snowflake-like patterns representing high-
frequency spatial details which are (i) missing in the
corresponding LR input image, (ii) no longer noticeable
due to pixelation in the U-Net’s SR image reported in
the first column of the last row in Fig. 4), and (iii) still
detectable in the corresponding SR image rendered by
the MR-TRAE (see the inset of the second column in the
last row of Fig. 4).

All in all, these observations provide (a first) support to the
conclusion that the hierarchical feature extraction and knowl-
edge distillation performed by the multi-branch Master AE
of Fig. 2 during training phase help the trained Follower AE
to accurately render finer spatial details in the corresponding
inference phase.

Multi-resolution vs. Multiple Single-resolutions

In principle, multiple single-resolution TRAE models, simi-
lar to those described in [13], could be independently trained,
each targeting a distinct resolution factor. This approach
would result in several trained models, with each capable
of producing good quality images at a single scaling factor.

This observation leads to a key question: why should
we opt for the MR-TRAE model over using several single-
resolution models like the one of Fig. 1?
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Fig. 4 Instances of SR images
rendered by the implemented
MR-TRAE and U-Net models at
scaling factors ×2, ×4, and ×8.
The first row presents the basic
64 × 64 LR input and the
corresponding ground-truth
512 × 512 HR images. Insets
highlight fine spatial details to
emphasize the differences in the
visual quality of the SR images
rendered by the implemented
MR-TRAE and U-Net models
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Fig. 5 Simulated training loss
curves under the proposed
MR-TRAE model at
multi-resolutions ×(2, 4, 8)
(green plot) and the
corresponding benchmark
single-resolution TRAE models
at scaling factors ×2 (blue plot),
×4 (yellow plot), and ×8
(magenta plot)

To address this question, we have carried out simulations
to assess both the training and testing performance of the
MR-TRAE, aswell as the corresponding ones of three single-
resolutionTRAEmodels,with scaling factors of×2,×4, and
×8. For a fair comparison, these benchmark TRAE models
are the ones designed in [13], and henceforth, they will be
referred to as TRAE @×2, TRAE @×4, and TRAE @×8.
The resulting data from the carried out simulations are pre-
sented in Fig. 5 and in the first six rows of Table 4 for the
training and test phases, respectively. Additionally, Table
5 compares the associated implementation complexities in
terms of the number of trainable parameters and measured
training times.

As already pointed out in “MR-TRAE Testing” section,
the test accuracy presented in Table 4 refers to the binary
classification of COVID/non-COVID CT images processed
by the TRAE and MR-TRAE models at scaling factors of
×2,×4, and×8. For each of them, a pre-trained GoogLeNet
serves as a benchmark binary classifier. Specifically, the
implemented GoogLeNet receives in input the SR images
rendered by the TRAE/MR-TRAE models at the given
scaling factor and, then, classifies them as COVID/non-
COVID ones.

In the simulations, three separate GoogLeNets are trained
to cope with SR input images of sizes of (128 × 128),
(256× 256), and (512 × 512). To align with the considered
testing frameworks, we introduce the following taxonomy:
(i)MR-TRAE@×(2, 4, 8)denotes anMR-TRAEmodel that

simultaneously trains three up-samplers at scaling factors
×2,×4, and×8 (see the last column of Table 5 and the green
plot of Fig. 5), while (ii)MR-TRAE@×2,MR-TRAE@×4,
andMR-TRAE@×8 are used to refer to the test performance
of the (aforementioned) MR-TRAE @×(2, 4, 8) model
when evaluated at the scaling factors of×2,×4, and×8 in the
testing phase (see the forth, fifth, and sixth rows of Table 4).

A comparison of the numerical results presented in the
first six rows of Table 4 and in Table 5 allows us to ac-
quire three main insights about the trade-off between using
the multi-resolution approach versus the multiple single-
resolution ones.

Firstly, the data in Table 4 indicate that the test perfor-
mance metrics for theMR-TRAE are nearly as good as those
of the corresponding single-resolution TRAE models, with
only marginal differences, even at ×8 scaling factor.

Secondly, the first row of Table 5 shows the total num-
ber of trainable parameters for the implemented MR-TRAE
is approximately 0.35 times the aggregate number of the
trainable parameters of the corresponding single-resolution
TRAE models. This results, in turn, in a reduction of the
overall model complexity of about 65%.

Third, the last rowofTable 5 shows that themeasuredwall-
clock times for training the three single-resolution TRAE
@×2, TRAE@×4, and TRAE@×8 models are 6:10, 7:15,
and 8:10 (in hours andminutes) respectively. This results in a
total training time of 1295min (21:35 in hours and minutes),
which is approximately 2.46 times greater than the 525min

Table 5 Numbers of the overall
trainable model parameters and
measured training times. #T P ,
number of trainable model
parameters; T T , training time
(hour:minute)

Parameter TRAE @×2 TRAE @×4 TRAE @×8 MR-TRAE @×(2, 4, 8)

#TP 30,189,972 29,431,380 28,818,068 29,026,630

TT 6:10 7:15 8:10 8:45
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(8:45 in hours andminutes) needed to train the corresponding
single MR-TRAE @×(2, 4, 8) model. This finding is cor-
roborated by the convergence times, in terms of the number
of training epochs of the corresponding training loss curves
presented in Fig. 5.

In summary, the reduction in training time achieved by
using a single MR-TRAE model in place of multiple single-
resolution TRAE models is offset by a minor reduction in
test accuracy. This trade-off confirms the effectiveness of
the MR-TRAE in using the cross-correlation found among
different resolutions of the same LR input image.

Finally, we point out that a comparison of the data in Table
4 with the rendered SR images in Fig. 5 shows a discrepancy
between performancemetrics and corresponding visual qual-
ity. In fact, while the performance metrics in Table 4 tend to
decrease with increasing scaling factors, the visual quality
of the images in Fig. 5 appears to improve for higher scaling
factors. This confirms, indeed, that the performance sensi-
tivity of human observers and automated machines do not
always align [12].

Comparison with GAN-Based Baselines

In this section, we test and compare the performance of
the MR-TRAE model against one of the SISR GAN-based
models introduced in [15], generally referred to as super-
resolution GAN (SRGAN). Specifically, SRGAN uses a
GAN, with its generator using a ResNet architecture fea-
turing skip connections, as detailed in Fig. 4 of [15]. Fur-
thermore, the discriminator network of the SRGAN model
is composed of eight convolutional layers, adopting a design
similar to the VGG network. The discriminator uses convo-
lutional kernels of size (3 × 3), with the number of kernels
doubling progressively from the input layer, starting with 64
kernels, to the output layer with 512 kernels.

The resulting SRGAN,with a total of 43,487,690 trainable
parameters, optimizes a perceptual loss function that com-
bines content and adversarial losses, as detailed in Section
2 of [15]. This enables SRGAN to generate SR images free
from noticeable hallucination effects, a claim supported by
both objective and subjective assessments in [15]. Unlike the
multi-resolution approach featuring the proposedMR-TRAE
model, SRGAN operates in a single-resolution fashion, so
that a SRGANmodel must be independently trained for each
considered scaling factor.

The framework adopted for the SRGAN training is
sketched in Fig. 6. To evaluate the effectiveness of the
trained SRGAN and carry out a fair performance comparison
with the MR-TRAE, we use the testing framework outlined
in Fig. 7.

In this setup, the final component is a pre-trained
GoogLeNet serving as a binary classifier. For benchmark-
ing purposes, we also numerically checked the test accuracy

Fig. 6 The simulated single-resolution GAN-based baseline [15]

of the implemented GoogLeNet in an ideal scenario where
GoogLeNet directly classifies ground-truthHR input images.
This scenario, referred to as ideal baseline (IB), provides an
upper bound on the classification performance achievable
when using SR images as inputs for testing.

The obtained SRGAN performance presented in the bot-
tom part of Table 4 exhibits, indeed, a degrading trend as the
scaling factor increases. Specifically, SRGAN performance
is slightly lower than the corresponding one of theMR-TRAE
in terms of classification accuracy, PSNR, and SSIM met-
rics. This conclusion is further corroborated by the fact that
the classification accuracy achieved by theMR-TRAEmodel
closely approaches the performance of the ideal baseline (see
the last row of Table 4).

Figure8 shows a visual comparison between (i) an SR
image rendered by the simulatedSRGANat×8 scaling factor
(see Fig. 8b), (ii) the corresponding SR image generated by
the MR-TRAE (see Fig. 8c), and (iii) the reference ground-
truth HR image of the size (512 × 512) (see Fig. 8a). The
visual comparison of these images gives a first evidence of
the performance superiority of the MR-TRAE architecture
over SRGAN one. This is due to the fact that MR-TRAE is
capable of generating SR images that are free fromnoticeable
hallucination effects.

To reinforce this (visual comparison-based) conclusion
with objective and quantitative metrics, Fig. 8d displays
the per-pixel absolute difference map between the ground-
truth HR image in Fig. 8a and the corresponding SR image
produced by the SRGAN baseline in Fig. 8b. In a similar
way, Fig. 8e presents the per-pixel absolute difference map
between the ground-truth HR image in Fig. 8a and the SR
image generated by the MR-TRAE model in Fig. 8c. In the
presented difference maps, white and black dots represent
the minimum (zero) and maximum (one) per-pixel absolute
differences, respectively.

In both different maps, darker dots are more noticeable
in areas rich in spatial details in the ground-truth HR image.

Fig. 7 Simulated benchmark scheme for testing and comparing the
performance of the trained MR-TRAE model against the GAN-
based baseline
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Fig. 8 Visual comparison
between super-resolved images
and corresponding
difference maps

On average, both the spatial density and the intensity of the
darker dots in Fig. 8d are greater than those in Fig. 8e. This
indeed provides additional (objective) evidence of the supe-
rior SR performance achievable by the MR-TRAE model.

Conclusion and Hints for Future Research

In this study, we have developed and evaluated the MR-
TRAE, a DL architecture for semi-blind training in SISR.
ThisMR-TRAE framework broadens the recently introduced
TRAE concept from [13], traditionally applied to single-
resolution image processing, to include multi-resolution

capabilities. The main features of the MR-TRAE include
(i) the incorporation of a series of trainable CNN-based up-
samplers into the foundational TRAE structure and (ii) the
formulation of a specialized loss function for their integrated
semi-blind training. These features of the MR-TRAE model
are aligned with cognitive learning concepts such as knowl-
edge distillation, the teacher-student learning paradigm, and
hierarchical cognition. The comparative evaluations pre-
sented herein confirm that the MR-TRAE model efficiently
compresses the overall training duration without signifi-
cantly affecting test accuracy or the visual integrity of the
SR images.

123



Cognitive Computation

These findings pave the way for at least two directions
of research.

First, to carry out fair comparisons with previous state-
of-the-art models, we tested the MR-TRAE model on open-
access grayscale CT scans. However, the MR-TRAE and its
associated training loss function could be used for SR across
natural and color images. This can be achieved by incorporat-
ing appropriate color channels into the AEs and up-samplers
shown in Fig. 2. Therefore, evaluation of the MR-TRAE per-
formance with respect to different color spaces presents a
promising and practical direction for further research.

A second line for research stems from the observation that
the MR-TRAE shows lower model complexity and shorter
training duration compared to using several single-resolution
models across various scaling factors. Consequently, another
research direction could explore the distributed training of
the MR-TRAE model on multi-tier edge computing infras-
tructures. This approach aims to enable resource-constrained
end-user devices to use wireless connectivity to proximate
edge-based proxy servers for executing distributed or feder-
ated training of the MR-TRAE network.
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